
Convergence analysis of an operator-compressed multiscale finite

element method for Schrödinger equations with multiscale potentials

Zhizhang Wua, Zhiwen Zhanga,∗

aDepartment of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Abstract

In this paper, we analyze the convergence of the operator-compressed multiscale finite element

method (OC MsFEM) for Schrödinger equations with multiscale potentials in the semiclassical

regime. The multiscale basis functions are constructed by solving a constrained energy mini-

mization. Under a mild assumption on the mesh size H, we prove the exponential decay of the

multiscale basis functions so that localized multiscale basis functions can be constructed. The

localized basis functions would achieve the same accuracy as the global ones if the oversampling

size m = O(log(1/H)). Based on the properties of Clément-type interpolation, we prove the

first-order convergence in the energy norm and second-order convergence in the L2 norm for

the Galerkin approximation in the multiscale finite element space. Furthermore, super conver-

gence rates of second order in the energy norm and third order in the L2 norm can be obtained

if the solution possesses sufficiently high regularity. Finally, we present numerical results to

demonstrate the accuracy of the OC MsFEM.
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1. Introduction

In solid state physics, an important model to describe the motion of an electron in the

medium with microstructures is the Schrödinger equation with a multiscale potential in the

semiclassical regime iε∂tu
ε,δ = −1

2
ε2∆uε,δ + V δ(x)uε,δ, x = (x1, ..., xd) ∈ Rd, t ∈ R,

uε,δ|t=0 = u0(x), x ∈ Rd,
(1.1)

where 0 < ε � 1 is an effective Planck constant describing the microscopic/macroscopic scale

ratio, d is the spatial dimension, V δ(x) ∈ R is a multiscale potential depending on another

small parameter 0 < δ � 1, and u0(x) is the initial data.

A widely studied model is the electron motion in a perfect crystal with an external field,

where V δ(x) = V ε(x) = V1(x
ε
)+V2(x) with V1(x

ε
) as an oscillatory periodic potential and V2(x)
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as an external field. This model can be efficiently solved by a number of numerical schemes that

make use of the periodic structure of the potential, e.g. the Bloch decomposition-based time-

splitting pseudospectral method [19, 20, 42], the Gaussian beam method [24, 25, 38, 43], and

the frozen Gaussian approximation method [8]. With the recent development in nanotechnol-

ogy, increasing interest has been shown in quantum heterostructures with tailored functionali-

ties, such as heterojunctions, including the ferromagnet/metal/ferromagnet structure for giant

megnetoresistance [44], the silicon-based heterojunction for solar cells [27], and quantum meta-

materials [39]. For the electron motion in these heterostructures, however, the potential V δ(x)

cannot be formulated in the above-mentioned form since a basic feature of these devices is the

combination of dissimilar crystalline structures, which leads to a heterogeneous interaction of

the electron with ionic cores in different lattice structures. Consequently, available methods

based on asymptotic analysis [31, 32] cannot be applied to these heterogeneous models since

these methods require an additive form of different scales in the potential term in order to con-

struct the prescribed approximate solutions. Moreover, for a general multiscale potential V δ(x),

traditional methods like the finite element method [9] and finite difference method [29, 30] are

prohibitively costly due to the strong mesh size restrictions induced by the multiscale struc-

ture in the potential, while the time-splitting spectral method [1] would suffer from reduced

convergence order and great approximation errors if the potential possesses discontinuities.

In order to efficiently compute (1.1) with the multiscale potential V δ(x) in a general form,

an operator-compressed multiscale finite element method (OC MsFEM) for the Schrödinger

equation was proposed in [4]. The OC MsFEM for the Schrödinger equation is motivated by

several works relevant to the compression of the elliptic operator with heterogeneous and highly

varying coefficients, e.g. the multigrid method for multiscale problems from the perspective of

a decision theory discussed in [33, 34], the sparse operator compression of high-order elliptic

operators with rough coefficients studied in [18] and the modified variational multiscale method

using correctors introduced in [28]. And we remark here that many efficient methods have also

been developed for the multiscale PDEs in the past few decades. See for example [5, 10, 11,

15, 17, 22, 23, 26, 35] and the references therein.

In the OC MsFEM for the Schrödinger equation, the multiscale basis functions are construct-

ed via a constrained energy minimization associated with the hamiltonian H = −1
2
ε2∆+V δ(x).

The fully discrete scheme can be given with a finite difference scheme in temporal discretiza-

tion, e.g. the backward Euler or Crank-Nicolson scheme. Through the energy minimization,

the local microstructures induced by the hamiltonian H are incorporated in the basis func-

tions so that the multiscale features of the solution are well captured by the basis functions.

Moreover, the energy minimization can be solved numerically without any assumptions on the

multiscale potential V δ and thus the OC MsFEM for the Schrödinger equation can be applied

for a multiscale potential V δ in a general form. In [4], the OC MsFEM is shown to be accurate

for various types of multiscale potentials. So far, however, there have been no rigorous results

on the approximation error of the OC MsFEM for the Schrödinger equation.

In this paper, we focus on the convergence analysis of the OC MsFEM for Schrödinger

equations with multiscale potentials in the semiclassical regime. The property of exponential

decay is proved for the multiscale basis functions constructed through the constrained energy

minimization, provided that the mesh size H = O(ε). Thus the localized multiscale basis
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functions can be constructed via a modified constrained energy minimization. The localized

basis functions are shown to admit the same accuracy as the global ones if the oversampling size

m = O(log(1/H)). By using the properties of Clément-type interpolation [2, 7, 40], convergence

rates of first order in the energy norm and second order in L2 norm are proved for the Galerkin

approximation in the multiscale finite element space. Furthermore, super convergence rates of

second order in the energy norm and third order in L2 norm can be achieved if the solution

possesses sufficiently high regularity. Combining the analysis on the regularity of the solution,

we also derive the dependence of the error bounds on the small parameters ε and δ. We find

that using the same mesh size the OC MsFEM gives more accurate results than the FEM

for the Schrödinger equation with multiscale potentials due to its super convergence behavior

and weaker dependence on the small parameters ε, δ. Finally, we present numerical results to

confirm our theoretical findings.

The rest of the paper is organized as follows. In Section 2, the problem setting and some

preliminaries on the regularity of the solution and the Clément-type interpolation will be intro-

duced. The exponential decay of the global basis functions will be proved and the approximation

property of the projection in both global and localized multiscale space will be discussed in Sec-

tion 3. The convergence rates of the OC MsFEM for the Schrödinger equation will be given in

Section 4. And a few numerical examples will be shown in Section 5 to support our analysis.

Finally, some conclusions will be drawn in Section 6.

2. Problem setting and some preliminaries

In this section, the problem setting of the Schrödinger equation with a multiscale potential

is formulated. Then the regularity of the solution is discussed. And some results on the

Clément-type interpolation are introduced.

All functions are complex-valued and the conjugate of a function v is denoted by v̄. Standard

notations on Sobolev space are used. The spatial derivative is denoted by Dσ
x , where Dσ

xw =

∂σ1x1 · · · ∂
σd
xd
w with the multi-index σ = (σ1, . . . , σd) ∈ Nd and |σ| = σ1 + · · · + σd. The spatial

L2 inner product is denoted by (·, ·) with (v, w) =
∫

Ω
vw̄, the spatial L2 norm is denoted by

|| · || with ||w||2 = (w,w), || · ||∞ is the spatial L∞ norm with ||w||∞ = ess supx∈Ω |w(x)| and

the spatial Hk norm is denoted by || · ||Hk with ||w||2
Hk = ||w||2 +

∑
0<|σ|≤k ||Dσ

xw||2. And we

define H1
P (Ω) = {w ∈ H1(Ω)|w is periodic on ∂Ω}, where Ω is a bounded domain. To simplify

notations, we denote by C a generic positive constant which may be different at each occurrence

but is independent of the small parameters ε, δ, the oversampling size m, the spatial mesh size

H and the time step size ∆t.

2.1. Model setting

For numerical purposes, (1.1) is restricted on a bounded domain Ω = [0, 2π]d with prescribed

periodic boundary conditions. The following problem is considered:
iε∂tu

ε,δ = −1

2
ε2∆uε,δ + V δ(x)uε,δ, x ∈ Ω, 0 < t ≤ T,

uε,δ, Dσ
xu

ε,δ are periodic on ∂Ω, |σ| = 1, 0 < t ≤ T,

uε,δ|t=0 = u0(x),x ∈ Ω.

(2.1)
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We assume that u0(x) is smooth and independent of the small parameters ε, δ. And for the

multiscale potential V δ, we assume that Vmin ≤ V δ(x) ≤ Vmax, ∀x ∈ Ω, where 0 < Vmin ≤ Vmax

and |Dσ
xV

δ| ≤ C
δ|σ|

, ∀x ∈ Ω. We additionally assume that Dσ
xu

ε,δ are periodic on ∂Ω for

|σ| = 2, 3 and 0 < t ≤ T .

Remark 2.1. If ũε,δ is the solution of (2.1) with the potential Ṽ δ, where −V0 ≤ Ṽ δ ≤ V0 for

some V0 > 0, we may set uε,δ = e−2iV0t/εũε,δ. Then uε,δ is the solution of (2.1) with the potential

V δ = Ṽ δ + 2V0 and V0 ≤ V δ ≤ 3V0.

In what follows, for brevity of notations, the superscripts ε, δ will be dropped for uε,δ and

V δ unless necessary. We introduce the bilinear form associated with the Schrödinger operator

H = −1
2
ε2∆ + V as

a(v, w) =
1

2
ε2(∇v,∇w) + (V v, w). (2.2)

The following energy norm is introduced:

||w||e = a(w,w)
1
2 =

(
ε2

2
||∇w||2 + (V w,w)

) 1
2

. (2.3)

Then, the energy norm || · ||e is equivalent to the H1 norm || · ||H1 and it is easy to prove the

following lemma.

