
An iterative algorithm for POD basis adaptation in solving

parametric convection-diffusion equations

Zhizhang Wua, Zhiwen Zhanga,∗

aDepartment of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Abstract

In this paper, we develop an iterative algorithm for proper orthogonal decomposition (POD)

basis adaptation in solving linear parametric PDEs. Specifically, we consider the convection-

diffusion equations with the diffusivity as a parameter. To construct POD basis functions for

the convection-diffusion equation with a small diffusivity, we need a fine-grid solver to obtain

accurate solution snapshots, which leads to a large amount of computation and memory costs.

Meanwhile, a coarse-grid solver is sufficient for obtaining high-resolution snapshots of a large

diffusivity. We aim to adapt the POD basis functions extracted from the solution snapshots of

a large diffusivity for the construction of a reduced-order model at a small diffusivity without

resorting to a fine-grid solver. Our POD basis adaptation method exploits the implicit

dependence of solutions on the diffusivity. The POD basis functions are adapted through an

iterative algorithm, where the full-order model simulation at a large diffusivity and the POD-

based reduced-order model simulation at a small diffusivity are implemented, alternatively.

We also provide convergence analysis for our POD basis adaptation method. The algorithm

and convergence analysis can be generalized to other types of linear parametric PDEs without

any difficulty. Finally, we present numerical results to demonstrate the performance and

accuracy of the proposed method. We find that a coarse-grid solver combined with the

iterative process can achieve an accurate reduced-order model at a small diffusivity.

AMS subject classification: 35B30, 65M12, 65N50, 76R99, 78M34.

Keywords: Convection-diffusion equations; model reduction; basis adaptation; proper or-

thogonal decomposition (POD) method; iterative algorithm.

1. Introduction

Numerical simulations play an important role in studying complex physical phenomena which

are usually modeled by parametric partial differential equations. The simulations become

more computationally costly with the growing need for modeling more complicated phenom-

ena and including more details in the models. In many applications, multiple simulations

of the underlying model are needed, which leads to even greater computational burdens.
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A powerful tool to alleviate this computational burden and enhance efficiency is model re-

duction [8, 9, 28]. Model reduction seeks for the original underlying system an intrinsic

low-dimensional surrogate model which can be efficiently simulated but still yields high ac-

curacy. During the past few decades, model reduction has been widely applied in different

fields [6, 15, 17, 20, 22, 27, 29, 33]. Many basis generation techniques of model reduction

have been developed, including rational interpolation methods [6, 23], balanced truncation

methods [4, 7], proper orthogonal decomposition methods [44, 47], etc.

The proper orthogonal decomposition (POD) method is one of the most commonly used

techniques of model reduction and has been applied in many problems [1, 5, 10, 11, 31,

34]. For parametric evolutionary PDEs, the POD method takes solutions of some certain

parameters at a series of time instances and their finite difference quotients as inputs and

returns an ordered set of orthogonal basis functions that best approximates the input data

in the least square sense. The reduced-order model is obtained by truncating the optimal

basis functions. The error estimate of the POD methods for the parabolic equation is shown

in [32] and the high accuracy of the method can be obtained if an adequate number of

basis functions are selected. However, if the parameter changes into a different value in

the subsequent simulations, a direct application of the pre-constructed reduced-order model

would probably result in a totally wrong solution. Hence the study of basis adaptation has

been one of the most important problems in model reduction, which is also our focal point

in this paper.

A natural idea of adaptive model reduction is interpolation between the pre-constructed

reduced-order models to construct a reduced-order model for the new parameter [2, 16,

37, 49]. The localization approaches [3, 12, 18, 19, 40] pre-build a number of reduced-

order models and select one of them in the online stage, depending on the current state

of the system. We also have dictionary approaches [35], which pre-compute many basis

vectors and then construct a reduced space online from a subset of them. All of the above

mentioned methods rely on pre-computed quantities. Another way of basis adaptation is

to incorporate observations of the new parameter. The updates of the reduced-order model

based on new data are usually low-rank [41]. In [42], an adaptive DEIM using the sparse data

from nonlinear terms is derived for nonlinear problems. The adaptation can also be done

by updating the reduced subspace from a geometric perspective [50] with new information

that is unavailable in the offline phase. There are also a class of adaptive methods that

aims to improve the reduced-order model in an iterative manner, in which one may update

the reduced bases by subspace iteration [43], enrich the bases using a greedy search with a

posterior error estimate [36, 39], or improve the bases by h-refinement [13]. This type of

methods has been widely applied in inverse problems [14, 24], optimization [25, 48], etc.

