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Abstract. We give the first non-trivial estimate for the number of GL(n) (n ≥
3) Hecke Maass forms whose Satake parameters at any given prime p fail the
Generalized Ramanujan Conjecture, and study some applications on the (vertical)
Sato-Tate laws.

1. Introduction

There are great advances in the study of the Generalized Ramanujan Conjecture
(GRC) and Sato-Tate laws for GL(2). However, these two problems for GL(n)
(n ≥ 3) are still very mysterious. Recently, Matz and Templier [12] made a break-
through and proved the vertical Sato-Tate law conjectured by Sarnak [19] for GL(n)
where n ≥ 3. An interesting consequence is a nontrivial estimate for the number of
Hecke-Maass forms failing GRC fairly, which has been refined to those forms failing
marginally in [8]. In this paper we improve further to give a nontrivial estimate for
the Hecke-Maass forms failing GRC, and explore its applications on Sato-Tate laws
for GL(n) with n ≥ 3.

Let H\ = {φj} be an orthonormal basis of Hecke-Maass cusp forms for SLn(Z)
with n ≥ 3. For T > 102, define

HT =
{
φ ∈ H\ : µφ ∈ iRn, ‖µφ‖2 ≤ T

}
where µφ is the Langlands parameters and ‖ · ‖2 is the Euclidean norm. By Weyl’s
law (see [13]), #HT � T d, where d = n(n+ 1)/2− 1. Matz and Templier [12, (1.1)]
proved that #HT � T d.

Let p be a fixed prime and φ ∈ HT . The Satake parameters of φ consist of n
complex numbers πφ,1(p), πφ,2(p), . . . , πφ,n(p). It is well-known that

πφ,1(p)πφ,2(p) · · · πφ,n(p) = 1

and (the unitary condition)

{πφ,1(p), . . . , πφ,n(p)} =
{
πφ,1(p)

−1
, . . . , πφ,n(p)

−1}
.(1)

GRC asserts that

(2) |πφ,1(p)| = |πφ,2(p)| = · · · = |πφ,n(p)| = 1,

whose proof seems out of reach at present and the best bound towards GRC is (see
[11])

(3) |πφ,`(p)| ≤ p1/2−1/(n
2+1) for ` = 1, 2, . . . , n.
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For applications, in addition to individual bounds, we may need an estimate of
the forms φ (∈ HT ) that fail GRC at a given prime p. In this direction, following
from Lau and Wang [8, Theorem 7.3] and Matz and Templier [12, Corollary 1.8],
there are constants c′, T0, δ0 > 0 such that

#

{
φ ∈ HT : max

1≤`≤n
log |πφ,`(p)| > θ

}
� T d−c

′θ/ log p(4)

holds for all T > T0 and p � T δ0 , where c′, T0, δ0 and the implied �-constant
depend only on n. Results of the same fashion were earlier obtained by Sarnak [19]
for SL2(Z) and Blomer, Buttcane and Raulf [2] for SL3(Z).

A defect of (4) is that, in view of Weyl’s law, the upper bound becomes trivial
when θ = 0, which cannot give a sufficient control in some applications. In this
paper we shall provide a non-trivial upper estimate for (4) in this boundary case of
θ = 0.

Theorem 1.1. We have

#

{
φ ∈ HT : max

1≤`≤n
log |πφ,`(p)| > 0

}
� T d

(
log p

log T

)3

,

where the implied constant depends on n.

Remark 1.1. In GL(2) case, there are some similar results in [9] and [23].

Next we explore applications of Theorem 1.1 on Sato-Tate laws for GL(n). Write

πφ(p) = (πφ,1(p), · · · , πφ,n(p)) = (eiθφ,1(p), · · · , eiθφ,n(p))
where θφ,j(p) ∈ {a+ bi : a ∈ [0, 2π), b ∈ R} for j = 1, · · · , n. This θφ,j(p) is uniquely
determined for each πφ,j(p). Denote θφ(p) = (θφ,1(p), . . . , θφ,n(p)). Both θφ(p) and
πφ(p) lie in Cn. Since the order of πφ(p)’s entries does not play role in GRC, we
shall view πφ(p) in Cn/Sn (and θφ(p) in Cn/Sn) where Sn is the symmetric group
of degree n.* GRC is equivalent to

θφ(p) ∈ [0, 2π)n/Sn or πφ(p) ∈ S1n/Sn

where S1 is the unit circle in C.
It is widely believed that the Satake parameters satisfy the (horizontal) generalized

Sato-Tate conjecture: for any fixed φ ∈ H\, the sets
{
πφ(p) : p ≤ x

}
become equidis-

tributed with respect to the Sato-Tate measure dµST on S1n/Sn as x → ∞. This
conjecture remains open. Parametrizing S1 by eiθ, we have S1n/Sn

∼= [0, 2π)n/Sn.
We keep using dµST for the (push-forward) Sato-Tate measure on [0, 2π)n/Sn. Given
any I =

∏n
j=1[aj, bj] ⊂ [0, 2π)n. We denote by SI the image of I under the canon-

ical map ρ : [0, 2π)n → [0, 2π)n/Sn. The generalized Sato-Tate conjecture can be
formulated as

lim
x→∞

1

π(x)
#
{
p ≤ x : θφ(p) ∈ SI

}
=

∫
SI

dµST

*Here and in the sequel we use the same notation for a vector x ∈ X and its image in X/Sn

whenever it is clear from the context.
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where π(x) counts the number of primes up to x.
Instead of varying primes, Sarnak [19, §4] considered the vertical perspective and

conjectured that for any fixed prime p, the sets
{
πφ(p) : φ ∈ HT

}
are equidistributed

with respect to the Plancherel measure dµp, as T → ∞. This conjecture has been
proved by Matz and Templier [12] recently, saying that for any I =

∏n
j=1[aj, bj] ⊂

[0, 2π)n,

lim
T→∞

1

#HT

#
{
φ ∈ HT : θφ(p) ∈ SI

}
=

∫
SI

dµp.