Lemma 2.1. For any v, w ∈ H1(Ω),

|a(v, w)| ≤ ||v||e||w||e. (2.4)

If the stationary problem with H as the differential operator{
Hu = f, x ∈ Ω,

u,Dσ
xu are periodic on ∂Ω, |σ| = 1,

(2.5)

is considered, where periodic boundary conditions are prescribed and f ∈ L2(Ω), the associated

variational problem would be to find u ∈ H1
P (Ω) such that

a(u, v) = (f, v), ∀v ∈ H1
P (Ω). (2.6)

By the Lax-Milgram theorem, the variational problem (2.6) admits a unique solution u ∈ H1
P (Ω)

with a stability estimate

||u||e ≤ Cst(ε, V )||f ||. (2.7)

2.2. Regularity of the solutions of Schrödinger equations with multiscale potentials

We first study the temporal regularity of the solution u of the Schrödinger equation (2.1).

Lemma 2.2. If ∂kt u(t) ∈ L2(Ω) for any t ∈ [0, T ], where k = 1, 2, 3, 4, then it holds true for

any 0 ≤ t ≤ T that

||∂kt u(t)|| ≤ Cεk−2

min{ε2k−2, δ2k−2}
. (2.8)
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Proof. For ut, taking the time derivative of (2.1), multiplying it with ūt, integrating it w.r.t.

x over Ω and taking the imaginary part, we have d
dt
||ut||2 = 0, which implies ||ut(t)|| =

||ut(0)||, ∀t ∈ [0, T ]. For ||ut(0)||, we have iεut(0) = − ε2

2
∆u0 + V u0, which indicates

||ut(0)|| ≤ ε

2
||∆u0||+

1

ε
||V u0|| ≤

C

ε
. (2.9)

Applying similar procedures to utt, uttt and utttt, we can obtain the results (2.8).

Then, we turn to the spatial regularity of u.

Lemma 2.3. If Dσ
xu(t) ∈ L2(Ω) for any t ∈ [0, T ] and |σ| = k, where k = 1, 2, then it holds

true for any 0 ≤ t ≤ T that

||Dσ
xu(t)|| ≤ C

εkδk
. (2.10)

Proof. For |σ| = 1, it is sufficient to prove (2.10) for ux1 . We have ||u(t)|| = ||u0|| for any

t ∈ [0, T ], which is the conservation of mass. Taking the spatial partial derivative of (2.1) w.r.t.

x1, multiplying it with ūx1 , integrating it w.r.t. x over Ω and taking the imaginary part, we

have

ε
1

2

d

dt
||ux1||2 = Im(Vx1u, ux1). (2.11)

Then
1

2

d

dt
||ux1||2 = ||ux1 ||

d

dt
||ux1|| ≤

1

ε
|(Vx1u, ux1)| ≤

1

εδ
||u||||ux1||, (2.12)

and hence d
dt
||ux1|| ≤ 1

εδ
||u||. Therefore, we have

||ux1(t)|| ≤ ||∂x1u0||+
T

εδ
||u0|| ≤

C

εδ
, ∀t ∈ [0, T ], (2.13)

which implies (2.10) for |σ| = 1. Then, applying the same procedure to any Dσ
xu with |σ| = 2,

we obtain the result.

Furthermore, we have

Lemma 2.4. If ∂kt u(t) ∈ H1(Ω) for any t ∈ [0, T ], where k = 1, 2, 3, then it holds true for any

0 ≤ t ≤ T that

||∇∂kt u(t)|| ≤ Cεk−2

εδmin{ε2k−2, δ2k−2}
. (2.14)

Proof. By combining the proofs of Lemmas 2.2 and 2.3, we can obtain the result.

2.3. Clément-type interpolation

Let TH = {Te}Ne
e=1 be some quasi-uniform and shape-regular simplicial finite element mesh

[6, 13, 14] of Ω with mesh size H, where Ne is the number of elements. Then for K being the

union of some elements in TH , the neighbourhood of K can be defined as

N(K) =
⋃

G∈TH ,G∩K 6=∅

G. (2.15)
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And for m ∈ N, Nm+1(K) = N(Nm(K)), where N0(K) = K, and m is referred to as the

oversampling size. If we define

η(x) =
dist(x, Nm(K))

dist(x, Nm(K)) + dist(x,Ω\Nm+1(K))
(2.16)

for some m ∈ N, the shape regularity of TH implies that H||∇η||∞ ≤ γ, where γ is independent

of ε, δ, m and H. The shape regularity and quasi-uniformness also imply that there exists a

constant Col independent of ε, δ, m and H [36, 37] such that

max
T∈TH

card{G ∈ TH |G ⊂ N(T )} ≤ Col. (2.17)

The first-order conforming finite element space of TH is given by

ΦH = {φ ∈ H1
P (Ω)|∀T ∈ TH , φ|T is a polynomial of total degree ≤ 1}. (2.18)

Let NH be the set of vertices of TH with repeated vertices due to the periodic boundary

conditions removed and NH = |NH |. Then ΦH = span{φj, j = 1, . . . , NH}, where φj ∈ ΦH , j =

1, . . . , NH is the nodal basis satisfying φj(xk) = δjk, ∀xk ∈ NH . The Clément-type interpolation

operator IH [2, 7, 40] is defined by

IHv =

NH∑
j=1

αj(v)φj, ∀v ∈ H1
P (Ω), (2.19)

where αj(v) =
(v,φj)

(1,φj)
. Then, the local approximation and stability properties of the interpola-

tion operator IH [3] guarantee that there exists a constant CIH only dependent on the shape

regularity such that

H−1||v − IHv||T + ||∇(v − IHv)||T ≤ CIH ||∇v||N(T ), ∀T ∈ TH , (2.20)

where (v, w)K =
∫
K
vw̄ and ||v||2K = (v, v)K denote the spatial L2 inner product and spatial

L2 norm restricted on K ⊂ Ω respectively. Set W = ker(IH). Then H1
P (Ω) = ΦH ⊕W and

(v, w) = 0, ∀v ∈ ΦH , w ∈ W . Finally, we have the following lemma.

Lemma 2.5. For v ∈ W, f ∈ L2(Ω), there holds

(f, v) ≤ CH||f ||||∇v||. (2.21)

Moreover, if f ∈ H1(Ω), then

(f, v) ≤ CH2||∇f ||||∇v||. (2.22)

Proof. Since v ∈ W , then IHv = 0. By (2.17) and (2.20),

(f, v) = (f, v − IHv) ≤ ||f ||||v − IHv|| ≤ CH||f ||||∇v||. (2.23)

Note that (IHf, v) = 0. Hence if we further have f ∈ H1(Ω), then

(f, v) = (f − IHf, v − IHv) ≤ CH2||∇f ||||∇v||. (2.24)
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Moreover, there exists a local right inverse of IH [16], denoted by I−1,loc
H : ΦH → H1

P (Ω),

satisfying

IH(I−1,loc
H vH) = vH , (2.25)

||∇I−1,loc
H vH || ≤ C ′IH ||∇vH ||, (2.26)

supp(I−1,loc
H vH) =

⋃
{T ∈ TH |T ∩ supp(vH) 6= ∅}, (2.27)

where vH ∈ ΦH and C ′IH only depends on the shape regularity.

3. OC multiscale finite element basis functions for the Schrödinger operator

In this section, the constructions of global and localized multiscale finite element spaces will

be introduced. The stationary problem (2.5) will be considered. And the projection errors of

the solution u of (2.5) in both the global and localized multiscale finite element spaces will be

deduced. Throughout this paper, a resolution assumption is made.

Assumption 3.1. The mesh size H satisfies H/ε ≤
(

2CIH
√
ColVmax(1 + CIHColγ)

)−1

.

Under Assumption 3.1, we have a property for the kernel W .

Lemma 3.1. Under Assumption 3.1, for any v ∈ W

ε||∇v|| ≤ ||v||e ≤ Cε||∇v||. (3.1)

Proof. For any v ∈ W , it is easy to see that ε||∇v|| ≤ ||v||e. On the other hand, by Lemma 2.5,

||v||2e ≤
ε2

2
||∇v||2 + Vmax(v, v) ≤ C

(
1 +

H2

ε2

)
ε2||∇v||2 ≤ Cε||∇v||, (3.2)

which completes the proof.

3.1. Global multiscale finite element basis functions

For j = 1, . . . , NH , the operator-compressed multiscale basis function ψj is constructed as

the solution of the constrained optimization problem

min
ψ∈H1

P (Ω)
a(ψ, ψ),

s.t. (ψ, φk) = δjk, k = 1, . . . , NH .
(3.3)

Define ΨH = span{ψj, j = 1, . . . , NH} as the global multiscale finite element space. And we

have the following lemma.

Lemma 3.2. H1
P (Ω) = ΨH ⊕W and for any vH ∈ ΨH and w ∈ W ,

a(vH , w) = 0. (3.4)
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Proof. For any nontrivial w ∈ W and η ∈ R, ψj+ηw satisfies the constraint in the optimization

problem (3.3), j = 1, . . . , NH . Then

g(η) = a(ψj + ηw, ψj + ηw) = η2a(w,w) + 2ηRe a(ψj, w) + a(ψj, ψj). (3.5)

Since g(η) achieves the minimum at η = 0, then g′(η)|η=0 = 0. And hence Re a(ψj, w) = 0. Set

η̃ = iη and g̃(η) = g(η̃). A similar argument for g̃(η) yields that Im a(ψj, w) = 0. And hence

a(ψj, w) = 0, j = 1, . . . , NH , i.e.,

a(vH , w) = 0, ∀vH ∈ ΨH , w ∈ W. (3.6)

For any v ∈ H1
P (Ω), define v∗ =

∑NH

k=1(v, φk)ψk. Then v∗ ∈ ΨH and

(v − v∗, φj) = 0, j = 1, . . . , NH . (3.7)

Then v − v∗ ∈ W and hence H1
P (Ω) = ΨH ⊕W .

