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Abstract

In this paper, we consider a Bayesian inverse problem modeled by elliptic partial differen-

tial equations (PDEs). Specifically, we propose a data-driven and model-based approach

to accelerate the Hamiltonian Monte Carlo (HMC) method in solving large-scale Bayesian

inverse problems. The key idea is to exploit (model-based) and construct (data-based) the

intrinsic approximate low-dimensional structure of the underlying problem which consists of

two components – a training component that computes a set of data-driven basis to achieve

significant dimension reduction in the solution space, and a fast solving component that

computes the solution and its derivatives for a newly sampled elliptic PDE with the con-

structed data-driven basis. Hence we achieve an effective data and model-based approach for

the Bayesian inverse problem and overcome the typical computational bottleneck of HMC –

repeated evaluation of the Hamiltonian involving the solution (and its derivatives) modeled

by a complex system, a multiscale elliptic PDE in our case. We present numerical examples

to demonstrate the accuracy and efficiency of the proposed method.

AMS subject classification: 35R60, 60J22, 65N21, 65N30, 78M34.

Keywords: Elliptic inverse problems; Bayesian inversion; Hamiltonian Monte Carlo (HMC)

method; proper orthogonal decomposition (POD); model reduction.

1. Introduction

Inverse problems are ubiquitous in models used in science and engineering where problem-

specific parameters or inputs need to be estimated from indirect and noisy observations.

However, inverse problems are often nonlinear (even if the forward problems are linear) and

ill-posed (or unstable) in that either the existence and uniqueness of the solutions may not be

guaranteed or the dependence of the parameters on the data (and noise) may be sensitive. As
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a result, pointwise estimates may be erroneous and misleading and additional regularization

is often required. On the other hand, the Bayesian approach to inverse problems [24, 13, 10,

26] can provide another alternative. In the Bayesian paradigm, the solution to the inverse

problem is posited as the posterior distribution of the unknowns conditioned on observations

where regularization is naturally imposed in the form of an appropriate prior distribution.

Bayesian inversion, therefore, provides a principled way of uncertainty quantification in the

presence of data and noise.

As the posterior is generally intractable due to the complexity of the system, people

often resort to computational approximation approaches such as Markov chain Monte Carlo

(MCMC) methods. In a typical MCMC method, samples from the posterior distribution are

generated by updating the current states according to a proposing mechanism and a correc-

tion criterion designed to keep the posterior invariant. The efficiency of MCMC methods

heavily depends on the design of proposing mechanism, i.e. its computation cost, acceptance

probability, and mixing property. For complicated and large systems in practice, it is im-

portant to strike an appropriate balance among these factors. For example, simple MCMC

algorithms (e.g., generating proposals based on random walk Metropolis), although easy and

cheap to implement, usually have a low acceptance rate and mix poorly for complex and

high dimensional problems since no information or structure of the underlying problem is

utilized.

In recent years, many advanced MCMC methods have been proposed to improve the

sampling efficiency for high-dimensional problems [14, 29]. Based on an intelligent design

of Hamiltonian dynamics, the HMC method uses gradient information of the underlying

posterior distribution to make distant and less correlated proposals with high acceptance

probabilities, greatly improving the mixing rate of the Markov chains. On the other hand,

the associated computation cost of those advanced MCMC methods can be a bottleneck that

makes it difficult to scale up to complicated models and large data. Note that the sampling

procedure requires repetitive evaluations of the likelihood function and its derivatives and

maybe other geometric and statistical quantities, e.g., Fisher information for Riemannian

Hamiltonian Monte Carlo (RHMC) method [17]. To alleviate this issue, one popular at-

tempt is to find a computationally cheap surrogate approximation to replace the original

Hamiltonian [36, 37, 38, 32, 27] in the sampling process. The key in designing an effective

surrogate function is to capture the collective property of large datasets while removing re-

dundancy. The overall computation efficiency is improved due to significant cost reduction

in the Hamiltonian proposing process and insignificant loss in acceptance rate. Although

these surrogate approximations can provide significant empirical performance improvement,

they are usually obtained as blackbox approximations by fitting the training data where

the mechanism and structure of the model that generates the data have largely remained

unexplored and unexploited.
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For our Bayesian inverse problem, not only the unknown quantity is a random field that

lives in high dimensions after discretization or can be a parametric model with many pa-

rameters, the solution to an elliptic PDE and its derivative are also involved in generating

the data and evaluating the posterior and Hamiltonian in the HMC method. These compu-

tational challenges make traditional MCMC methods extremely costly to use for Bayesian

inverse problems. In this work, we propose a data-driven and model-based approach that can

significantly reduce the computation cost of the HMC method for Bayesian elliptic inverse

problems. The key idea is to exploit the intrinsic approximate low dimensional structure of

elliptic differential operators and construct a data-driven basis as proposed in [28]. First, a

set of data-driven basis functions are constructed from training data, e.g., from real mea-

surements or the initial burn-in stage of MCMC methods, to achieve significant dimension

reduction in the solution space. With the constructed basis, a newly sampled elliptic PDE

can be solved efficiently. Note that the derivatives (with respect to some parameters) of a

solution to a linear PDE satisfies the same PDE (with different righthand sides) that can be

computed efficiently as well. Hence, this model-based and data-driven strategy can reduce

the computation cost of the HMC sampling for our Bayesian inverse problem significantly.

The rest of the paper is organized as follows. We first describe the forward model and

the Bayesian inversion problem in Section 2 and the HMC method for Bayesian inversion

in Section 3. Intrinsic low dimensional structure of the forward problem, model-based and

data-driven dimension reduction, and approximation of the parameter-to-solution map is

discussed in Section 4. The accelerated HMC (AHMC) method for Bayesian inverse problems

is presented with implementation details in Section 5. We present numerical experiments

and results of AHMC and compare its performance to other state-of-the-art HMC methods

in Section 6. Concluding remarks are made in Section 7.