There are various interesting earlier work than that of Matz and Templier. Zhou
[24] proved essentially that the equidistribution theorem holds on average in the
vertical sense under some orthogonality relation on the Fourier coefficients, and
subsequently, he and Buttcane [3] confirmed the vertical version of equidistribution
theorem on GL(3). See Remark 1.2 for the relevant work in the GL(2) case.

Our first application is to provide an explicit estimate on the rate of convergence,
i.e. a quantitative version of the result of Matz and Templier.

Theorem 1.2. For any fixed prime p and any I =
∏n

j=1[aj, bj] ⊂ [0, 2π)n, we have

1

#HT

#
{
φ ∈ HT : θφ(p) ∈ SI

}
=

∫
SI

dµp +O

(
log p

log T

)
,

where the implied constant depends only on n.

Remark 1.2. (1) This generalizes the works in GL(2) by Murty and Sinha [14] and
Pujahari [17] for holomorphic cusp forms, Lau and Wang [9] for Maass cusp forms,
and Lau, Li and Wang [6] for GL(2) automorphic representations over totally real
fields.

(2) Theorem 1.1 plays a key role in the proof since it helps to get around the
difficulty in controlling the terms from the “exceptional” Satake parameters.

(3) The equidistribution (without an explicit rate of convergence) was firstly ob-
tained by Sarnak [19], and Knightly and Li [5] for GL(2) Maass forms, and by Serre
[20] and later independently by Conrey, Duke and Farmer [4] for GL(2) holomorphic
primitive forms. The counterpart for the Hilbert modular form is settled in the work
of Li [10].

Theorem 1.2 yields immediately the following result towards an analogue of Lang-
Trotter’s problem.

Corollary 1.1. For any (a1, . . . , an) ∈ Cn, we have

# {φ ∈ HT : (πφ,1(p), . . . , πφ,n(p)) = (a1, . . . , an)} � #HT
log p

log T
,

where the implied constant depends only on n.

Moreover we have an analogue of Theorem 1.1 in Shin and Templier’s work [21]
by (7).
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Corollary 1.2. Let {pk} be a strictly increasing sequence of primes. Suppose that
T = T (k) satisfies log pk

log T
→ 0 as k →∞. Then the Satake parameters{

πφ(pk) : φ ∈ HT

}
k≥1

are equidistributed with respect to the Sato-Tate measure dµST, as k →∞.

Corollary 1.2 and the generalized Sato-Tate problem in horizontal or vertical
sense are investigations for the statistics of

{
πφ(p) : φ ∈ H, p primes

}
. With The-

orem 1.1, we derive a central limit behaviour related to the horizontal Sato-Tate
distribution of

{
πφ(p) : p primes

}
over φ ∈ H.

For any φ ∈ HT and any I =
∏n

j=1[aj, bj] ⊂ [0, 2π)n, we define

NI(φ;x) := #
{
p ≤ x : θφ(p) ∈ SI

}
.

The following theorem tells that the generalized Sato-Tate conjecture is true on
average.

Theorem 1.3. Suppose that T = T (x) satisfies log T/ log x → ∞ as x → ∞. For
any I =

∏n
j=1[aj, bj] ⊂ [0, 2π)n, we have

1

#HTπ(x)

∑
φ∈HT

NI(φ;x) = µST (SI) +O

(
log x

log T
+

log log x

π(x)

)
,

where µST (SI) =
∫
SI
dµST and the implied constant only depends on n.

Remark 1.3. The above theorem should be compared with Corollary 1.2, [15, Theo-
rem 1] (holomorphic cusp forms), [22, Theorem 1.3] (Maass cusp forms) for GL(2)
and [21, Theorem 1.1] for a reductive group over a number field which has discrete
series representations.

Suppose we can model θφ(p) by independently and identically distributed random
variableXp induced by the characteristic function 1SI on the probability space whose
probability measure is the Sato-Tate measure dµST. Then E[Xp] =

∫
1SI dµST (= µ,

say) and thus the variance is

σ2 := E[(Xp − µ)2] =

∫
(1SI − µ)2 dµST = µ− µ2.

The central limit theorem asserts that

Sx :=

1
π(x)

∑
p≤xXp − µ

σ/
√
π(x)

d−→ N(0, 1) as x→∞,

i.e. the cumulative distribution function of Sx converges in distribution to the stan-
dard normal distribution. This heuristic argument can be worked out in the following
sense.
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Theorem 1.4. Let T = T (x) be a function satisfying log T√
x log log x

→ ∞ as x → ∞.

Then for any bounded continuous, real-valued function h on R, we have

lim
x→∞

1

#HT

∑
φ∈HT

h

(
NI(φ;x)− π(x)µST(SI)√
π(x)(µST(SI)− µST(SI)2)

)
=

1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.

Remark 1.4. This generalizes a result obtained by Prabhu and Sinha [16] for GL(2).

Remark 1.5. In contrast to Theorem 1.4, we obtained in [7] the central limit be-
haviour for the smoothly weighted frequency. However, the result [7, Theorem 1.4]
does not imply Theorem 1.4 here, for Theorem 1.1 plays a crucial role in the proof
of Theorem 1.4.

Remark 1.6. There are two main technical differences from the work by Prabhu
and Sinha [16]. First, we need a tool in several variables instead of the Beurling-
Selberg polynomials of one variable to approximate NI(φ;x). Second, the control on
the “exceptional” Satake parameters – using Theorem 1.1 – is more complicated than
the case of GL(2).

2. Preparations

2.1. An Arthur-Selberg Trace formula. One of our main tools is the following
trace formula of Matz and Templier [12, Theorem 1.4] with modification to fit our
situation.

Theorem 2.1 (Matz-Templier). Let n ≥ 3. Given any m ∈ N, any distinct primes
p1, . . . , pm and any g1, . . . , gm ∈ C[x±1 , · · · , x±n ]Sn. We have∣∣∣∣∣∑

φ∈HT

m∏
i=1

gi(αφ(pi))−#HT

m∏
i=1

∫
S1n/Sn

gidµpi

∣∣∣∣∣ ≤ c1T
d−1/2

m∏
i=1

p
Adeg′(gi)
i ‖gi‖max

where c1, A are constants only depending on n. Here ‖g‖max denote the maximum
of the absolute values of its coefficients and constant term. The degree function
deg′(g) denotes the degree when g is expressed in terms of the elementary symmetric
polynomials e0, · · · , em (e0 := 1 and en = x1 · · ·xn) with deg′(e0) = deg′(en) = 0
and deg(ei) = 1 for 1 ≤ i ≤ n− 1.