In this paper, we propose a new idea of POD basis adaptation for the computation of

linear parametric PDEs, where we exploit the implicit dependence of the solutions on the

parameter. To demonstrate the idea, we consider the following convection-diffusion equation

with the diffusivity as the parameter

∂tu+ b · ∇u− κ∆u = f, x ∈ Ω ⊂ Rd, t ∈ [0, T ]. (1)
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It is well known that the interior layer or the boundary layer would appear in the solution and

become sharper as the diffusivity becomes small [38]. Hence more complicated schemes and

finer meshes are needed to obtain an accurate solution at a small diffusivity. In other words,

the full-order model simulation at a small diffusivity is more computationally expensive than

that at a large diffusivity. We consider the case where the full-order model simulation at a

small diffusivity is too costly to perform and no new observation data are available. Thus

we aim to adapt the POD basis functions constructed from solution snapshots of a large

diffusivity κ1 for the construction of an accurate reduced-order model at a small diffusivity

κ2 without resorting to the full-order model simulation at κ2.

We find that the difference of solutions of these two parameters satisfies a convection-

diffusion equation with κ1 as the diffusivity. Hence the adaptation proceeds by iteratively

applying the full-order model simulation at κ1 and the POD reduced-order model simulation

at κ2. We also study the convergence analysis of the proposed iterative algorithm. The algo-

rithm and its corresponding convergence analysis can be generalized to other types of linear

parametric evolutionary problems without any difficulty. This idea of POD basis adapta-

tion is particularly useful for constructing a reduced-order model for singularly perturbed

problems when the full-order model simulation at a small parameter is prohibitively costly.

Several numerical experiments are presented and show that our algorithm is effective. And

convergence to an accurate reduced-order model is observed. Hence the combination of a

coarse-grid solver and the iterative algorithm is able to construct an accurate reduced-order

model at a small diffusivity, the direct construction of which needs a fine-grid solver for the

computation of snapshots.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminar-

ies on the POD method. Then we propose the iterative algorithm for POD basis adaptation

in Section 3. We provide the convergence analysis of our iterative algorithm in Section 4.

Several numerical experiments are presented in Section 5. Finally, concluding remarks are

given in Section 6.

2. Preliminaries

To make this paper self-contained, in this section we give a brief review of the POD method,

including the construction of the POD basis functions and POD-based Galerkin method for

solving evolutionary problems.

2.1. POD method

Let X be a real Hilbert space endowed with the inner product (·, ·)X and norm ‖ · ‖X .

Throughout the rest of this paper, (·, ·) denotes the L2 inner product. Given the snapshots

y1, y2, . . . , ym ∈ X, the POD method aims to find an set of orthogonal basis functions {ψi}`i=1

that optimally approximates the snapshots {yi}mi=1 in the X-norm sense. That is, {ψi}`i=1 is
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the solution to the following constrained optimization problem:

min
{ψk}`k=1

m∑
j=1

‖yj −
∑̀
k=1

(yj, ψk)Xψk‖2
X ,

s.t. (ψi, ψj)X = δij, i, j = 1, . . . , `.

(2)

To solve the problem (2), the method of snapshots [45] introduces a correlation matrix K

corresponding to the snapshots with entries

Ki,j = (yi, yj)X , i, j = 1, . . . ,m. (3)

Then K is semi-positive-definite. Let λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 be the sorted eigenvalues of K

in the descending order and ϕ1, . . . , ϕm be the associated eigenvectors. Assume that λ` > 0.