2. Model problem

2.1. Forward problem

In this paper, we consider a classical inverse problem that involves inference of the diffusion

coefficient in an elliptic PDE that is commonly used to model isothermal steady flow in

porous media, hydrology and reservoir simulation, and many other applications. To be

specific, we consider the following elliptic PDEs with random coefficients a(x, ω), where one

would like to infer, as the forward model,

L(x, ω)u(x, ω) ≡ −∇ ·
(
a(x, ω)∇u(x, ω)

)
= f(x), x ∈ D, ω ∈ Ω, (1)

u(x, ω) = 0, x ∈ ∂D, (2)

where D ∈ Rd is a bounded spatial domain, Ω is a sample space, and the source function

f(x) ∈ L2(D). We assume a(x, ω) in (1) is almost surely uniformly elliptic, namely, there
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exist amin, amax > 0, such that

P
(
ω ∈ Ω : a(x, ω) ∈ [amin, amax],∀x ∈ D

)
= 1. (3)

In general, we can assume the random coefficient a(x, ω) is of some parametric form. For

example, a commonly used affine form is the following,

a(x, ω) = ā(x) +
r∑

m=1

am(x)ξm(ω), (4)

where ξm(ω), m = 1, ..., r are random variables and am(x) are some spatial basis functions,

e.g., finite element basis, polynomial basis, Fourier basis, radial basis, etc.

Once a parametric form of the random coefficient a(x, ω) is given, computing the so-

lution u(x, ω) to the problem (1)-(2) defines a map from the parameter domain ξ(ω) =(
ξ1(ω), · · · , ξr(ω)

)T ∈ W ⊂ Rr to the solution space

ξ(ω) 7→ u(x, ω) = u(x, ξ(ω)) ∈ H1
0 (D), (5)

which is a Banach-space-valued function of the random input vector ξ(ω).

Many efficient numerical methods have been developed for solving elliptic PDEs with

random coefficients; see [16, 35, 2, 4, 3, 30, 18, 1, 19] and references therein. By solving the

forward problem, one can quantify the uncertainty in the elliptic PDEs with randomness.

However, when the elliptic PDEs involve multiscale features and/or high-dimensional ran-

dom inputs, these problems become challenging due to high computational costs. In recent

years, we have developed data-driven methods to solve multiscale elliptic PDEs with ran-

dom coefficients (1) based on intrinsic dimension reduction [39, 15, 11]. We also refer the

intertested reader to [34, 1, 23, 15, 11] for other methods to solve (1).

2.2. Bayesian inverse problems

Let W be the space of admissible unknowns and F : W → U be a forward map represents

a mathematical model that assigns an output u ∈ U to an input ξ ∈ W . In this paper, we

focus on the elliptic PDE (1) where ξ is the parameters in the random coefficient a(x, ξ)

and u is the solution to the PDE with the corresponding coefficient. The inverse problem

is to recover the unknown parameter ξ ∈ W (and hence the coefficient a(x, ξ)) from some

measurement of solution u in the domain and at the boundary. Often in practice u can

only be recorded at finite discrete locations with noise which is the data denoted by y ∈ Rm

related by

y = G(ξ) + η. (6)

Here the forward model G : Rr → Rm is a composition of the forward map F and a discretized

observation operator through which observable quantities (e.g., point-wise evaluation of the

solution) are collected, and η ∈ Rm is the measurement error (or the noise).
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In the Bayesian formulation of the inverse problem (6), one treats the parameter ξ as a

random variable (vector) with a prior distribution pξ(ξ). The noisy model, i.e., distribution

of η, gives the likelihood py|ξ(y|ξ). For simplicity and concreteness, in this paper we assume

that η is a zero-mean Gaussian with diagonal covariance σ2Im, so that

py|ξ(y|ξ) ∝ exp (−Φ(ξ;y)) , Φ(ξ;y) :=
‖y− G(ξ)‖2

2σ2
. (7)

The posterior distribution of ξ conditioned on the data y then follows the Bayes’ rule:

pξ|y(ξ|y) ∝ py|ξ(y|ξ) · pξ(ξ) (8)

and Bayesian inversion can be performed by estimating the posterior via, e.g., the HMC

method and other MCMC methods.

In addition to the usual computational issues for MCMC type of methods, there is another

challenge for the Bayesian elliptic inverse problem due to the complicated forward model

(1). Instead of a simple explicit probabilistic model that prescribes the likelihood of data

given the parameter of interest, one needs to solve the elliptic PDE (1) for each coefficient

corresponding to a new sample of the parameter ξ to compute the likelihood function (7),

which is the computation bottleneck for the Bayesian inversion. To address these challenges,

we propose a data-driven and model-based accelerated HMC method that improves the

convergence rate of the MCMC method and exploit the underlying forward model (1) using

a data-driven approach proposed in [28], which enables us to reduce the computational cost

in solving the forward model problem and hence the overall sampling cost.

3. The HMC method for Bayesian inversion

The HMC method is one of the state-of-the-art MCMC methods suitable for complex high

dimensional target distributions with strong dependencies between parameters, which is the

case for Bayesian inverse problems. Leveraging geometric information from the target dis-

tribution, the HMC method [14, 29] extends the parameter space with auxiliary momentum

variables ζ, and introduces a Hamiltonian dynamics system to propose samples of model

parameters within the Metropolis framework, greatly enhancing the exploration efficiency

in the parameter space compared to simple random walk proposals. More specifically, the