Remark 2.1. (i) Here and in what follows, f ∈ C[x±1 , · · · , x±n ]Sn means a polyno-
mial f in x1, · · · , xn, x−11 , · · · , x−1n over C and

f(xσ(1), · · · , xσ(n), x−1σ(1), · · · , x
−1
σ(n)) = f(x1, · · · , xn, x−11 , · · · , x−1n )

for any σ ∈ Sn. (ii) Note that #HT � T d.

Proof. Put
S = {p1, . . . , pm}.

Let τpi correspond to gi under the Satake correspondence for i = 1, . . . ,m. Let

τ =
∏
p∈S

τp
∏
p/∈S

1G(Zp).
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The first term in the theorem agrees with that of [12, Theorem 1.1]. For the second
term,

m∏
i=1

∫
S1n/Sn

gidµpi =
∏
p∈S

vol(Zp)−1
∫
Z(Qp)

τp(z)dz

=
∏
p∈S

∑
z∈Z(Qp)/Z(Zp)

τp(z)

=
∑

γ∈Z(Q)/{±1}

∏
p∈S

τp(γ)
∏
p/∈S

1G(Zp)(γ),

which agrees with that of [12, Theorem 1.1]. Then, by [12, Theorem 1.1], we have
to estimate

‖
∏
p∈S

τp
∏
p/∈S

1G(Zp)‖L1(G(Af )) =
∏
p∈S

‖τp‖L1(G(Qp)).

By the proof of [12, Theorem 1.4], we obtain

‖τp‖L1(G(Qp)) ≤ c′pAdeg(φ)

and the theorem follows plainly. �

2.2. Integration formulas for the Sato-Tate measure and Plancherel mea-
sure. As S1n/Sn is identified with [0, 2π)n/Sn via parametrizing S1 by eiθ, we may
view the Sato-Tate measure dµST, which is supported on {x ∈ S1n/Sn :

∏
i xi = 1},

as a measure supported on T0/Sn ⊂ [0, 2π)n/Sn, where T0 = {θ ∈ [0, 2π)n :
∑

i θi =
0} (here for a, b ∈ [0, 2π), a = b means a ≡ b mod 2π). The integration formula for
dµST is then given by

(5) dµST(θ) =
1

n!(2π)n−1

∏
1≤`<m≤n

|eiθ` − eiθm|2dθ1 · · · dθn−1

where
∑n

`=1 θ` = 0, θj ∈ [0, 2π) for j = 1, · · · , n− 1. Let ρ : [0, 2π)n → [0, 2π)n/Sn.
Thus if I =

∏n
j=1[aj, bj] ⊂ [0, 2π)n, then ρ(I) = SI in Section 1. For any measurable

f on T0/Sn, ∫
f dµST =

∫
[0,2π)n−1

f ◦ ρ(θ) dµST(θ).

The Plancherel measure dµp is given by the formula

dµp(θ) =
n∏
j=2

1− p−j

1− p−1
∏

1≤`<m≤n

∣∣eiθ` − p−1eiθm∣∣−2 dµST.
�(6)

Plainly, we have

(7) dµp = (1 +O(1/p)) dµST → dµST as p→∞.

†We may suppress θ from dµST(θ) or dµp(θ) once no confusion arises.
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3. Proof of Theorem 1.1

We need the following analogue of [12, Lemma 3.1] with a very similar proof.

Lemma 3.1. Let s be any positive integer. Then there exist symmetric polynomials
f1, . . . , fs ∈ C[x1, . . . , xs]

Ss such that for all α ∈ Cs,

max
(
|f1(α)|, . . . , |fs(α)|

)
> |α|2∞ if |α|∞ > 1,

and

max
(
|f1(α)|, . . . , |fs(α)|

)
≤ 3s · |α|2∞ if |α|∞ ≤ 1.

Proof. For any integer m > 0, and x = (x1, . . . , xs) ∈ Cs with |x|∞ > 1, let

em(x) :=
2m

m!(s−m)!

∑
σ∈Ss

x2σ(1) · · ·x2σ(m) = 2m
∑

A⊂{1,··· ,s}
#(A)=m

∏
j∈A

x2j .

In particular e0 = 1. Note that by convention xs+1 = xs+2 = 0, and so on; in other
words we view x in Cs ⊂ Cs+1 ⊂ Cs+2 and so on, by adding zero coordinates at the
end. Thus by convention em = 0 if m > s. Let xmax ∈ {x1, . . . , xs} be such that
|xmax| = |x|∞ = max1≤j≤s |xj| > 1. Let x− ∈ Cs−1 be the vector obtained from x by
omitting the coordinate xmax. Then for every 0 < m ≤ s,

em(x) = 2x2maxem−1(x
−) + em(x−). �

Hence we have

(8) |em(x)| ≥ |x2maxem−1(x
−)|

or

(9) |em(x−)| ≥ |x2maxem−1(x
−)|.

Note that there exists m ∈ {1, . . . , s} such that (8) holds (namely, it holds as
least for m = s). Let m0 be the smallest m such that (8) holds. Then for every
0 < m ≤ m0 − 1 the inequality (9) holds so that

|em0−1(x
−)| ≥ |xmax|2|em0−2(x

−)| ≥ · · · ≥ |xmax|2(m0−1).

Therefore,

|em0(x)| ≥ |xmax|2|em0−1(x
−)| ≥ |xmax|2m0 > 1.

The lemma follows with fi := ei for i = 1, . . . , s, as max1≤m≤s |em(x)| ≥ |em0(x)|
and |em(x)| ≤ 2ms!|x|2m∞ /(m!(s−m)!) ≤ 3s|x|2m∞ . �

�This can be seen as follows: Suppose, without loss of generality, xs = xmax. Using the second
expression for em(x), we split the sum into two sums according as s ∈ A or not. The latter case
(i.e. s /∈ A) gives em(x−); the former case leads to∑

s∈A⊂{1,··· ,s}
#(A)=m

∏
j∈A

x2j = x2s
∑

A⊂{1,··· ,s−1}
#(A)=m−1

∏
j∈A

x2j .



