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and contact angle hysteresis (CAH).
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1. Introduction

When one fluid displaces another fluid on a solid substrate, a moving
contact line is formed as the intersection of the fluid-fluid interface and the
solid surface. Moving contact lines are widely observed in the nature and play
very important roles in many physical phenomena, e.g., droplet wetting and
dewetting, coffee ring effect, and contact angle hysteresis. Investigation of the
contact line dynamics is helpful in promoting many industrial processes such
as coating and inkjet printing [1, 2]. In the equilibrium state, the contact
angle θy (or Young’s angle) between the fluid-fluid interface and the solid
surface is described by the Young’s equation [3]:

γ cos θy = γ2 − γ1. (1)

where γi(i = 1, 2) and γ are the surface tensions of the two fluid-solid inter-
faces and the fluid-fluid interface respectively. The mismatch of the forces
in this equation can lead to an unbalanced Young’s stress in the dynamic
process of moving contact lines. A difficulty arises when modelling moving
contact lines using the classical hydrodynamics with the no-slip boundary
condition: the stress has a non-physical singularity at the contact line with
an infinite rate of energy dissipation. This is the well known contact line
singularity [4, 5].

A large variety of models have been proposed to resolve this issue. These
include kinetic models, molecular dynamics models, hydrodynamic models
and diffuse-interface models [6, 7, 8, 9, 10, 11, 12, 13, 14]. In this work, we
will follow the Navier slip model associated with the contact angle condition
proposed by [15, 16]. This model was derived in a variational framework
and shown to be thermodynamically consistent. We will make use of this
variational structure to design an efficient numerical scheme in simulating
contact line dynamics.

Simulations of multiphase flows are free boundary problems, which are in
general difficult due to the moving interfaces and the coupling between the
bulk equations and the interfacial conditions. A great number of numerical
methods were proposed to consistently track the moving interfaces and solve
for the coupling. Among them the most popular methods are volume of fluid
method, level set method, front-tracking method, boundary integral method,
immersed boundary method and immersed interface method [17, 18, 19, 20,
21, 22, 23, 24].
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First proposed by Peskin [25], the immersed boundary (IB) method has
been widely used in simulating interface problems. In IB method, the inter-
face conditions are reformulated as singular forces in the whole domain with
the help of Dirac delta functions. As a result, the bulk equations and the
boundary conditions are combined in a unified Eulerian form, and can be
solved on a uniform Cartesian grid. To numerically smooth out the singular
forces on the interfaces, discrete delta functions are introduced to spread the
interfacial forces from Lagrangian markers to Eulerian grid points. When
the velocity field is solved, the same discrete function is applied to interpo-
late velocity field back to the Lagrangian markers on the interfaces and then
the interfaces are updated using this velocity field. The IB method is easy
to implement but yields only first-order accuracy. Moreover, the artificial
parameter introduced in the discrete delta function may smear the accuracy
in some circumstances such as contact line dynamics on rough surfaces. To
avoid artificial parameters and improve the accuracy to second order, LeV-
eque and Li [26] introduced the immersed interface method (IIM) within
the finite difference framework. The key idea lies in the use of jump condi-
tions and the derivation of appropriate schemes on the irregular grid points
near the interface. After the introduction of correction terms, the interfacial
forces are immersed through the jump conditions in the Taylor expansion
at the interfacial points [27]. Although IIM has been widely used in many
interface problems, most works focused on closed interfaces while few studies
investigated MCL problems with open interfaces [28].

In MCL problems, the contact line motion is driven by the unbalanced
Young’s stress while the interface motion is driven by the interior velocity
field. Usually, the contact line dynamics is of the most interest, in particular
in the study of contact angle hysteresis (CAH) on rough substrate. CAH
describes the difference between the advancing and receding contact angles
when a droplet moves along a microscopically rough solid surface in different
directions. Numerical study of the detailed structure of CAH requires the
very accurate tracking of the contact lines on the substrate with small scale
roughness. Moreover, the accurate resolution of the velocity field heavily
relies on the accurate approximation of interfacial geometries such as curva-
ture and its derivatives. This is difficult in the moving contact line problems,
where the redistribution of the interfacial markers is usually necessary and
brings in errors in approximating the curvature. In this situation, a numer-
ical scheme that resolves the velocity field and captures both interface and
contact line motions with high order accuracy is in great demand.
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Recently the parametric finite element method (PFEM) was proposed
to simultaneously maintain the second order accuracy for both the interface
and its curvature [29]. Barret et al. [30] developed a variational formulation
for interface evolution which allows for tangential movement of interfacial
markers. This method has the advantage of nearly equidistribution of inter-
facial markers and thus avoids the artificial marker redistribution. Besides
its successful applications in the geometric evolution equations, PFEM has
also been extended to fit the MCL problems in the contexts of solid state
dewetting [31] and two-phase flows [32].

In this paper, we take the advantage of both IIM and PFEM to develop
a second order accurate method to solve the Stokes problems with Navier-
slip boundary condition and contact angle condition. For the Stokes equation
with Navier-slip boundary condition, we generalize IIM to solve for the veloc-
ity field to the second order accuracy on a staggered grid. Correction terms
for irregular points are introduced through jump conditions using Taylor ex-
pansions at interfacial points. Necessary adjustments are made nearby the
contact lines to account for the Navier-slip boundary condition. In order to
accurately compute the curvature at the markers, we reformulate the inter-
facial kinematic condition and the contact angle condition in a variational
form. The unbalanced Young’s stress enters the evolution equation of the
interface after an integration by parts. We apply PFEM to solve for the
interface motion and the curvature at the same time. After appropriate in-
terpolation of the velocity field and temporal discretization, we combine the
resulting finite difference scheme for velocity field and finite element frame-
work for interfacial evolution, and obtain a unified scheme. This scheme is
expected to inherit the advantage of the second order accuracy from both
IIM and PFEM, and predict the contact line motion accurately in second
order. This is validated by our numerical simulations. We present the nu-
merical result of the droplet motion on a chemically heterogeneous surface.
Due to the second order accuracy of the proposed scheme, we could study the
contact line dynamics on the substrate which has periodic chemical patterns
with very small period. Stick-slip phenomenon and contact angle hysteresis
are observed. We also numerically investigate sliding dynamics and Kelvin
pendant, and generalize the method to the case of discontinuous viscosity.