HMC method generates proposals jointly for ξ and ζ using the following system of differential

equations
dξ

dt
=
∂H

∂ζ
,

dζ

dt
= −∂H

∂ξ
. (9)

where the Hamiltonian function is defined as H(ξ, ζ) = U(ξ)+K(ζ). Here in the Bayesian el-

liptic inverse problem, the potential energy U is defined as U(ξ) = − log py|ξ(y|ξ)− log pξ(ξ),

and the kinetic energy K(ζ) = 1
2
ζTM−1ζ corresponds to the negative log-density of a zero-

mean multivariate Gaussian distribution with covariance M (also known as the mass matrix
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and is often set to be the identity). As the analytical solution of the Hamiltonian dynam-

ics (9) is usually unavailable, proposals in the HMC method are often made by numerical

simulation via the leap-frog scheme. Speficically, given the sample (ξ(t), ζ(t)) at time t, we

generate the sample at time t+ 1 by the following scheme

ζ(t+
1
2
) = ζ(t) − ∆t

2
∇ξU(ξ(t)),

ξ(t+1) = ξ(t) + ∆t∇ζK(ζ(t+
1
2
)),

ζ(t+1) = ζ(t+
1
2
) − ∆t

2
∇ξU(ξ(t+1)),

(10)

where ∆t is the step size. Starting from the current state (ξ, ζ), where ξ is the current

parameter and ζ is resampled from the multivariate Gaussian distribution N (0,M), the

proposed state (ξ∗, ζ∗) at the end of a simulated trajectory of length L is accepted with

probability

p = min
(
1, exp[−H(ξ∗, ζ∗) +H(ξ, ζ)]

)
. (11)

From this point of view, the HMC method can be viewed as a Metropolis algorithm that

samples from the joint distribution

p(ξ, ζ) ∝ exp

(
−U(ξ)− 1

2
ζTM−1ζ

)
. (12)

The marginal distribution of ξ then follows the target posterior distribution since ξ and ζ are

separated (i.e., independent). Note that the Hamiltonian is preserved for analytical solutions

of (9), and the discretization error in (10) can be controlled by appropriate choice of the

step size ∆t, the HMC method is often able to generate distant, uncorrelated proposals with

a high acceptance probability, allowing for efficient exploration of the parameter space.

For our Bayesian inverse problem, however, there is still a computational bottleneck we

have to resolve, that is repetitive computation of solution u(x, ξ) to the elliptic PDE (1) to

evaluate the potential energy U(ξ) = − log py|ξ(y|ξ)− log pξ(ξ) in the Hamiltonian, and even

more, the gradient with respect to the parameter ∇ξU(ξ) needs to be repetitively evaluated

to simulate a trajectory for HMC proposals as in (10). Note that the key to evaluation of

∇ξU(ξ) is the evaluation of derivatives ∂u(x,ξ)
∂ξj

= uξj(x, ξ) of the solution to (1) satisfying

−∇ ·
(
a(x, ξ)∇uξj(x, ξ)

)
= ∇ ·

(
aξj(x, ξ)∇u(x, ξ)

)
, x ∈ D, (13)

uξj(x, ξ) = 0, x ∈ ∂D, (14)

which is the same elliptic PDE as (1) with a righthand side that depends on the solution

to (1) corresponding to the current sample of ξ. This could easily become prohibitively

expensive in practice since so many PDEs have to be solved for each sampling step.

In what follows, we describe how to approximate the low-dimensional structure of the

solution space to the (1) with varying coefficients and righthand side and the data-driven
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approach proposed in [28] that can take advantage of the approximate low-dimensional struc-

ture of the forward model to accelerate the HMC method.

4. Low dimensional structure of the forward model and approximation of the

parameter-to-solution map

For the Bayesian inverse problem, we are facing the challenge to solve (1) with different

coefficients and different righthand sides (13) repetitively in the sampling process.

4.1. Low dimensional structure with respect to varying coefficients

With the uniform ellipticity assumption of a(x, ξ(ω)) and its smooth dependence on the

parameter ξ, the solution u(x, ξ) also depends smoothly on the parameters, which can be

approximated via a polynomial expansion in ξ of the form∑
α∈Jr

uα(x)ξα(ω), (15)

where α = (α1, α2, · · · , αr) is a multi-index, Jr = {α |αi ≥ 0, αi ∈ N, 1 ≤ i ≤ r} is a multi-

index set of countable cardinality, and ξα(ω) =
∏

1≤i≤r ξ
αi
i (ω) is a multivariate polynomial.

In particular, if uniform ellipticity assumption of a(x, ξ) has a holomorphic extension to

an open set in complex domain that contains the real domain for ξ, explicit estimates for

the coefficients uα can be established similar to those estimates for the polynomial approxi-

mation for an analytic function. From the estimates, the following result for the best n-term

approximation can be proved (see [12] for details).

Proposition 4.1. Consider a parametric problem of the form (1)-(2) with a random coeffi-

cient (4). Both the Taylor series and Legendre series of the form (15) converges to u(x, ξ(ω))

in H1
0 (D) for all ξ(ω) ∈ W. Moreover, for any set Jnr of indices corresponding to the n largest

of ||uα(·)||H1
0 (D), we have

sup
ξ(ω)∈U

∣∣∣∣u(·, ξ(ω))−
∑
α∈Jnr

uα(·)ξα(ω)
∣∣∣∣
H1

0 (D)
≤ C exp(−cn1/r), (16)

where J n
r is a subset of Jr with cardinality #J n

r = n, C and c are positive and depend on r.

Proposition 4.1 shows that there exists a linear subspace with dimension at most O(n ∼
( logC

c
+ | log ε|

c
)r), e.g., spanned by uα(x), α ∈ J n

r , that can approximate the solution of (1)-(2)

with random coefficient within ε error.

The result in proposition 4.1 reveals the existence of approximate low dimensional struc-

tures in the solution space of (1)-(2). However, this approximation is obtained by mathe-

matical analysis, which cannot be directly implemented via a computational algorithm. In

[28], a data-driven approach was proposed to construct problem dependent basis functions

that can approximate the solution space of (1)-(2) effectively.
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Remark 4.1. When the coefficient a(x, ω) is a nonlinear function of a finite number of random

variables, one can apply the empirical interpolation method (EIM) [6] to approximately

convert a(x, ω) into an affine form. Thus, low dimensional structures still exist in the solution

space. In addition, we refer the reader to [22, 5] for the results of the best n-term polynomial

approximation of elliptic PDEs with lognormal coefficients.