8 LAU, NG, AND WANG

Now we are ready to prove Theorem 1.1. We only consider the case that log T/ log p
is sufficiently large compared to n. Otherwise, Theorem 1.1 is trivial. Let L ∈ N0

and define for any x 6= y ∈ C,

(10) UL(x, y) :=
1

L+ 1

xL+1 − yL+1

x− y
.§

Let s = n(n − 1)/2. For x = (x1, · · · , xn) ∈ Cn with x1 · · ·xn 6= 0, we consider the
unordered tuple

(11) UL(x) = {UL(x`, xm)}1≤`<m≤n
which lies in Cs/Ss. Write xσ = (xσ(1), · · · , xσ(n)), σ ∈ Sn, and x−1 = (x−11 , · · · , x−1n ).
As UL(x, y) = UL(y, x), it follows that UL(xσ) = UL(x) for any σ ∈ Sn. We choose
f1, . . . , fs as in Lemma 3.1 with s = n(n− 1)/2, and define

FL(x1, . . . , xn) :=
s∑
i=1

fi(UL(x))fi(UL(x−1)).

Then FL is in C[x±1 , . . . , x
±
n ]Sn . We will take L to be sufficiently large (compared to

n) such that the coefficients of FL are less than one.

Abbreviate αφ = (πφ,1(p), πφ,2(p), . . . , πφ,n(p)). We have UL(α−1φ ) = UL(αφ) by
the unitary condition (1), and therefore for all φ ∈ HT ,

(12) FL(αφ) =
s∑
i=1

|fi(UL(αφ))|2 ≥ 0.

Suppose φ does not satisfy (2). The unitary condition (1) yields (at least) one
pair of πφ,`(p), 1 ≤ ` ≤ n, whose absolute value are not equal to 1. Without loss of
generality, we assume that πφ,1(p) and πφ,2(p) are such a pair and write

πφ,1(p) = ρφ(p)eiθ
′
φ(p) and πφ,2(p) = ρφ(p)−1eiθ

′
φ(p),

for some ρφ(p) > 1 and real θ′φ(p). Then for these φ, we have∣∣UL(πφ,1(p), πφ,2(p))
∣∣ = UL(ρφ(p), ρφ(p)−1) > 1,

by (10). Hence
∣∣UL(αφ)

∣∣
∞ > 1 if φ does not satisfy (2), and together with Lemma 3.1,

(13) FL(αφ) =
s∑
i=1

|fi(UL(αφ))|2 ≥ 1

if φ does not satisfy (2).
It follows from (12) and (13) that∑

φ∈HT
(2) holds

1 ≥
∑
φ∈HT

(
1− FL(αφ)

)
.

§UL(eiθ, e−iθ) = 1
L+1UL(cos θ) where UL(x) is a Chebyshev polynomial of the second kind.
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We infer that

#HT ≥
∑
φ∈HT
(2) holds

1 ≥
∑
φ∈HT

(
1− FL(αφ)

)
= #HT

∫
[0,2π)n−1

(1− FL(eiθ1 , . . . , eiθn))dµp +O(pLA
′
T d−1/2).(14)

Here we have applied Theorem 2.1 in the last step where A′ is a constant depending
only on n and θ1 + · · ·+ θn = 0.

By (10), we have |UL(x, y)| ≤ 1 for any x, y ∈ S1, and by Lemma 3.1 with (11),

FL(eiθ1 , . . . , eiθn) =
s∑
i=1

fi(UL(eiθ1 , . . . , eiθn))fi(UL(e−iθ1 , . . . , e−iθn))

=
s∑
i=1

|fi(UL(eiθ1 , . . . , eiθn))|2

≤ 3ss ·
∣∣UL(eiθ1 , . . . , eiθn)

∣∣4
∞.

Consequently,

FL(eiθ1 , . . . , eiθn)�n

∣∣UL(eiθ1 , . . . , eiθn)
∣∣4
∞ ≤ max

1≤`<m≤n
|UL(eiθ` , eiθm)|4.

Together with (6) (which implies dµp � dµST ), we get∫
[0,2π)n−1

FL(eiθ1 , . . . , eiθn)dµp �n max
1≤`<m≤n

∫
[0,2π)n−1

|UL(eiθ` , eiθm)|4dµST.(15)

In view of (10) and (5), two factors of the denominator of |UL(eiθ` , eiθm)|4 are can-
celled out by factors in the product inside the integration formula of dµST. Bounding
the other factors trivially, we see that∫

[0,2π)n−1

|UL(eiθ` , eiθm)|4dµST �n
1

L2

∫
[0,2π)n−1

|UL(eiθ` , eiθm)|2dθ1 · · · dθn−1 �
1

L3

after an integration with the expansion

UL(eiθ` , eiθm) =
1

L+ 1

∑
0≤α,β≤L
α+β=L

eiαθ`eiβθm .

Putting the estimate into (15), we deduce from (14) that

0 ≤ #HT −
∑
φ∈HT
(2) holds

1� #HTL
−3 + pLA

′
T d−1/2.

Since #HT � T d and log T/ log p is sufficiently large compared to n, Theorem 1.1
follows by choosing

L =

[
log T

4A′ log p

]
.
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4. Further preparations

Let n ∈ N and Ω be some set. Suppose D ⊂ Ωn and F : Ωn → C is any function
supported on D. For every σ ∈ Sn, we define

Dσ := {xσ : x ∈ D} and F ◦ σ(x) := F (xσ).

(Recall xσ = (xσ(1), · · · , xσ(n)) if x = (x1, · · · , xn).)
Set

SD :=
⋃
σ∈Sn

Dσ.(16)

Then SD is the preimage for the image of D in Ωn/Sn (denoted by SD) under the
canonical projection from Ωn to Ωn/Sn.

Define SF and |S|F by the equations∏
σ∈Sn

(1SD − F ◦ σ) = 1SD −SF and
∏
σ∈Sn

(1SD + F ◦ σ) = 1SD + |S|F(17)

where 1SD : Ωn → {0, 1} is the characteristic function on SD and
∏

denotes the
product (not composite) of functions. Alternatively,

SF =
∑

1≤r≤n!

