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Abstract

In this paper, we study propagation speeds of reaction-diffusion-advection (RDA) fronts in

time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) non-

linearity. The variational principle reduces the computation of KPP front speeds to a prin-

cipal eigenvalue problem on a periodic domain of a linear advection-diffusion operator with

space-time periodic coefficients. We develop efficient Lagrangian methods to compute the

principal eigenvalue through the Feynman-Kac formula. By estimating the convergence rate

of Feynman-Kac semigroups and the operator splitting methods for approximating the lin-

ear advection-diffusion solution operators, we obtain convergence analysis for the proposed

numerical methods. Finally, we present numerical results to demonstrate the accuracy and

efficiency of the proposed method in computing KPP front speeds in time-periodic cellular

and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress (ABC) flow and

time-dependent Kolmogorov flow in three-dimensional space.

AMS subject classification: 35K57, 47D08, 65C35, 65L20, 65N25.

Keywords: KPP fronts; cellular and chaotic flows; Feynman-Kac semigroups; Lagrangian

method; operator splitting; eigenvalue problems; convergence analysis.

1. Introduction

Front propagation in complex fluid flows arises in many scientific areas such as chemical

kinetics, combustion, biology, transport in porous media, and industrial deposition processes

(see [41] for a review). A fundamental problem is to analyze and compute large scale front

speeds in complex flows. An extensively studied model problem is the reaction-diffusion-

advection (RDA) equation with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity [20].

To be specific, the KPP equation is

ut = κ∆xu+ (v · ∇x)u+ τ−1f(u), t ∈ R+, x = (x1, ..., xd)
T ∈ Rd, (1)
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where κ is diffusion constant, τ is time scale of reaction rate, v is an incompressible velocity

field (its precise definition will be discussed later), u is the concentration of reactant or

population, and the KPP reaction f(u) = u(1− u) satisfying f(u) ≤ uf ′(0). In our analysis

and numerical examples, we will keep τ and κ fixed, while change the magnitude of the

velocity field v, which equivalently means changing the Péclet number.

Since the pioneering work of Kolmogorov, Petrovsky and Piskunov [20] and Fisher [11]

on traveling fronts of the reaction-diffusion equations, this field has gone through enormous

growth and development. Reaction-diffusion front propagation in fluid flows has been an

active research topic for decades; see e.g.[14, 22, 2, 29, 30, 27] and references therein. Sig-

nificant amounts of mathematical analysis and numerical works in this direction have been

accomplished when the streamlines of fluid flow are either well-structured (regular motion)

or fully random (ergodic motion). Yet, the often encountered less studied case is when the

streamlines consist of both regular and irregular motions, while neither one takes up the

entire phase space, such as the chaotic Arnold-Beltrami-Childress (ABC) flow [8, 3] and

Kolmogorov flows [13, 5].

In recent years, much progress has been made in finite element computation of the KPP

front propagation in time-periodic cellular and chaotic flows based on a linearized corrector

equation. If the velocity field v = v(x) in the KPP equation (1) is time-independent,

the minimal front speed in direction e is given by the variational formula [28]: c∗(e) =

infλ>0 µ(λ)/λ, where µ(λ) is the principal eigenvalue of the elliptic operator, Aλ1 , namely,

Aλ1Φ ≡ κ∆xΦ + (2λe + v) · ∇xΦ +
(
κλ2 + λv · e + τ−1f ′(0)

)
Φ = µ(λ)Φ. (2)

In Eq.(2), Φ ∈ L2(Td), T = R/Z is the one-dimensional torus, and v is period 1 in all direction

xi, 1 ≤ i ≤ d. Accurate estimation of c∗(e) boils down to computing principal eigenvalue of

the operator Aλ1 in (2). Adaptive finite element methods (FEM) were successfully applied to

solve (2) in [36, 35]. If the velocity field v = v(x, t) in the KPP equation (1) is periodic in

time t, then the variational formula c∗(e) = infλ>0 µ(λ)/λ still holds [15, 28], where µ(λ) is

the principal eigenvalue of the time-periodic parabolic operator, Aλ2 , namely,

Aλ2Φ ≡ κ∆xΦ + (2λe + v) · ∇xΦ +
(
κλ2 + λv · e + τ−1f ′(0)

)
Φ− Φt = µ(λ)Φ, (3)

on the space-time domain Td× [0, T ] (T is the period of v in t), subject to the same boundary

condition in x as (1) and periodic in t. An edge-averaged FEM with algebraic multigrid ac-

celeration was developed in [42] to study KPP front speeds in two-dimensional time-periodic

cellular flows with chaotic streamlines. Adaptive FEM methods provide an efficient way to

investigate the KPP front speeds in time-periodic cellular and chaotic flows. However, when

the magnitude of velocity field, A, is large and/or the dimension of spatial variables is big,

say d = 3, it is extremely expensive to compute KPP front speeds by using the FEM.

Recently, we have made progress in developing robust Lagrangian numerical schemes for

computing effective diffusivities in chaotic and random flows [40, 39, 21]. This motivates

us to develop efficient Lagrangian methods to compute KPP front propagation in time-

periodic cellular and chaotic flows in this paper, especially in time-dependent flows in three-

dimensional space.
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In this paper, we first apply operator splitting methods to approximate the solution op-

erator of the linear advection-diffusion operator (see Eq.(4)), which is a non-autonomous

evolution equation and corresponding to the linearization of the KPP equation. Then, we

develop Lagrangian numerical schemes to compute the KPP front propagation through the

Feynman-Kac formula, which establishes a link between parabolic PDEs and SDEs. Directly

approximation of the Feynman-Kac formula is unstable, since the main contribution to the

expectation comes from sample paths that visit maximal points of the potential; see Eq.(7).

Alternatively, we study a normalized version, i.e., the Feynman-Kac semigroup. Specifi-

cally, the principal eigenvalue of Aλ1 and Aλ2 can be obtained by studying the convergence

of Feynman-Kac semigroups for SDEs associated with operators Aλ1 and Aλ2 [6, 10]. We

approximate the evolution of probability measures by a particle system and use resampling

technique to reduce the variance. Moreover, we estimate the approximation of semigroups

associated with the solution operator of non-autonomous evolution equation and obtain a

convergence analysis for our method in computing the KPP front speeds.

We point out that using Feynman-Kac semigroups to estimate the principal eigenvalue

of differential operators has a long history. It was developed in large deviation theory, where

Feynman-Kac semigroups were used to calculating cumulant generating functions [7]. They

were also used in important practical applications, such as the diffusion Monte Carlo (DMC)

method [12]. In the case when the flow is autonomous, [10] gave a rigorous proof of conver-

gence and error analysis using a backward error analysis approach. When the flow becomes

non-autonomous, their method cannot be directly applied. There are several novelties in

our paper. Firstly, we analyze the solution operator by an operator splitting method and

estimate the error in the L2 operator norm. Secondly, we prove the convergence of estimating

principal eigenvalues by the Feynman-Kac semigroups for non-autonomous periodic systems.

Furthermore, we develop the N -interacting particle system (N -IPS) method to numerically

calculate principal eigenvalues, where several important 3D chaotic flows are investigated.

Finally, we carry out numerical experiments to demonstrate the accuracy and efficiency of

the proposed method in computing KPP front speeds for time-periodic cellular and chaotic

flows. Most importantly, we aim to investigate the dependence of KPP front speeds on the

chaos (disorder) and strengthen of the flows. For space-time-periodic shear flow, the speed

c∗(A) obeys a quadratic enhancement law: c∗(A) = c0(1 + αA2) + O(A3), A � 1, where

c0 is the KPP front speed in homogeneous media (A = 0) and α > 0 depends only on

flow v. The study for complicated flows, e.g. 3D flows remains largely open. At large A,

the solution of the principal eigenvalue problem (2) develops internal layers, which brings

essential difficulty for the FEM. We will study this issue in Section 4.3. Numerical results

show that our Lagrangian method is still very efficient when the magnitude of velocity field A

and computational cost linearly depends on the dimension d of spatial variables in the KPP

equation (1). Thus, we are able to compute the KPP front speeds for time-dependent cellular

and chaotic flows of physical interests, including the time-dependent ABC flow and the time-

dependent Kolmogorov flow in three-dimensional space. To the best of our knowledge, our

work appears to be the first one in the literature to develop numerical methods to compute
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KPP front speeds for 3D time-dependent flows.

The rest of the paper is organized as follows. In Section 2, we propose Lagrangian

methods in computing KPP front speeds in time-periodic cellular and chaotic flows (1).

In Section 3, we estimate the approximation of semigroups associated with the solution

operators of non-autonomous evolution equations and obtain the convergence analysis for

our method. In Section 4, we present numerical results to demonstrate the accuracy and

efficiency of our method. In addition, we investigate the dependence of KPP front speeds

on the chaos (disorder) and strengthen in the flows, especially in 3D time-dependent chaotic

flows. Concluding remarks are made in Section 5. Finally, we collect several fundamental

results for abstract linear evolution equations by semigroup theory in the Appendix.

2. Efficient Lagrangian methods in computing KPP front speeds

2.1. Computing principal eigenvalue via the Feynman-Kac formula

In this section, we develop Lagrangian methods to compute KPP front propagation via the

Feynman-Kac formula. We consider the linearized corrector equation of the KPP equation

(1), where the velocity field v(x, t) is space-time periodic, mean zero, and divergence-free.

To compute the KPP front speed c∗(e) along direction e, let w solve a linearized equation

parameterized by λ > 0:

wt = Aw := κ∆w + (2λe + v) · ∇xw +
(
κλ2 + λv · e + τ−1f ′(0)

)
w, (4)

with initial condition w(x, 0) = 1. Then, the principal eigenvalue µ(λ) is given by

µ(λ) = lim
t→∞

1

t
ln

∫
Ω

w(x, t)dx. (5)

The number µ(λ) is also the principal Lyapunov exponent of the parabolic equation (4),

which is convex and superlinear in large λ [28, 42]. Finally, we compute the KPP front speed

using the variational formula c∗(e) = infλ>0 µ(λ)/λ.