4.2. Low dimensional structure with respect to varying sources

Consider the following elliptic PDE with a fixed coefficient a(x) ∈ L∞(D) and a random

source f(x, ω),

−∇ ·
(
a(x)∇u(x, ω)

)
= f(x, ω), x ∈ D, (17)

u(x, ω) = 0, x ∈ ∂D, (18)

with amin, amax > 0, such that amin < a(x) < amax for all x ∈ D. The contrast ratio κa = amax

amin

is an important factor in the stability and convergence analysis. Let G(x,y) be the Green’s

function for the elliptic PDE (17) satisfying

−∇ ·
(
a(x)∇G(x,y)

)
= δ(·,y), in D, G(·,y) = 0, on ∂D, (19)

where δ(·,y) is the Dirac delta function denoting an impulse source point at y ∈ D. The

solution to (17) can be represented as

u(x, ω) =

∫
D

G(x,y)f(y, ω)dy. (20)

It was shown in [7] that the Green’s function for an elliptic operator is highly separable.

Proposition 4.2 (Theorem 2.8 of [7]). Let D1, D2 ⊂ D be two subdomains and D1 be convex.

Assume that there exists ρ > 0 such that

0 < diam(D1) ≤ ρ dist(D1, D2). (21)

Then, for any ε ∈ (0, 1) there is a separable approximation

Gk(x,y) =
k∑
i=1

ui(x)vi(y) with k ≤ cd(κa, ρ)| log ε|d+1, (22)

so that for all y ∈ D2

‖G(·,y)−Gk(·,y)‖L2(D1) ≤ ε‖G(·,y)‖L2(D̂1)
, (23)

where D̂1 := {x ∈ D : 2ρ dist(x, D1) ≤ diam(D1)}.
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The above result shows that there exists a low dimensional linear subspace, e.g., spanned

by ui(·), that can approximate the family of functions G(·,y) well in L2(D1) uniformly with

respect to y ∈ D2. Moreover, if supp(f(x, θ)) ⊂ D2, one can approximate the family of

solutions u(x, ω) to (17) by the same space well in L2(D1) uniformly. Indeed, let

uε(x, ω) =

∫
D2

Gk(x,y)f(y, ω)dy =
k∑
i=1

ui(x)

∫
D2

vi(y)f(y, ω)dy. (24)

We have

‖u(·, ω)− uε(·, ω)‖2L2(D1)
=
∫
D1

[∫
D2

(G(x,y)−Gk(x,y))f(y, ω)dy
]2
dx

≤ ‖f‖2L2(D2)

∫
D2
‖G(·,y)−Gk(·,y)‖2L2(D1)

dy ≤ C(D1, D2, κa, d)ε2‖f‖2L2(D2)
,

(25)

since ‖G(·,y)‖L2(D̂1)
is bounded uniformly with respect to y ∈ D2 by a positive constant

that depends on D1, D2, κa, d due to the uniform ellipticity. Note that the low dimensional

structure does not need any regularity assumption in a(x). Moreover, dependence of the

source on randomness can be arbitrary in terms of dimensionality and regularity.

Remark 4.2. Although, the proof of high separability of the Green’s function requires x ∈
D1,y ∈ D2 for two disjoint D1 and D2 due to the singularity of the Green’s function at

x = y, the above approximation of the solution u in a domain disjoint with the support of f

also works for u in the whole domain even when f is a globally supported smooth function

as shown in our numerical results in [28].

4.3. Data-driven basis for dimension reduction

Since there exist low-dimensional structures in the solution space of elliptic PDEs with

random coefficients and sources, we use problem-specific and data-driven basis to achieve

a significant dimension reduction in solving the elliptic PDEs (1). Our method consists

of a training process and a solving process. In the training process, we extract the low-

dimensional structure of the solution space and construct a set of data-driven basis functions

from training data or real measurements, e.g., a set of solution samples {u(x, ωi)}Ni=1 can

be obtained from measurements or generated by solving the elliptic PDE (1)-(2), e.g., with

coefficient samples {a(x, ωi)}Ni=1 during the burning stage of the HMC method.

Let Vsnap = {u(x, ω1), ..., u(x, ωN)} denote the solution samples. We use the POD method

[9, 31, 8], or a.k.a the PCA method, to find the optimal subspace and its orthonormal basis

functions to approximate Vsnap to a certain accuracy. Specifically, we define the correlation

matrix Σ = (σij) ∈ RN×N with σij =< u(·, ωi), u(·, ωj) >D, i, j = 1, . . . , N , where <

·, · >D denotes the standard inner product on L2(D). Let the eigenvalues of the correlation

matrix be λ1 ≥ λ2 ≥ . . . ≥ . . . ≥ λN ≥ 0 and the corresponding eigenfunctions be φ1(x),

φ2(x), . . . , φN(x), which will be referred to as data-driven basis functions.
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Proposition 4.3. The space spanned by the leading K data-driven basis functions has the

following approximation property to Vsnap.∑N
i=1

∣∣∣∣∣∣u(x, ωi)−
∑K

j=1 < u(·, ωi), φj(·) >D φj(x)
∣∣∣∣∣∣2
L2(D)∑N

i=1

∣∣∣∣∣∣u(x, ωi)
∣∣∣∣∣∣2
L2(D)

=

∑N
s=K+1 λs∑N
s=1 λs

. (26)

First, we expect a fast decay in the eigenvalues λs so that a small set of data-driven

basis functions (K � N) will be enough to approximate the solution samples well in the

root mean square sense. Secondly, based on the existence of low-dimensional structure, we

expect that the data-driven basis functions, φ1(x), φ2(x), . . . , φK(x), can approximate the

solution u(x, ω) well by u(x, ω) ≈
∑K

j=1 cj(ω)φj(x) almost surely for ω ∈ Ω.