Then the basis can be constructed as

ψk =
1√
λk

m∑
j=1

(ϕk)jyj, (4)

where (ϕk)j is the j-th element of ϕk and k = 1, . . . , `. Moreover, the approximation error is

m∑
j=1

‖yj −
∑̀
k=1

(yj, ψk)Xψk‖2
X =

m∑
k=`+1

λk. (5)

In practice, the number of basis functions ` is usually not pre-chosen. A typical way to

determine ` is to choose the smallest ` such that∑`
k=1 λk∑m
k=1 λk

≥ 1− ε (6)

for some small ε > 0.

2.2. POD approximations of evolutionary problems

Assume that u ∈ H1
0 (Ω) is the solution to the following weak formulation of an evolutionary

problem
(∂tu, ψ)− a(u, ψ) = (f, ψ), ∀ψ ∈ H1

0 (Ω), t ∈ [0, T ],

u|t=0 = g,
(7)

where Ω ⊂ Rd and a(·, ·) is a bilinear form on H1
0 (Ω) × H1

0 (Ω). Given a set of solutions at

different time instances {u(·, t0), u(·, t1), . . . , u(·, tm)} where tk = k∆t with ∆t = T
m

, the POD

basis functions {ψk}`k=1 are built from the ensemble {y1, . . . , ym+1, ym+2, . . . , y2m+1}, where

yk = u(·, tk−1), k = 1, . . . ,m+ 1, (8)

yk = ∂u(·, tk−m−1), k = m+ 2, . . . , 2m+ 1, (9)
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with

∂u(·, tk) =
u(·, tk)− u(·, tk−1)

∆t
, k = 1, . . . ,m. (10)

The POD basis functions are obtained by choosing X = H1(Ω) and the approximation errors

are
m∑
j=0

‖u(tj)−
∑̀
k=1

(u(tj), ψk)H1ψk‖2
H1 ≤

2m+1∑
k=`+1

λk, (11)

and
m∑
j=1

‖∂u(tj)−
∑̀
k=1

(∂u(tj), ψk)H1ψk‖2
H1 ≤

2m+1∑
k=`+1

λk, (12)

where λ1 ≥ λ2 ≥ . . . ≥ λ2m+1 ≥ 0 are the sorted eigenvalues of the correlation matrix K

corresponding to the input data {y1, . . . , ym+1, ym+2, . . . , y2m+1} with entries

Kij = (yi, yj)H1 , i, j = 1, . . . , 2m+ 1.

Let Ψ = span{ψ1, . . . , ψ`}. The semi-discrete scheme of the POD-based Galerkin method

seeks a solution ũ(t) such that ũ(t) ∈ Ψ, ∀t ∈ [0, T ] and

(∂tũ, ψ)− a(ũ, ψ) = (f, ψ), ∀ψ ∈ Ψ, t ∈ [0, T ],

ũ|t=0 = g̃,
(13)

where g̃ is some projection of g in Ψ. The fully discrete scheme of the POD-based Galerkin

method can be obtained by combining (13) with a finite difference scheme in temporal dis-

cretization, e.g. the Backward Euler scheme or the Crank-Nicolson scheme.

3. An iterative algorithm for POD basis adaptation

3.1. Problem formulation

We consider the convection-diffusion equation with zero boundary conditions

∂tu+ b · ∇u− κ∆u = f, x ∈ Ω ⊂ Rd, t ∈ [0, T ],

u|∂Ω = 0, u|t=0 = g,
(14)

where the velocity field b is divergence-free, i.e. ∇ · b = 0 and b, f , and g are sufficiently

smooth. We define the bilinear form a(ϕ, ψ;κ) = (b · ∇ϕ, ψ) + κ(∇ϕ,∇ψ) for any ϕ, ψ ∈
H1

0 (Ω). Let κ1 > κ2 > 0 be fixed. Without loss of generality, we assume that 1 ≥ κ1 > κ2 > 0.