To solve the stationary problem (2.5) in ΨH , the Galerkin method seeks uH ∈ ΨH such that

a(uH , vH) = (f, vH), ∀vH ∈ ΨH . (3.8)

Then Lemma 3.2 indicates the following lemma.

Lemma 3.3. Assume that u is the solution of (2.5) and uH is the solution of the Galerkin

approximation (3.8) in ΨH . Then u− uH ∈ W .

Proof. By Lemma 3.2, u− uH ∈ W since a(u− uH , wH) = 0,∀wH ∈ ΨH .

We are now in the position to prove the error estimates for uH .

Theorem 3.1. Let u be the solution of (2.5) and uH be the solution of (3.8). If f ∈ L2(Ω),

then

||u− uH ||e ≤ C
H

ε
||f ||, (3.9)

||u− uH || ≤ C
H2

ε2
||f ||. (3.10)

Moreover, if f ∈ H1(Ω), then

||u− uH ||e ≤ C
H2

ε
||∇f ||, (3.11)

||u− uH || ≤ C
H3

ε2
||∇f ||. (3.12)

Proof. We first consider the case where f ∈ L2(Ω). For the error in the energy norm, since

u− uH ∈ W , then by Lemma 2.5,

||u− uH ||2e = a(u− uH , u− uH) = a(u, u− uH)

= (f, u− uH) ≤ CH||f ||||∇(u− uH)|| ≤ C
H

ε
||f ||||u− uH ||e. (3.13)
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For the L2 error, the Aubin-Nitsche technique is applied. Let w ∈ H1
P (Ω) be the solution of

a(w, v) = (u− uH , v),∀v ∈ H1
P (Ω) (3.14)

and wH ∈ ΨH be the Galerkin approximation of w in ΨH satisfying

a(wH , vH) = (u− uH , vH),∀vH ∈ ΨH . (3.15)

Then

||u− uH ||2 = a(w, u− uH) = a(w − wH , u− uH)

≤ ||w − wH ||e||u− uH ||e ≤ C
H2

ε2
||f ||||u− uH ||, (3.16)

where in the last equality we have used the estimate (3.9). Moreover, if f ∈ H1(Ω), we have

by Lemma 2.5 that

||u− uH ||2e = (f, u− uH) ≤ CH2||∇f ||||∇(u− uH)||. (3.17)

By repeating the above procedure, we obtain the results (3.11) and (3.12).

3.2. Localized multiscale finite element basis functions

One advantage of using these operator-compressed multiscale basis functions is that these

basis functions have the property of exponential decay, which motivates us to use the localized

basis functions constructed by a modified constrained energy minimization in practical com-

putations. In this subsection, we will prove the exponential decay of the operator-compressed

multiscale basis functions. Then, we will introduce the construction of localized basis functions

and prove the projection error in the multiscale finite element space spanned by these localized

basis functions.

3.2.1. Exponential decay of basis functions

Let Sj = supp(φj). We have the following theorem indicating the exponential decay of basis

functions ψj.

Theorem 3.2. Under Assumption 3.1, there exists 0 < β < 1 independent of ε, δ,m,H such

that for all j = 1, . . . , NH and m ∈ N,

||∇ψj||Ω\Nm(Sj) ≤ βm||∇ψj||. (3.18)

Proof. In this proof, we fix the index j and omit j for ψj and Sj for brevity of notations.

Assume m ≥ 7. Define the cutoff function

η =
dist(x, Nm−4(S))

dist(x, Nm−4(S)) + dist(x,Ω\Nm−3(S))
. (3.19)

Then η = 0 in Nm−4(S), η = 1 in Ω\Nm−3(S) and 0 ≤ η ≤ 1 in Nm−3(S)\Nm−4(S). Moreover,

H||∇η||∞ ≤ γ and R := supp(∇η) = Nm−3(S)\Nm−4(S). Then

||∇ψ||2Ω\Nm(S) ≤ (∇ψ, η∇ψ) = (∇ψ,∇(ηψ))− (∇ψ, ψ∇η)

≤ |(∇ψ,∇(ηψ − I−1,loc
H (IH(ηψ))))|+ |(∇ψ,∇I−1,loc

H (IH(ηψ)))|+ |(∇ψ, ψ∇η)|
= M1 +M2 +M3, (3.20)

9



where M1 = |(∇ψ,∇(ηψ − I−1,loc
H (IH(ηψ))))|, M2 = |(∇ψ,∇I−1,loc

H (IH(ηψ)))|, and M3 =

|(∇ψ, ψ∇η)|. For M1, note that w = ηψ − I−1,loc
H (IH(ηψ)) ∈ W , which implies a(ψ,w) = 0

and that supp(w) ⊂ Ω\Nm−6(S), supp(IH(ηψ)) = Nm−2(S)\Nm−5(S), supp(ηψ − IH(ηψ)) ⊂
Ω\Nm−5(S), supp(IH(ηψ)− I−1,loc

H (IH(ηψ))) ⊂ Nm−1(S)\Nm−6(S). Hence

M1 ≤
2Vmax

ε2
|(ψ,w)| = 2Vmax

ε2
|(ψ − IHψ, ηψ − IH(ηψ) + IH(ηψ)− I−1,loc

H (IH(ηψ)))|

≤ 2Vmax

ε2

(
|(ψ − IHψ, ηψ − IH(ηψ))|+ |(ψ − IHψ, IH(ηψ)− I−1,loc

H (IH(ηψ)))|
)

≤ 2VmaxC
2
IH
Col

H2

ε2
||∇ψ||Ω\Nm−6(S)||∇(ηψ)||Ω\Nm−6(S)

+ 2VmaxC
3
IH
C ′IHCol

H2

ε2
||∇ψ||Nm(S)\Nm−7(S)||∇(ηψ)||Nm(S)\Nm−7(S). (3.21)

Also note that R∩ supp(IHψ) = ∅ and hence

||ψ∇η||R = ||(ψ − IHψ)∇η||R ≤ CIHColH||∇η||∞||∇ψ||N(R) ≤ CIHColγ||∇ψ||N(R). (3.22)

Thus under Assumption 3.1, we arrive at

M1 ≤
1

2
||∇ψ||2Ω\Nm(S) + C||∇ψ||2Nm(S)\Nm−7(S). (3.23)

Using a similar argument, we have

M2 ≤ C||∇ψ||Nm−1(S)\Nm−6(S)||∇(ηψ)||Nm−1(S)\Nm−6(S) ≤ C||∇ψ||2Nm(S)\Nm−7(S), (3.24)

M3 ≤ C||∇ψ||2Nm(S)\Nm−7(S). (3.25)

And hence

1

2
||∇ψ||2Ω\Nm(S) ≤ C1||∇ψ||2Nm(S)\Nm−7(S), (3.26)

where C1 is independent of ε, δ,m and H. And this leads to

||∇ψ||2Ω\Nm(S) ≤
C1

C1 + 1
2

||∇ψ||2Ω\Nm−7(S), (3.27)

which implies

||∇ψ||2Ω\Nm(S) ≤
(

C1

C1 + 1
2

)bm
7
c

||∇ψ||2. (3.28)

3.2.2. Localized basis functions

Motivated by the exponential decay of the multiscale basis functions, we can construct the

localized basis function ψloc,m
j by solving the modified constrained optimization problem

min
ψ∈H1

P (Ω)
a(ψ, ψ),

s.t. (ψ, φk) = δjk, k = 1, . . . , NH ,

ψ(x) = 0, for x ∈ Ω\Nm(Sj)

(3.29)

10



for j = 1, . . . , NH and m ∈ N. Let W (Nm(Sj)) = {w ∈ W |w = 0 in Ω\Nm(Sj)}. Following

the proof of Lemma 3.2, we have

Lemma 3.4. It holds true that for j = 1, . . . , NH

a(ψloc,m
j , w) = 0, ∀w ∈ W (Nm(Sj)). (3.30)

Define ΨH,m = span{ψloc,m
j , j = 1, . . . , NH} as the localized multiscale finite element space.

Before we study the projection error in ΨH,m, a lemma on the bound of ||∇ψj|| is needed.

Lemma 3.5. Under Assumption 3.1, it holds true that for j = 1, . . . , NH

||∇ψj|| ≤ CH−
3
2
d. (3.31)

Proof. Define the operator P as for any v ∈ H1
P (Ω), Pv ∈ W and

a(Pv,w) = a(v, w), ∀w ∈ W. (3.32)

By Lax-Milgram theorem, P is well defined and ||Pv||e ≤ ||v||e. Let ψ̂j = Pφj − φj. Then

ψ̂j ∈ ΨH since Pψ̂j = 0, j = 1, . . . , NH . And {ψ̂j}NH
j=1 spans ΨH since ψ̂j’s are linearly

independent. Therefore

ψj =

NH∑
k=1

α
(j)
k (Pφk − φk). (3.33)

Note that (ψj, φ`) = δj,`. Then
∑NH

k=1 α
(j)
k (φk, φ`) = −δj,`. So if we let α(j) = (α

(j)
1 , . . . , α

(j)
NH

),

then Mα(j) = −ej, where ej is a column vector with the j-th entry as 1 and other entries as 0

and M is the mass matrix with entries Mj,k = (φj, φk).

From the results in [13, 14], |(M−1)j,k| ≤ CH−d. Hence under Assumption 3.1, we have

||∇ψj|| ≤
NH∑
k=1

α
(j)
k ||∇(Pφk − φk)|| ≤ CNHH

− d
2 ≤ CH−

3
2
d. (3.34)

We also need two lemmas on the difference between ψj and ψloc,m
j .