Determining a set of good solution samples is important for the construction of the data-

driven basis functions. In general, this issue is very challenging especially when the dimension

of the random coefficient is high. Under certain assumptions on the random coefficient, we

obtained some criteria on how to choose the coefficient samples in order to obtain a set of

accurate data-driven basis functions; see Section 3.4 of [28].

The computational costs of constructing the data-driven basis functions consist of two

parts, if data are generated by simulation: (1) compute solution samples {u(x, ωi)}Ni=1; and

(2) compute the data-driven basis by the POD method. This is common nature for many

model reduction methods. Effective samples of solutions (see Section 3.4 of [28]) and the

use of randomized algorithms [20] for the singular value decomposition (SVD) (utilizing the

low-rank structure) help to reduce the offline computation cost.

Equipped with the data driven basis φj(x), j = 1, ..., K, we can solve the problem (1)-(2)

on the domain D by the standard Galerkin formulation for new realizations of a(x, ω). Specif-

ically, given a new realization of the coefficient a(x, ω), we approximate the corresponding

solution u(x, ω) as

u(x, ω) ≈
K∑
j=1

cj(ω)φj(x), a.s. ω ∈ Ω, (27)

and use the Galerkin projection to determine the coefficients cj(ω), j = 1, ..., K. We sub-

stitute the approximation (27) into Eq.(1), multiply both side by φl(x), l = 1, ..., K, take

integration over the domain D, and obtain a coupled linear system as folows

K∑
j=1

∫
D

a(x, ω)cj(ω)∇φj(x) · ∇φl(x)dx =

∫
D

f(x)φl(x)dx, l = 1, ..., K. (28)

The computational cost of solving the linear system (28) is small compared to using a

Galerkin method, such as the finite element method, directly for u(x, ω) because K is much

smaller than the degree of freedom needed to discretize u(x, ω) in the whole domain.
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Note that if a(x, ω) has the affine form (4), we first compute the terms that do not

depend on randomness, including
∫
D
ā(x)∇φj(x) · ∇φl(x)dx,

∫
D
am(x)∇φj(x) · ∇φl(x)dx

and
∫
D
f(x)φj(x)dx, j, l = 1, ..., K. Then, we save them in the offline stage. This leads

to considerable savings in assembling the stiffness matrix for each new realization of the

coefficient a(x, ω) in the online stage.

4.4. The parameter-to-solution map

To solve the Bayesian inverse problem modeled by the elliptic PDE (1), we need to compute

cj(ω) by solving the linear equation system (28) for many realizations of a(x, ω). Although

the data-driven basis functions provide considerable saving over standard finite element basis

functions in solving (1), it still requires a certain amount of computational cost in solving

the linear equation system (28) in the HMC methods. To further reduce the computational

cost in the HMC method, we construct parameter-to-solution maps based on the training

solution data and the data-driven basis functions.

According to our assumption, a(x, ω) is parameterized by r independent random vari-

ables, i.e., a(x, ω) = a(x, ξ1(ω), ..., ξr(ω)). Thus, the solution can be represented as a

functional of these random variables as well, i.e., u(x, ω) = u(x, ξ1(ω), ..., ξr(ω)). Let

ξ(ω) = [ξ1(ω), · · · , ξr(ω)]T denote the random input vector and c(ω) = [c1(ω), · · · , cK(ω)]T

denote the vector of solution coefficients in (27). Now, the problem can be viewed as con-

structing a parameter-to-solution map from ξ(ω) to c(ω), denoted by F : ξ(ω) 7→ c(ω),

which is nonlinear. We approximate this nonlinear map through the given solution or mea-

surement data. Given a set of solution samples {u(x, ωi)}Ni=1 corresponding to {ξ(ωi)}Ni=1,

e.g., by solving (1)-(2) with a(x, ξ1(ωi), ..., ξr(ωi)), from which the set of data driven ba-

sis φj(x), j = 1, ..., K is obtained by using POD method as described above, we can eas-

ily compute the projection coefficients
{
c(ωi)

}N
i=1

of u(x, ωi) on φj(x), j = 1, ..., K, i.e.,

cj(ωi) =< u(x, ωi), φj(x) >D. From the data set, F (ξ(ωi)) = c(ωi), i = 1, ..., N , we construct

the map F. Note the significant dimension reduction by reducing the map ξ(ω) 7→ u(x, ω) to

the map ξ(ω) 7→ c(ω). We provide several ways to construct F, depending on the dimension

of the random input vector. More implementation details can be found in [28].

When the dimension of the random input r is small or moderate, one can use interpola-

tion. In particular, if the solution samples correspond to ξ located on a uniform or sparse

grid, standard polynomial interpolation can be used to approximate the coefficient cj at a

new point of ξ. If the solution samples correspond to ξ at scattered points or the dimension

of the random input r is moderate or high, one can first find a few nearest neighbors to

the new point efficiently using the k-d tree algorithm [33] and then use moving least square

approximation centered at the new point to approximate the mapped value.

When the dimension of the random input r is high, the interpolation approach becomes

expensive and less accurate. Due to the dimension reduction by the data-driven basis func-

tions, one can train a neural network with a small output dimension to approximate the
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parameter-to-solution map F. Numerical results in [28] show that this approach works well.

We will adopt the neural network approach to approximate the parameter-to-solution maps

for both the solution and its derivatives in this work.

In the HMC method, one can compute the solution u(x, ω) using the constructed map

F. For example, given a new sample of a(x, ξ1(ωi), ..., ξr(ωi)), we plug ξ(ω) into the con-

structed map F to approximate c(ω) = F(ξ(ω)), which are the projection coefficients of the

solution on the data-driven basis. So we can quickly obtain the new solution u(x, ω) using

Eq.(27), where the computational time is negligible. Similarly, we can construct data-driven

basis functions and approximate the parameter-to-solution maps for computing the partial

derivatives of the solution. Once we obtain the numerical solutions and their derivatives, we

can use them as a proposal in the HMC method. Numerical experiments show that our new

method achieves significant savings in computing a new proposed sample over the standard

HMC method.