Then let uj be the solution to (14) with κ = κj for j = 1, 2. Let m be a fixed integer and

∆t = T/m, tk = k∆t for k = 0, 1, . . . ,m. For any ordered set {c0, c1, . . . , cm}, we define the

finite difference quotient operator ∂ as

∂ck =
ck − ck−1

∆t
,

where k = 1, . . . ,m. Assume that Vh ⊂ H1
0 (Ω) is the first-order conforming finite element

space associated with a quasi-uniform and shape-regular simplicial finite element mesh Th
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of Ω with mesh size h. Then let {ûj,0, ûj,1, . . . , ûj,m} ⊂ Vh be the backward-Euler-type

approximation of uj in Vh, i.e. ûj,k ∈ Vh satisfies

(∂ûj,k, ψ) + a(ûj,k, ψ;κj) = (f(tk), ψ), ∀ψ ∈ Vh,
ûj,0 = g̃,

(15)

for j = 1, 2 and k = 1, . . . ,m, where g̃ is some projection of g in Vh. Using standard

arguments of FEM [46], we can prove that there exists a constant C independent of ∆t and

h such that for j = 1, 2,

1

m

m∑
k=1

‖ûj,k − uj(tk)‖2
H1 ≤ C(∆t2 + h2). (16)

Our goal is to adapt the POD basis functions built from {û1,0, . . . , û1,m, ∂û1,1, . . . , ∂û1,m}
to a set of POD basis functions that are able to approximate {û2,0, . . . , û2,m} and hence

{u2(t0), . . . , u2(tm)} well. The adaptation will be based on the dependence of the solution

on the diffusivity κ, without resorting to a fine-grid solver for the small diffusivity κ2.

3.2. The implementation of the iterative algorithm

Let w = u1 − u2. Then w satisfies

∂tw + b · ∇w − κ1∆w = (κ1 − κ2)∆u2, x ∈ Ω, t ∈ [0, T ],

w|∂Ω = 0, w|t=0 = 0.
(17)

Hence if an approximation for u2 from the current reduced-order model is available, an

approximation for w can be computed using the full-order model simulation of (17) with

the diffusivity κ = κ1. Then a new set of POD basis functions can be constructed from

v = u1 − w. The new POD basis functions are expected to yield better approximations for

u2. Therefore, it is expected that the POD approximation computed by the newest POD

basis functions can approximate u2 with progressively higher accuracy through an iterative

process.

We propose the following iterative algorithm of POD basis adaptation. Let U
(i)
k be the

POD approximation for û2,k at iteration i and U (i) = [U
(i)
0 , . . . , U

(i)
m ]. The algorithm can be

summarized as follows:
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Algorithm 1 Iterative POD basis adaptation

1: Step 1: Set i = 1 and U
(0)
k = 0 for k = 0, 1, . . . ,m.

2: Step 2: Solve the full-order model simulation at κ1 for the Galerkin approximation

w
(i)
k ∈ Vh that satisfies

(∂w
(i)
k , ψ) + a(w

(i)
k , ψ;κ1) = −(κ1 − κ2)(∇U (i−1)

k ,∇ψ), ∀ψ ∈ Vh,

w
(i)
0 = 0,

(18)

for k = 1, . . . ,m.

3: Step 3: Set v
(i)
k = û1,k − w

(i)
k and extract POD basis functions {ψ(i)

k }`
(i)

k=1 from

{y(i)
1 , . . . , y

(i)
m+1, y

(i)
m+2, . . . , y

(i)
2m+1}, where

y
(i)
k = v

(i)
k−1, k = 1, . . . ,m+ 1, (19)

y
(i)
k = ∂v

(i)
k−m−1, k = m+ 2, . . . , 2m+ 1. (20)