(−1)r−1
∑
A⊂Sn
#A=r

∏
σ∈A

F ◦ σ and |S|F =
∑

1≤r≤n!

∑
A⊂Sn
#A=r

∏
σ∈A

F ◦ σ.(18)

Remark 4.1. (1) For SD ⊂ D′ ⊂ Ωn, we also have∏
σ∈Sn

(1D′ − F ◦ σ) = 1D′ −SF and
∏
σ∈Sn

(1D′ + F ◦ σ) = 1D′ + |S|F.

(2) For F = SF or |S|F , F(xσ) = F(x) for all σ ∈ Sn by (17); |SF | ≤ |S||F | by
(18).
(3) Suppose 0 ≤ F ≤ G ≤ 1 on Ωn (which implies supp(F ) ⊂ supp(G)). Then

(19) 0 ≤ SF ≤ SG ≤ 1.

This is seen as follows: We have 0 ≤
∏

σ(1SD − G ◦ σ) ≤
∏

σ(1SD − F ◦ σ) ≤ 1
where D = supp(G) and the product runs over all σ ∈ Sn, as 0 ≤ F ◦σ ≤ G◦σ ≤ 1
for all σ ∈ Sn. Then (19) follows readily from (17) and Part (1) of this remark.

4.1. A few inequalities. We develop some tools for approximation using the work
of Barton, Montgomery and Vaaler [1].

Let ϕu,v : R/Z→ R be the normalized characteristic functions defined as,

ϕu,v(θ) =


1 if u < θ − n < v for some n ∈ Z,
1

2
if u− θ ∈ Z or if v − θ ∈ Z,

0 otherwise,
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where u < v < u + 1. We may also view ϕu,v as a periodic function on R. Define
two functions αu,v, βu,v on R/Z (viewed as periodic function on R as well) by

αu,v(θ) =α̂u,v(0) +
∑

1≤|`|≤M

α̂u,v(`)e(`θ)(20)

and

βu,v(θ) =(2M + 2)−1
∑
|`|≤M

β̂u,v(`)e(`θ),(21)

where e(x) = e2πix, α̂u,v(0) = v − u, β̂u,v(0) = 2 and for ` 6= 0,

(22) α̂u,v(`) =
1

2πi`
Ĵ
( `

M + 1

)(
e(−`u)− e(−`v))

)
with Ĵ(t) = πt(1− |t|) cotπt+ |t| for 0 < |t| < 1, and

(23) β̂u,v(`) =

(
1− |`|

M + 1

)
(e(−`u) + e(−`v)).

The functions αu,v and βu,v define polynomials on C. Write

α̃u,v(z) = α̂u,v(0) +
∑

1≤|`|≤M

α̂u,v(`)z
` and β̃u,v(z) = (2M + 2)−1

∑
|`|≤M

β̂u,v(`)z
`.

Proposition 4.1. We have (i) α̃u,v(z) = α̃u,v(z
−1), β̃u,v(z) = β̃u,v(z

−1); (ii) more-

over, for any θ ∈ C, α̃u,v(z) = αu,v(θ) and β̃u,v(z) = βu,v(θ) if z = e(θ).
(iii) Suppose u, v ∈ 1

M+1
Z. We have

• |ϕu,v(θ)− αu,v(θ)| ≤ βu,v(θ) for all θ ∈ R,

• 0 ≤ αu,v(θ), βu,v(θ) ≤ 1 for all θ ∈ R, hence 0 ≤ α̃u,v(z), β̃u,v(z) ≤ 1 for
z ∈ S1.

Proof. Write f(`) = α̂u,v(`) or β̂u,v(`) with ` ∈ Z. By (22) and (23), f(0) ∈ R
and f(`) = f(−`), leading to (i). The assertion (ii) is obvious. The remaining
assertions in (iii) come from [1, (2.6) and (2.10)], for αu,v(θ), βu,v(θ) are the functions
ϕu,v ∗ jM(θ) and (2M + 2)−1{kM(u− θ) + kM(θ − v)} in [1]. �

4.2. Approximation of the characteristic function of SI. We take Ω = R/(2πZ)
which is identified with [0, 2π) and ∅ 6= Ij = [aj, bj] ⊂ (0, 2π) for j = 1, · · · , n. Let
M be any sufficiently large number. Choose u±j , v

±
j ∈ 1

M+1
(2πZ) (1 ≤ j ≤ n) so

that |u−j − u+j | and |v−j − v+j | are �M−1 and

0 ≤ u+j < aj < u−j < v−j < bj < v+j < 2π.

Set I =
∏n

j=1 Ij, I
± =

∏n
j=1[u

±
j , v

±
j ] and define for x ∈ Ωn,

(24) Φ±(θ) =
n∏
j=1

ϕ±j (θj) where ϕ±j (θ) = ϕ 1
2π
u±j ,

1
2π
v±j

( 1
2π
θ).
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Clearly 0 ≤ Φ− ≤ 1I ≤ Φ+ ≤ 1 and Φ± = 1I± a.e. with respect to the Lebesgue
measure on Rn. Let SI be defined as in (16). With 1SI = S1I and (19), we have

(25) 0 ≤ SΦ− ≤ 1SI ≤ SΦ+ ≤ 1 and SΦ± = 1SI± a.e..

Next we extend the domains of αu,v(θ) and βu,v(θ) to C, and set (for θ ∈ Cn)

α±j (θ) = α 1
2π
u±j ,

1
2π
v±j

( 1
2π
θ) and β±j (θ) = β 1

2π
u±j ,

1
2π
v±j

( 1
2π
θ),

and define two functions on Cn:

(26) α±(θ) =
n∏
j=1

α±j (θj) and B±(θ) =
n∑
j=1

β±j (θj).