5. The accelerated HMC method and implementation

In this section, we present the data-driven and model-based accelerated HMC method for

solving Bayesian elliptic inverse problems with implementation details.

In the burn-in stage, we run the standard HMC method, i.e., solving the forward ellip-

tic problem (1) for u and solving (13) for uξi for the numerical evaluation of Hamiltonian

dynamics in (10) using standard finite element method. The samples of solution and its

derivatives computed during the burn-in stage are collected and used to construct data-

driven basis for dimension reductions using POD as described in Section 4.3. In partic-

ular, a set of basis is computed for u and each uξi . Then we use the collected samples

of solution and its derivatives to train two neural networks using the Adam optimization

method (see [25]) to approximate the paraemter-to-solution map described in Section 4.4.

Although u and uξj satisfy the same elliptic PDE, u has a fixed righthand source and uξi
has a varying righthand source. We find that it is more efficient and accurate to construct

two separate neural networks to approximate the parameter-to-solution map, one for u and

one for all uξj . The neural network that approximates the parameter-to-solution map for

u has a first layer that is a fully connected affine transform h1 = W1ξ + b1. The fol-

lowing hidden layers are residual connections hl = tanh(Wlhl−1 + bl) + hl−1 (see [21]).

The output layer is another affine transform with output c(ξ) = (c1(ξ), c2(ξ), . . . , cK(ξ))T

and the error to minimize is
∑N

j=1

∑K
k=1 |ck(ξj) − c̄k(ξj)|2, where c̄k(ξj), k = 1, 2, . . . , K

is the projected coefficients from j-th data u(x, ξj), j = 1, 2, . . . , N , collected during the

burn-in stage. The neural network that approximates the parameter-to-solution map for all

uξi , i = 1, 2, . . . , r, where r is the dimension of the parameter space, has a similar network

structure as above with an output of (c1(ξ), c2(ξ), . . . , cr(ξ)) and the error to minimize is∑r
i=1

∑N
j=1

∑Ki

k=1 |cik(ξj)− c̄ik(ξj)|2, where c̄ik(ξj), k = 1, 2, . . . , Ki is the projected coefficients

12



computed from j-th data uξi(x, ξj), j = 1, 2, . . . , N collected during the burn-in stage.

Once the parameter-to-solution map is trained, we can evaluate the potential energy U(ξ)

and its gradient ∇ξU(ξ) efficiently and hence significantly accelerate the HMC method to

get the posterior samples by evolving the Markov chain as described in Section 3 for Bayesian

inverse problems. We list the implementation steps of the accelerated HMC algorithm in

Algorithm 1.

Algorithm 1 The accelerated HMC algorithm.

1: Input: the prior distribution for a(x, ξ(ω)).

2: Collect samples of solution and its partial derivatives, i.e. {ξj, u(ξj),
∂u(ξj)

∂ξ1
, · · · , ∂u(ξj)

∂ξr
}Nj=1

during the burn-in stage.

3: Extract basis functions {φj(x)}Kj=1 for the solution and basis functions {φij(x)}Ki
j=1 for

the partial derivatives of the solution, i = 1, · · · , r, from the collected data using the

POD method.

4: Get training data {ξj, c(ξj), c
1(ξj), · · · , cr(ξj)}Nj=1 by projecting the samples of solution

and its partial derivatives onto the corresponding basis.

5: Train a neural network fitting the data pair {ξ, c(ξ)}, and train another neural networks

fitting the data pair {ξ, c1(ξ), · · · , cr(ξ)} to approximate the parameter-to-solution

maps.

6: Generate samples from posterior distribution via the data-driven accelerated HMC al-

gorithm.

(1) at the current position ξ, sample a new momentum ζ ∼ N (0,M) to get a starting

point (ξ, ζ);

(2) apply the leap-frog scheme (10) to compute the Hamiltonian dynamic, with data-

driven gradient for the potential via the learned parameter-to-solution maps in step

5;

(3) accept the proposed sample (ξ∗, ζ∗) at the end of the trajectory with probability

(11), where H is computed using the FEM reference solution.

7: Output: samples of {ξ} that converge to the posterior distribution.

The extra computation cost for our proposed accelerated HMC is the construction of

data-driven basis and training of the two neural networks to approximate the parameter-to-

solution map. Due to the intrinsic approximate low dimensional structure of the solution

(and its derivatives) of the forward elliptic model, the singular values of the data covari-

ance matrix decays very fast. So one only needs to approximate the space spanned by a

few leading singular vectors which can be computed efficiently using randomized SVD algo-

rithms as described in Section 4.3 (and more details in [28]). After significant model based

dimension reduction, a rather shallow and small neural network with simple structure and
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low dimension input and output is needed to approximate the parameter-to-solution map

well in practice. Hence, evaluation of the constructed parameter-to-solution map vs a full

computation of the forward elliptic PDE significantly reduces the computation cost in each

leap-frog step of the HMC dynamic after the burn-in stage. Moreover, our data and model

based dimension reduction captures the intrinsic low dimension structure of the underlying

problem with a data-driven basis and accuracy control (through the POD) that strikes a

good balance between computation efficiency (by dimension reduction and parameter-to-

solution approximation) and exploration efficiency (by proposing well decorrelated samples

with high acceptance rate), as demonstrated by numerical experiments in the next section.