This paper is organized as follows. The mathematical formulation is in-
troduced in Section 2. We then present the IIM for the two-phase Stokes
problem and the PFEM for the moving interface in Section 3. The two
methods are coupled after a proper treatment of the interaction terms. In
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Section 4, we present numerical examples and validated the second order
accuracy of both velocity field and the interface positions numerically. Con-
clusions and discussions are made in Section 5. Technical derivations of the
jump terms are given in appendices.

2. Mathematical formulation

2.1. 2D Stokes flow with Navier-slip boundary condition

Γ3

Γ4

Γ2 Γ1

Γ

Γ2

Γ3

Ω2

Ω1

xrclxlcl

θld θrd

Figure 1: The Stokes flow.

We consider the two-dimensional two-phase Stokes flow as depicted in
Figure 1:

−∇p+∇ ·Ti = 0, (2)

∇ · u = 0, (3)

in the fluids Ωi(i = 1, 2), where p is the pressure, u = (u, v)> is the velocity
field, and Ti are the Newtonian viscous stress tensor

Ti = νi

(
∇u + (∇u)>

)
, (4)

with νi(i = 1, 2) being the viscosity of fluid in Ωi. In this paper, we assume
the viscosity νi are both constants.

Across the interface Γ, the jump condition is given by

n · [−pI + Ti] · n = −γκ, n · [Ti] · τ = 0, (5)

where γ is the surface tension coefficient, κ is the curvature of interface, n
and τ are the normal and tangent unit vectors, and [·] denotes the jump
across the interface from Ω1 to Ω2, i.e., [Ti] = T2 −T1.
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No-penetration conditions are imposed on top and bottom boundaries

u · n = 0. (6)

Slip model is introduced by the Navier-slip boundary condition (NBC):

τ ·Ti · n = −βius, (7)

where us is the slip velocity of fluid and βi(i = 1, 2) are friction coefficients
between each fluid and solid substrate.

The contact angle condition (CAC) is imposed at the contact line:

γ (cos θd − cos θy) = −βclucl, (8)

where ucl is the contact line velocity, βcl is the friction coefficient between
the interface and the substrate, θd is the dynamic contact angle, and θy has
been defined in (1).

For simplicity, we assume the periodic conditions hold on the left and
right boundaries, while the no-slip condition holds on the top boundary.

Furthermore, the interface evolution is described by the kinematic condi-
tion

∂X

∂t
· n = u (X, t) · n, (9)

where X(s, t) is the position vector of the interface and is parameterized by
the arclength s.

2.2. The dimensionless model

In this paper, we solve the governing equations and the interface/boundary
conditions in their dimensionless form. To obtain the dimensionless equa-
tions, we define the dimensionless variables as

ν∗i =
νi
ν1

, β∗i =
βi
β1

, γ∗i =
γi
γ
, β∗cl =

βcl
ν1

, κ∗ = Lκ, x∗ =
x

L
, u∗ =

u

U
,

t∗ =
t

L/U
, p∗ =

p

ν1U/L
, λi =

νi/ν1

βi/β1

, Ca =
ν1U

γ
, ls =

ν1

β1L
,

where L and U are the characteristic length and characteristic speed of the
system, Ca and ls are the Capillary number and slip length. Assume the
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friction coefficients are equal, i.e., β1 = β2, so that λ1 = 1, λ2 = ν∗2 . Then
the Stokes equations (2)-(3) are recast in the dimensionless form

−νi∆u +∇p =0, (10)

∇ · u =0, (11)

where the divergence free condition has been used to obtain the first equation.
The asterisk symbols (∗) are omitted for simplicity. The interface condition
at Γ becomes

n · [−pI + Ti] · n = − 1

Ca
κ, n · [Ti] · τ = 0. (12)

The dimensionless NBC (7) and other conditions are imposed on the bound-
aries

(BC1): u = λils
∂u

∂y
, v = 0, on Γ1 ∪ Γ2(bottom boundary), (13)

(BC2): u and p are periodic on Γ3(left and right boundaries), (14)

(BC3): u = 0, on Γ4(top boundary). (15)

Non-dimensional form of the CAC (8) is

β∗clCa
dxlcl
dt

= cos θld − cos θy, −β∗clCa
dxrcl
dt

= cos θrd − cos θy, (16)

where xlcl and xrcl are left and right contact points, and θld and θrd are left and
right dynamic contact angles.

3. Numerical methods

In this section, we demonstrate the numerical scheme to simulate the
droplet motion on a solid substrate. By introducing the correction terms,
we present the IIM scheme in Section 3.1. As the correction terms depend
on the interface geometries, the second order accuracy of the position and
curvature of the interface is necessary to solve the velocity field to second
order accuracy. This can be achieved by the PFEM scheme which we intro-
duce in Section 3.2. The coupling of the two schemes requires an appropriate
interpolation of the velocity field. The interpolation scheme along with other
technical issues in the coupling can be found in Section 3.3.
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3.1. Correction terms and IIM scheme

A classical Marker-and-Cell (MAC) staggered grid is used to solve the
Stokes equations (10)-(11). The computational domain [−1, 1] × [0, 1] is
covered by a uniform staggered grid, i.e., ∆x = ∆y = h. We define the grid
points (xi, yj) = (−1 + ih, jh) for i = 0, 1, 2, · · · , Nx and j = 0, 1, 2, · · · , Ny,
and the midpoints at x- direction and y- direction as xi+ 1

2
= −1+(i+ 1

2
)h and

yj+ 1
2

= (j+ 1
2
)h. ui,j, vi,j, and pi,j are the approximations of the point values

u(xi, yj+ 1
2
), v(xi+ 1

2
, yj), and p(xi+ 1

2
, yj+ 1

2
) respectively as shown in the left

panel of Figure 2. An advantage of using staggered grid is that no artificial
boundary condition is needed for the pressure field.

p
u
v

ui,j

ui,j−1

ui,j+1

ui+1,jui−1,j

Γ Ω1

Ω2

pi,jpi−1,j

X∗

Figure 2: The left panel shows the location of p, u, v. The right panel gives an example
in which ui,j locates at an irregular point.