Recall thatSI denotes the image of I under the projection ρ : [0, 2π)n → [0, 2π)n/Sn,
i.e. SI = ρ(I), then SI defined as in (16) is the preimage of ρ(I), i.e. SI =
ρ−1(ρ(I)), or SI = ρ−1(SI). Analogously for a function f on [0, 2π)n, the functions
Sf and |S|f on [0, 2π)n descend to functions on [0, 2π)n/Sn, denoted by Sf and
|S|f , i.e. Sf = Sf ◦ ρ and |S|f = |S|f ◦ ρ.**

Lemma 4.1. We have the following:

(1) On Rn, 0 ≤ Sα± ≤ 1 and 0 ≤ |S|B± < (n+ 1)n!.

(2) On Rn, |SΦ± −Sα±| ≤ |S|B±.

(3) On {θ ∈ Cn : θσ = −θ for some σ ∈ Sn}, both Sα± and |S|B± are
R-valued.

Moreover, for ` = 1 or 2,∫ ∣∣(Sα±)` − 1SI

∣∣ dµp �M−1 and

∫
|S|B± dµp �M−1.(27)

Proof. In view of (26) and Proposition 4.1 (iii), we get

0 ≤ α±(θ) ≤ 1 and 0 ≤ B±(θ) ≤ n for θ ∈ Rn.

Thus in (1), the first and second inequalities follow respectively from (19) and triv-
ially bounding (18).

Next we observe

(∗) :
∣∣Φ± −α±

∣∣ ≤ B± (on Rn),

**Let us compare the known integration formulas for dµST (n = 2, 3) with (5) under this
identification. When n = 2, the Sato-Tate measure of I is often given as 2

π

∫
I

sin2 θ dθ for I ⊂ [0, π],

which equals 1
2!·2π

∫
SI
|eiθ− e−iθ|2 dθ. When n = 3, the Sato-Tate measure is given as in [2, p.899-

900]: for any measurable function f on the support R of the Sato-Tate measure dµST,∫
R

f(z) dµST(z) =

∫
S1×S1

f ◦ Φ(θ1, θ2) dα(θ1, θ2)

where Φ : (S1×S1)/W → R is bijective, and W is the group of 6 maps S1×S1 → S1×S1 generated
by (eiθ1 , eiθ2) 7→ (eiθ2 , eiθ1) and (eiθ1 , eiθ2) 7→ (eiθ1 , e−i(θ1+θ2)). Observe that (S1×S1)/W ∼= T0/S3

and dα(θ1, θ2) = dµST(θ). This verifies the case for n = 3.
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following plainly from the inequality

(?) :

∣∣∣∣∣
n∏
j=1

xj −
n∏
j=1

yj

∣∣∣∣∣ ≤
n∑
j=1

|xj − yj|

for 0 ≤ xj, yj ≤ 1. (Note that |ϕ±j − α±j | ≤ β±j and 0 ≤ ϕ±j , α
±
j ≤ 1 due to

Proposition 4.1 (iii).) Then (2) is proved with (18), and the inequalities (?) and (∗).
We lift α±j , β

±
j to α̃±j , β̃

±
j as in Proposition 4.1 (ii). Correspondingly for F =

Sα± or |S|B±, we have a lift F̃(x) of F(θ). By construction, F̃(x1, · · · , xn) ∈
C[x±1 , · · · , x±n ]Sn (cf. Remark 4.1 (2)) and by Proposition 4.1 (1), for any x =
(x1, · · · , xn) ∈ Cn,

F̃(x1, · · · , xn) = F̃(x1
−1, · · · , xn−1).

Thus F̃(x) ∈ R if xσ = x−1 (the unitary condition), which is equivalent to θσ = −θ
when θ = (θ1, · · · , θn) and x = (eiθ1 , · · · , eiθn), for some σ ∈ Sn. This confirms (3).

Recall the integral formulas (6) and (5) for dµp and dµST. From (25), we get∫
|1SI −SΦ±| dµp �

∫
|1SI −SΦ±| =

∫
|1SI − 1SI± | � 1/M

where the last two integrals are against the Lebesgue measure on [0, 2π)n. With the
just shown (1) and (2), we see that∫ ∣∣(Sα±

)2 − 1SI

∣∣ dµp ≤ 2

∫ ∣∣Sα± − 1SI

∣∣ dµp �M−1 +

∫
|S|B± dµp.

From 0 ≤ B± ≤ n on Rn and (18), we infer

0 ≤ |S|B± �n

∑
σ∈Sn

B± ◦ σ.

Consequently, ∫
|S|B± dµp �n

∫
[0,2π)n

B±(θ)� 1/M,

where the last estimate comes from
∫ 2π

0
βj(θ) dθ = 1/(M+1) (by (21)) and (26). �

5. Contributions of Exceptional Satake parameters

Let φ ∈ HT . All the four functions α±(θφ(p)) and B±(θφ(p)) are defined, no mat-
ter whether φ satisfies (GRC) or not. But when φ satisfies (GRC), the vector θφ(p)
lies in (R/(2πZ))n and Lemma 4.1 (1) and (2) hold. Otherwise, for the “exceptional”
Satake parameters, we shall give a control via the lemma below. Define

H∗T,p =

{
φ ∈ HT : max

1≤`≤n
log |πφ,`(p)| > 0

}
.
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Lemma 5.1. Let h, l ≥ 1 be any integers. For F = Sα± or |S|B±, we have
F(θφ(p)) ∈ R and

1

#HT

∑
φ∈H∗T,p

∣∣F (θφ(p)
)∣∣h �l

(
log p

log T

)3(1− 1
2l
)(
ch + T−

1
4lpA

′Mh
)

(28)

where c = 1 or (n + 1)n! according as F = Sα± or |S|B±, the positive constant A′

depends at most on n and the implied constant depends at most on n and l.

Proof. Lemma 4.1 yields F(θφ(p)) ∈ R. We apply Hölder’s inequality with the pair
(2l, 2l/(2l − 1)) to the left-hand side of (28) and get

1

#HT

∑
φ∈H∗T,p

∣∣F (θφ(p)
)∣∣h ≤ ( 1

#HT

∑
φ∈H∗T,p

1

)1− 1
2l
(

1

#HT

∑
φ∈HT

F
(
θφ(p)

)2hl) 1
2l

.