To design Lagrangian methods, we decompose the operator A in (4) into A = L + C,
where L := κ∆ + (2λe+v) ·∇x and C := c(x, t) =

(
κλ2 +λv ·e+ τ−1f ′(0)

)
. To approximate

the operator L, we define a SDE system, Xt,x, which follows

dXt,x = b(Xt,x, t)dt+
√

2κdw(t), X0,x = x, (6)

where the drift term b = 2λe + v is determined by the advection field in the operator L
and w(s) is a d-dimensional Brownian motion. The principal eigenvalue µ(λ) of (4) can be

represented via the Feynman-Kac formula as

µ(λ) = lim
t→∞

1

t
lnE

(
exp

( ∫ t

0

c(Xs,x, s)ds
))
, (7)

where the expectation E[·] is over randomness induced by w(s).
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If we apply the formula (5) to compute the principal eigenvalue µ(λ), we need to solve

a parabolic-type PDE (4) using numerical methods, such as FEM. When the magnitude of

velocity field is large and/or the dimension of spatial variables d is big (say d = 3), the

FEM becomes extremely expensive. The Feynman-Kac formula (7) provides an alternative

strategy to design Lagrangian methods to compute the principal eigenvalue µ(λ), and thus

allows us to compute the KPP front speeds. As we will demonstrate in Section 4, the proposed

Lagrangian methods are still efficient for computing KPP front speeds in 3D time-dependent

chaotic flows.

Remark 2.1. When the velocity field in the KPP equation (1) is time-independent, con-

struction of the Lagrangian method for computing KPP front speeds is straightforward. We

simply replace the drift term b in (6) and the potential c in (7) by their time-independent

counterparts.

2.2. Feynman-Kac semigroups

Directly solving (6) by Monte Carlo method and using the Feynman-Kac formula (7) to com-

pute the principal eigenvalue µ(λ) is unstable as the main contribution to E
(

exp
( ∫ t

0
c(Xs,x, s)ds

))
comes from sample paths that visit maximal or minimal points of the potential function c,

which leads to inaccurate or even divergent results.

Accurate principal eigenvalue µ(λ) can be obtained by studying the convergence of the

Feynman-Kac semigroup associated with the SDE system (6) and the potential c. Specifically,

let P(Td) denote the set of probability measures over Td and S = C∞(Td). We define the

evolution operator associated with the process (Xt,x)t≥0 in (6) as

(ν)(Ptφ) = Eν [φ(Xt,x)], ∀ν ∈ P(Td), φ ∈ S. (8)

Similarly, we define its weighted counterpart as

(ν)(P c
t φ) = Eν

[
φ(Xt,x) exp

( ∫ t

0

c(Xs,x, s)
)
ds
]
, ∀ν ∈ P(Td), φ ∈ S. (9)

In other words, infinitesimal generators of Pt and P c
t are L and A = L+ C, respectively.

Equipped with the definitions of the evolution operators Pt and P c
t , we can define the

Feynman-Kac semigroup Φc
t as follows

Φc
t(ν)(φ) :=

(ν)(P c
t φ)

(ν)(P c
t 1)

=
Eν
(
φ(Xt,x) exp

( ∫ t
0
c(Xs,x, s)

)
ds
)

Eν
(

exp
( ∫ t

0
c(Xs,x, s)

)
ds
) . (10)

One can easily verify that for all ν ∈ P(Td) and t1, t2 ∈ R+, Φc
t1

(Φc
t2

(ν)) = Φc
t1+t2

(ν). Thus,

the family of maps {Φc
t}t≥0 is a measure-valued semigroup.

Notice that we use T to denote the period of velocity in time. Therefore, we consider the

Feynman-Kac semigroup for t = nT, n ∈ N. Namely, we consider Φc
nT = (Φc

T )n.
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Proposition 2.2. From Theorem 3.7 and Theorem 3.8, there exists C > 0 such that∣∣∣Φc
nT (ν)(φ)−

∫
Ω

φdνc

∣∣∣ ≤ C||φ|| exp(−δcnT ), ∀ν ∈ P(Td), φ ∈ S. (11)

The exponential-decay property stated above ensures us to obtain an invariant measure νc
for Φc

T from any initial measure ν. From the definition of µc, we know Φc
T (νc) = νc, which

means that for any φ ∈ S ∫
Td
φdνc = (

∫
Td
P c
T1dνc)

−1

∫
Td
P c
Tφdνc. (12)

In this way we see that the principal eigenvalue of P c
T is just

∫
Td P

c
T1dνc.

2.3. Numerical discretization and resampling techniques

We use numerical methods to discretize the SDE (6). For instance, Euler-Maruyama scheme

gives us

Xi+1 = Xi + b(Xi, ti)∆t+
√

2κ∆tωi, (13)

where ti = i∆t, ∆t = T/M , so M is the number of time discretization interval for each

period. {ωi}∞i=1 are i.i.d. d-dimensional standard Gaussian random variables. The numerical

scheme (13) defines an evolution operator (also known as transition operator) P∆t
i :

P∆t
i φ(x) = E(φ(Xi+1)|Xi = x). (14)

The evolution operator P∆t
i describes how the values of a given function evolve on average

over one time step ∆t. One can easily verify that∣∣∣∣P∆t
i − e∆tL(ti)

∣∣∣∣
L2 ≤ C(∆t)2, (15)

where C is a positive constant [24]. Specially, when b = 0, P∆t
ti

= e∆tL(ti) for all i. Therefore,

solving the SDE system (6) by the numerical scheme (13) provides a good approximation to

the evolution operator e∆tL(ti), which plays an important role in the error estiamte of our

Lagrangian methods in Section 3.

In addition, we can define the approximation operator for P c
t in (9). For instance, if we

choose the left-point rectangular integration, we obtain

(ν)(P∆t
i e∆tC(ti)φ) = E

[
φ(Xi+1) exp

(
c(Xi+1, ti)∆t

)∣∣Xi ∼ ν
]
, i = 1, 2, ....,M. (16)

The time discretization for Feynman-Kac semigroup (10) reads:

ΦC,∆ti (ν)(φ) =
(ν)(P∆t

i e∆tC(ti)φ)

(ν)(P∆t
i e∆tC(ti)1)

, i = 0, 1, 2, ....,M − 1. (17)

It is difficult to obtain a closed-form solution to the evolution of probability measure in

(17). Therefore, we propose to discretize the SDE system (6) by using numerical methods

and approximate the evolution of probability measure in (17) by an N -interacting particle
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system (N -IPS) [26]. Let us introduce the notation K∆t = K∆t,M−1K∆t,M−2 · · · K∆t,0, where

K∆t,i = P∆t
i e∆tC(ti),M∆t = T in one time period, e.g. [0, T ]. We denote

ΦK
∆t,i

(ν)(φ) =
(ν)(K∆t,iφ)

(ν)(K∆t,i1)
(18)

the Feynman-Kac semigroup associated with the operator K∆t,i. Then, according to Lemma

3.6, it satisfies

ΦK
∆t

=
M−1∏
i=0

ΦK
∆t,i

= ΦK
∆t,0

ΦK
∆t,1 · · ·ΦK∆t,M−1

. (19)

Suppose the Markov process (Θ, (Fn)n≥0, (ξ
n)n≥0,P) is defined in the product space (Td)N .

We approximate any initial probability measure π0 = ν by

P (ξ0 ∈ dz) =
N∏
p=1

π0(dzp), (20)

and

P (ξn ∈ dz|ξn−1 = x) =
N∏
p=1

ΦK
∆t

(
1

N

N∑
i=1

δxi)(dz
p) =

N∏
p=1

(
M−1∏
i=0

ΦK
∆t,i

)(
1

N

N∑
i=1

δxi)(dz
p), (21)

where n denotes the iteration number in the evolution of probability measure by the Feynman-

Kac semigroup (17).

From Eq.(20), we can figure out the evolution from ξn−1 to ξn. It will be divided into

M small steps. Lets denote ξn0 = ξn for all n. Within each iteration stage n − 1, we evolve

the particles from t = 0 to t = T by evolution operator P∆t
i and resampling techniques.

Specifically, at t = ti, i = 0, ...,M − 1, we evolve the particles ξn−1
i by using the numerical

scheme (13) and get ξ̃n−1
i+1 . That means

ξ̃p,n−1
i+1 = ξp,n−1

i + b(ξp,n−1
i , ti)∆t+

√
2κ∆tωp,n−1

i , p = 1, 2, ..., N, (22)

where ωp,n−1
i are i.i.d. d-dimensional standard Gaussian random variables.

Then, we resample the elements in ξ̃n−1
i+1 according to the multinomial distribution with

the weights

wj,n−1
i =

exp
(
c(ξ̃p,n−1

i , ti)∆t
)∑N

p=1 exp
(
c(ξ̃p,n−1

i , ti)∆t
) , p = 1, ..., N, (23)

and obtain ξn−1
i+1 .

The evolution of N -IPS from (n− 1)T to nT can be represented as follows

ξn−1
0 = (ξ1,n−1

0 , · · · , ξN,n−1
0 ) −→ ξn−1

1 = (ξ1,n−1
1 , · · · , ξN,n−1

1 ) −→
· · · −→ ξn−1

M = (ξ1,n−1
M , · · · , ξN,n−1

M ) = ξn0 = (ξ1,n
0 , · · · , ξN,n0 ). (24)
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We know that the empirical distribution of the particles ξn0 will weakly converge to the

distribution ΦK
∆t

n (π0) as N →∞.

After obtaining the empirical distribution of the particles ξn0 , we can compute the principal

eigenvalues. At the iteration stage n, we first define the change of the mass as follows

eNi,n = N−1

N∑
p=1

exp(c(ξ̃p,n−1
i , ti)∆t). (25)

Then, we compute the approximation of the principal eigenvalue by

µn∆t(λ) = (M∆t)−1

M∑
i=1

log
(
N−1

N∑
p=1

exp(c(ξ̃p,n−1
i , ti)∆t)

)
. (26)

Finally, we give the complete algorithm in Algorithm 1. The performance of our method will

be demonstrated in Section 4.