Once the grid is set, the grid points are classified into regular and irregular
points. When the five points of the standard discrete Laplacian scheme do
not stay on the same side of interface, the central grid point is called an
irregular point (e.g., ui,j locates at an irregular point in the right panel of
Figure 2). Otherwise, it is regular.

The jump conditions across the interface Γ for the Stokes equations (10)-
(11) are summarized as follows

[p] = 2

[
νi
∂u

∂n
· n
]

+
κ

Ca
, (17)[

∂p

∂n

]
= 2

[
νi
∂2u

∂s2
· n
]
− 4κ

[
νi
∂u

∂s
· τ
]
, (18)
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[
νi
∂u

∂n
· τ
]

+

[
νi
∂u

∂s
· n
]

= 0. (19)

(17) and (19) are the consequences of force balance on the interface in the
normal and tangential directions. (18) is derived from the Stokes equation
(10) in local coordinates under appropriate regularity conditions on u. The
derivations can be found in the Appendix A. We also refer a derivation
through tensor analysis in [33].

In the case of continuous viscosity,
[
νi
∂u
∂s

]
= 0. By using the incompress-

ibility condition (11), we have[
νi
∂u

∂n
· n
]

= 0, 2

[
νi
∂2u

∂s2
· n
]
− 4κ

[
νi
∂u

∂s
· τ
]

= 0. (20)

Then we recover the jump conditions for continuous viscosity as in [34]:

[p](s) =
κ

Ca
,

[
∂p

∂n

]
(s) = 0,

[
∂u

∂n

]
(s) = 0,

[
∂v

∂n

]
(s) = 0. (21)

Based on these conditions, correction terms at irregular points can be derived
using Taylor expansions at the orthogonal projection onto the interface [27].
However, in MCL problems, there may be no projection on the interface for
irregular points near contact lines. For instance, when the contact angle is
less than 90◦, the projection of some irregular point nearby the contact lines
is out of domain.

To avoid this issue, it is more convenient to introduce a different “pro-
jection point” X∗ on the interface, and define the correction terms through
the jump conditions at X∗ in x- and y- partial derivatives. For instance, the
correction term for u at (xi, yj+ 1

2
) is represented as

uci,j =[u]X∗ + (xi − x∗)
[
∂u

∂x

]
X∗

+ (yj+ 1
2
− y∗)

[
∂u

∂y

]
X∗

+
1

2

(
(xi − x∗)2

[
∂2u

∂x2

]
X∗

+2(xi − x∗)(yj+ 1
2
− y∗)

[
∂2u

∂x∂y

]
X∗

+ (yj+ 1
2
− y∗)2

[
∂2u

∂y2

]
X∗

)
+O

(
h3
)
.

(22)

Here X∗ is a point on the interface close to (xi, yj+ 1
2
) and we will illustrate

how to choose X∗ in Section 3.3. The correction terms for v and p can be
defined in a similar manner. However, since the derivative of the pressure
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is one order lower than that of the velocity field in the Stokes equation, the
correction terms for p only need to be expanded to the first order, i.e.,

pci,j =[p]X∗ + (xi+ 1
2
− x∗)

[
∂p

∂x

]
X∗

+ (yj+ 1
2
− y∗)

[
∂p

∂y

]
X∗

+O
(
h2
)
. (23)

Using the coordinate transformation, the jumps in the velocity field, the
pressure field, and their x- and y- partial derivatives can be represented
using normal and tangential derivatives. The detail derivations can be found
in Appendix B.

We are ready to give the discretization scheme. Let (xi, yj+ 1
2
) be an

irregular point in Ω1 as shown in the right panel of Figure 2. Define the
modified values after corrections as

ũi−1,j = ui−1,j − uci−1,j, ũi,j+1 = ui,j+1 − uci,j+1, (24)

which mimic the values as if there are no jumps in the variable u and its
derivatives. Then the Laplacian ∆u(xi, yj+ 1

2
) can be approximated as

∆u(xi, yj+ 1
2
) =

ũi−1,j − 2ui,j + ui+1,j

h2
+
ũi,j+1 − 2ui,j + ui,j−1

h2
+O

(
h2
)

= ∆hui,j −
uci−1,j

h2
−
uci,j+1

h2
+O

(
h2
)
,

where ∆hui,j is the standard five point stencil for Laplacian operator. Sim-
ilarly, we have finite difference approximations for other quantities, for in-
stance,

∂p

∂x
(xi, yj) =

pi,j − pi−1,j

h
+
pci−1,j

h
+O

(
h2
)
.

As a result, the finite difference scheme for the incompressible Stokes
equations can be written as

−∆hui,j +
pi,j − pi−1,j

h
=C{∆hu}i,j − C

{
∂p

∂x

}
i,j

, (25)

−∆hvi,j +
pi,j − pi,j−1

h
=C{∆hv}i,j − C

{
∂p

∂y

}
i,j

, (26)

ui+1,j − ui,j
h

+
vi,j+1 − vi,j

h
=− C{∇h · u}i,j, (27)
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where C{·} denote the correction terms which are not zero only at the ir-
regular points. From (22), we can see these correction terms depend on the
interfacial geometries, such as the position and the curvature, through the
jump terms. A compatibility condition should be satisfied in (27), specifi-
cally, ∑

i,j

C{∇h · u}i,j = 0.

In order to achieve second order accuracy in approximating the velocity
field, IIM scheme requires O (h) truncation error at the irregular points and
O (h2) truncation error at the regular points. This can be achieved if we
can approximate uci,j within O (h3) accuracy and pci,j within O (h2) accuracy
respectively. By (22) and (23), we need to approximate the jump terms[
∂u
∂x

]
X∗ ,

[
∂u
∂y

]
X∗ , [p]X∗ within second order accuracy, and

[
∂2u
∂x2

]
X∗ ,

[
∂2u
∂x∂y

]
X∗ ,[

∂2u
∂y2

]
X∗ ,

[
∂p
∂x

]
X∗ ,

[
∂p
∂y

]
X∗ within first order accuracy respectively. A detailed

check of the jump conditions in Appendix B shows that these can be satisfied
if the interface position vector X and the curvature κ can be solved in second
order accuracy. We will discuss how to solve X and κ using PFEM in the
next subsection.

To discretize the NBC (13), a ghost value ui,−1 is introduced at (xi, y− 1
2
).