The number of POD basis functions `(i) is determined by choosing the smallest `(i) such

that ∑`(i)

k=1 λ
(i)
k∑2m+1

k=1 λ
(i)
k

≥ 1− ε

for some ε > 0, where λ
(i)
1 ≥ λ

(i)
2 ≥ . . . ≥ λ

(i)
2m+1 ≥ 0 are the sorted eigenvalues of the

correlation matrix K(i) corresponding to the input data {y(i)
1 , . . . , y

(i)
m+1, y

(i)
m+2, . . . , y

(i)
2m+1}

with entries

K
(i)
j,k = (y

(i)
j , y

(i)
k )H1 , j, k = 1, . . . , 2m+ 1. (21)

4: Step 4: Set V (i) = span{ψ(i)
1 , . . . , ψ

(i)

`(i)
} ⊂ Vh and solve the reduced-order model simula-

tion at κ2 for the POD-Galerkin approximation U
(i)
k ∈ V (i) that satisfies

(∂U
(i)
k , ψ) + a(U

(i)
k , ψ;κ2) = (f(tk), ψ), ∀ψ ∈ V (i),

U
(i)
0 = U

(i)
0 ,

(22)

for k = 1, . . . ,m.

5: Step 5: Set i = i+ 1 and go back to Step 2 until a certain criterion is reached.

Remark 3.1. In Step 4, the choice of initial data U
(i)
0 will be discussed later.

Remark 3.2. In our numerical experiment, we stop the iteration when the number of iter-

ations reaches a pre-set value.
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4. Convergence analysis of the algorithm

4.1. Some preparations

We begin by fixing some notations. Throughout this section, we still use all the notations

and quantities that are introduced in Section 3. We let N+ = N\{0}. We also define a Ritz

projection at each iteration i, denoted by P (i), such that ∀ϕ ∈ H1
0 (Ω), P (i)ϕ ∈ V (i) and

a(ϕ, ψ;κ2) = a(P (i)ϕ, ψ;κ2), ∀ψ ∈ V (i). (23)

For any ϕ ∈ H1
0 (Ω), we have by the Poincaré inequality

‖ϕ‖2
L2 ≤ CP‖∇ϕ‖2

L2 , (24)

where the constant CP is dependent on the region Ω and the dimension d. The notation CP
is reserved for the constant of Poincaré inequality throughout this section. And we have the

following lemma.

Lemma 4.1. For 1 ≥ κ1 > κ2 > 0 fixed and any ϕ, ψ ∈ H1
0 (Ω), there exist a constant β > 0

independent of κ1, κ2 such that for j = 1, 2,

|a(ϕ, ψ;κj)| ≤ β‖ϕ‖H1‖ψ‖H1 . (25)

Let αj =
κj

1+CP
. Then it holds true for any ϕ ∈ H1

0 (Ω) that

|a(ϕ, ϕ;κj)| ≥ αj‖ϕ‖2
H1 . (26)

Proof. For 1 ≥ κ1 > κ2 > 0 and any ϕ, ψ ∈ H1
0 (Ω), by the smoothness assumption of b,

there exists β > 0 independent of κ1, κ2 such that for j = 1, 2,

|a(ϕ, ψ;κj)| ≤ β‖ϕ‖H1‖ψ‖H1 . (27)

By the Poincaré inequality and the fact that ∇ · b = 0, we obtain that

|a(ϕ, ϕ;κj)| = κj‖∇ϕ‖2
L2 ≥

κj
1 + CP

‖ϕ‖2
H1 , j = 1, 2. (28)

The proof is completed.

The constants β, α1, α2 are also fixed for this section.

4.2. Convergence of the algorithm

We study the convergence analysis of the iterative algorithm by estimating 1
m

∑m
k=1 ‖U

(i)
k −

u2(tk)‖2
H1 . To do so, we decompose it as

1

m

m∑
k=1

‖U (i)
k − u2(tk)‖2

H1 ≤
2

m

m∑
k=1

‖U (i)
k − û2,k‖2

H1 +
2

m

m∑
k=1

‖û2,k − u2(tk)‖2
H1 . (29)
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We only need to estimate the iteration error 1
m

∑m
k=1 ‖U

(i)
k − û2,k‖2

H1 , since the estimate of
1
m

∑m
k=1 ‖û2,k − u2(tk)‖2

H1 has been given in (16). We decompose the term 1
m

∑m
k=1 ‖U

(i)
k −

û2,k‖2
H1 as

1

m

m∑
k=1

‖U (i)
k − û2,k‖2

H1 ≤
3

m

m∑
k=1

(
‖U (i)

k − P
(i)v

(i)
k ‖

2
H1 + ‖P (i)v

(i)
k − v

(i)
k ‖

2
H1 + ‖v(i)

k − û2,k‖2
H1

)
.