Algorithm 1 Algorithm for computing the principal eigenvalues of parabolic equations

Input: velocity field v(x, t), potential c(x, t), number of N -IPS system (i.e., N), N indepen-

dent samples from initial distribution ν0, iteration number n, time period T , and time

step ∆t = T/M .

1: Generates N i.i.d. ν0-distributed random variables on [0, 1]d: ξ1
0 = (ξ1,1

0 , · · · , ξN,10 ).

2: for i = 1 : n do

3: for j = 0 : M − 1 do

4: Generates standard normal variables ωij and compute ξ̃i−1
j+1 by (13).

5: Compute the pointwise value S = (eC
1
, · · · , eCN ), where Cj = c(ξ̃i−1

j , j∆t)∆t.

6: Compute weights w = (w1, · · · , wN) = S/SUM(S) and Ei,j = 1
∆t

log(mean(S)).

7: Resample ξ̃i−1
j+1 according to multinomial distribution with weight w, and get ξi−1

j+1.

8: end for

9: Compute Ei = M−1
∑M−1

j=0 (Ei,j) and define ξi−1
M = ξi0.

10: end for

Output: The approx invariant distribution ΦK
∆t

n (ν)-distributed variable ξ0
n and approx

eigenvalue λ̃n,∆t = n−1
∑n

i=1 Ei;

Remark 2.1. When the flow is time-independent, we can view it as a periodic flow with any

given period T . The principal eigenvalue calculated by (5) will be the same with any T > 0.

Hence the numerical schemes and the convergence analysis proposed in time-dependent flow

can be applied by assigning T = ∆t and M = 1.

3. Convergence analysis of the Lagrangian method

In this section, we will prove the convergence of the Lagrangian method in computing KPP

front speed. We divide the analysis into two parts. The first part studies the approximation of
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the evolution of parabolic operators by using an operator splitting method. The second part

studies the error estimate of the Lagrangian method in computing the principal eigenvalue

of parabolic operators.

3.1. Approximation the evolution of parabolic operators

We first rewrite the linearized corrector equation of the KPP equation (4) into the following

non-autonomous parabolic equation

wt = κ∆xw + b(t,x) · ∇xw + c(t,x)w, x = (x1, ..., xd)
T ∈ Td = [0, 1]d, t ∈ [0, T ], (27)

where the initial condition w(0,x) = w0, b(t,x) = 2λe + v, c(t,x) = κλ2 + λv · e + τ−1f ′(0),

and T is final computational time. Since the velocity v = v(t,x) is space-time periodic, so

do b(t,x) and c(t,x). We assume the period of b(t,x) and c(t,x) is 1 in each dimension and

they are smooth functions. For notational simplicity, we define

A(t) = L(t) + C(t), (28)

where L(t) := κ∆x + b(t,x) · ∇x and C(t) = c(t,x). As we have discussed in Section 2.2, the

operator A(t) has a real isolated principal eigenvalue µ(λ). We aim to obtain error estimates

of our Lagrangian method in approximating the principal eigenvalue µ(λ). To this end, we

study the approximation the solution operator for the parabolic equation (27) by using an

operator splitting method.

We define the solution operator U(t, s) corresponding to the parabolic equation (27),

which satisfies the following properties:

1. U(s, s) = Id, for any s ≥ 0;

2. U(t, r) ◦ U(r, s) = U(t, s), for any t ≥ r ≥ s ≥ 0;

3. d
dt
U(t, s)w0 = A(t)U(t, s)w0, for any t ≥ s ≥ 0, w0 ∈ L2([0, 1]d).

The solution operator U(t, s) enables us to study the evolution of parabolic operator in

(27), e.g., the principal eigenvalue of U(T, 0) gives the principal eigenvalue of the parabolic

operator A(t). It has been proven that the principal eigenvalue of U(T, 0) exists and is real

[15]. It is difficult to obtain a closed-form for the solution operator U(T, 0). Therefore, we

approximate the solution operator U(T, 0) by using an operator splitting method.

We set ti = i∆t with ∆t = T
M

and consider the following parabolic equation with freezing

time coefficients.

wt = κ∆xw + b(ti,x) · ∇xw + c(ti,x)w, ti < t ≤ ti+1, i ≥ 0, (29)

The corresponding solution operator can be formally represented as

w(t) = e(t−ti)(L+C)(ti)
i−1∏
k=0

e∆t(L+C)(tk)w0, ti ≤ t < ti+1, (30)
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Furthermore, we can apply the first-order Lie-Trotter operator splitting method to approxi-

mate the solution operator defined in (30) and obtain

w(t) = e(t−ti)L(ti)e(t−ti)C(ti)
i−1∏
k=0

e∆tL(tj)e∆tC(tj)w0, ti ≤ t < ti+1, (31)

We will prove the solution operator
∏M−1

j=0 e∆tL(tj)e∆tC(tj) obtained by the Lie-Trotter

operator splitting method converges to the solution operator U(T, 0) in certain operator norm

as ∆t approaches zero. As a consequence of this convergence result, we can further prove

the convergence of the principal eigenvalue associated with these two solution operators.

To make our paper self-contained, we collect several fundamental results for abstract

linear evolution equations by semigroup theory in Appendix A. We begin with following

lemma, which is as a special case of Theorem 1 in [37].

Lemma 3.1. Let t be fixed. If b(t,x) and c(t,x) are smooth and bounded, then the operator

A(t) defined in (28) is a strongly elliptic operator on Td. Moreover, A(t) generates an analytic

semigroup e·A(t) in Lp(D), for all 1 ≤ p ≤ ∞.

We will prove that, in our non-autonomous parabolic equation setting, the assumptions

made in Appendix A are all satisfied, so we can obtain the error of the operator splitting

method in approximation the non-autonomous parabolic operator.

We first prove the operator A defined in (28) satisfies a Hölder continuous condition.

Lemma 3.2. Suppose b(t,x) and c(t,x) in the operator A(t) are bounded, smooth and

periodic in each component of x, and uniformly Hölder continuous in t, i.e., for any t, s ∈ R+,∣∣∣∣b(t,x)− b(s,x)
∣∣∣∣ ≤ C1|t− s|β,

∣∣c(t,x)− c(s,x)
∣∣ ≤ C1|t− s|β, (32)

for some positive C1 and β. Let v ∈ D(A(·)) = H2(Td) is periodic. Then, for any 0 < s ≤ τ ,

there exists γ1 > 0, such that∣∣∣∣A(τ)v −A(s)v
∣∣∣∣
L2 ≤ C2(τ − s)β

∣∣∣∣(A(t)− γ1)v
∣∣∣∣1/2
L2

∣∣∣∣v∣∣∣∣1/2
L2 , (33)

for any t ∈ R+. Specifically, if b(t,x) = 0, then∣∣∣∣A(τ)v −A(s)v
∣∣∣∣
L2 ≤ C3(τ − s)β

∣∣∣∣v∣∣∣∣
L2 . (34)

Proof. We first consider the case when b(t,x) 6= 0. By using the uniformly Hölder continuous

conditions for b(t,x) and c(t,x), we have∣∣∣∣A(τ)v −A(s)v
∣∣∣∣
L2 =

∣∣∣∣(b(τ,x)− b(s,x)) · ∇xv + (c(τ,x)− c(s,x))v
∣∣∣∣
L2

≤C1(t− s)β(||∇xv||L2 + ||v||L2). (35)

For the operator A(t), we claim that there exists γ1 > 0 such that,∣∣∣∣(A(t)− γ1)v
∣∣∣∣
L2 > C(κ, b, c)

(
||∆xv||L2 + ||v||L2

)
, ∀v ∈ D(A(·)), (36)
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where the constant C(κ, b, c) depends on κ, b(t,x) and c(t,x).

We prove the statement in (36) before move to the main results. Let cγ1 = c − γ1 and

assume
∣∣∣∣b(t,x)

∣∣∣∣ ≤M1, |c(t,x)| ≤M2,
∣∣∣∣∇xc(t,x)

∣∣∣∣ ≤M3. We know that∣∣∣∣(A(t)− γ1)v
∣∣∣∣
L2 =

∣∣∣∣(κ∆x + b(t,x) · ∇x + cγ1(t,x))v
∣∣∣∣
L2

≥
∣∣∣∣(κ∆x + cγ1(t,x))v

∣∣∣∣
L2 −

∣∣∣∣b(t,x) · ∇xv
∣∣∣∣
L2 . (37)

For the term
∣∣∣∣(κ∆x + cγ1(t,x))v

∣∣∣∣
L2 , the periodic condition of v implies that∣∣∣∣(κ∆x + cγ1(t,x))v

∣∣∣∣2
L2

=||κ∆xv||2L2 +
∣∣∣∣cγ1(t,x)v

∣∣∣∣2
L2 − 2〈κ∇xv, cγ1(t,x)∇xv〉L2 − 2〈κ∇xv, v∇xc(t,x)〉L2 (38)

Notice that if we choose γ1 =
2M2

1

κ
+M2, then we obtain

−2〈κ∇xv, cγ1(t,x)∇xv〉L2 ≥ 4κ(γ1 −M2)||∇xv||L2 ≥ 4
∣∣∣∣b(t,x) · ∇xv

∣∣∣∣
L2 . (39)

In addition, we have

2〈κ∇xv, v∇xc(t,x)〉L2 ≤ 2κM3||∇xv||L2||v||L2 ≤ 2κM3C||∆xv||
1
2

L2||v||
3
2

L2 . (40)

Here, we use the fact that ||∇xv||L2 ≤ C||∆xv||
1
2

L2 ||v||
1
2

L2 , which is the moment inequality

in interpolation theory; see Theorem 5.34 of [9]. If we take γ1 large enough such that

4(γ1−M2

3
)

3
4κ

1
4 ≥ 2κM3C, we get that

||κ∆xv||2L2 +
∣∣∣∣cγ1(t,x)v

∣∣∣∣2
L2 ≥ 2κM3C||∆xv||

1
2

L2||v||
3
2

L2 ≥ 2〈κ∇xv, v∇xc(t,x)〉L2 . (41)

Substititing the estiamtes (39)-(41) into (38), we obtain∣∣∣∣(κ∆x + cγ1(t,x))v
∣∣∣∣
L2 ≥ 2

∣∣∣∣b(t,x) · ∇xv
∣∣∣∣
L2 . (42)

Thus, from (37) we get that∣∣∣∣(A(t)− γ1)v
∣∣∣∣
L2 ≥

1

2

∣∣∣∣(κ∆x + cγ1(t,x))v
∣∣∣∣
L2 . (43)

Using the same argument, we can prove that for γ1 large enough,∣∣∣∣(κ∆x + cγ1(t,x))v
∣∣∣∣
L2 ≥ Ĉ(||∆xv||L2 + ||v||L2). (44)

Finally, using the moment inequality we prove the statement in (33).