Then the finite difference scheme of the NBC away from the contact line is

ui,−1 + ui,0
2

= λils
ui,0 − ui,−1

h
. (28)

Thanks to the introduction of the ghost value ui,−1, correction terms can be
similarly defined at the irregular points nearby the contact line.

3.2. Evolution of the interface and moving contact line

We introduce the equations which describe the evolution of the interface
X(s, t),

∂X

∂t
· n =U · n, (29)

κn =
∂2X

∂s2
, (30)

where s is the arclength parameter, and U = u|Γ is the velocity on the inter-
face. The second equation is the definition of the curvature. We aim to obtain
second order accurate approximations of the interface and its curvature.
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In order to apply PFEM, we need to reformulate (29), (30) and the CAC
(16) in the weak sense. We first introduce ρ ∈ I := [0, 1] to parameterize the
interface clockwise. Then the arclength is s(ρ, t) =

∫ ρ
0
|∂X
∂ρ
|dρ and ∂s

∂ρ
= |∂X

∂ρ
|,

where the subscript ρ denotes the derivative with respect to ρ. The L2 inner
product on the interface is defined as

(f, g)Γ =

∫
Γ(t)

f(s) · g(s)ds =

∫
I

f(s(ρ, t)) · g(s(ρ, t))

∣∣∣∣∂X∂ρ
∣∣∣∣ dρ.

Define the function space

H1
0 (I) = {φ ∈ H1(I) : φ(0) = φ(1) = 0},

where H1(I) is the standard Sobolev space. After integration by parts, we
obtain the interface evolution equation in the weak form(

∂X

∂t
· n, φ

)
Γ

− (U · n, φ)Γ =0, ∀φ ∈ H1(I), (31)

(κn,g)Γ +

(
∂X

∂s
,
∂g

∂s

)
Γ

−
(
∂x

∂s
· g1

) ∣∣∣ρ=1

ρ=0
=0, ∀g ∈ H1(I)×H1

0 (I), (32)

where ∂X
∂s

= ∂X/∂ρ
|∂X/∂ρ| . Using the geometrical relation that cos θld = ∂x

∂s

∣∣
ρ=0

,

cos θrd = ∂x
∂s

∣∣
ρ=1

and the CAC (16), we reorganize (32) as

(κn,g)Γ +

(
∂X

∂s
,
∂g

∂s

)
Γ

− (cos θy · g1)
∣∣∣ρ=1

ρ=0
+ β∗clCa

(
dxlcl
dt

g1(0) +
dxrcl
dt

g1(1)

)
= 0.

Now we are ready to apply PFEM. First introduce the decomposition
I = ∪Kk=1Ik as a disjoint union, and define the finite element spaces as

V h := {φ ∈ C(I) : φ|Ik ∈ P1, k = 1, 2, · · · , K} ⊂ H1(I),

V h
0 := {φ ∈ V h : φ(0) = φ(1) = 0} ⊂ H1

0 (I),

where P1 denotes all polynomials with degrees at most one. Let Xm, nm,
Um, and κm be the numerical approximations of the interface X(·, tm), the
unit normal vector n, the velocity U on the interface, and the curvature κ
at time tm = mτ respectively, where the time step size is uniform ∆t = τ .
Then the approximation scheme of the interface evolution (29)-(30) is given
by:
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Given Xm, nm, and Um at time tm, find Xm+1 ∈ V h × V h
0 , κ

m+1 ∈ V h,(
Xm+1 −Xm

τ
nm, φ

)
Γm

− (Um · nm, φ)Γm = 0, ∀φ ∈ V h, (33)

(
κm+1nm,g

)
Γm +

(
∂Xm+1

∂s
,
∂g

∂s

)
Γm

− (cos θy · g1)
∣∣∣ρ=1

ρ=0

+ β∗clCa

(
xm+1
l − xml

τ
g1(0) +

xm+1
r − xmr

τ
g1(1)

)
= 0, ∀g ∈ V h × V h

0 .

(34)

Here Um = G(um) is interpolated from the velocity field on the grid with
G being the interpolation operator. The interpolation technique will be
discussed in detail in the next subsection.

For simplicity, the forward Euler method has been used to do temporal
discretization here. We will discuss other temporal discretization in the next
subsection. It is worth noting that the contact angle condition is naturally
imposed in this way and integrated with the interface motion.

3.3. Complete Algorithm

We now combine IIM and PFEM to give the complete algorithm from
time step tm to tm+1. At tm = mτ , given the interface profile Xm and its
curvature κm, we carry out following steps:
Step 1: Update velocity by solving the Stokes flow using IIM

−∆hu
m
i,j +

pmi,j − pmi−1,j

h
= C{∆hu

m}i,j − C
{
∂pm

∂x

}
i,j

, (35)

−∆hv
m
i,j +

pmi,j − pmi,j−1

h
= C{∆hv

m}i,j − C
{
∂pm

∂y

}
i,j

, (36)

umi+1,j − umi,j
h

+
vmi+1,j − vmi,j

h
= −C{∇h · um}i,j, (37)

where the correction terms C{·} depend on Xm and κm, and are calculated
as illustrated in Section 3.1;
Step 2: Update interface using PFEM(

Xm+1 −Xm

τ
nm, φ

)
Γm

− (Um · nm, φ)Γm = 0, ∀φ ∈ V h, (38)
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(
κm+1nm,g

)
Γm +

(
∂Xm+1

∂s
,
∂g

∂s

)
Γm

− (cos θy · g1)
∣∣∣ρ=1

ρ=0

+ β∗clCa

(
xm+1
l − xml

τ
g1(0) +

xm+1
r − xmr

τ
g1(1)

)
= 0, ∀g ∈ V h × V h

0 ,

(39)

where Um = G(um) is interpolated from the velocity field on the grid.
We are still left with some issues in this scheme. The first one is the

selection of the “projection point” X∗, and the computation of the normal
vector nm and the derivative ∂κm

∂s
in the correction terms. In our method, the

normal unit vectors nm are defined on piecewise line segments naturally, i.e.,
each line segment corresponds to a unique normal vector. To approximate
the correction terms, a straightforward way is to choose the closest midpoint
of the line segments as X∗ in (22). Since the curvature κm obtained from
(38)-(39) is piecewise linear on Γm, its derivative ∂κm

∂s
at X∗ is computed

directly.
The second issue is the interpolation of the interface velocity Um =

G(um) from the velocity field um on the Cartesian grid. As the velocity
field is not smooth across the interface, standard interpolation techniques
are not sufficient to guarantee second order accuracy, and jump conditions
need to be taken into account. We use a modified bilinear interpolation [27],
whose idea essentially lies in a second order correction in the velocity field
across the interface. For instance, if we treat the velocity values at the grid
points in the inside region Ω1 as the reference values, then any velocity values
at the grid points in Ω2 nearby the interface should be modified by adding a
correction term:

uci,j = [u]X∗ + (xi − x∗)
[
∂u

∂x

]
X∗

+ (yj+ 1
2
− y∗)

[
∂u

∂y

]
X∗

+O
(
h2
)
.