Lemma 3.6. Under Assumption 3.1, for j = 1, . . . , NH

||∇(ψj − ψloc,m
j )|| ≤ CH−

3
2
dβm. (3.35)

Proof. Let m ≥ 6 and ψ̃j = ψj − I−1,loc
H (IHψj) and ψ̃loc,m

j = ψloc,m
j − I−1,loc

H (IHψ
loc,m
j ). Then

ψj − ψloc,m
j = ψ̃j − ψ̃loc,m

j since IHψj = IHψ
loc,m
j = φj/(1, φj). In addition, ψ̃j ∈ W and

ψ̃loc,m
j ∈ W (Nm(Sj)). Then ∀w ∈ W (Nm(Sj)),

ε2||∇(ψ̃j − ψ̃loc,m
j )||2 ≤ a(ψ̃j − ψ̃loc,m

j , ψ̃j − ψ̃loc,m
j ) = a(ψ̃j − ψ̃loc,m

j , ψ̃j − w)

≤ ||ψ̃j − ψ̃loc,m
j ||e||ψ̃j − w||e ≤ Cε2||∇(ψ̃j − ψ̃loc,m

j )||||∇(ψ̃j − w)||, (3.36)
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where we have used the fact that a(ψj, w − ψ̃loc,m
j ) = a(ψloc,m

j , w − ψ̃loc,m
j ) = 0 and hence

a(ψ̃j − ψ̃loc,m
j , w − ψ̃loc,m

j ) = a(ψj − ψloc,m
j , w − ψ̃loc,m

j ) = 0.

Define the cutoff function

η =
dist(x,Ω\Nm−2(Sj))

dist(x, Nm−3(Sj)) + dist(x,Ω\Nm−2(Sj))
. (3.37)

Then η = 1 in Nm−3(Sj), η = 0 in Ω\Nm−2(Sj) and 0 ≤ η ≤ 1 in Nm−2(Sj)\Nm−3(Sj).

Furthermore, H||∇η||∞ ≤ γ and supp(∇η) = Nm−2(Sj)\Nm−3(Sj).

Take w = ηψ̃j − I−1,loc
H (IH(ηψ̃j)) ∈ W (Nm(Sj)). Then

||∇(ψj − ψloc,m
j )|| = ||∇(ψ̃j − ψ̃loc,m

j )||2 ≤ C||∇(ψ̃j − w)||2 ≤ Cε−2||ψ̃j − w||2e

≤ C
(
||∇((1− η)ψ̃j)||2 +

1

ε2
||(1− η)ψ̃j||2

+ ||∇(ηψ̃j)||2Nm(Sj)\Nm−5(Sj) +
1

ε2
||ηψ̃j||2Nm(Sj)\Nm−5(Sj)

)
≤ C

(
1 +

H2

ε2
+H2||∇η||2∞

)
||∇ψj||2Ω\Nm−5(Sj) + C

H2

ε2
||∇ψj||2Ω\Nm−6(Sj)

≤ C||∇ψj||2Ω\Nm−6(Sj), (3.38)

which completes the proof with Theorem 3.2 and Lemma 3.5.

Lemma 3.7. Let v ∈ H1
P (Ω) and v1 =

∑NH

k=1(v, φk)ψk, v2 =
∑NH

k=1(v, φk)ψ
loc,m
k . Then under

Assumption 3.1, we have

||v1 − v2||e ≤ CεH−
3
2
dβm||v||e. (3.39)

Proof. Note that v1 − v2 ∈ W . Then

||v1 − v2||e ≤ Cε||∇(v1 − v2)|| ≤ Cε

NH∑
k=1

|(v, φk)|||∇(ψk − ψloc,m
k )||

≤ CεH−
3
2
dβm(|v|, 1) ≤ CεH−

3
2
dβm||v||e. (3.40)

Similarly, the Galerkin approximation of (2.5) in ΨH,m is to seek uH,m ∈ ΨH,m such that

a(uH,m, vH,m) = (f, vH,m), ∀vH,m ∈ ΨH,m. (3.41)

In order to obtain the projection error estimate for the localized multiscale finite element

space ΨH,m, we need the following assumption on the oversampling size m.

Assumption 3.2. The oversamping size m satisfies

m ≥ Cd log(1/H) + log(ε2Cst(ε, V ))

| log(β)|
, (3.42)

where Cd = 3d/2 + 2.
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Then we have an error estimate for u− uH,m.

Theorem 3.3. Assume that Assumptions 3.1 and 3.2 hold and let u the solution of (2.5) and

uH,m be the solution of (3.41). If f ∈ L2(Ω), then

||u− uH,m||e ≤ C
H

ε
||f ||, (3.43)

||u− uH,m|| ≤ C
H2

ε2
||f ||. (3.44)

Moreover, If f ∈ H1(Ω), then

||u− uH,m||e ≤ C
H2

ε
||f ||H1 , (3.45)

||u− uH,m|| ≤ C
H3

ε2
||f ||H1 . (3.46)

Proof. We first consider the case where f ∈ L2(Ω). Let ũH,m =
∑NH

k=1(u, φk)ψ
loc,m
k . Then it is

easy to verify that

||u− uH,m||e ≤ ||u− ũH,m||e. (3.47)

Set uH =
∑NH

k=1(u, φk)ψk. Then since u− ũH,m ∈ W , a(uH , u− ũH,m) = 0 and

||u− ũH,m||2e = a(u− ũH,m, u− ũH,m) = a(u, u− ũH,m) + a(uH − ũH,m, u− ũH,m)

= (f, u− ũH,m) + a(uH − ũH,m, u− ũH,m)

≤ CH||f ||||∇(u− ũH,m)||+ ||uH − ũH,m||e||u− ũH,m||e

≤ C
H

ε
||f ||||u− ũH,m||e + CεH−

3
2
dβm||u||e||u− ũH,m||e

≤ C
H

ε
||f ||||u− ũH,m||e + CεH−

3
2
dCst(ε, V )βm||f ||||u− ũH,m||e. (3.48)

Hence if m satisfies Assumption 3.2, then

||u− uH,m||e ≤ C
H

ε
||f ||. (3.49)

A similar Aubin-Nitsche technique to the proof of Theorem 3.1 can be applied to obtain (3.44).

Moreover, if f ∈ H1(Ω), we have by Lemma 2.5 that

||u− ũH,m||2e = (f, u− ũH,m) + a(uH − ũH,m, u− ũH,m)

≤ C
H2

ε
||∇f ||||u− ũH,m||e + CεH−

3
2
dCst(ε, V )βm||f ||||u− ũH,m||e. (3.50)

Hence if m satisfies Assumption 3.2, we can obtain

||u− uH,m||e ≤ C
H2

ε
||f ||H1 . (3.51)

Analogously, we obtain (3.46) using the Aubin-Nitsche technique.

Remark 3.1. To obtain (3.43) and (3.44), it is sufficient to assume that m satisfies (3.42) with

Cd = 3d/2 + 1. We impose a stronger assumption on m in order to avoid lengthy illustration

of Theorem 3.3.
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4. Convergence of the OC MsFEM for Schrödinger equations with multiscale po-

tentials

In this section, we will study the error estimate of the Galerkin approximation obtained

by the OC MsFEM for the Schrödinger equation (2.1). Throughout this section, we will not

distinguish between the global multiscale finite element space ΨH and the localized multiscale

finite element space ΨH,m with H satisfying Assumption 3.1 and m satisfying Assumption 3.2.

Both of the spaces will be denoted by ΨH .

4.1. Projection error

Let u(t) be the solution of the Schrödinger equation (2.1) and û(t) be the projection of u(t)

in ΨH such that ∀0 ≤ t ≤ T, û(t) ∈ ΨH and

a(u(t)− û(t), w) = 0, ∀w ∈ ΨH . (4.1)

Then, we have the following lemmas on the projection errors.

Lemma 4.1. If ut(t) ∈ L2(Ω) for any t ∈ [0, T ], then it holds true for any 0 ≤ t ≤ T that

||u(t)− û(t)||e ≤ C
H

ε
, and, ||u(t)− û(t)|| ≤ C

H2

ε2
. (4.2)

Moreover, if ut(t) ∈ H1(Ω) for any t ∈ [0, T ], then it holds true for any 0 ≤ t ≤ T that

||u(t)− û(t)||e ≤ C
H2

ε2δ
, and, ||u(t)− û(t)|| ≤ C

H3

ε3δ
. (4.3)

Proof. We first consider the case where ut(t) ∈ L2(Ω), ∀t ∈ [0, T ]. By (2.1), Theorems 3.1, 3.3

and Lemma 2.2, we have that for any 0 ≤ t ≤ T ,

||u(t)− û(t)||e ≤ C
H

ε
||Hu(t)|| ≤ CH||ut(t)|| ≤ C

H

ε
, (4.4)

||u(t)− û(t)|| ≤ C
H2

ε2
||Hu(t)|| ≤ C

H2

ε
||ut(t)|| ≤ C

H2

ε2
. (4.5)

Moreover, if ut(t) ∈ H1(Ω) for any t ∈ [0, T ], by (2.1), Theorems 3.1, 3.3 and Lemmas 2.2, 2.4,

for any 0 ≤ t ≤ T ,

||u(t)− û(t)||e ≤ C
H2

ε
||Hu(t)||H1 ≤ CH2||ut(t)||H1 ≤ C

H2

ε2δ
, (4.6)

||u(t)− û(t)|| ≤ C
H3

ε2
||Hu(t)||H1 ≤ C

H3

ε
||ut(t)||H1 ≤ C

H3

ε3δ
. (4.7)

Lemma 4.2. If ∂k+1
t u(t) ∈ L2(Ω) for any t ∈ [0, T ] and k = 1, 2, then it holds true for any

0 ≤ t ≤ T that

||∂kt u(t)− ∂kt û(t)||e ≤
CH

ε1−k min{ε2k, δ2k}
, ||∂kt u(t)− ∂kt û(t)|| ≤ CH2

ε2−k min{ε2k, δ2k}
. (4.8)
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Moreover, if ∂k+1
t u(t) ∈ H1(Ω) for any t ∈ [0, T ] and k = 1, 2, then it holds true for any

0 ≤ t ≤ T that

||∂kt u(t)− ∂kt û(t)||e ≤
CH2

ε2−kδmin{ε2k, δ2k}
, ||∂kt u(t)− ∂kt û(t)|| ≤ CH3

ε3−kδmin{ε2k, δ2k}
. (4.9)

The proof of Lemma 4.2 is similar to that of Lemma 4.1. It can be easily seen that higher

regularity of the solution u will lead to super-convergence of the projection errors in ΨH w.r.t.