The case when b(t,x) = 0 is simple since we have∣∣∣∣A(τ)v −A(s)v
∣∣∣∣
L2 =

∣∣∣∣(c(τ,x)− c(s,x))v
∣∣∣∣
L2 ≤ C3(t− s)β||v||L2 . (45)
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We then verify the operators L(t) and C(t) defined in (28) satisfy the assumption Ap-

pendix A.11. Given τ ≥ 0, we assume the bounded conditions as follows

||eτL(t)||L2 ≤ 1, ||eτC(t)||L2 ≤ 1, ||eτ(L(t)+C(t))||L2 ≤ 1. (46)

Lemma 3.3. Suppose b(t,x) and c(t,x) in the operator A satisfy the same assumption as

that in Lemma 3.2. Then, there exists γ2 > 0 such that, for any periodic v ∈ L2(Td),
commutator of L and C acting on v follows,∣∣∣∣[L(t), C(t)]v

∣∣∣∣
L2 ≤ C1

∣∣∣∣(L(t)− γ2)v
∣∣∣∣ 1

2

L2||v||
1
2

L2 , ∀t ≥ 0. (47)

Proof. We first observe that, for any v periodic in L2(Td),∣∣∣∣[L(t), C(t)]v
∣∣∣∣
L2 =

∣∣∣∣L(t)(C(t)v)− C(t)(L(t)v)
∣∣∣∣
L2 ,

=
∣∣∣∣(κ∆xc(t,x) + b(t,x) · ∇xc(t,x)

)
v + 2κ∇xc(t,x) · ∇v

∣∣∣∣
L2 ,

≤(κM4 +M1M3)||v||L2 + 2κM3||∇xv||L2 , (48)

where ||b(t,x)|| ≤M1, ||∇xc(t,x)|| ≤M3, and |∆xc(t,x)| ≤M4.

Following the same procedure as in the proof of Lemma 3.2, we have∣∣∣∣(L(t)− γ1)v
∣∣∣∣
L2 ≥ C(κ, b)(||∆xv||L2 + ||v||L2). (49)

Using the fact that ||∇xv||L2 ≤ C||∆xv||
1
2

L2 ||v||
1
2

L2 , we prove finally the assertion in (47).

Remark 3.1. If the bounded conditions (46) for L(t) and C(t) do not hold, we can shift the

operators by a constant so that the shifted operators satisfy the bounded condition. Shift

the operator by a constant will not affect the commutator in (47).

Now we are in the position to present the main result in approximating the solution

operator U(t, s) for the parabolic equation (27).

Theorem 3.4. The solution operator (30) has the following error in approximating the

solution operator U(T, 0) in L2 operator norm

||U(T, 0)−
M−1∏
k=0

e∆tA(k∆t)||L2(Td) ≤ C1(T )(∆t)β−
1
2 , (50)

where T > 0, M is an integer, and ∆t = T
M

. In addition, the Lie-Trotter operator splitting

method has the following error in approximaing the solution operator (30)

∣∣∣∣∣∣M−1∏
k=0

e∆tA(k∆t) −
M−1∏
k=0

e∆tL(k∆t)e∆tC(k∆t)
∣∣∣∣∣∣
L2(Td)

≤ C2(T )(∆t)
1
2 . (51)
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Proof. We take γ = max(γ1, γ2), where γ1 and γ2 are defined in Lemma 3.2 and Lemma

3.3 respectively. Let Uγ(t, s) = e−γ(t−s)U(t, s) corresponding the solution operator to the

parabolic equation (27) with Aγ(t) = A(t)− γ, Lγ(t) = L(t)− γ Then, we have

U(T, 0)−
M−1∏
k=0

e∆tA(k∆t) = eγT (Uγ(T, 0)−
M−1∏
k=0

e∆tAγ(k∆t)) (52)

The statement in (50) is proved accoeding to Theorem Appendix A.9.

For the Lie-Trotter operator splitting method, we know that

M−1∏
k=0

e∆tA(k∆t) −
M−1∏
k=0

e∆tL(k∆t)ehC(k∆t) = eγT (
M−1∏
k=0

e∆tAγ(k∆t) −
M−1∏
k=0

e∆tLγ(k∆t)e∆tM(k∆t)) (53)

Now according to the Lemma 3.2 and 3.3, Aγ(k∆t) = Lγ(k∆t)+C(k∆t) and Lγ and C satisfy

the assumptions Appendix A.10 and Appendix A.11. Thus, applying Theorem Appendix

A.12 and Theorem Appendix A.13, we can prove the estimate (51).

The convergence of K∆t in the operator norm L(L2, H1) has been proved in [1]. In

Theorem 3.4 we obtain the convergence of K∆t in the operator norm L(L2). Finally, we can

obtain the error estimate for the principal eigenvalue.

Theorem 3.5. Let eµ(λ)T and eµ∆t(λ)T denote the principal eigenvalue of the solution operator

U(T, 0) and the approximated solution operator
∏M−1

k=0 e∆tL(k∆t)e∆tC(k∆t), respectively. Then,

we have the error estimate as follows:∣∣eµ(λ)T − eµ∆t(λ)T
∣∣ ≤ C1(T )(∆t)β−

1
2 + C2(T )(∆t)

1
2 . (54)

Hence, |µ(λ)− µ∆t(λ)| = O((∆t)min(β− 1
2
, 1
2

)).

Proof. According to the standard spectral theorem [19], the principal eigenvalue eµ(λ) for the

solution operator U(T, 0) and the principal eigenvalue eµ∆t(λ) for the approximated solution

operator
∏M−1

k=0 e∆tL(k∆t)e∆tC(k∆t) satisfy

∣∣eµ(λ)T − eµ∆t(λ)T
∣∣ ≤ C3

∣∣∣∣U(T, 0)−
N−1∏
k=0

e∆tL(k∆t)e∆tC(k∆t)
∣∣∣∣
L2(Td)

. (55)

By using triangle inequality for the right hand side of (55) and the estimated results from

Theorem 3.4, we can get the error estimate (54).

If b(t,x) and c(t,x) in the operator A are uniformly Lipschitz, then the error of the

principal eigenvalue obtained by the Lie-Trotter operator splitting method is O((∆t)
1
2 ).
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3.2. Analysis of the Lagrangian method

We consider the Feynman-Kac semigroup ΦA associated with an arbitary operaor A. The

action of the Feynman-Kac semigroup ΦA on a probability measure ν is defined by

ΦA(ν)(φ) =
(ν)(Aφ)

(ν)(A1)
, ∀φ ∈ L2(Td). (56)

Moreover, we denote ΦAn = (ΦA)n. The Feynman-Kac semigroup operation satisfies the

following property.

Lemma 3.6. For any operaors A, B in L(L2(Td)), ΦAB = ΦBΦA.

Proof. Let ν be a probability measure and φ be a function in L2(Td). Then, we can easily

verify that

ΦAB(ν)(φ) =
(ν)(ABφ)

(ν)(AB1)
=

(ν)(ABφ)

(ν)(A1)

(ν)(A1)

(ν)(AB1)
,

=
ΦA(ν)(Bφ)

ΦA(ν)(B1)
= ΦBΦA(ν)(φ). (57)

Recall the operator ΦK
∆t

n defined in (19), which is a compostion of the Feynman-Kac

semigroup ΦK
∆t,i

associated with the operator K∆t,i; see (18). In the sequel, we prove the

operator ΦK
∆t

n satisfies the uniform minorization and boundedness condition with respect to

∆t, which guarantees the existence of an invariant measure.

Theorem 3.7. There exists a probability measure η so that the operator K∆t satisfies a

uniform minorization and boundedness condition as follows

εη(φ) ≤ K∆t(φ)(x) ≤ γη(φ), ∀x ∈ Td,∀φ ∈ L2(Td), (58)

where 0 < ε < γ is independent with ∆t. Moreover, the limit operator when ∆t→ 0, which

is just the exact solution operator U(T, 0), also satisfies this condition.

Proof. We first define an operator P∆t =
∏M−1

i=0 P∆t
ti

, which corresponds to the case when

c(t,x) = 0 in Eq.(27). Since c(t,x) is bounded (i.e. c1 ≤ c(t,x) ≤ c2), one can easily obtain

the following estimate based on the Feynman-Kac formula

P∆t(φ)ec1T ≤ K∆t(φ) ≤ P∆t(φ)ec2T . (59)

Thus, to estimate the bounds for K∆t, we only need to study the operator P∆t. Moreover,

it is sufficient to prove the result for any indicator function of a Borel set S ⊂ Td.
We aim to prove that

P(XM ∈ S|X0 = x) ≥ εη(S), (60)
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for a probability measure η and a constant ε ≥ 0. Here Xi are defined in Eq.(13) as the

numerical solution to the SDE (6). The idea of the proof is to explicitly rewrite XM as

a perturbation of the reference evolution corresponding to b = 0. According to the SDE

scheme (13), we have

XM = X0 +GM + FM , (61)

where

GM =
√

2κ∆t
M−1∑
i=0

ωi, and, FM = ∆t
M−1∑
i=0

b(i∆t,Xi). (62)

We know that |Fm| ≤ T ||b||L∞ and GM is a Gaussian random variable with covariance

matrix 2κT Idd. Therefore

P(XM ∈ S|X0 = x) ≥ P(GM ∈ S − x− FM)

= (
1

2πκT
)d/2

∫
S−x−Fm

exp(− |y|
2

2κT
)dy. (63)

Since the state space Td is compact, we can find R > 0 such that |x + FM | ≤ R for all

x ∈ Td. Thus, we define the probability measure η as

η(S) = Z−1
R inf
|Q|≤R

∫
S+Q

exp(− |y|
2

2κT
)dy, ∀S ⊂ Td, (64)

where ZR is a normalization constant. Setting ε = ZR(4πκT )−d/2, we can easily verify that

η(S) ≥ Z−1
R exp(− |R+1|2

2κT
)|S|, which satisfies a uniform minorization condition.