After the corrections, bilinear interpolation can be applied to obtain the
interfacial values by using the corrected values and the reference values. It
should be noted that in the case of continuous viscosity across the interface,
(B.2) implies no jumps in [u]X∗ ,

[
∂u
∂x

]
X∗ , and

[
∂u
∂y

]
X∗ . Thus any second order

interpolation would work. So far, the whole algorithm is complete as shown
in Algorithm 1.

To enhance the computational efficiency and accuracy in time, we can use
the second order Runge-Kutta (RK2) scheme for the temporal discretization.
Starting from tm, we first solve for velocity field um and use it to obtain a
half-step interface Xm+ 1

2 along with its curvature κm+ 1
2 . An intermediate
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velocity field um+ 1
2 is thus solved. This velocity field is then interpolated to

obtain the interface velocity which is used to update the interface from tm:(
Xm+1 −Xm

τ
nm, φ

)
Γm

−
(
Um+ 1

2 · nm, φ
)

Γm
= 0.

Algorithm 1 Complete Algorithm from time step tm to tm+1

1: Given Xm and κm, compute nm and ∂κm

∂s
at midpoint of the line segments

2: Compute the correction terms C{·} and calculate the velocity um using
IIM

3: Interpolate the velocity filed um to the velocity Um at interface
4: Update the interface Xm+1 and the curvature κm+1 using PFEM

So far we have concentrated on the case of continuous viscosity. If the
viscosity is discontinuous across the interface, (20) no longer holds and the
derivation of correction terms become more involved. However, we can sim-
plify the formulation by introducing an augmented variable q = [νiu] [35].
Then the jump conditions become

[p] = 2
∂q

∂n
· n +

κ

Ca
,

[
∂p

∂n

]
= 2

∂2q

∂s2
· n− 4κ

∂q

∂s
· τ , (40)

[û] = q1,

[
∂û

∂n

]
=

(
∂q

∂s
· n
)

sinψ −
(
∂q

∂s
· τ
)

cosψ, (41)

[v̂] = q2,

[
∂v̂

∂n

]
= −

(
∂q

∂s
· n
)

cosψ −
(
∂q

∂s
· τ
)

sinψ, (42)

where we have defined the modified velocity field û = νiu. With the help
of the modified velocity field, all the correction terms can be derived in a
similar way as before. As a result, we obtain a finite difference scheme of the
Stokes equation using correction terms to solve for the modified velocity field
û, the pressure field p, and augmented variables q. This system of equations
is closed after imposing the constraint

[u] = [û/νi] = 0,

which comes from the continuity of the original velocity field. The system is
linear and can be solved using GMRES.
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4. Numerical results

In this section, we present numerical studies on MCL problems. Numer-
ical simulations are performed on a staggered grid in [−1, 1] × [0, 1]. The
Capillary number and slip length are Ca = 0.1 and ls = 0.1 respectively in
the following experiments unless otherwise specified. Viscosities are constants
except in the last example. In this section, we first present the benchmark
problem of droplet relaxation as the convergence test. Then the algorithm is
applied to investigate sliding droplets, Kelvin pendant and CAH on chemi-
cally heterogeneous surface. We also simulate the two-phase MCL problems
with discontinuous viscosity.

Example 1 (Droplet spreading) As a first example, we perform a standard
convergence test in which the droplet relaxation process on a substrate is
simulated with θy = 90◦. The initial state of the interface is part of a circle
with contact angle θin = 60◦. The droplet then relaxes to a semi-circular
shape driven by the contact line dynamics. The computation is performed
on different grids Nx×Ny = 32×16, 64×32, 128×64, 256×128 and 512×256.
We choose the solution computed on the grid Nx × Ny = 512 × 256 as the
reference solution. Table 1 summarizes the errors and their corresponding
orders at t = 1.2. The convergence orders of the interface and the velocity
field are second order. The numerical error of the interface at time level tm
in l∞ norm can be measured as [29, 30, 31]

‖EX(tm)‖∞ = max
0≤k≤K

min
ρ∈[0,1]

∣∣Xm (ρk)−Xm
ref (ρ)

∣∣ ,
where the curve Xm

ref (ρ) is computed on Nx ×Ny = 512× 256.
Our method also preserves the equidistribution property of PFEM. Define

the mesh distribution function at time level tm as [31]

Ψm :=
max1≤k≤K |Xm (ρk)−Xm (ρk−1) |
min1≤k≤K |Xm (ρk)−Xm (ρk−1) |

.

From Figure 3, we can see the function increases firstly, then gradually de-
creases in a long time and finally converges to 1, i.e., Ψm → 1 when m→∞.
The interface markers initially are not equally distributed due to the con-
tact line dynamics. The non-equidistribution is gradually remedied by the
PFEM.