(30)

The estimation of 1
m

∑m
k=1 ‖U

(i)
k − û2,k‖2

H1 will be done by analysing each term in (30),

separately.

From the result by Kunisch and Volkwein [32], we have the following lemma for the second

term in (30).

Lemma 4.2. It holds true for every i ∈ N+ that

1

m

m∑
k=1

‖P (i)v
(i)
k − v

(i)
k ‖

2
H1 ≤

3β

mα2

2m+1∑
k=`(i)+1

λ
(i)
k =

3β(1 + CP )

mκ2

2m+1∑
k=`(i)+1

λ
(i)
k . (31)

The following corollary of Lemma 4.2 is also given in [32].

Corollary 4.1. It holds true for every i ∈ N+ that

1

m

m∑
k=1

‖P (i)∂v
(i)
k − ∂v

(i)
k ‖

2
H1 ≤

3β

mα2

2m+1∑
k=`(i)+1

λ
(i)
k =

3β(1 + CP )

mκ2

2m+1∑
k=`(i)+1

λ
(i)
k . (32)

For the third term in (30), we have the following estimate.

Lemma 4.3. It holds true for every i ∈ N+ that

1

m

m∑
k=1

‖v(i)
k − û2,k‖2

H1 ≤ (1 + CP )
(κ1 − κ2)2

κ2
1

1

m

m∑
k=1

‖U (i−1)
k − û2,k‖2

H1 . (33)

Proof. Let r
(i)
k = v

(i)
k − û2,k. Then by (15), (18) and (22), r

(i)
0 = 0 and r

(i)
k satisfies

(∂r
(i)
k , ψ) + a(r

(i)
k , ψ;κ1) = (κ1 − κ2)(∇(U

(i−1)
k − û2,k),∇ψ), ∀ψ ∈ Vh, (34)

for k = 1, . . . ,m. Taking ψ = r
(i)
k , we have by the proof of Lemma 4.1

(∂r
(i)
k , r

(i)
k ) + κ1(∇r(i)

k ,∇r
(i)
k ) = (κ1 − κ2)(∇(U

(i−1)
k − û2,k),∇r(i)

k ). (35)

Since

∆t(∂r
(i)
k , r

(i)
k ) =

1

2

(
‖r(i)

k ‖
2
L2 − ‖r(i)

k−1‖
2
L2 + ‖r(i)

k − r
(i)
k−1‖

2
L2

)
≥ 1

2

(
‖r(i)

k ‖
2
L2 − ‖r(i)

k−1‖
2
L2

)
(36)

and by Young’s inequality

(κ1 − κ2)
(
∇(U

(i−1)
k − û2,k),∇r(i)

k

)
≤ κ1

2
‖∇r(i)

k ‖
2
L2 +

(κ1 − κ2)2

2κ1

‖∇(U
(i−1)
k − û2,k)‖2

L2 , (37)
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then

‖r(i)
k ‖

2
L2 − ‖r(i)

k−1‖
2
L2 + ∆tκ1‖∇r(i)

k ‖
2
L2 ≤ ∆t

(κ1 − κ2)2

κ1

‖∇(U
(i−1)
k − û2,k)‖2

L2 . (38)

Summation over k = 1, . . . ,m gives

κ1
1

m

m∑
k=1

‖∇r(i)
k ‖

2
L2 ≤

(κ1 − κ2)2

κ1

1

m

m∑
k=1

‖∇(U
(i−1)
k − û2,k)‖2

L2 . (39)

The Poincaré inequality indicates that

1

m

m∑
k=1

‖r(i)
k ‖

2
H1 ≤ (1 + CP )

(κ1 − κ2)2

κ2
1

1

m

m∑
k=1

‖∇(U
(i−1)
k − û2,k)‖2

L2

≤ (1 + CP )
(κ1 − κ2)2

κ2
1

1

m

m∑
k=1

‖U (i−1)
k − û2,k‖2

H1 . (40)

Now we turn to the remaining term in (30).