The uniform boundedness condition is automatically satisfied since η has a positive den-

sity with respect to Lebesgue measure.

The situation when the exact solution operator is considered can be samely proved by

changing Eq.(61) into an Ito integration form, namely

XT,x = X0,x +

∫ T

0

b(Xt,x, t)dt+

∫ T

0

√
2κdw(t)

and then go through the same procedure.

We can now represent an important result that ensures the existence of the limiting

messure for the discretized Feymann-Kac dynamics. The detailed proof of Proposition 3.8

can be found in [23], or Corollary 2.5 in [25].

Proposition 3.8. Suppose the minorization and boundedness conditions (58) hold true.

Then, the ΦK
∆t

n admits an invariant measure ν∆t, whose density function is the eigenfunction

of the operator (K∆t)?, adjoint operator of the solution operator K∆t. Moreover, for any

initial distribution ν0 ∈ P(Td)∣∣∣∣ΦK∆t

n (ν0)− ν∆t

∣∣∣∣
TV
≤ 2(1− ε

γ
)n, (65)

where || · ||TV is the total variation norm and 0 < ε < γ are from the minorization and

boundedness conditions introduced in (58). In addition this is also true when changing K∆t

to the exact solution operator U(T, 0).
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Corollary 3.9. The principal eigenvalue of K∆t, µ∆t satisfies the following relation

eµ∆t(λ)T = ν∆tK∆t1 = ΦK
∆t

n (ν0)K∆t1 + ρn, (66)

where ν0 is any bounded non-negative initial probability measure, T is the period of the time

parameter, and ρn = O(1− ε
γ
)n.

Proof. Lemma 3.8 implies that for any bounded non-negative measure ν0, the measure

ΦK
∆t

n (ν0) converges to an invariant measure ν∆t in the weak sense, that is

ν∆tφ :=

∫
Td
φdν∆t = ΦK

∆t

n (ν0)(φ) +O(1− ε

γ
)n, (67)

for any bounded non-negative measurable function φ.

Then, we take φ = K∆t1. From the fact that the density function of ν∆t is the eigenfunc-

tion of the operator (K∆t)?, we get that

ν∆t(K∆t1) = ((K∆t)?ν∆t)1 = eµ∆t(λ)T (ν∆t1) = eµ∆t(λ)T . (68)

Thus we finish the proof.

Now we compute the principal eigenvalue µ∆t(λ).

Lemma 3.10. Denote νk∆t =
∏k−1

i=0 ΦK
∆t,i
ν∆t. Let ek = (νk∆t)(K∆t,k1) denote the changing of

mass. Then, we have

eµ∆t(λ)T =
M−1∏
k=0

ek, and µ∆t(λ) =
1

M∆t

M−1∑
k=0

log(ek). (69)

Proof. It is easy to verify that

νM∆t = ν0
∆t = ν∆t, (K∆t,k)∗νk∆t = ekν

k+1
∆t , (70)

for some positive numbers ek’s. These ek’s are refer to the changing of the mass for each small

step K∆t,k. Thus we have (K∆t)∗ν0
∆t = (

∏M−1
k=0 ek)ν

0
∆t, which means eµ∆t(λ)T =

∏M−1
k=0 ek.

At this moment we are ready to present the main theorem in our paper as follows.

Theorem 3.11. Let ξp,n−1
k , k = 1, · · · ,M , p = 1, · · · , N , n ∈ Z+, T , ∆t be defined in N -IPS

system Algrithm 1. Then we have the following convergence:

lim
N→∞

(M∆t)−1

M∑
i=1

log
(
N−1

N∑
p=1

exp(c(ti, ξ̃
p,n−1
i )∆t)

)
= µ(λ)+O((1− ε

γ
)n)+O((∆t)

1
2 ), (71)

where ε and γ are defined in Proposition 3.8.
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Proof. By the theory of N -IPS system, {ξp,n−1
k }p=1,··· ,N will approximately distributed as∏k−1

i=0 ΦK
∆t,i

ΦK
∆t

n−1ν0 when N →∞. Thus the increasing of the mass for each small step K∆t,k

eNk,n = N−1

N∑
p=1

exp(c(tk, ξ̃
p,n−1
k )∆t), (72)

will satisfies

lim
N→∞

eNk,n = (
k−1∏
i=0

ΦK
∆t,i

ΦK
∆t

n−1ν0)(K∆t,k1). (73)

As Proposition 3.8 stated, ΦK
∆t

n−1ν0 = ν∆t + δn, where ||δn||TV ≤ 2(1− ε
γ
)n, thus

lim
N→∞

eNk,n = (
k−1∏
i=0

ΦK
∆t,i

ν∆t)(K∆t,k1) +O((1− ε

γ
)n). (74)

Combining Lemma 3.10, we conclude that

lim
N→∞

(M∆t)−1

M∑
i=1

log(eNk,n) = (M∆t)−1

M−1∑
k=0

log(ek) +O((1− ε

γ
)n) = µ∆t(λ) +O((1− ε

γ
)n).

(75)

From Theorem 3.5, we know that |µ(λ)−µ∆t(λ)| = O((∆t)
1
2 ), which concludes the proof.

4. Numerical results

In this section, we first present numerical examples to verify the convergence analysis of the

proposed method in computing eigenvalues. Then, we compute the KPP front speeds in 2D

and 3D chaotic flows. In addition, we investigate the dependence of the KPP front speed on

the magnitude of velocity field and the evolution of the empirical distribution of the N -IPS.

4.1. Convergence tests in computing principal eigenvalue

We first verify the convergence of the operator splitting method in approximating solution

operator. Let x = (x1, x2)T . We consider the following two-dimensional non-autonomous

equation in Td:
ut = L(t)u+ C(t)u, (76)

where Td = [0, 2π]2, L(t) = ∆x+(sin(x2) cos(2πt), sin(x1) cos(2πt))·∇x, and C(t) =
(

sin(x1+

x2) + cos(x1 + x2)
)

sin(2πt).

We use spectral method [34] to discretize Eq.(76), in order to obtain an accurate approxi-

mation in the physical space of the solution operator of Eq.(76). Let VH = span{ej,k}j,k∈[−H,H]∩Z

denote a finite dimensional space spanned by fourier basis functions, where H is a positive in-

teger and ej,k(q1, q2) = e2iπ(jq1+kq2). The operators L(t) and C(t) are represented in the space
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VH by the matrices LH(t) and MH(t) ∈ C(2H+1)2×(2H+1)2
, where their entries are defined by

LH(j1,k1),(j2,k2)(t) =

∫
D

ej1,k1L(t)ej2,k2dx, MH
(j1,k1),(j2,k2)(t) =

∫
D

c(t, x)ej1,k1ej2,k2dx, (77)

∀j1, k1, j2, k2 ∈ [−H,H] ∩ Z,

We use the matrix exponential function e∆tLH(t) to approximate e∆tL(t) and e∆tMH(t) to ap-

proximate e∆tM(t), respectively. Thus, we get an approximation formula for K∆t as

KH,∆t =

T/∆t−1∏
j=0

e∆tLH(tj)e∆tMH(tj). (78)

For the reference solution, we choose a much finer time step ∆tref and compute the approx-

imation formula

K̃H,∆tref =

T/∆tref−1∏
j=0

e∆tref (LH(tj)+M
H(tj)). (79)

In this experiment, we choose H = 24, ∆t = 2−1, 2−2, · · · , 2−9, and ∆tref = 2−12. Then,

we compute ||KH,∆t−K̃H,∆tref ||L2 to verify our result. Figure 1 shows the convergence results

for the splitting method. The convergence rate is (∆t)1.05. This numerical result suggests

that the convergence analysis in Theorem 3.5 is not sharp. More studies on the convergence

analysis of our method will be reported in our future work.
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Figure 1: Numerical errors for ||KH,∆t − K̃H,∆tref ||L2 .

Then, we test the convergence of the Lagrangian method, i.e., Algorithm 1, in computing

principal eigenvalues of parabolic-type equations. We still consider the problem (76) with the

same L(t) and C(t). In this experiment, we choose ∆t = 2−1, 2−2, 2−3, 2−4, 2−5, N = 200, 000

in the N -IPS system, and iteration number n = 200 and n = 400 in the Feynman-Kac

semigroup iteration method. Figure 9 shows the convergence of principal eigenvalues with
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respect to ∆t by spectral method and our Lagrangian method, where the reference solution

is calculated from spectral method with a finer grid ∆tref = 2−8. So given sufficient large

N and n, the error in calculating principal eigenvalues of linearized KPP operator A via our

proposed Lagrangian approach only comes from the error of operator splitting. Also as the

Lagrangian method will eventually converges to some invariant measure approximating the

ground truth invariant measure, there is no error accumulation for long time integration.
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Figure 2: In the Lagrangian method, iteration number n = 200 and n = 400. The reference solution is

obtained by the spectrum method.

4.2. Computing KPP front speeds in different flows

We first compute the KPP front speeds in two different time-independent flows, i.e., a 2D

steady cellular flow and a 3D ABC flow. Let x = (x1, ..., xd)
T with d = 2, 3. We use the

Lagrangian method to compute the following principal eigenvalue problem with periodic

boundary condition

κ∆xΦ + (2κλe + v) · ∇xΦ +
(
κλ2 + λe · v + τ−1f ′(0)

)
Φ = µ(λ)Φ, x ∈ [0, 2π)d (80)

f(u) = u(1 − u), and (µ(λ),Φ) are principal eigenvalue of (80) and its associated eigen-

function, respectively. The velocity field v = (− sinx1 cosx2, cosx1 sinx2) in the 2D steady

cellular flow, and v = (sinx3 + cosx2, sinx1 + cosx3, sinx2 + cosx1) in the 3D ABC flow.