H.

We can also study the error of the finite element method in solving the Schrödinger equation

(2.1). Let ũ be the projection of u in the standard linear finite element space ΦH such that

∀0 ≤ t ≤ T , ũ ∈ ΦH and

a(u(t)− ũ(t), w) = 0, ∀w ∈ ΦH . (4.10)

Then

||u(t)− ũ(t)||e ≤ inf
w∈ΦH

||u(t)− w||e. (4.11)

Let χ(t) be the interpolation of u(t) in ΦH such that χ =
∑

xk∈NH
u(t,xk)φk, where φj(xk) =

δj,k. A well known result for the errors of the interpolation [2, 6, 41] is that

||χ(t)− u(t)|| ≤ CH2||u(t)||H2 , and , ||∇(χ(t)− u(t))|| ≤ CH||u(t)||H2 (4.12)

and hence

||u(t)− ũ(t)||e ≤ ||χ(t)− u(t)||e ≤ CεH

√
1 +

H2

ε2
||u(t)||H2 . (4.13)

By Lemma 2.3 and under Assumption 3.1, we know that for any 0 ≤ t ≤ T ,

||u(t)− ũ(t)||e ≤ C
H

εδ2
. (4.14)

Using the Aubin-Nitsche technique with H2 regularity of elliptic equations [12, 14], we obtain

that for any 0 ≤ t ≤ T ,

||u(t)− ũ(t)|| ≤ CH2||u||H2 ≤ C
H2

ε2δ2
. (4.15)

In comparison with Lemma 4.1, we find that the error analysis of FEM depends on higher spatial

regularity of the solution u. In the presence of the multiscale potential V δ, the spatial derivatives

of u become more oscillatory than the time derivatives of u. Therefore, using the same mesh

size the OC MsFEM gives more accurate results than FEM in solving Schrödinger equation

with multiscale potentials due to its super convergence behavior and weaker dependence on the

small parameters ε and δ.

4.2. Semi-discrete approximations

Let uH(t) be the Galerkin approximation in ΨH for the solution u of the Schrödinger equation

(2.1) such that uH(t) ∈ ΨH for any 0 ≤ t ≤ T and

iε(uH,t, w) = a(uH , w), ∀w ∈ ΨH , 0 ≤ t ≤ T,

uH(0) = û(0),
(4.16)

where uH,t = ∂tuH . Then for the initial value uH(0), we have the following estimate.
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Lemma 4.3. Assume that utt(0) ∈ L2(Ω). Then

||uH,t(0)− ût(0)|| ≤ CH2

εmin{ε2, δ2}
. (4.17)

Moreover, if utt(0) ∈ H1(Ω), then

||uH,t(0)− ût(0)|| ≤ CH3

ε2δmin{ε2, δ2}
. (4.18)

Proof. For any w ∈ ΨH ,

iε(uH,t(0), w) = a(uH(0), w) = a(û(0), w) = a(u0, w) = iε(ut(0), w). (4.19)

Taking w = uH,t(0)− ût(0), we have (uH,t(0)− ut(0), uH,t(0)− ût(0)) = 0. Hence

||uH,t(0)− ût(0)||2 ≤ ||ut(0)− ût(0)||||uH,t(0)− ût(0)||. (4.20)

If utt(0) ∈ L2(Ω), ||ut(0) − ût(0)|| ≤ CH2

ε
||utt(0)|| ≤ CH2

εmin{ε2,δ2} . Moreover, if utt(0) ∈ H1(Ω),

||ut(0)− ût(0)|| ≤ CH3

ε
||utt(0)||H1 ≤ CH3

ε2δmin{ε2,δ2} . And the proof is completed.

Let uH − u = θ + ρ, where θ = uH − û and ρ = û− u. Then

iε(θt, w) + iε(ρt, w) = a(θ, w) + a(ρ, w) = a(θ, w), ∀w ∈ ΨH . (4.21)

Take w = θ and we have

iε(θt, θ) + iε(ρt, θ) = a(θ, θ). (4.22)

We first estimate the L2 error ||uH(T )− u(T )||.

Theorem 4.1. Assume that u is the solution of (2.1) and uH is the solution of (4.16). If

ut(t), utt(t) ∈ L2(Ω) for any t ∈ [0, T ], then

||uH(T )− u(T )|| ≤ CH2

εmin{ε2, δ2}
. (4.23)

Moreover, if ut(t), utt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||uH(T )− u(T )|| ≤ CH3

ε2δmin{ε2, δ2}
. (4.24)

Proof. we first consider the case where ut(t), utt(t) ∈ L2(Ω),∀t ∈ [0, T ]. Note that ||uH − u|| ≤
||θ|| + ||ρ|| and ||ρ(T )|| ≤ CH2

ε
||ut(T )|| ≤ CH2

ε2
, θ(0) = 0. Take the imaginary part of (4.22)

and we have Re(θt, θ) = −Re(ρt, θ), which implies

1

2

d

dt
||θ||2 = ||θ|| d

dt
||θ|| ≤ ||ρt||||θ||. (4.25)

And hence for any 0 ≤ t ≤ T , we obtain

d

dt
||θ(t)|| ≤ ||ρt(t)|| ≤ C

H2

ε
||utt(t)|| ≤

CH2

εmin{ε2, δ2}
. (4.26)
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The above estimate (4.26) implies that ||θ(T )|| ≤ CH2

εmin{ε2,δ2} . Therefore, we can get that

||uH(T )− u(T )|| ≤ CH2

εmin{ε2, δ2}
. (4.27)

Moreover, if ut(t), utt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||ρ(T )|| ≤ C
H3

ε
||ut(T )||H1 ≤ C

H3

ε3δ
(4.28)

and for any 0 ≤ t ≤ T ,

||ρt(t)|| ≤ C
H3

ε
||utt(t)||H1 ≤ CH3

ε2δmin{ε2, δ2}
. (4.29)

And we can obtain (4.24) using similar arguments.

Similarly, we can estimate the error in the energy norm.

Theorem 4.2. Assume that u is the solution of (2.1) and uH is the solution of (4.16). If

ut(t), utt(t), uttt(t) ∈ L2(Ω) for any t ∈ [0, T ], then

||uH(T )− u(T )||e ≤ C

(
H

ε
+

H2

min{ε3, δ3}

)
. (4.30)

Moreover, if ut(t), utt(t), uttt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||uH(T )− u(T )||e ≤ C

(
H2

ε2δ
+

H3

εδmin{ε3, δ3}

)
. (4.31)

Proof. First consider the case where ut(t), utt(t), uttt(t) ∈ L2(Ω),∀t ∈ [0, T ]. We have ||uH −
u||e ≤ ||θ||e + ||ρ||e and ||ρ(T )||e ≤ CH||ut(T )|| ≤ CH

ε
, θ(0) = 0. Then, by (4.22), we have

||θ||2e = a(θ, θ) ≤ ε(|(θt, θ)|+ |(ρt, θ)|) ≤ ε||θ||(||θt||+ ||ρt||). (4.32)

For ||θ||, we have from Theorem 4.1 that ||θ(T )|| ≤ CH2

εmin{ε2,δ2} . For ||ρt||, we have ||ρt(T )|| ≤
CH2

ε
||utt(T )|| ≤ CH2

εmin{ε2,δ2} . For ||θt||, similarly to the derivation of (4.22), we can derive that

iε(θtt, θt) + iε(ρtt, θt) = a(θt, θt). (4.33)

By taking the imaginary part, we will obtain

d

dt
||θt(t)|| ≤ ||ρtt(t)|| ≤ C

H2

ε
||uttt(t)|| ≤

CH2

min{ε4, δ4}
, ∀t ∈ [0, T ]. (4.34)

Hence by Lemma 4.3,

||θt(T )|| ≤ ||θt(0)||+ CH2

min{ε4, δ4}
≤ CH2

min{ε4, δ4}
. (4.35)
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Combining all the above inequalities, we obtain

||uH(T )− u(T )||e ≤ C

(
H

ε
+

H2

min{ε3, δ3}

)
. (4.36)

Moreover, if ut(t), utt(t), uttt(t) ∈ H1(Ω) for any t ∈ [0, T ], we have

||θt(0)|| ≤ CH3

ε2δmin{ε2, δ2}
, ||ρ(T )||e ≤ CH2||ut(T )||H1 ≤ C

H2

ε2δ
, (4.37)

||θ(T )|| ≤ CH3

ε2δmin{ε2, δ2}
, ||ρt(T )|| ≤ C

H3

ε
||utt(T )||H1 ≤ CH3

ε2δmin{ε2, δ2}
, (4.38)

and for any 0 ≤ t ≤ T ,

||ρtt(t)|| ≤ C
H3

ε
||uttt(t)||H1 ≤ CH3

εδmin{ε4.δ4}
. (4.39)

The statment in (4.31) can be obtained by using similar arguments.