We apply Theorem 2.1 to get, as deg′(F)�n 1,

1

#HT

∑
φ∈HT

F
(
θφ(p)

)2hl
=

∫
T0/Sn

F2hldµp +O
(
T−1/2p2A

′Mhl
)

for some constant A′ > 0 depending at most on n, where the function F is defined
by F = F ◦ ρ. The right-hand side is �n c

2hl + T−1/2p2A
′Mhl since 0 ≤ F ≤ c, cf.

Lemma 4.1 (1). The assertion follows from Theorem 1.1. �

6. Proof of Theorem 1.2

In view of (25) and Lemma 4.1 (2), we obtain

Sα− − |S|B− ≤ 1SI ≤ Sα+ + |S|B+(29)

on Rn, which is thus applicable to φ ∈ HT \H∗T,p. The remnants due to φ ∈ H∗T,p
are then controlled by Lemma 5.1 with h = l = 1, so

1

#HT

∑
φ∈HT

Sα−(θφ(p))− E ≤ 1

#HT

∑
φ∈HT

1SI(θφ(p)) ≤ 1

#HT

∑
φ∈HT

Sα+(θφ(p)) + E

where

E�n
1

#HT

∑
φ∈HT

∑
ε=±

|S|Bε(θφ(p)) +

(
log p

log T

)3/2(
1 + pA

′MT−1/4
)
.

Note that 1SI ◦ ρ = 1SI (and θφ(p) is identified with ρ(θφ(p))). Invoking (27) gives
that

(30)
1

#HT

∑
φ∈HT

1SI(θφ(p))−
∫
1SI dµp �

1

M
+

(
log p

log T

)3/2(
1 + pA

′MT−1/4
)
.

The proof is completed with

M =

[
log T

8A′ log p

]
.
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7. Proof of Theorem 1.3

By (7), we see that
∫
1SI dµp = µST(SI) +O(p−1). Summing (30) over p ≤ x, we

get

1

#HTπ(x)

∑
φ∈HT

NI(φ;x)− µST(SI)

� log log x

π(x)
+

1

M
+

1

π(x)

∑
p≤x

(
log p

log T

)3/2(
1 + pA

′MT−1/4
)

� log log x

π(x)
+

1

M
+

(
log x

log T

)3/2

+ T−1/4xA
′M log x.(31)

The proof is completed by taking

M =

[
log T

8A′ log x

]
.

8. Central Limit Behaviour

In [7, Section 4], we formulate a set-up to yield the central limit behaviour for the
statistics of a family of objects. This section is devoted to recall this so as to show
Theorem 1.4. Here we only need the case for one-dimensional Gaussian distribution.

Let {Xx}x∈(0,∞) and {Tt}t∈(0,∞) be two collections of finite sets such that (i) Xi ⊆
Xj (resp. Ti ⊆ Tj) for i ≤ j, and (ii) both X =

⋃
xXx and T =

⋃
t Tt are infinite

sets. Besides we are given a family of objects {aφ(p) : φ ∈ T , p ∈ X} and a family of
independent real random variables {Ap : p ∈ X} over possibly different probability
spaces. Suppose for some real constants µ and ν,

(I)
1√
|Xx|

∑
p∈Xx

∣∣E[Ap]− µ
∣∣→ 0 as x→∞,

(II)
1

|Xx|
∑
p∈Xx

E[A2
p]→ ν as x→∞,

(III) E[|Ap|r] ≤ cr0 for all r ≥ 0 and all p ∈ X, for some constant c0 ≥ 1.

Proposition 8.1. Let aφ(p) and Ap be defined as above. Suppose the above condi-
tions (I)-(III) for {Ap} hold, and there exists a function TA(x) satisfying TA(x)→∞
as x→∞ such that for any x > 0 and any t ≥ TA(x),

(32)
1

|Tt|
∑
φ∈Tt

∏
p∈Xx

aφ(p)up =
∏
p∈Xx

E[Aup
p ] +Oa(|Xx|−a/2−1)

for any up ∈ N0 (p ∈ X), where a =
∑

p up and the implied constant depends at most
on a. Define

(33) Zx(φ) =
1√
|Xx|

∑
p∈Xx

(aφ(p)− µ).
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If t = t(x) ≥ TA(x), then

1

|Tt|
∑
φ∈Tt

h(Zx(φ))−−−−→
x→∞

1√
2π(ν − µ2)

∫
h(x)e−x

2/(2(ν−µ2)) dx ��

for any bounded continuous function h : R→ R.

9. Proof of Theorem 1.4

We start with two lemmas so as to prove Proposition 9.1, which leads to Theo-
rem 1.4.

Lemma 9.1. Suppose the number M in Subsection 4.2 satisfies M ≤ π(x). We
have

1

#HT

∑
φ∈HT

(∑
p≤x

|S|B±
(
θφ(p)

))2

� (M−2 + T−1/2xA
′M)π(x)2(34)

1

#HT

∑
φ∈HT

∣∣∣∣∑
p≤x

(
Sα+(θφ(p))−Sα−(θφ(p))

)∣∣∣∣2 � (M−2 + T−1/2xA
′M)π(x)2(35)

where the two implied constants and the positive constant A′ depend at most on n.

Proof. By Theorem 2.1, for F,G ∈ {Sα±, |S|B±}, and for any two primes p 6= q,

1

#HT

∑
φ∈HT

F(θφ(p))2 −
∫

F2 dµp � T−1/2p2AM ,

1

#HT

∑
φ∈HT

F(θφ(p))G(θφ(q))−
∫

F dµp

∫
G dµq � T−1/2(pq)AM .

Squaring out the sum over p ≤ x, the left-side of (34) equals

Σ1(x) + E1(x)

where

Σ1(x) =
∑
p≤x

∫ (
|S|B±

)2
dµp +

∑
p 6=q≤x

∫
|S|B± dµp

∫
|S|B± dµq

E1(x) � T−1/2
∑
p≤x

p2AM + T−1/2
∑
p 6=q≤x

(pq)AM .

Clearly E1(x)� T−1/2x2AMπ(x)2 and, by Lemma 4.1 (1) and (27),

Σ1(x)�M−1π(x) +M−2π(x)2.

The assertion (34) is complete.