We choose the parameters κ = 1 and τ = 1 in (80). We use the spectral method to

obtain an accurate reference solution for the principal eigenvalue of (80). Figure 3 shows the

convergence results of the Lagrangian method in computing the principal eigenvalue, where

λ = 0.35 for the 2D cellular flow and λ = 0.55 for the 3D ABC flow. We find the convergence

rate of the Lagrangian method is (∆t)1.51 for the 2D steady cellular flow, and (∆t)1.70 for the

3D ABC flow. Thus, we can use the Lagrangian method to compute the KPP front speeds

in both 2D and 3D flows.

After getting the principal eigenvalue, we compute the KPP front speed c∗ through the

formula c∗ = infλ>0
µ(λ)
λ

. We only show the numerical results for the 3D ABC flow here since
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(a) 2D convergence test, fitted slope ≈ 1.51
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(b) 3D convergence test, fitted slope ≈ 1.60.

Figure 3: Errors of the principal eigenvalue computed by using different time steps.

the results for the 2D steady cellular flow is quantitatively similar. We choose the velocity

field v = A(sinx3 + cosx2, sinx1 + cosx3, sinx2 + cosx1), where A is the strength of the

convection. In Figure 4, we show the results of µ(λ)
λ

for ABC flows with A = 1 and A = 10.

The amplitude of the principal eigenvalue increases fast and the convergence speed becomes

slower. Notice that in this case, the flow becomes much more unstable since the convection

becomes dominant comparing to the diffusion. We will study this issue in subsection 4.3.
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Figure 4: Numerical results of µ(λ)
λ for different λ’s in the ABC flow.

Next, we compute the KPP front speed in a 2D unsteady (time-dependent) cellular flow.

Let x = (x1, x2)T . We use the Lagrangian method to compute the following principal eigen-

20



value problem with periodic boundary condition

κ∆xΦ + (2κλe + v) · ∇xΦ +
(
κλ2 + λe · v + τ−1f ′(0)

)
Φ− Φt = µ(λ)Φ, (t,x) ∈ [0, T ]× [0, 2π)2

(81)

T is the period of v in t, f(u) = u(1− u), and (µ(λ),Φ) are principal eigenvalue of (81) and

its associated eigenfunction, respectively. The velocity field of the 2D unsteady cellular flow

v =
(
− sinx1 cosx2(1 + δ cos 2πt), cosx1 sinx2(1 + δ cos 2πt)

)
, where δ > 0 is a parameter.

We choose the parameters κ = 1 and τ = 1 in (81) and δ = 0.5 in the velocity field v. We

use the spectral method to obtain an accurate reference solution for the principal eigenvalue

of (81). For figure 5a, we choose λ = 0.57. Figure 5a shows the convergence results of

the Lagrangian method in computing the principal eigenvalue, where the convergence rate

is (∆t)1.31. Figure 5b shows the numerical results of µ(λ)
λ

for different λ’s, from which we

can compute the KPP front speed in the 2D unsteady cellular flow. We could see that
µ(λ)
λ

is convex within the calculate interval, hence we can compute the KPP front speed by

minimizing µ(λ)
λ

on the computed mesh of λ.
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(a) Convergence test for different ∆t’s. The fitted slope is

≈ 1.31.
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Figure 5: Numerical results for a 2D unsteady cellular flow.

4.3. Investigate the dependence of front speed on the strength of the flows

To further test the performance of the Lagrangian method, we study the dependence of the

KPP front speeds on the strength of different flows. Let us first consider this issue in KPP

front speeds of time-independent flows. If we scale v→ Av, Eq.(80) can be rewritten as the

following form

κ∆xΦ + (2κλe + Av) · ∇xΦ +
(
κλ2 + λe · Av + τ−1f ′(0)

)
Φ = µ(λ)Φ, x ∈ Td (82)

The KPP front speed is c∗ = infλ>0
H(λ)
λ

. Notice that the KPP front speed c∗ depends on A,

i.e., c∗ = c∗(A). We will study this issue by the Lagrangian method.
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We consider the equivalent equation

κA−1∆xΦ + (2κA−1λe + v) · ∇xΦ +
(
κA−1λ2 + λe · v + τ−1f ′(0)A−1

)
Φ = µ̃(λ)Φ, x ∈ Td

(83)

where µ̃(λ) = A−1µ(λ). Let c̃∗ denote the KPP front speed of the rescaled equation (83).

We have that

c̃∗ = inf
λ>0

µ̃(λ)

λ
=
c∗

A
. (84)

We choose the parameters κ = 1 and τ = 1 in (83) and denote σ = A−1. For the 2D

steady cellular flow v = (− sinx1 cosx2, cosx1 sinx2), it has proven that c∗(A) = O(A1/4).

So we have that c̃∗(σ) = σO(σ−1/4) = O(σ3/4), which provides a theoretical guidence for our

numerical experiments. For other flows, such as 3D chaotic flows and time-dependent flows,

the understanding of c∗(A) for large A’s (or c̃∗(σ) for small σ’s) remains open. We will study

these flows here.

Figure 6a shows the numerical results of c̃∗(σ) in the 2D steady cellular flow. With the

numerical results, we compute regression and obtain c̃∗(σ) = O(σ0.74). We also investigate

c̃∗(σ) for σ in 3D Kolmogorov flow, where v = (sinx1, sinx2, sinx3). Figure 6b shows the

numerial results for the 3D Kolmogorov flow. We obtain that c̃∗(σ) = O(σ0.43). It corresponds

to the effective diffusivity result of Kolmogorov flow in [39] given that estimate between

effective diffusivities and KPP front speed in large A regime is correct in 3D. To the best of

our knowledge, such analytical result is only proved in 2D; see [32].
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(a) Numerical results of c̃∗(σ) in 2D cellular flow. The fitted

slope is ≈ 0.74.

10
-4

10
-3

10
-2

10
-1

10
0

σ

10
-2

10
-1

10
0

10
1

c̃
⋆

(b) Numerical results of c̃∗(σ) in 3D K flow. The fitted slope

is ≈ 0.43.

Figure 6: Numerical results of c̃∗(σ) in different flows.

Next, we study the dependence of the KPP front speeds on the strength of time-dependent

flows. In the 2D experiment, we choose v = (− cosx2−θ sinx1 cos(2πt), cosx1+θ sinx2 cos(2πt)),

which is refered to as the 2D time-periodic mixing flow. In the 3D experiments, we will con-

sider two flows. The first one is a time-dependentK flow with v =
(

sin(x3+θ sin(2πt)), sin(x1+
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θ sin(2πt)), sin(x2 + θ sin(2πt))
)
, and the second one is a time-dependent ABC flow with v =(

sin(x3 +sin(2πΩt))+cos(x2 +sin(2πΩt)), sin(x1 +sin(2πΩt))+cos(x3 +sin(2πΩt)), sin(x2 +

sin(2πΩt)) + cos(x1 + sin(2πΩt))
)
.

For the 2D time-periodic mixing flow, we choose the iteration time n = 100, time step

∆t = 2−9 and particle number N = 400, 000. Figure 7a shows the result of c̃∗(σ) for small

σ’s and different θ’s.

For the 3D time-dependent K flow, we choose iteration time n = 256, time step ∆ =

2−7 and particle number N = 400, 000. Figure 7b shows the result of c̃∗(σ) for small σ’s

and different θ’s. Again given estimate discussed in time-independent part is correct, it

corresponds to effective diffusivity result in [38]. For the 3D time-dependent ABC flow, we

use N = 250, 000 particles to simulate for time up to n = 215, dt = 2−6. Ω = 2−7 to 20.

Figure 8 shows our result.
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(a) Numerical results of c̃∗(σ) in a 2D Cat-eye flow.

10
-4

10
-3

10
-2

10
-1

10
0

σ

10
-2

10
-1

10
0

10
1

c̃
⋆

θ=0.1

θ=0.5

θ=1

(b) Numerical results of c̃∗(σ) in a 3D time-dependent K flow.

Figure 7: Numerical results of c̃∗(σ) in different flows.

In Figure 10, we plot out procedure searching for the λ when the minimal in Eq.(84) was

reached. We use aλ + bλ−1 + c to fit a curve, then find the minimum of the curve. When

σ is large, the relative flutuation is small and the minimun is easily to be find. When σ is

small, the relative flutuation becomes strong enough, so we decide to fit the curve, then find

the minimun point.

4.4. Evolution of the empirical distribution of the particles

As stated in Theorem 3.8, the empirical distribution converges to the invariant measure of

Feynman-Kac semigroup as n approaches infinity. Our Lagrangian method can not only

calculate the principal eigenvalue but also compute the evolution of the distribution. In this

subsection, we will study the empirical distribution of the N -IPS system moduled to torus

space.

Figure 11 shows the invariant distribution generated by the N -IPS system in the 2D

steady cellular flow. The parameter σ varies from 20 to 2−5. The strength of the convection
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Figure 8: Numerical results of c̃∗(σ) for different Ω’s and different σ’s.
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Figure 10: Numerical results of µ(λ)
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is then proportion to 1/σ. Then we can see from the graph when increasing the strength,

the main part of invariant measure gets into a smaller domain and the gradient becomes

sharper, which is a common phenomenon in fluid dynamics. In addition, by comparing to

the pattern at the boundary of the plot, one can find that the invariant measure is periodic

in physical space.
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Figure 11: Empirical distributions for the 2D steady cellular flow with σ varies from 20 to 2−5. First row

from left to right: σ = 20, σ = 2−1, and σ = 2−2. Second row from left to right: σ = 2−3, σ = 2−4, and

σ = 2−5.

Figure 12 shows the changes of invariant distribution generated by our N -IPS system

in a 2D periodic case, it is captured in different time within the period at n = 400. From

these numerical results, we can see the invariant distribution varies at different times of one

period. But as the starting time of different periods, the first and last subfigure are identical.

These are consistent with our expectation obtained in Lemma 3.10, where we proved that

the invariant measure changes periodically with the same period as the flow.