Lemma 4.4. It holds true for every i ∈ N+ that

1

m

m∑
k=1

‖U (i)
k − P

(i)v
(i)
k ‖

2
H1 ≤

1 + CP
κ2T

‖U (i)
0 − P (i)g̃‖2

L2 +
3β(1 + CP )3

mκ3
2

2m+1∑
k=`(i)+1

λ
(i)
k

+M(κ1 − κ2)2 1

m

m∑
k=1

‖U (i−1)
k − û2,k‖2

H1 ,

(41)

where

M =
2(1 + CP )2

κ2
2

(
(1 + CP )

(κ1 − κ2)2

κ2
1

+ 1

)
. (42)

Proof. Let ρ
(i)
k = U

(i)
k − P (i)v

(i)
k . Then by (15), (18), (22) and the definition of P (i) (23), for

any ψ ∈ V (i),

(∂ρ
(i)
k , ψ) + a(ρ

(i)
k , ψ;κ2)

=(∂U
(i)
k , ψ) + a(U

(i)
k , ψ;κ2)− (∂P (i)v

(i)
k , ψ)− a(P (i)v

(i)
k , ψ;κ2)

=(f(tk), ψ)− (∂P (i)v
(i)
k , ψ)− a(v

(i)
k , ψ;κ1) + a(v

(i)
k , ψ;κ1)− a(v

(i)
k , ψ;κ2)

=(ξ
(i)
k , ψ) + (κ1 − κ2)(z

(i)
k ,∇ψ),

(43)

where ξ
(i)
k = ∂v

(i)
k − ∂P (i)v

(i)
k and z

(i)
k = ∇v(i)

k − ∇U
(i−1)
k . Let ψ = ρ

(i)
k and by the Young’s

inequality, we have

(κ1 − κ2)(z
(i)
k ,∇ρ

(i)
k ) ≤ κ2

2(1 + CP )
‖∇ρ(i)

k ‖
2
L2 +

(κ1 − κ2)2(1 + CP )

2κ2

‖z(i)
k ‖

2
L2 , (44)

10



(ξ
(i)
k , ρ

(i)
k ) ≤ κ2

2(1 + CP )
‖ρ(i)

k ‖
2
L2 +

1 + CP
2κ2

‖ξ(i)
k ‖

2
L2 . (45)

Hence by Lemma 4.1, we have

‖ρ(i)
k ‖

2
L2 − ‖ρ(i)

k−1‖
2
L2 + ∆t

κ2

1 + CP
‖ρ(i)

k ‖
2
H1 ≤ ∆t

1 + CP
κ2

(
‖ξ(i)

k ‖
2
L2 + (κ1 − κ2)2‖z(i)

k ‖
2
L2

)
. (46)

Summation over k = 1, . . . ,m gives

∆t
κ2

1 + CP

m∑
k=1

‖ρ(i)
k ‖

2
H1 ≤ ‖ρ(i)

0 ‖2
L2 + ∆t

1 + CP
κ2

m∑
k=1

(
‖ξ(i)

k ‖
2
L2 + (κ1 − κ2)2‖z(i)

k ‖
2
L2

)
. (47)

By Corollary 4.1,

1

m

m∑
k=1

‖ξ(i)
k ‖

2
L2 =

1

m

m∑
k=1

‖∂v(i)
k − ∂P

(i)v
(i)
k ‖

2
L2 ≤

3β(1 + CP )

mκ2

2m+1∑
k=`(i)+1

λ
(i)
k . (48)

Furthermore by Lemma 4.3,

1

m

m∑
k=1

‖z(i)
k ‖

2
L2 =

1

m

m∑
k=1

‖∇v(i)
k −∇U

(i−1)
k ‖2

L2

≤ 2

m

m∑
k=1

(‖∇v(i)
k −∇û2,k‖2

L2 + ‖∇U (i−1)
k −∇û2,k‖2

L2)

≤ 2

(
(1 + CP )

(κ1 − κ2)2

κ2
1

+ 1

)
1

m

m∑
k=1

‖U (i−1)
k − û2,k‖2

H1 .