Example 2 (Droplet on a slope) We present a droplet, which is driven by
gravity, sliding on a sloping substrate in this example. To simulate a droplet
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Nx ×Ny ‖Eu‖2 orderu ‖Ev‖2 orderv
32× 16 1.2252× 10−4 1.1416× 10−4

64× 32 3.7179× 10−5 1.7204 3.5075× 10−5 1.7025
128× 64 9.2832× 10−6 2.0018 8.7595× 10−6 2.0015
256× 128 2.0272× 10−6 2.1951 1.9253× 10−6 2.1858

Nx ×Ny ‖EX‖∞ orderX ‖Ecl‖∞ ordercl
32× 16 3.1641× 10−3 3.1641× 10−3

64× 32 8.9232× 10−4 1.8262 8.8346× 10−4 1.8405
128× 64 2.2667× 10−4 1.9770 2.1429× 10−4 2.0436
256× 128 5.3114× 10−5 2.0934 4.4977× 10−5 2.2523

Table 1: Errors and convergence order of velocity fields, interface and contact lines.
Absolute errors are computed by comparing with the reference solution computed on
Nx ×Ny = 512× 256. Eu, Ev, EX, and Ecl denote the absolute errors of velocity field u,
v, the interface X, and the left contact line position xcl respectively. ‖·‖2 and ‖·‖∞ denote
l2 and l∞ norms.

on a sloping substrate, a gravity force is added as the body force in the Stokes
equations. Taking into account the rotation of the coordinate system, (10)
is modified to

−νi∆u +∇p =
Bo

Ca
(sin θslope,− cos θslope)

> ,

where θslope is the tilt angle of substrate, and Bo = ∆ρgL2

γ3
is the Bond number

with ∆ρ being the difference in density of the two fluids and g being the
gravitational acceleration.

We place a droplet with a semi-circular interface on the slope. The
Young’s angle is set to θy = 90◦. Without gravity, the droplet should be
in a steady state. When the gravity is introduced, we see in Figure 4 that
the droplet slides downward due to the gravity and the two contact angles
change simultaneously. The advancing angle in the moving front is increas-
ing while the receding angle in the tail is decreasing. Both angles reach
their steady values after a while, and the droplet moves downwards at a con-
stant speed (inside figure) while the shape of the interface remains almost
unchanged.

Example 3 (Kelvin pendant droplets) Lord Kelvin geometrically con-
structs droplet profiles with “repeated bulges” that are known by his name
[36]. This can be treated as a special case of the previous example. In this
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Figure 3: The temporal evolution of the mesh distribution function Ψ(t).

example, the droplets are suspended from the ceiling, i.e., θslope = 180◦. The
initial droplet profile is part of a circle with contact angle θin = 30◦ as shown
by the blue curve in Figure 5. We consider both hydrophilic and hydrophobic
cases. In the hydrophilic case with Bond number Bo = 20 and Young’s angle
θy = 60.75◦, the droplet is stretched due to the gravity while the wetting area
decreases. It gradually becomes a bulge shape as illustrated in the left panel
of Figure 5 and will eventually pinches off (we did not capture the pinch-off
phenomenon since the topological change cannot be handled within the cur-
rent framework). In the hydrophobic case, we set Bo = 10 and θy = 105.75◦.
As illustrated in the right panel of Figure 5, the droplet gradually reaches a
steady state where the gravity and gradient of pressure balance each other.
The steady profile of droplet takes a lightbulb shape with a larger wetting
area than that in the hydrophilic case.

Example 4 (Chemical heterogeneity) In this example, we drive the solid
substrate with a given velocity Upull. Then the droplet will move relative to
the substrate. This is a classical scenario in the coating industry. The CAC
(16) and the NBC (13) are modified to be

±β∗clCa(ucl − Upull) = cos θd − cos θy, u− Upull = λls
∂u

∂y
.

We are interested in the case that there is chemical heterogeneity in the
substrate. The chemical pattern is imposed on the substrate by a periodic
structure in the Young’s angle θy = ϕ( x̂cl

ε
), where x̂cl = xcl − Upullt is the

relative position of the contact line on the substrate, ϕ is a periodic function
with period 1, and ε is the period of the chemical roughness. For simplicity,
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Figure 4: Droplet sliding along a slope with θslope = 30◦. Young’s angle is θy = 90◦. The
left panel shows the shape of the interface at different time snapshots, while the inset plot
shows the constant-speed movement of the contact line after some time. The right panel
depicts the dynamics of the advancing and receding angles.
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Figure 5: Kelvin pendant droplets: the droplets are elongated by gravity and deform to
different shapes. The Bond number and Young’s angle are Bo = 20, θy = 60.75◦ in the
left panel and Bo = 10, θy = 105.75◦ in the right panel.

we choose θy to be piecewise constant,

ϕ(x) =

{
θAy , 0 < x < 1

2
,

θBy ,
1
2
< x < 1,

where θAy = 84.27◦, θBy = 95.73◦, and ε = 0.01.
After the application of a driven velocity Upull = 1.6, the droplet moves

on the substrate with its head and tail behaving differently and periodically
in an alternating manner. At one stage, the head of the droplet (the part of
the interface near the left contact line) moves slowly with a slowly varying
advancing contact angle, while the tail (the part of the interface near the
right contact line) moves fast with a quickly varying receding contact angle
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(shown in the left panel of Figure 6). At another stage, the head and tail
of the droplet behave in an opposite way: the head moves fast while the
tail moves slowly. These two stages occur alternatingly and periodically. In
the whole process, the droplet moves like “a creeping inchworm” [37]. If
we zoom in the interface profile nearby the right contact line (shown in the
right panel of Figure 6), we can see that during the period t ∈ [1.01, 1.23]
the interface away from the contact line remains almost unchanged, while
the contact line slips very quickly on the substrate at the same time period.
When t ∈ [1.23, 1.45], the contact line moves very slowly as if it gets stuck at
some position. The interface gradually adjusts itself and thus the receding
angle increases. This is the well known stick-slip phenomenon.
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Figure 6: Inchworm movement: Upull = 1.6, θAy = 80.21◦, θBy = 97.40◦. The left panels
show a creeping inchworm like moving pattern. The interface profile near the right contact
line is zoomed in and shown in the right panel.

We also measure the advancing (left) and receding (right) contact angle,
and plot these angles and the contact line displacement in Figure 7. From
the left panel, we can clearly see the stick-slip behavior of the left contact
line displacement. The stick-slip period is exactly the period of chemical
roughness ε. This is also confirmed from the dynamics of the receding and
advancing contact angles as shown in the right panel. Moreover, the average
velocity of the contact line is proportional to Upull, and the advancing and
receding contact angles oscillate around their average values 90.50◦ and 77.69◦

respectively. As ε turns smaller, the oscillations of the dynamic contact angles
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around their average values become smaller. It can be expected that the
dynamic advancing and receding contact angles converge to their “average”
values in the limit of ε → 0, which results in the contact angle hysteresis
effect.
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Figure 7: Dynamic plots of the contact line displacement and the contact angle with
Upull = 1. The Young’s angle is piecewise constant θAy = 84.27◦ or θBy = 95.73◦ with
period ε = 0.01 (blue line) or ε = 0.02 (red line). Left panel: the displacement of the left
contact line. Right panel: the dynamic advancing and receding contact angles.