Figure 13 shows the invariant distribution generated by the N -IPS system in the 2D

unsteady periodic flow. The parameter σ varies from 20 to 2−5. This is similar to the results

shown in Figure 11, showing that with the increasing of the strength of the convection, the

invariant measure becomes compact supported with a sharp gradient.

The observation from the plots of invariant measure is twofold. First, the invariant

measure of the KPP operator is no longer uniform distribution. This is due to the resampling

effect from c(x, t). Second, the invariant measure quantitatively turns to some limiting

measure as σ → 0. And when σ is small, the invariant measure develops sharp gradients,

which indicates that we may need more particles to calculate the eigenvalue accurately.

Moreover, it may take more iteration time steps to converges. Effectively sampling the

invariant measure for the KPP operator will be studied in our future works.
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Figure 12: Empirical distributions for the 2D time-periodic mixing flow with θ = 1, σ = 1, in different phase

of one period: t varies from 0 to 1 with time interval equal to 1/9.
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Figure 13: Empirical distributions for the 2D time-periodic mixing flow with θ = 1, σ varies from 20 to 2−5.

First row from left to right: σ = 20, σ = 2−1, and σ = 2−2. Second row from left to right: σ = 2−3, σ = 2−4,

and σ = 2−5.
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5. Conclusion

In this paper, we developed efficient Lagrangian methods to compute the KPP front speeds

in time-periodic cellular and chaotic flows. In addition, we provided rigorous convergence

analysis for the numerical schemes. In the convergence analysis, we first analyzed the error

of the operator splitting methods in approximating the solution operator corresponding to

the linearized KPP equation. Then, we provided the convergence of the Lagrangian method

in computing the principal eigenvalue based on the Feynman-Kac semigroup theory. Finally,

we presented numerical results to verify the convergence rate of the proposed method for

computing the principal eigenvalues. In addition, we computed the KPP front speeds in

incompressible time-periodic cellular and chaotic flows both in 2D and 3D spaces.

There are two directions we plan to explore in our future work. First, we shall extend

the Lagrangian method to compute the KPP front speeds in complex fluid flows, where the

computational domain is not compact. This type of problem is more challenging both ana-

lytically and numerically. As stated in the introduction part, there is limited literature on

studying the existence of KPP front speeds in complex flows. In the aspect of numerical com-

putation, our current method cannot be adapted to non-compact domains. We shall adopt

some relaxation techniques to address this problem. In addition, we shall develop adaptive

sampling methods for our Lagrangian methods in order to resolve the sharp gradients in the

invariant measure when the magnitude of the velocity field is large.
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Appendix A. Error bounds for exponential operator splitting in non-autonomous

evolution equations

Appendix A.1. Euler methods for non-autonomous evolution equations

In this section, we review the fundamental rsults for abstract linear evolution equations by

semigroup theory; see e.g. [9, 4] for more details. We consider the non-autonomous Cauchy

problem (NCP) as follows 
d

dt
u(t) = A(t)u(t), t ≥ s ∈ R

u(s) = x ∈ X,
(A.1)

where X is a Banach space and (A(t),D(A(t)))t∈R is a family of linear operators on X.
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Definition Appendix A.1. A continuous function u : [s,∞) −→ X is called a classical

solution of (A.1) if u ∈ C1([s,∞);X), u(t) ∈ D(A(t)) for all t ≥ s, u(s) = x, and d
dt
u(t) =

A(t)u(t) for all t ≥ s.

Definition Appendix A.2. For a family (A(t),D(A(t)))t∈R of linear operators on a Banach

space X, the NCP (A.1) is well-posed with regularity subspace (Ys)s∈R and exponentially

bounded solutions, if

(i) (Existence) For all s ∈ R the subspace

Ys = {y ∈ X : there exists a classical solution for the NCP (A.1)} ⊂ D(A(s)) (A.2)

is dense in X.

(ii) (Uniqueness) For every y ∈ Ys, the solution us(·, y) is unique.

(iii) (Continuous dependence) The solution continuously depends on s and y, i.e., if sn →
s ∈ R, ||yn − y||X → 0 with yn ∈ Yyn , then we have ||ûsn(t, yn) − ûs(t, y)||X → 0

uniformly for t in compact subsets of R, where

ûs(t, y) =

{
ur(t, y) if r ≤ t,

y if r > t.

(iv) (Exponential boundedness) There exists a constant ω ∈ R such that

||us(t, y)||X ≤ eω(t−s)||y||X

for all y ∈ Ys and t ≥ s.

Definition Appendix A.3. A family {U(t, s), t ≥ s} of linear, bounded solution operators

on Banach space X is called an exponentially bounded evolution family if

(i) U(t, r)U(r, s) = U(t, s) and U(t, t) = Id hold for all t ≥ r ≥ s ∈ R,

(ii) the mapping (t, s)→ U(t, s) is strongly continuous,

(iii) ||U(t, s)||X ≤ eω(t−s) for some ω ∈ R and all t ≥ s ∈ R.

In contrast to the behavior of C0-semigroups, the algebraic proposition of an evolution

family do not imply any differentiability on a dense subspace. Therefore, we need extra

assumptions in order to solve an NCP.

Definition Appendix A.4. An evolution family {U(t, s), t ≥ s} is called evolution family

solving NCP (A.1) if for every s ∈ R the regularity space

Ys = {y ∈ X : [s,∞) 3 t 7→ U(t, s)y solves NCP (A.1)}

is dense in X.

In this case, the unique classical solution of the NCP (A.1) is given by u(t) = U(t, s)x.

The well-posedness of the NCP (A.1) can now be characterized by the existence of solving

an evolution family {U(t, s), t ≥ s}.
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Proposition Appendix A.5. Let X be a Banach space and (A(t),D(A(t)))t∈R be a family

of linear operators on X. The following assertions are equivalent [9].

(i) The NCP (A.1) is well-posed.

(ii) There exits a unique evolution family {U(t, s), t ≥ s} solving the NCP (A.1).

In addition, if ||eτA(t)||X ≤ eωτ for any τ ≥ 0, t ∈ R, then we have ||U(t, s)||X ≤ eω(t−s).

The well-posedness of non-autonomous evolution equations is complicated and there is no

general theory describing it. Conditions implying well-posedness are generally divided into

parabolic-type assumptions and hyperbolic-type ones. Due to the property of the KPP equa-

tion, we only study the parabolic-type conditions in this paper, where the domain (D(A(t))

is independent of t ∈ R. We refer the interested reader to [33] for more general cases.

Assumption Appendix A.6. (Parabolic-type conditions)

(P1) The domain D = D(A(t)) is independent of t ∈ R.

(P2) For each t ∈ R the operator A(t) is sectorial and generates an analytic semigroup e·A(t).

For all t ∈ R, the resolvent R(γ1,A(t)) exists for all γ1 ∈ C with Realγ1 ≥ 0 and there

is a constant M ≥ 1 such that∣∣∣∣R(γ1,A(t))
∣∣∣∣
X
≤ M

|γ1|+ 1
(A.3)

for Realγ1 ≥ 0 and t ∈ R. The semigroups e·A(t) satisfy ||eτA(t)||X ≤ eωτ for some

constant ω ∈ R.

(P3) There exist constants L ≥ 0 and 0 < θ ≤ 1 such that∣∣∣∣(A(t)−A(s))A(0)−1
∣∣∣∣
X
≤ L|t− s|θ, for all t, s ∈ R. (A.4)

To obtain a convergence estimate for the operator in certain norm, we need an additional

assumption on A(t) as follows.

Assumption Appendix A.7. The operator A(t) satisfies a Hölder continuous condition.

Namely, there exists 0 ≤ α < β such that for any x ∈ D(A),∣∣∣∣(A(t)−A(s))x
∣∣∣∣
X
≤ C|t− s|β||A(τ)x||αX ||x||1−αX , (A.5)

for any s ≤ τ ≤ t.

For forward Euler type discretization, Assumption Appendix A.7 can be relaxed to τ = s

only. The backword Euler type discretization needs τ = t, and other discretization methods

need different τ ’s instead. For analytic semigroups, the following estimate holds ture [9, 31].

Lemma Appendix A.8. Let etA be an anlytical semigroup onX. LetA be the infinitesimal

generator. There is a constant C ≥ 0 such that

||AetA||X ≤
C

t
, t > 0, 0 ≤ α ≤ 1. (A.6)
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Now we state the first result, which gives the approximation error of the freezing time

coefficients methods for solving the NCP (A.1).

Theorem Appendix A.9. Suppose assumptions Appendix A.6 and Appendix A.7 hold

true. Let U(T, 0) be the solution operator associated with the NCP (A.1). Then the solution

operator obtained by the freezing time coefficients methods has the following approximation

error to U(T, 0) ∣∣∣∣U(T, 0)−
M−1∏
k=0

e∆tA(k∆t)
∣∣∣∣
X
≤ C(T )(∆t)β−α, (A.7)

where T > 0, M is an integer, and ∆t = T
M

.