6. Numerical Experiments and Results

In this section, we use numerical experiments to demonstrate the accuracy and efficiency

of accelerated HMC method for Bayesian inverse problems, with comparison to other state-

of-the-art methods, including the standard HMC method, and random network surrogate

method [36]. The Python codes are published on GitHub.1

We consider the elliptic inverse problem

−∇ ·
(
a(x, ω)∇u(x, ω)

)
= 0, x = (x1, x2) ∈ [0, 1]× [0, 1] (29)

with mixed boundary condition,

∂u(x, ω)

∂n
|x1=0,x1=1 = 0, u(x, ω)|x2=0 = x1, u(x, ω)|x2=1 = 1− x1. (30)

6.1. A log-normal coefficient with isotropic heterogeneity

In the first example, a Gaussian prior with zero mean and covariance function

c(x,x′) = σ2
a exp

(
− ||x− x′||22

2l2

)
(31)

is assumed on log(a(x, ω)), where x, x′ are any two points on [0, 1]×[0, 1], and the parameters

σ2
a and l denote the variance and the correlation length, respectively. The diffusion coefficient

is approximated via a truncated Karhunen-Loève (KL) expansion

log(a(x, ξ)) =
r∑
i=1

ξi
√
λivi(x), (32)

by r i.i.d. Gaussian random variables ξi, where ξ = (ξ1, ..., ξr), λi and vi(x), i = 1, 2, · · · , r
are eigenvalues and eigenfunctions of the prior covariance function (31). In this experiment,

we test the performance of the accelerated HMC algorithm 1 for different input random

dimensions, r = 25, 30, 35.

1https://github.com/LSijing/Bayesian-pde-inverse-problem.
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Suppose the observation y =
(
y1, y2, · · · , ym

)
is obtained by adding independent Gaussian

noise to the exact solutions at some measurable locations

yj = u(xj, ξ) + ηj, ηj ∼ N (0, σ2), j = 1, 2, · · · ,m. (33)

Our goal is to infer ξ and hence a(x, ξ) based on the observation data y. In the Bayesian

framework, the posterior on ξ is

pξ|y(ξ|y) ∝ py|ξ(y|ξ) · pξ(ξ)

∝ exp(− 1

2σ2
|y− u(x, ξ)|2) exp(−1

2
ξTξ), (34)

which is the target distribution. Thanks to an efficient approximation to the parameter-

to-solution map, the computation cost of u(x, ξ) and ∇ξu(x, ξ) is significantly reduced and

hence the computation of likelihood (34) and Hamiltonian dynamics (10) in accelerated

HMC is very fast. Moreover, as demonstrated later on, the acceptance rate and exploration

efficiency do not compromise much as a consequence of model and data based dimension

reduction. So the overall performance of the HMC method is enhanced significantly.

To generate the training data, the discretization is done on a uniform grid with 31× 31

points through triangle finite element basis functions. Suppose the measurements are placed

on 11 × 11 grids of the numerical solution u(x, ·), i.e. m = 121 in (33). We choose σ = 0.1

be the noise in the observation data (33), and σa = 0.5, l = 0.2 be parameters in the prior

covariance function (31).

The burn-in stage consists of 10000 steps of standard HMC, of which 9000 accepted

samples of solutions u and its derivatives ∂u
∂ξi
, i = 1, 2, . . . , r are collected during the burn-in

stage. These collected data are first used to construct a set of data-driven basis using POD

for dimension reduction. In our previous study [28], we found that a larger number of basis

functions are needed to approximate the derivatives of solution than those needed to approx-

imate the solution. Specifically, we construct K = 20 basis φ1(xj), φ2(xj), . . . , φK(xj), j =

1, 2, . . . ,m for the approximation of u and Ki = 40 basis φi1(xj), φ
i
2(xj), . . . , φ

i
Ki

(xj) for

the approximation each ∂u
∂ξi
, i = 1, 2, . . . , r. Once the data-driven basis are constructed, we

then use the collected data to train two neural networks to approximate the parameter-to-

solution map, one for ξ → c(ξ) which gives u(xj; ξ) =
∑K

k=1 ck(ξ)φk(xj), and another one

for ξ → (c1(ξ), c2(ξ) . . . , cr(ξ)) which gives
∂u(xj ;ξ)

∂ξi
=
∑Ki

k=1 c
i
k(ξ)φik(xj), i = 1, 2, . . . , r, as

described in Section 5. In our experiments, the first network has 4 hidden layers and 20

units within each hidden layer. The second network has the same structure except there are

40 hidden units in each hidden layer.

We specify the number of leap-frog steps in (10) to be 10, the step size ∆t = 0.16 for all

methods. Typically, we start sampling from the posterior after observing mixing. For the

standard HMC method and random network surrogate method [36], with which we compare,
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they share the same burn-in stage and starting point. We compute the relative error of the

posterior mean up to a computation time t by∣∣∣∣ 1
#{i:ti≤t}

∑
i:ti≤t ξi − Eξ|y(ξ)

∣∣∣∣
2∣∣∣∣Eξ|y(ξ)

∣∣∣∣
2

. (35)

The left column of Figure 1 plots the relative error of the posterior mean vs computation

time in log scale for standard HMC, random network surrogate method, and the proposed

accelerated HMC method for r = 25, 30, 35. We see significantly improved performance of

the proposed method. The right column of Figure 1 plots the corresponding acceptance rate

for the proposal by Hamiltonian dynamics for each method. As we can see, the significant

dimension reduction and the efficient neural network approximation of parameter-to-solution

map does not compromise the acceptance rate much. Moreover, acceptance rate maintains

high and stable as the input dimension increases for our model-based and data-driven ap-

proach. For the random network surrogate method, the surrogate of the Hamiltonian in

parameter space is based on least square approximation of sampled data, e.g, from burn-in

stage, using a set of random basis. Since this approach is purely data-driven without model

knowledge, to maintain the approximation accuracy, the number of random basis has to

increase with the dimension of the parameter space although the intrinsic dimension of the

underlying model remains the same. In this experiment, we fix the number of random basis

at 1000. As the input dimension increases, the approximation power of the surrogate using

fixed number of basis decreases and hence the approximation error becomes larger and the

acceptance rate drops quite sharply.