Furthermore, for ε = 0.1, θAy = 81.41◦, θBy = 98.59◦, we vary the values of
Upull from 1 to 0.01 and study the dependence of the advancing angle on the
driving velocity Upull. As shown in Figure 8. The advancing angle decreases
as Upull decreases.

The limiting behavior of the contact line displacement and the contact
angles for small roughness limit ε → 0 and their analytical dependence on
driving speed Upull go beyond the study of this paper. We will leave its
quantitative study to our future work. We also refer readers to [38] for the
existing analytical study.

Example 5 (Discontinuous viscosity) In this example, we consider two-
phase flows with discontinuous viscosity. The convergence rate are presented
in Table 2, where the viscosity ratio is 0.1 : 1 and errors are computed
at t = 1.7578. We can clearly observe the second order convergence in
the velocity field and the contact line, although we cannot show that by
truncation error analysis.

We also simulate two-phase flows with different viscosity ratios on the
solid substrates. The interface initially stays in a steady profile of semi-
circular shape with the Young’s angle θy = 90◦. The substrate is pulled at
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Figure 8: Advancing angles with different pulling velocity on a substrate: ε = 0.1, θAy =

81.41◦, θBy = 98.59◦

Nx ×Ny ‖Eu‖2 orderu ‖Ecl‖∞ ordercl
32× 16 3.3972e− 03 1.7716e− 02
64× 32 9.9172e− 04 1.7764 4.7247e− 03 1.9067
128× 64 2.6801e− 04 1.8877 1.2532e− 03 1.9146
256× 128 6.0426e− 05 2.1490 2.5064e− 04 2.3219

Table 2: Errors and convergence order of velocity fields and contact lines. Absolute
errors of velocity field Eu and contact line position Ecl are computed by comparing with
numerical solution on grids with Nx ×Ny = 512 × 256. ‖·‖2 and ‖·‖∞ denote l2 and l∞
norms.

the velocity Upull = 1. We use different viscosity ratios of 0.1 : 1, 1 : 1,
and 1 : 0.1 to simulate three typical scenarios: a droplet in air, two fluids
with close viscosity, and a bubble surrounded by water respectively. The
interface motions in these three cases become very different eventually. The
snapshots of the interfaces at t = 7.8125 are shown in Figure 9. Comparing
the fluid-fluid interface of equal viscosities (solid red line) with the interface
of a droplet in the air (dashed blue line), we observe that the droplet is more
easily pulled towards right along with the substrate if it has a larger viscosity
than that of the environment. These two interfaces are not deformed too
much and are of similar shape. However, in the case that the inside fluid is
less viscous than the environmental fluid, like a bubble staying in the water,
the bubble is heavily deformed and moves a little bit slowly on the substrate.
We can clearly see a large advancing angle on the left contact line and a
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small receding angle on the right contact line.
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Figure 9: Solid red line: a droplet surrounded by fluid with close viscosity. Dash blue line:
a droplet in air. Dash dot yellow line: a bubble in water.

5. Conclusion

In this work, we developed a second order accurate numerical method to
simulate moving contact line problems. We considered the two-phase Stokes
problem with Navier-slip boundary condition and contact angle condition.
Following the framework of immersed interface methods, we derived correc-
tion terms at the irregular grid points nearby the interface and obtained a
finite difference scheme for the Stokes system. To take care of the irreg-
ular points near the contact lines, we choose the closest midpoints on the
interfacial line segments as the projection points when deriving correction
terms.

In order to keep sufficient accuracy in the correction terms and the trunca-
tion errors, we required second order accurate approximations of the interface
and its curvature. This was achieved by using a parametric finite element
method on the interface. The interface and the contact line position were
solved as well as the curvature in a variational framework. After a bilinear
interpolation of the velocity field to the interface, the PFEM solver for the
interface was coupled with the IIM solver for the velocity field. This yields
a second order accurate numerical method for the contact line dynamics as
well as the velocity field. Moreover, the algorithm was generalized to deal
with the problems with discontinuous viscosity.

The second order accuracy was numerically validated in the benchmark
problem of droplet relaxation on a substrate. Numerical simulations of sliding
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droplet and Kelvin pendant were investigated. In particular, contact angle
hysteresis was numerically studied in the case of chemically heterogeneous
surface. The contact line motion was observed to show stick-slip behavior
periodically. The advancing and receding contact angles oscillated around
their average values, which depended on the pulling velocity of the substrate.

The current study concentrates on the moving contact lines using Stokes
model. However, in most realistic situations, the inertial effect cannot be
neglected. In the future work, we will generalize our method to solve the
contact line dynamics with Navier-Stokes equations. To speed up the com-
putations, we will also investigate the energy stable schemes and develop
fast solvers. The asymmetric dependence of the advancing and receding con-
tact angles on the substrate velocity has been studied experimentally in the
context of contact angle hysteresis [40]. This interesting phenomenon needs
more numerical studies and mathematical analysis, and will be our future
concern.
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Appendix A. Derivations of the jump conditions

The derivations of jump conditions are based on local coordinate systems.
A point X∗ on the interface Γ is chosen to be the origin and the normal
and tangential directions are the axes as shown in Figure A.10. The local
coordinates can be written as

x̃ =(x−X∗) cosψ + (y − Y ∗) sinψ,

ỹ =− (x−X∗) sinψ + (y − Y ∗) cosψ,

where ψ is the angle between the x-axis and the outward normal directions.
Therefore in the local coordinate system, any point Q can be written as

Q = X∗ + x̃n + ỹτ ,
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Figure A.10: The local coordinate system.

and velocity field u is represented by

u = ũn + ṽτ .

In this local coordinate system, the interface is parameterized as

Γ = {(x̃, ỹ) = (χ(ỹ), ỹ)} ,

where χ(0) = χ′(0) = 0, χ′′(0) = κ. Define the level set function φ(x̃, ỹ) = x̃−
χ(ỹ). Then the interface is represented by the zero level set {(x̃, ỹ) : φ(x̃, ỹ) = 0}.
We can extend the normal and tangential vectors to a neighborhood of the
interface. Then the local unit normal and tangential vectors are represented
by

ñ =
1√

1 + (χ′)2
(1,−χ′), τ̃ =

1√
1 + (χ′)2

(χ′, 1).