��We would take this opportunity to correct some typos in [7]: The factor 1
2π on the right-side

of the equations in Theorem 4.1 (ii), Remark 4 (c) and (d) of p.177, and Theorem 4.2 of p.178
should be 1√

2π
.
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By the unitary condition of πφ(p), Lemma 4.1 (3) implies F(θφ(p)) ∈ R. We
obtain ∣∣∣∣∑

p≤x

(
Sα+(θφ(p))−Sα−(θφ(p))

)∣∣∣∣2 = Sφ,1(x)− 2Sφ,2(x)

where

Sφ,1(x) =
∑
p≤x

(
Sα+(θφ(p))2 − 2Sα+(θφ(p))Sα−(θφ(p)) + Sα−(θφ(p))2

)
,

Sφ,2(x) =
∑
p 6=q≤x

(
Sα+(θφ(p))Sα+(θφ(q)) + Sα−(θφ(p))Sα−(θφ(q))

)
−2

∑
p 6=q≤x

Sα+(θφ(p))Sα−(θφ(q)).

After averaging over φ ∈ HT and assembling, the left-side of (35) equals

S1(x) + S2(x) + T−1/2E2(x)

where

S1(x) =
∑
p≤x

∫ (
Sα+ −Sα−

)2
dµp

S2(x) =
∑
p6=q≤x

∫ (
Sα+ −Sα−

)
dµp

∫ (
Sα+ −Sα−

)
dµq

E2(x) �
∑
p≤x

p2AM +
∑
p 6=q≤x

(pq)AM � x2AMπ(x)2.

With Lemma 4.1 (1) and (27),

S1(x) �
∑
p≤x

∑
ε=±

∫ ∣∣∣Sαε − 1SI

∣∣∣ dµp �M−1π(x)

S2(x) � M−2
∑
p≤x

1�M−2π(x)2.

Then (35) follows. �

Lemma 9.2. Let M = M(x) := b
√
π(x)log log xc. Suppose that T = T (x) satisfies

log T
M log x

→∞ as x→∞. Then

lim
x→∞

1

#HT

∑
φ∈HT

1

π(x)

∣∣∣∣NI(φ;x)−
∑
p≤x

Sα+(θφ(p))

∣∣∣∣2 = 0.

Proof. On Rn, we have Sα− − |S|B− ≤ 1SI ≤ Sα+ + |S|B+ (from (29)). With
NI(φ, x) =

∑
p≤x 1SI(θφ(p)), we obtain that for φ ∈ HT \H∗T,p,∣∣∣∣NI(φ, x)−

∑
p≤x

Sα+(θφ(p))

∣∣∣∣ ≤ Eφ(x)
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where

Eφ(x) :=

∣∣∣∣∑
p≤x

(
Sα+(θφ(p))−Sα−(θφ(p))

)∣∣∣∣+
∑
ε=±

∑
p≤x

|S|Bε(θφ(p)).

For φ ∈ H∗T,p, NI(φ, x) = 0, and thus∑
φ∈H∗T,p

∣∣∣∣NI(φ;x)−
∑
p≤x

Sα+(θφ(p))

∣∣∣∣2 ≤ π(x)
∑
p≤x

∑
φ∈H∗T,p

∣∣∣∣Sα+(θφ(p))

∣∣∣∣2.
Hence we infer by Lemma 5.1 with h = l = 2 that

1

#HT

∑
φ∈HT

1

π(x)

∣∣∣∣NI(φ;x)−
∑
p≤x

Sα+(θφ(p))

∣∣∣∣2

≤ 1

#HT

∑
φ∈HT

1

π(x)
Eφ(x)2 +

(
log x

log T

) 9
4(
π(x) + T−

1
8x2A

′Mπ(x)
)
.(36)

The second term tends to 0 as x → ∞ because π(x) = o((log T )2) and M log x =
o(log T ). Using (a + b)2 � a2 + b2, Cauchy-Schwarz’s inequality and Lemma 9.1,
the first term of (36) is

�M−2π(x) + T−1/2xA
′Mπ(x)→ 0 as x→∞.

The proof is thus complete. �

For φ ∈ HT , we set

Zx(φ) =
1√
π(x)

∑
p≤x

(
Sα+(θφ(p))− µST(SI)

)
.

Proposition 9.1. Let M = M(x) := b
√
π(x)log log xc. Suppose that T = T (x)

satisfies log T
M log x

→∞ as x→∞. Then

lim
x→∞

1

#HT

∑
φ∈HT

h(Zx(φ)) =
1√
2πυ

∫
h(x)e−x

2/(2υ) dx

where υ = µST(SI)− µST(SI)2, for any bounded continuous function h : R→ R.

Proof. We shall apply Proposition 8.1. Set Xx = {p ≤ x : p primes}, Tt = Ht and
aφ(p) = Sα(θφ(p)). Here and in the sequel, we suppress the superscript + in Sα+

for simplicity. For every prime p, we consider T0/Sn as a probability space with the
probability measure dµp. The function Sα(θ) on T0/Sn induces a random variable,
playing the role of Ap. Put µ = µST(SI). Then for ` = 1 or 2, by (27) we have

E[A`
p] =

∫
Sα` dµp =

∫
1SI dµp +O(M−1)

=

∫
1SI dµST +O(M−1 + p−1).

Hence Conditions (I) and (II) in Proposition 8.1 are fulfilled. As 0 ≤ Sα(θ) ≤ 1 for
θ ∈ Rn, it follows that E[|Ap|r]� 1, yielding Condition (III).
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It remains to check (32). For any up ∈ N0, we have

1

#HT

∑
φ∈HT

∏
p≤x

Sα(θφ(p))up =
∏
p≤x

∫
Sαup dµp +O(T−1/2

∏
p≤x

pAMup).

The main term equals
∏

p≤x E[Ap]. The O-term is � T−1/2 exp(aAM log x) where

a =
∑

p≤x up. Thus the O-term is �a x
−a/2−1 for T ≥ TA(x) if the function TA(x)

is chosen so that TA(x)/(M log x)→∞ as x→∞. �

Renormalizing the integral in Proposition 9.1 to the standard Gaussian density
function 1√

2π
e−t

2/2 completes the proof of Theorem 1.4.
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