Table 1 shows the averaged time per each HMC iteration, averaged acceptance rate,

effective sample size (min, median, max), and time normalized effective sample size for each

method. The effective sample size is defined as

ESS = B[1 + 2
K∑
k=1

γ(k)]−1, (36)

where B is the number of MCMC samples and
∑K

k=1 γ(k) is the sum of K monotone sample

autocorrelations. It shows that our model-based and data-driven approach has a good bal-

ance between the computation efficiency and exploration efficiency and hence achieves the

best overall performance.

6.2. A log-normal coefficient with anisotropic heterogeneity

In the second example, a Gaussian prior with zero mean and covariance function

c(x,x′) = σ2
a exp

(
− |x1 − x

′
1|2

2l21
− |x2 − x

′
2|2

2l22

)
(37)
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Figure 1: Numerical results for the random coefficient with 25-, 30- and 35-dimensional inputs, where “hmc”,

“rns” and “data-driven” refer to the standard HMC method, the random network surrogate method and the

accelerated HMC method, respectively.
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Dimension Method AR s/Iter ESS min(ESS)/s med(ESS)/s

r = 25 hmc 0.91 1.27 (962 , 5000 , 5000) 0.15 0.79

rns 0.71 0.076 (1866 , 2518 , 3095) 4.91 6.63

data-driven 0.85 0.094 (3395 , 4307 , 4933) 7.22 9.16

r = 30 hmc 0.90 1.49 (1507 , 5000 , 5000) 0.20 0.67

rns 0.60 0.082 (1286 , 1659 , 2069) 3.14 4.05

data-driven 0.78 0.108 (2905 , 3414 , 4116) 5.38 6.32

r = 35 hmc 0.90 1.72 (2061 , 5000 , 5000) 0.24 0.58

rns 0.47 0.095 (597 , 968 , 1305) 1.26 2.04

data-driven 0.78 0.125 (2823 , 3445 , 4030) 4.52 5.51

Table 1: Comparisons of algorithms. The acceptance rate (AR), computational time for each iteration,

effective sample size (ESS) and time-normalized ESS are provided.

is assumed on log(a(x, ω)), where x = (x1, x2) and x′ = (x′1, x
′
2) are any two points on

[0, 1]× [0, 1], and l1 and l2 are the correlation lengths in x1 and x2. The diffusion coefficient

is approximated via a truncated Karhunen-Loève (KL) expansion as in (32), only with a

different prior covariance function (37).

To generate the training data, we solve the elliptic problem (29) with the same boundary

condition (30). The discretization is done on a uniform grid with 65 × 65 points through

triangle finite element basis functions. We choose the number of truncated KL modes r = 30,

σ = 0.1 be the noise in the observation data (33), and σa = 0.5, l1 = 0.08 and l2 = 0.4 in the

prior covariance function (37). All other settings are the same as in Section 6.1. Suppose

the measurements are placed on 17× 17 grids of the numerical solution u(x, ·), i.e. m = 289

in (33). We now infer the log-normal coefficient log(a(x, ξ)) based on the observation data.

To illustrate that our method indeed converges to the right target distribution, Figure

2 provides the one- and two- dimensional posterior marginals of some selected parameters

obtained by standard HMC and the accelerated HMC. Figure 3 shows the posterior mean

and posterior standard deviation obtained by the standard HMC method and the acceler-

ated HMC method, respectively. The relative errors of the posterior mean and posterior

standard deviation are 0.047 and 0.024. Therefore, with the accelerated HMC method, we

can significantly reduce the computation cost (by almost an order of magnitude in this case)

while maintaining the approximation accuracy of the standard HMC.

Finally, we compare the partial derivatives ∂u(x,ξ)
∂ξ1

and ∂u(x,ξ)
∂ξ2

at the approximate MAP

state obtained via standard HMC method and the accelerated HMC method in Figure 4.

The relative errors of ∂u(x,ξ)
∂ξ1

and ∂u(x,ξ)
∂ξ2

are 0.013 and 0.019, respectively. We also examine

the relative errors at ten posterior sample of ξ and the result is presented in Table 2. These

results demonstrate the effectiveness of our intrinsic low dimensional data-driven basis on

providing fast and accurate gradient approximations for accelerating Hamiltonian dynamics.
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∂u(x,ξ)
∂ξ1

0.032 0.014 0.036 0.054 0.016 0.021 0.032 0.103 0.028 0.018
∂u(x,ξ)
∂ξ2

0.064 0.055 0.022 0.045 0.024 0.037 0.043 0.067 0.080 0.032

Table 2: relative errors between the exact solution and the data-driven approximation at ten random samples

from the posterior of ξ.
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(b) The accelerated HMC method.

Figure 2: Comparing one- and two-dimensional posterior marginals of ξ2, ξ4, ξ7, ξ9, ξ13.

7. Conclusion

The HMC method can generate less correlated proposals with high acceptance probabili-

ties, which greatly improves the performance of the MCMC methods in solving Bayesian

inverse problems. However, when applying the HMC method to solve a Bayesian inverse

problem modeled by elliptic partial differential equations, one needs to compute solution to

the elliptic PDEs and their derivatives repeatedly in order to generate data and evaluate the

Hamiltonian, which makes the HMC method extremely expensive.

By exploiting the intrinsic low-dimensional structures of the underlying model and con-

structing a data-driven basis, our proposed method achieves significant dimension reduction

in the solution space. Then, equipped with the data-driven basis, neural networks are trained

as efficient approximations of the parameter-to-solution maps, which significantly reduce the

computation cost in obtaining the PDE solution and its derivatives for the Hamiltonian

dynamics in proposing a new sample. Through numerical tests, we demonstrate that our

method strikes a good balance between computation efficiency and exploration efficiency and
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Figure 3: Posterior statistics obtained by standard HMC and accelerated HMC.
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Figure 4: Partial derivative of u(x, ξ) with respect to ξ1 and ξ2.

20



provides an effective data and model-based approach for elliptic Bayesian inverse problems.
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