4.3. Fully discrete approximations

In this subsection, we discuss the backward Euler scheme and the Crank-Nicolson scheme in

temporal discretization. Combining the spatial discretization using the OC MsFEM, we obtain

the fully discrete Galerkin approximation for the Schrödinger equation (2.1). And we focus

on the error estimates of the numerical solutions obtained by such fully discrete schemes. In

what follows, we introduce some notations. For some N ∈ N and N > 0, let ∆t = T
N

and

tn = n∆t, n = 0, 1, . . . , N .

4.3.1. Backward Euler scheme

Using the backward Euler scheme, we approximate u(tn) by Un ∈ ΨH such that

iε(∂̄Un, w) = a(Un, w), ∀w ∈ ΨH , n = 1, . . . , N,

U0 = û(0),
(4.40)

where ∂̄Un = Un−Un−1

∆t
. Let Un−u(tn) = θn+ρn, where θn = Un− û(tn) and ρn = û(tn)−u(tn).

Then θn satisfies that θ0 = 0 and

iε(∂̄θn, w) + iε(∂̄û(tn)− ut(tn), w) = a(θn, w) + a(ρn, w) = a(θn, w), ∀w ∈ ΨH , n = 1, . . . , N,

(4.41)

where ∂̄û(tn) = û(tn)−û(tn−1)
∆t

. Taking w = θn, we have

iε(∂̄θn, θn) + iε(zn1 , θ
n) + iε(zn2 , θ

n) = a(θn, θn), n = 1, . . . , N, (4.42)

where zn1 = ∂̄û(tn)− ∂̄u(tn) and zn2 = ∂̄u(tn)− ut(tn) with ∂̄u(tn) = u(tn)−u(tn−1)
∆t

.

For the L2 error, we have the following theorem.
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Theorem 4.3. Assume that UN is the solution of (4.40) and u is the solution of (2.1). If

ut(t), utt(t) ∈ L2(Ω) for any t ∈ [0, T ], then

||UN − u(T )|| ≤ C

(
∆t

min{ε2, δ2}
+

H2

εmin{ε2, δ2}

)
. (4.43)

Moreover, if ut(t), utt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||UN − u(T )|| ≤ C

(
∆t

min{ε2, δ2}
+

H3

ε2δmin{ε2, δ2}

)
. (4.44)

Proof. We first consider the case where ut(t), utt(t) ∈ L2(Ω),∀t ∈ [0, T ]. We have ||Un −
u(tn)|| ≤ ||θn||+ ||ρn|| and ||ρN || ≤ CH2

ε
||ut(T )|| ≤ CH2

ε2
. For θn, taking the imaginary part of

(4.42), we have

(θn, θn) = (θn−1, θn)−∆t
(
(zn1 , θ

n) + (zn2 , θ
n)
)
. (4.45)

Hence, we obtain ||θn||2 ≤ ||θn||||θn−1||+ ∆t||θn||(||zn1 ||+ ||zn2 ||), which implies

||θN || ≤ ||θ0||+ ∆t
N∑
n=1

(||zn1 ||+ ||zn2 ||) = ∆t
N∑
n=1

(||zn1 ||+ ||zn2 ||). (4.46)

On one hand, we know that for n = 1, 2, . . . , N ,

||zn1 || = ||∂̄û(tn)− ∂̄u(tn)|| ≤ 1

∆t

∫ tn

tn−1

||ût(s)− ut(s)||ds

≤ C

∆t

H2

ε

∫ tn

tn−1

||utt(s)||ds ≤
CH2

εmin{ε2, δ2}
. (4.47)

This gives us that ∆t
∑N

n=1 ||zn1 || ≤
CH2

εmin{ε2,δ2} . On the other hand, we have for n = 1, 2, . . . , N ,

||zn2 || ≤
1

∆t

∫ tn

tn−1

||(s− tn−1)utt(s)||ds ≤
∫ tn

tn−1

||utt(s)||ds ≤
C∆t

min{ε2, δ2}
. (4.48)

This gives us that ∆t
∑N

n=1 ||zn2 || ≤
C∆t

min{ε2,δ2} . Therefore, we obtain

||θN || ≤ C

(
∆t

min{ε2, δ2}
+

H2

εmin{ε2, δ2}

)
(4.49)

and hence

||UN − u(T )|| ≤ C

(
∆t

min{ε2, δ2}
+

H2

εmin{ε2, δ2}

)
. (4.50)

Moreover, if ut(t), utt(t) ∈ H1(Ω) for any t ∈ [0, T ], then we have

||ρN || ≤ C
H3

ε
||ut(T )||H1 ≤ C

H3

ε3δ
(4.51)

and for n = 1, 2, . . . , N ,

||zn1 || ≤
C

∆t

H3

ε

∫ tn

tn−1

||utt(s)||H1ds ≤ CH3

ε2δmin{ε2, δ2}
. (4.52)

Finally, we can prove (4.44) using similar arguments.
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We can also obtain the error estimate in the energy norm as stated in the following theorem.

Theorem 4.4. Assume that UN is the solution of (4.40) and u is the solution of (2.1). If

ut(t), utt(t), uttt(t) ∈ L2(Ω) for any t ∈ [0, T ], then

||UN − u(T )||e ≤ C

(
H

ε
+

H2

min{ε3, δ3}
+

ε∆t

min{ε3, δ3}

)
. (4.53)

Moreover, if ut(t), utt(t), uttt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||UN − u(T )||e ≤ C

(
H2

ε2δ
+

H3

εδmin{ε3, δ3}
+

ε∆t

min{ε3, δ3}

)
. (4.54)

Proof. First consider the case where ut(t), utt(t), uttt(t) ∈ L2(Ω),∀t ∈ [0, T ]. We have ||Un −
u(tn)||e ≤ ||θn||e + ||ρn||e and ||ρN ||e ≤ CH||ut(T )|| ≤ CH

ε
. By (4.42), we have

||θn||2e = a(θn, θn) ≤ ε(|(∂̄θn, θn)|+ |(zn1 , θn)|+ |(zn2 , θn)|) ≤ ε||θn||(||∂̄θn||+ ||zn1 ||+ ||zn2 ||).
(4.55)

From the proof of Theorem 4.3,

||θN || ≤ C

(
∆t

min{ε2, δ2}
+

H2

εmin{ε2, δ2}

)
, ||zN1 || ≤

CH2

εmin{ε2, δ2}
, ||zN2 || ≤

C∆t

min{ε2, δ2}
.

For ||∂̄θn||, in a similar way to derive (4.42), we can derive that

iε(∂̄(θn − θn−1), ∂̄θn) + iε(zn1 − zn−1
1 , ∂̄θn) + iε(zn2 − zn−1

2 , ∂̄θn) = a(θn − θn−1, ∂̄θn). (4.56)

Taking the imaginary part of this equation and we can obtain

||∂̄θn||2 = (∂̄θn, ∂̄θn) ≤ |(∂̄θn−1, ∂̄θn)|+ |(zn1 − zn−1
1 , ∂̄θn)|+ |(zn2 − zn−1

2 , ∂̄θn)|
≤ ||∂̄θn||(||∂̄θn−1||+ ||zn1 − zn−1

1 ||+ ||zn2 − zn−1
2 ||). (4.57)

And hence

||∂̄θN || ≤ ||∂̄θ1||+
N∑
n=2

(||zn1 − zn−1
1 ||+ ||zn2 − zn−1

2 ||). (4.58)

For ||∂̄θ1||, from the proof of Theorem 4.3, we have

||∂̄θ1|| = 1

∆t
||θ1 − θ0|| ≤ 1

∆t
||θ1|| ≤ ||z1

1 ||+ ||z1
2 || ≤ C

(
H2

εmin{ε2, δ2}
+

∆t

min{ε2, δ2}

)
. (4.59)

For ||zn1 − zn−1
1 ||, n = 2, 3, . . . , N , we have

||zn1 − zn−1
1 || = 1

∆t
||ρ(tn)− 2ρ(tn−1) + ρ(tn−2)||

≤ 1

∆t

(∫ tn

tn−1

(tn − s)||ρtt(s)||ds+

∫ tn−1

tn−2

(s− tn−2)||ρtt(s)||ds
)

≤ C
∆tH2

ε
max

0≤t≤T
||uttt(t)|| ≤

C∆tH2

min{ε4, δ4}
(4.60)
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and hence
∑N

n=2 ||zn1 − z
n−1
1 || ≤ CH2

min{ε4,δ4} . For the terms ||zn2 − zn−1
2 ||, n = 2, 3, . . . , N , we have

||zn2 − zn−1
2 || = 1

∆t
||(u(tn)− 2u(tn−1) + u(tn−2))−∆t(ut(tn)− ut(tn−1))||

≤ 1

2∆t

(∫ tn

tn−1

(tn − s)2||uttt(s)||ds+

∫ tn−1

tn−2

(s− tn−2)2||uttt(s)||ds

+ 2∆t

∫ tn

tn−1

(tn − s)||uttt(s)||ds
)

≤ C∆t2 max
0≤t≤T

||uttt(t)|| ≤
Cε∆t2

min{ε4, δ4}
(4.61)

and hence
∑N

n=2 ||zn2 − z
n−1
2 || ≤ Cε∆t

min{ε4,δ4} . Combining all the above inequalities, we obtain that

||UN − u(T )||e ≤ C

(
H

ε
+

H2

min{ε3, δ3}
+

ε∆t

min{ε3, δ3}

)
. (4.62)

Moreover, if ut(t), utt(t), uttt(t) ∈ H1(Ω) for any t ∈ [0, T ], then we have

||ρN ||e ≤ CH2||ut(T )||H1 ≤ C
H2

ε2δ
(4.63)

and for n = 2, 3, . . . , N ,

||zn1 − zn−1
1 || ≤ C

∆tH3

ε
max

0≤t≤T
||uttt(t)||H1 ≤ C∆tH3

εδmin{ε4, δ4}
. (4.64)

And from the proof of Theorem 4.3, we already know that ||θN || ≤ C
(

∆t
min{ε2,δ2} + H3

ε2δmin{ε2,δ2}

)
and for n = 1, 2, . . . , N , ||zn1 || ≤ CH3

ε2δmin{ε2,δ2} . Hence we can prove (4.54) using similar arguments.