Proof. First we refer to [33] for the abstract version of the method of freezing coefficients,

U(t, s) = e(t−s)A(s) +

∫ t

s

U(t, τ)(A(τ)−A(s))e(τ−s)A(s)dτ (A.8)

which immediately gives us that, for every x ∈ X,∣∣∣∣(U(t, s)− e(t−s)A(s))x
∣∣∣∣
X

=
∣∣∣∣ ∫ t

s

U(t, τ)(A(τ)−A(s))e(τ−s)A(s)xdτ
∣∣∣∣
X

≤
∫ t

s

∣∣∣∣U(t, τ)
∣∣∣∣
X

(τ − s)β
∣∣∣∣A(s)e(τ−s)A(s)x

∣∣∣∣α
X

∣∣∣∣e(τ−s)A(s)x
∣∣∣∣1−α
X

dτ. (A.9)

In (A.9), we have used the fact that e(τ−s)A(s)x ∈ D(A) for any x ∈ X. Notice that A(s)

generates an analytic semigroup e·A(s), according to (Appendix A.8) we have the following

estimate ∣∣∣∣A(s)e(τ−s)A(s)
∣∣∣∣α
X
≤ C(τ − s)−αeωα(τ−s). (A.10)

Substituting (A.10) into (A.9), we obtain that,∣∣∣∣(U(t, s)− e(t−s)A(s))x
∣∣∣∣
X

≤
∫ t

s

Ceω(t−τ)(τ − s)β−αeω(τ−s)dτ ||x||X =
C

1 + β − α
eω(t−s)(t− s)1+β−α||x||X . (A.11)

Thus, we get the estimate for the operator in the norm || · ||X∣∣∣∣U(t, s)− e(t−s)A(s)
∣∣∣∣
X
≤ C

1 + β − α
eω(t−s)(t− s)1+β−α. (A.12)

We denote U(T, 0) =
∏M−1

k=0 U((k + 1)∆t, k∆t). Using the telescoping sum argument, we
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obtain∣∣∣∣U(T, 0)−
M−1∏
k=0

e∆tA(k∆t)
∣∣∣∣
X

(A.13)

=
∣∣∣∣∣∣M−1∑

j=0

M−1∏
k=j+1

U((k + 1)∆t, k∆t)
(
U((j + 1)∆t, j∆t)− e∆tA(j∆t)

) j−1∏
l=0

e∆tA(l∆t)
∣∣∣∣∣∣
X

(A.14)

≤
M−1∑
j=0

eω(N−j−1)∆t C

1 + β − α
eω∆t(∆t)1+β−αeωj∆t =

CeωT

1 + β − α
(∆t)β−α. (A.15)

The statement in (A.7) is proved.

For higher order operator splitting methods, in some specific situation the higher order

convergence has been proved in [16, 17]. In their works, the assumption Appendix A.7 was

largely strengthen, both for the operator A(t) and initial condition, and the convergence was

largely depends on the graph norm ||v||α := ||A(t)αv||X . The convergence in norm || · ||X is

still open and will be our future reasearch plan.

Appendix A.2. Operator splitting methods for solving non-autonomous evolution equations

We study the approximation error of operator splitting methods in solving non-autonomous

evolution equations. To be specific, we consider an abstract NCP as follows
d

dt
u(t) = (A(t) + B(t))u(t), t ≥ s ∈ R

u(s) = x ∈ X
(A.16)

on a Banach space X, where A(t) and B(t) are linear operators, D(A(t)) is independent

of t and dense in X, and for each t ∈ R, A(t), B(t) and A(t) + B(t) generate strongly

continuous semigroups e·A(t), e·B(t) and e·(A(t)+B(t)), respectively. Furthermore, due to the

property of evolution equation, solving u(t) and solving eγ1tu(t) is equivalent, we assume∣∣∣∣eτA(t)
∣∣∣∣
X
≤ 1,

∣∣∣∣eτB(t)
∣∣∣∣
X
≤ 1,

∣∣∣∣eτ(A(t)+B(t))
∣∣∣∣
X
≤ 1.

We will study the NCP (A.16) based on the perturbation theory. We assume A(t) is a sec-

torial operator, which generates an analytical semigroups e·A(t), and assume B(t) is bounded,

thus A(t) + B(t) is also sectorial and generates an analytical semigroups e·(A(t)+B(t)), where

D(A(t) + B(t)) = D(A(t)). In addition, we assume that the operator A(t) + B(t) satisfies

assumptions Appendix A.6 and Appendix A.7. Therefore, the corresponding evolution

family U(t, s) solves the NCP problem A.16 and admits an Euler-type approximation, i.e.,

∣∣∣∣U(T, 0)−
M−1∏
k=0

e∆t(A+B)(k∆t)
∣∣∣∣
X
≤ C(T )(∆t)β−α, (A.17)

where T = M∆t, α, β are constants defined in assumptions Appendix A.6 and Appendix

A.7.

In the sequel, we analyze the error between
∏M−1

k=0 e∆t(A+B)(k∆t) and
∏M−1

k=0 e∆tA(k∆t)e∆tB(k∆t).

First, we list all the assumptions as follows:
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Assumption Appendix A.10. 1. A(t)t≥0 and B(t)t≥0 are all linear operators (may be

unbounded) on X,

2. D(A(t)) are the same for all t and dense in X,

3. ||B(t)||X < C for all t ≥ 0,

4. A(t) satisfies Appendix A.6 and A(t) + B(t) satisfies Appendix A.6 and Appendix

A.7,

5. ||eτA(t)||X ≤ 1,||eτB(t)||X ≤ 1,||eτ(A(t)+B(t))||X ≤ 1 for all τ ≥ 0.

To obtain a convergence theorem, we need an extra assumption in A and B:

Assumption Appendix A.11. For the commutator [A(t),B(t)] = A(t)B(t) − B(t)A(t),

we assume that there is a non-negative γ with∣∣∣∣[A(t),B(t)]x
∣∣∣∣
X
≤ c1

∣∣∣∣A(t)x
∣∣∣∣γ
X
||x||1−γX , ∀ x ∈ D(A). (A.18)

Next is a standard result from [18], and we prove it here.

Theorem Appendix A.12. Suppose assumptions Appendix A.10 and Appendix A.11

are satisfied. We have the following error estimate for the operator splitting method,∣∣∣∣(eτA(t)eτB(t) − eτ(A(t)+B(t)))x
∣∣∣∣
X
≤ C1τ

2−γ||x||X , ∀x ∈ X, (A.19)

where C1 depends only on c1, γ and ||B||X .

Proof. We use the freezing coefficient formula and obtain

eτ(A(t)+B(t))x = eτ(A(t))x+

∫ τ

0

esA(t)B(t)e(τ−s)(A(t)+B(t))xds. (A.20)

Expressing the term e(τ−s)(A(t)+B(t)) using the integral form (A.20), we have

eτ(A(t)+B(t))x = eτ(A(t))x+

∫ τ

0

esA(t)B(t)e(τ−s)A(t)xds+R1x, (A.21)

where

R1 =

∫ τ

0

esA(t)B(t)

∫ τ−s

0

eσA(t)B(t)e(τ−s−σ)(A(t)+B(t))dσds. (A.22)

We can easily verify that the term R1 is bounded, i.e., ||R1||X ≤ 1
2
τ 2||B(t)||2X .

On the other hand side, we express the term eτB(t) into exponential series and obtain

eτA(t)eτB(t)x = eτA(t)x+ τeτA(t)B(t)x+R2x, (A.23)

where ||R2||X ≤ 1
2
τ 2||B(t)||2X .

Denoted by f(s) = esA(t)B(t)e(τ−s)A(t)x, we have

eτA(t)eτB(t)x− eτ(A(t)+B(t))x = τf(τ)−
∫ τ

0

f(s)ds+ r = d+ r, (A.24)

33



where d = τf(τ)−
∫ τ

0
f(s)ds = τ 2

∫ 1

0
θf ′(θτ)dθ and r = R2x−R1x.

Since f ′(s) = esA(t)[A(t),B(t)]e(τ−s)A(t)x, assumption Appendix A.11 implies∣∣∣∣esA(t)[A(t),B(t)]e(τ−s)A(t)x
∣∣∣∣
X
≤ c1||esA(t)||X ||A(t)e(τ−s)A(t)x

∣∣∣∣γ
X

∣∣∣∣e(τ−s)A(t)x
∣∣∣∣1−γ
X

. (A.25)

By using the property of analytic semigroup Appendix A.8, we know that∣∣∣∣A(t)e(τ−s)A(t)x
∣∣∣∣
X
≤ C(τ − s)−1||x||X . (A.26)

Thus, we have

||d||X =
∣∣∣∣τ 2

∫ 1

0

θf ′(θτ)dθ
∣∣∣∣
X
≤|τ 2

∫ 1

0

Cθ(τ − θτ)−γdθ|||v||X

=
C

(1− γ)(2− γ)
τ 2−γ||v||X . (A.27)

Notice that ||r||X ≤ τ 2||B||2X . We finish the proof.

Using the one step estimate obtained in Theorem Appendix A.12, we finally obtain the

error estimate for the operator splitting method.

Theorem Appendix A.13. Suppose assumptions Appendix A.10 and Appendix A.11

hold ture. We have the following error estimate for the operator splitting method in solving

the NCP (A.16).

∣∣∣∣N−1∏
k=0

e∆t(A+B)(k∆t) −
N−1∏
k=0

ehA(k∆t)e∆tB(k∆t)
∣∣∣∣
X
≤ C1(∆t)1−γ, (A.28)

where C1 is a constant independent of γ.

Proof. We take t = j∆t and s = (j−1)∆t for j = 1, · · · ,M−1 in Theorem Appendix A.12,

and by using the telescoping sum argument, we obtain that for any x ∈ X,

∣∣∣∣M−1∏
k=0

e∆t(A+B)(k∆t)x−
M−1∏
k=0

e∆tA(k∆t)e∆tB(k∆t)x
∣∣∣∣
X

=
∣∣∣∣∣∣M−1∑

j=0

M−1∏
k=j+1

e∆t(A+B)(k∆t)
(
e∆t(A+B)(j∆t) − e∆tA(j∆t)e∆tB(j∆t)

) j−1∏
l=0

e∆tA(l∆t)e∆tB(l∆t)x
∣∣∣∣∣∣
X

≤
M−1∑
j=0

C1(∆t)2−γ∣∣∣∣ j−1∏
l=0

e∆tA(l∆t)e∆tB(l∆t)x
∣∣∣∣
X
≤

M−1∑
j=0

C1(∆t)2−γ||x||X = C1(∆t)1−γ||x||X .

(A.29)

Thus, we finish the proof.
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[10] G. Ferré and G. Stoltz, Error estimates on ergodic properties of discretized

Feynman–Kac semigroups, Numerische Mathematik, 143 (2019), pp. 261–313.

[11] R. Fisher, The wave of advance of advantageous genes, Annals of eugenics, 7 (1937),

pp. 355–369.

[12] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Quantum monte carlo

simulations of solids, Reviews of Modern Physics, 73 (2001), p. 33.

[13] D. Galloway and M. Proctor, Numerical calculations of fast dynamos in smooth

velocity fields with realistic diffusion, Nature, 356 (1992), p. 691.
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