Note that ñ = (1, 0) and τ̃ = (0, 1) at the interfacial point X∗.
After taking the inner products of the Stokes equation (10) with ñ on

the two sides {φ > 0} and {φ < 0} and calculating their difference at the
interface, we obtain the interfacial jump condition[

∂p

∂x̃

]
=

[
νi

(
∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

)]
. (A.1)

Next, we want to evaluate the right hand side of (A.1). Since the jump
condition (12) is defined on the interface Γ = {(χ(ỹ), ỹ)}, we can take the
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total derivative w.r.t. ỹ to obtain

d

dỹ

[
ñ · νi

(
∇ũ + (∇ũ)>

)
· τ̃
]

= 0.

The total derivative of the jump on interface can be computed using the
following equality

dω+(χ(ỹ), ỹ)

dỹ

∣∣∣∣
ỹ=0

=

((
∂ω+(x̃, ỹ)

∂x̃

)
χ′(ỹ) +

∂ω+(x̃, ỹ)

∂ỹ

) ∣∣∣∣
(0,0)

=
∂ω+

∂ỹ

∣∣∣∣
(0,0)

=

(
∂ω

∂ỹ

)+ ∣∣∣∣
(0,0)

,

(A.2)

where (·)+ denotes the limits at the interface approaching from Ω2, and the
last equality holds if ω ∈ C1 and ∂ω

∂ỹ
is bounded in Ωi(i = 1, 2). Similarly, we

have

dω−

dỹ

∣∣∣∣
ỹ=0

=

(
∂ω

∂ỹ

)− ∣∣∣∣
(0,0)

. (A.3)

By taking ω = ñ · νi
(
∇ũ + (∇ũ)>

)
· τ̃ in (A.2) and (A.3), and using the

following equality in Ωi(i = 1, 2)

∂

∂ỹ

(
ñ · νi

(
∇ũ + (∇ũ)>

)
· τ̃
)

=
∂ñ

∂ỹ
· νi
(
∇ũ + (∇ũ)>

)
· τ̃

+ ñ · νi

(
∇
(
∂ũ

∂ỹ

)
+

(
∇
(
∂ũ

∂ỹ

))>)
· τ̃ +

∂τ̃

∂ỹ
· νi
(
∇ũ + (∇ũ)>

)
· ñ,

we have [
νi

(
∂2ṽ

∂x̃∂ỹ
− 2κ

∂ṽ

∂ỹ
+ 2κ

∂ũ

∂x̃
+
∂2ũ

∂ỹ2

)]
= 0. (A.4)

Here we have used ∂ñ
∂ỹ

= −κτ̃ and ∂τ̃
∂ỹ

= κñ at the origin (0, 0). The in-
compressibility condition and its x̃-derivative are recast in local coordinates
as

∂ũ

∂x̃
= −∂ṽ

∂ỹ
,

∂2ũ

∂x̃2
= − ∂2ṽ

∂x̃∂ỹ
. (A.5)
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Substituting (A.4) and (A.5) into (A.1), we obtain the jump condition across
the interface Γ [

∂p

∂x̃

]
= 2

[
νi
∂2ũ

∂ỹ2

]
− 4κ

[
νi
∂ṽ

∂ỹ

]
.

Since these jump values are evaluated at the the interfacial point X∗, the
above equation is equivalent to[

∂p

∂n

]
= 2

[
νi
∂2u

∂s2
· n
]
− 4κ

[
νi
∂u

∂s
· τ
]
. (A.6)

Appendix B. Coordinate transformation of jump conditions

The jump terms of x- and y- derivatives are represented using normal
and tangential derivatives through local coordinate transformation. For the
velocity component u(x, y), its second partial derivative w.r.t. x can be
written in terms of the local coordinate as

∂2u

∂x2
= cos2 ψ

∂2u

∂x̃2
− 2 sinψ cosψ

∂2u

∂ỹ∂x̃
+ sin2 ψ

∂2u

∂ỹ2
.

By interchanging the limit limx̃→0± with partial derivative ∂
∂ỹ

, and taking the

difference of the limits at the interface from each side Ωi(i = 1, 2), we have[
∂2u

∂x2

]
= cos2 ψ

([
∂p

∂x

]
− κ

[
∂u

∂n

])
− 2 sinψ cosψ

∂

∂s

[
∂u

∂n

]
+
(
sin2 ψ − cos2 ψ

) ∂2

∂s2
[u] ,

where we have used the useful relation [39]

∂2u

∂n2
= ∇2u− ∂2u

∂s2
− κ∂u

∂n
,

and the Stokes equation (10) in the bulk to replace ∆u. By using the jump
conditions (21) along the interface, we obtain the jump term

[
∂2u
∂x2

]
as in

(B.1). Other jump terms occurring in the correction terms could be derived
in a similar manner. We list the jump conditions as follows[

∂2u

∂x2

]
=

1

Ca

(
− sinψ cos2 ψ

∂κ

∂s

)
,

[
∂2u

∂y2

]
=

1

Ca

(
− sin3 ψ

∂κ

∂s

)
, (B.1)
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[
∂2u

∂x∂y

]
=

1

Ca

(
− sin2 ψ cosψ

∂κ

∂s

)
,

[
∂u

∂x

]
= 0,

[
∂u

∂y

]
= 0, [u] = 0, (B.2)[

∂2v

∂x2

]
=

1

Ca

(
cos3 ψ

∂κ

∂s

)
,

[
∂2v

∂y2

]
=

1

Ca

(
sin2 ψ cosψ

∂κ

∂s

)
, (B.3)[

∂2v

∂x∂y

]
=

1

Ca

(
sinψ cos2 ψ

∂κ

∂s

)
,

[
∂v

∂x

]
= 0,

[
∂v

∂y

]
= 0, [v] = 0, (B.4)[

∂p

∂x

]
=

1

Ca

(
− sinψ

∂κ

∂s

)
,

[
∂p

∂y

]
=

1

Ca

(
cosψ

∂κ

∂s

)
, [p] =

κ

Ca
. (B.5)
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