4.3.2. Crank-Nicolson scheme

Using the Crank-Nicolson scheme, we approximate u(tn) by Un ∈ ΨH such that

iε(∂̄Un, w) = a

(
Un + Un−1

2
, w

)
, ∀w ∈ ΨH , n = 1, . . . , N,

U0 = û(0).

(4.65)

We still let Un − u(tn) = θn + ρn, where θn = Un − û(tn) and ρn = û(tn) − u(tn). Then θn

satisfies that θ0 = 0 and

iε(∂̄θn, w) + iε(zn1 , w) + iε(zn3 , w) = a

(
θn + θn−1

2
, w

)
, ∀w ∈ ΨH , n = 1, . . . , N, (4.66)

where zn1 = ∂̄û(tn)− ∂̄u(tn) and zn3 = ∂̄u(tn)− ut(tn)+ut(tn−1)
2

.

For the L2 error of UN , we have the following theorem.
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Theorem 4.5. Assume that UN is the solution of (4.65) and u is the solution of (2.1). If

ut(t), utt(t), uttt(t) ∈ L2(Ω) for any t ∈ [0, T ], then

||UN − u(T )|| ≤ C

(
ε∆t2

min{ε4, δ4}
+

H2

εmin{ε2, δ2}

)
. (4.67)

Moreover, If ut(t), utt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||UN − u(T )|| ≤ C

(
ε∆t2

min{ε4, δ4}
+

H3

ε2δmin{ε2, δ2}

)
. (4.68)

Proof. First consider the case where ut(t), utt(t), uttt(t) ∈ L2(Ω),∀t ∈ [0, T ]. We have ||Un −
u(tn)|| ≤ ||θn|| + ||ρn|| and ||ρN || ≤ CH2

ε2
, θ0 = 0. Setting w = θn + θn−1 in (4.66) and taking

the imaginary part of it, we have Re(∂̄θn, θn + θn−1) = −Re(zn1 + zn3 , θ
n + θn−1), which implies

1

∆t
(||θn||2 − ||θn−1||2) ≤ (||θn||+ ||θn−1||)(||zn1 ||+ ||zn3 ||) (4.69)

and hence

||θN || ≤ ||θ0||+ ∆t
N∑
n=1

(||zn1 ||+ ||zn3 ||). (4.70)

By the proof of Theorem 4.3, we have ∆t
∑N

n=1 ||zn1 || ≤
CH2

εmin{ε2,δ2} . For ||zn3 ||, n = 1, 2, . . . , N ,

we have

||zn3 || =
1

2∆t
||2(u(tn)− u(tn−1))−∆t(ut(tn) + ut(tn−1))||

≤ 1

2∆t

(∫ tn

t
n− 1

2

(tn − s)2||uttt(s)||ds+

∫ t
n− 1

2

tn−1

(s− tn−1)2||uttt(s)||ds

+ ∆t

∫ tn

t
n− 1

2

(tn − s)||uttt(s)||ds+ ∆t

∫ t
n− 1

2

tn−1

(s− tn−1)||uttt(s)||ds
)

≤ C∆t2 max
0≤t≤T

||uttt(t)|| ≤
Cε∆t2

min{ε4, δ4}
, (4.71)

and hence ∆t
∑N

n=1 ||zn3 || ≤
Cε∆t2

min{ε4,δ4} . Combining all the above inequalities, we obtain

||UN − u(T )|| ≤ C

(
ε∆t2

min{ε4, δ4}
+

H2

εmin{ε2, δ2}

)
. (4.72)

Moreover, if ut(t), utt(t) ∈ H1(Ω) for any t ∈ [0, T ], then from the proof of Theorem 4.3, we

already know that ||ρN || ≤ C H3

ε3δ
and ∆t

∑N
n=1 ||zn1 || ≤

CH3

ε2δmin{ε2,δ2} . Using similar arguments,

we can prove the estimate in (4.68).

For the error in the energy norm, we have the following theorem.
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Theorem 4.6. Assume that UN is the solution of (4.65) and u is the solution of (2.1). If

ut(t), utt(t), uttt(t), utttt(t) ∈ L2(Ω) for any t ∈ [0, T ], then

||UN − u(T )||e ≤ C

(
H

ε
+

H2

min{ε3, δ3}
+

ε2∆t2

min{ε5, δ5}

)
. (4.73)

Moreover, if ut(t), utt(t), uttt(t) ∈ H1(Ω) for any t ∈ [0, T ], then

||UN − u(T )||e ≤ C

(
H2

ε2δ
+

H3

εδmin{ε3, δ3}
+

ε2∆t2

min{ε5, δ5}

)
. (4.74)

Proof. First consider the case where ut(t), utt(t), uttt(t), utttt(t) ∈ L2(Ω),∀t ∈ [0, T ]. We have

||Un − u(tn)||e ≤ ||θn||e + ||ρn||e, where ||ρN ||e ≤ CH
ε

. Setting w = θn − θn−1 in (4.66) and

taking the real part of it, we have

||θn||2e ≤ ||θn−1||2e + 2ε|(zn1 + zn3 , θ
n − θn−1)| ≤ ||θn−1||2e + 2ε||θn − θn−1||(||zn1 ||+ ||zn3 ||). (4.75)

For ||θn − θn−1||, we can derive by (4.66) that

iε(∂̄θn − ∂̄θn−1, w) + iε(zn1 − zn−1
1 , w) + iε(zn3 − zn−1

3 , w) = a

(
θn − θn−2

2
, w

)
, ∀w ∈ ΨH .

(4.76)

Setting w = ∂̄θn + ∂̄θn−1 = θn−θn−2

∆t
in the last equality and taking the imaginary part of it, we

have

||∂̄θn||2 − ||∂̄θn−1||2 ≤ (||∂̄θn||+ ||∂̄θn−1||)(||zn1 − zn−1
1 ||+ ||zn3 − zn−1

3 ||) (4.77)

and hence

||θn − θn−1|| ≤ ||θ1 − θ0||+ ∆t
n∑
j=2

(||zj1 − z
j−1
1 ||+ ||zj3 − z

j−1
3 ||). (4.78)

For ||θ1 − θ0||, we have by the proof of Theorem 4.5 that

||θ1 − θ0|| = ||θ1|| ≤ ∆t(||z1
1 ||+ ||z1

3 ||) ≤ C

(
ε∆t3

min{ε4, δ4}
+

∆tH2

εmin{ε2, δ2}

)
, (4.79)

and in the proof of Theorem 4.4 we know that ∆t
∑n

j=2 ||z
j
1 − z

j−1
1 || ≤ C∆tH2

min{ε4,δ4} . For the term

∆t
∑n

j=2 ||z
j
3 − z

j−1
3 ||, we have that

||zj3 − z
j−1
3 || = 1

2∆t
||2(u(tj)− 2u(tj−1) + u(tj−2))−∆t(ut(tj)− ut(tj−2))||

≤ 1

12∆t

(
2

∫ tj

tj−1

(tj − s)3||utttt(s)||ds+ 2

∫ tj−1

tj−2

(s− tj−2)3||utttt(s)||ds

+ 3∆t

∫ tj

tj−1

(tj − s)2||utttt(s)||ds+ 3∆t

∫ tj−1

tj−2

(s− tj−2)2||utttt(s)||ds
)

≤ C∆t3 max
0≤t≤T

||utttt(t)|| ≤ C
ε2∆t3

min{ε6, δ6}
. (4.80)
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Therefore

||θN ||2e ≤ ||θ0||2e + Cε

(
∆tH2

min{ε4, δ4}
+

ε2∆t3

min{ε6, δ6}

) N∑
n=1

(||zn1 ||+ ||zn3 ||). (4.81)

By the proof of Theorem 4.5, we have ∆t
∑N

n=1 ||zn1 || ≤
CH2

εmin{ε2,δ2} and ∆t
∑N

n=1 ||zn3 || ≤
Cε∆t2

min{ε4,δ4} . Therefore, we obtain

||UN − u(T )||e ≤ C

(
H

ε
+

H2

min{ε3, δ3}
+

ε2∆t2

min{ε5, δ5}

)
. (4.82)

Moreover, if ut(t), utt(t), uttt(t) ∈ H1(Ω) for any t ∈ [0, T ], then from the proof of Theorem 4.4,

we know that

||ρN ||e ≤ C
H2

ε2δ
, ||θ1 − θ0|| ≤ C

(
ε∆t3

min{ε4, δ4}
+

∆tH3

ε2δmin{ε2, δ2}

)
, (4.83)

∆t
n∑
j=2

||zj1 − z
j−1
1 || ≤ C∆tH3

εδmin{ε4, δ4}
, ∆t

N∑
n=1

||zn1 || ≤
CH3

ε2δmin{ε2, δ2}
. (4.84)

Hence we can obtain (4.74) using similar arguments.

Remark 4.1. For the estimates in Theorems 4.3, 4.4, 4.5 and 4.6, the constants C depend

polynomially and at most quadratically on the final time T .

All the analyses in Sections 2, 3 and 4 can be performed with slight modifications for the

Schrödinger equation (2.1) with zero boundary condition. The convergence results are the same

as those in Section 4.

5. Numerical experiments

In this section, we present numerical results to justify our analysis, where the potential is

smooth in one example and possesses discontinuities in the other. We consider (2.1) in one

dimension with domain Ω = [0, 2π], finial time T = 0.5 and initial data

u0(x) =

(
10

π

)1/4

e−5(x−π)2 . (5.1)

And we shall compare the relative errors between the numerical solution ψnum and the reference

solution ψref in L2 norm and H1 norm with

errL2 =
||ψnum − ψref||
||ψref||

, errH1 =
||ψnum − ψref||H1

||ψref||H1

. (5.2)

Recall that the H1 norm is equivalent to the energy norm.
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5.1. Smooth potentials

Consider the smooth potential

V = cos
(x
δ

)
+ 2. (5.3)

We choose (i) ε = 1
8
, δ = 1

10
and (ii) ε = 1

32
, δ = 1

24
. The reference solution is computed

by the time-splitting spectral method [1] with ∆t = 1
226
, H = π

215
. As for the numerical so-

lution, Crank-Nicolson is adopted for temporal discretization with ∆t = 1
224

and for spatial

discretization, the standard linear FEM and the localized OC MsFEM are used. The mesh size

H = π
64
, π

96
, π

128
, π

192
, π

256
for case (i) and H = π

96
, π

128
, π

192
, π

256
, π

384
for case (ii). The oversampling

size for the localized OC MsFEM is chosen as m = 3dlog2(2π
H

)e. The results are shown in Tables

1, 2 and Figures 1, 2.

Table 1: Errors for potential (5.3) with ε = 1/8, δ = 1/10

H π
64

π
96

π
128

π
192

π
256

errL2 of FEM 8.9746E-02 4.1331E-02 2.3531E-02 1.0562E-02 5.9291E-03

convergence order 1.91 1.96 1.84 2.25

errL2 of localized OC MsFEM 2.7727E-04 4.2500E-05 1.2564E-05 2.4172E-06 8.3025E-07

convergence order 4.63 4.24 3.78 4.16

errH1 of FEM 2.7996E-01 1.5785E-01 1.0777E-01 6.5908E-02 4.7552E-02

convergence order 1.41 1.33 1.13 1.27

errH1 of localized OC MsFEM 4.6115E-03 1.2306E-03 5.0256E-04 1.4598E-04 6.0666E-05

convergence order 3.26 3.11 2.83 3.42

Table 2: Errors for potential (5.3) with ε = 1/32, δ = 1/24

H π
96

π
128

π
192

π
256

π
384

errL2 of FEM 9.6768E-01 7.3988E-01 4.0070E-01 2.3916E-01 1.0963E-01

convergence order 0.93 1.41 2.01 1.79

errL2 of localized OC MsFEM 9.2324E-02 1.5400E-02 1.0472E-03 2.0084E-04 3.4424E-05

convergence order 6.23 6.16 6.43 4.04

errH1 of FEM 1.7538E+00 1.4517E+00 8.2473E-01 5.3417E-01 2.6809E-01

convergence order 0.66 1.30 1.69 1.58

errH1 of localized OC MsFEM 2.7853E-01 6.4586E-02 1.0395E-02 3.8315E-03 1.0388E-03

convergence order 5.08 4.19 3.88 2.99
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(a) L2 relative error errL2 (b) H1 relative error errH1

Figure 1: Errors for potential (5.3) with ε = 1/8, δ = 1/10

(a) L2 relative error errL2 (b) H1 relative error errH1

Figure 2: Errors for potential (5.3) with ε = 1/32, δ = 1/24

For the standard linear FEM, first-order convergence in the energy norm and second-order

convergence in the L2 norm are observed. While for the localized OC MsFEM, super conver-

gence is observed and the convergence rates are even higher than the estimates (4.68), (4.74)

proposed in Theorems 4.5 and 4.6. This super-convergence behavior is due to the smoothness

of the potential (5.3) that results in a solution with high regularity. Sharper error estimates for

solutions with sufficiently high regularity will be studied in our future work.

5.2. Discontinuous Potentials

Consider the potential

V = |x− π|2 + 2 +


cos

(
x

δ1

)
, x ∈ [0, π],

cos

(
x

δ2

)
, x ∈ (π, 2π].

(5.4)

We choose (i) ε = 1
8
, δ1 = 1

5
, δ2 = 1

10
and (ii) ε = 1

32
, δ1 = 1

40
, δ2 = 1

25
. In both cases, the potential

(5.4) is discontinuous at x = π and has different lattice structures on [0, π] and (π, 2π]. The
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reference solution is computed by the Crank-Nicolson global OC MsFEM with ∆t = 1
226
, H =

π
1024

. The numerical solutions are computed by the time-splitting spectral method (TSSP),

Crank-Nicolson standard linear FEM and Crank-Nicolson localized OC MsFEM with ∆t = 1
224

and H = π
64
, π

96
, π

128
, π

192
, π

256
for case (i), H = π

96
, π

128
, π

192
, π

256
, π

384
for case (ii). The oversampling

size for the localized OC MsFEM is chosen as m = 3dlog2(2π
H

)e. The results are shown in Tables

3, 4 and Figures 3, 4.

Table 3: Errors for potential (5.4) with ε = 1/8, δ1 = 1/5, δ2 = 1/10

H π
64

π
96

π
128

π
192

π
256

errL2 of TSSP 3.2300E-01 2.0757E-01 1.5783E-01 1.1911E-01 7.7628E-02

convergence order 1.09 0.95 0.65 1.67

errL2 of FEM 9.9626E-02 5.7224E-02 3.8492E-02 2.2103E-02 1.4957E-02

convergence order 1.37 1.38 1.27 1.52

errL2 of localized OC MsFEM 8.8678E-03 4.0528E-03 2.3565E-03 1.1604E-03 6.4039E-04

convergence order 1.93 1.88 1.62 2.31

errH1 of TSSP 5.1257E-01 3.1662E-01 2.5999E-01 2.4780E-01 1.3052E-01

convergence order 1.19 0.68 0.11 2.50

errH1 of FEM 3.7388E-01 2.6184E-01 2.0516E-01 1.4690E-01 1.1789E-01

convergence order 0.88 0.85 0.77 0.86

errH1 of localized OC MsFEM 7.3066E-02 5.4768E-02 4.1242E-02 2.8283E-02 1.9120E-02

convergence order 0.71 0.99 0.86 1.52

Table 4: Errors for potential (5.4) with ε = 1/32, δ1 = 1/40, δ2 = 1/25

H π
96

π
128

π
192

π
256

π
384

errL2 of TSSP 7.2386E-01 6.9766E-01 5.9891E-01 4.4621E-01 4.5438E-01

convergence order 0.13 0.35 1.15 -0.04

errL2 of FEM 1.0405E+00 7.6181E-01 3.9576E-01 2.4296E-01 1.2263E-01

convergence order 1.08 1.50 1.90 1.57

errL2 of localized OC MsFEM 1.1020E-01 4.6191E-02 1.4599E-02 7.0645E-03 2.7841E-03

convergence order 3.02 2.64 2.83 2.13

errH1 of TSSP 7.7187E-01 7.4138E-01 6.5957E-01 4.6178E-01 6.2428E-01

convergence order 0.14 0.27 1.39 -0.69

errH1 of FEM 1.4094E+00 1.0687E+00 5.9197E-01 3.8997E-01 2.3699E-01

convergence order 0.96 1.35 1.62 1.14

errH1 of localized OC MsFEM 2.0905E-01 1.1702E-01 5.6644E-02 3.5799E-02 2.4102E-02

convergence order 2.02 1.66 1.79 0.91
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(a) L2 relative error errL2 (b) H1 relative error errH1

Figure 3: Errors for potential (5.4) with ε = 1/8, δ1 = 1/5, δ2 = 1/10

(a) L2 relative error errL2 (b) H1 relative error errH1

Figure 4: Errors for potential (5.4) with ε = 1/32, δ1 = 1/40, δ2 = 1/25

The time-splitting spectral method suffers from reduced convergence order and low accuracy

due to the discontinuous potential (5.4). However, convergence rates of first order in the energy

norm and second order in the L2 norm are still observed for the FEM and OC MsFEM although

the discontinuous potential (5.4) results in a solution with lower regularity. Moreover, the OC

MsFEM yields much higher accuracy than the FEM, which is consistent with the analysis in

Section 4.1.

Both examples confirm our theoretical findings and indicate that the OC MsFEM is accurate

and robust for the Schrödinger equation with general multiscale potentials.

6. Conclusion

In this paper, we provide a rigorous convergence analysis for the OC MsFEM in solving

Schrödinger equations with multiscale potentials in the semiclassical regime. We prove the

exponential decay of the multiscale basis functions and propose the way of constructing the

localized multiscale basis functions. Besides, we show that the localized basis functions can

achieve the same accuracy as the global ones by choosing the oversampling size m appropriately
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according to the mesh size H as m = O(log(1/H)). Based on the properties of Clément-type

interpolation, we prove that the OC MsFEM can achieve first-order convergence in energy norm

and second-order convergence in L2 norm. Furthermore, if the solution possesses sufficiently

high regularity, super convergence rates of second order in energy norm and third order in L2

norm can be obtained. We find that using the same mesh size the OC MsFEM gives more

accurate results than the FEM in solving Schrödinger equations with multiscale potentials due

to its super convergence behavior and weaker denendence on the small parameters ε and δ.

Numerical results confirm our analysis. For a smooth potential, super convergence rates are

observed for the OC MsFEM. While for a discontinuous potential, the OC MsFEM retains

first-order and second-order convergence in the energy norm and L2 norm respectively and still

yields high accuracy. Therefore, the OC MsFEM is accurate and robust for the Schrödinger

equation with various types of multiscale potentials.

In the future, we will study the convergence analysis of the OC MsFEM for solving eigenvalue

problems for the Schrödinger operators and nonlinear Schrödinger equations. In addition, we

will apply the OC MsFEM to solve wave equations with multiscale features, such as the Klein-

Gordon equation [21].
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