(49)

Hence we obtain the lemma by combining (47), (48) and (49).

To sum up, we have

Theorem 4.1. It holds true for every i ∈ N+ that

1

m

m∑
k=1

‖U (i)
k − û2,k‖2

H1 ≤ γ1‖U (i)
0 − P (i)g̃‖2

L2 +γ2

2m+1∑
k=`(i)+1

λ
(i)
k + γ3

1

m

m∑
k=1

‖U (i−1)
k − û2,k‖2

H1 ,

(50)

where

γ1 =
3(1 + CP )

κ2T
, (51)

γ2 =
9β(1 + CP )3

mκ3
2

+
9β(1 + CP )

mκ2

, (52)

γ3 = 3(1 + CP )
(κ1 − κ2)2

κ2
1

+ 6

(
(1 + CP )

(κ1 − κ2)2

κ2
1

+ 1

)
(1 + CP )2(κ1 − κ2)2

κ2
2

. (53)

Proof. The proof can be easily done by using (30) and Lemmas 4.2, 4.3 and 4.4.
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By combining Theorem 4.1 and the estimate (16), we have the following convergence

result.

Theorem 4.2. Let u2 be the solution to (14) with κ = κ2 and tk = k∆t with ∆t = T/m for

k = 1, . . . ,m. Assume that in each iteration i of Algorithm 1, we choose U
(i)
0 = P (i)g̃ and

1
m

∑2m+1
k=`(i) λ

(i)
k < δ for some small δ > 0, and obtain U

(i)
k as the numerical approximation of

u2(tk) for k = 1, . . . ,m. Let γ1, γ2, γ3 be defined as in Theorem 4.1. Then if γ3 < 1, there

exists a constant C independent of ∆t, h, δ such that

lim
i→∞

1

m

m∑
k=1

‖U (i)
k − u2(tk)‖2

H1 ≤ C(∆t2 + h2 + δ). (54)

Proof. We have the decomposition (29)

1

m

m∑
k=1

‖U (i)
k − u2(tk)‖2

H1 ≤
2

m

m∑
k=1

‖U (i)
k − û2,k‖2

H1 +
2

m

m∑
k=1

‖û2,k − u2(tk)‖2
H1

and the estimate (16)

1

m

m∑
k=1

‖û2,k − u2(tk)‖2
H1 ≤ C(∆t2 + h2),

where C is independent of ∆t, h, δ. For 1
m

∑m
k=1 ‖U

(i)
k − u2(tk)‖2

H1 , if the conditions are

satisfied,
1

m

m∑
k=1

‖U (i)
k − u2(tk)‖2

H1 ≤ γ2δ + γ3
1

m

m∑
k=1

‖U (i−1)
k − û2,k‖2

H1

≤ γ2
1− γi3
1− γ3

δ + γi3
1

m

m∑
k=1

‖U (0)
k − û2,k‖2

H1 .

(55)

Hence if γ3 < 1, there exists a constant C independent of ∆t, h, δ such that

lim
i→∞

1

m

m∑
k=1

‖U (i)
k − u2(tk)‖2

H1 ≤ C(∆t2 + h2 + δ). (56)

We choose the initial data U
(i)
0 = P (i)g̃ at Step 4 in Algorithm 1 as the error arising from

the approximation of initial data would disappear.

Remark 4.1. To ensure γ3 < 1, |κ1 − κ2| needs to be small. However, our numerical

experiments show that the algorithm still converges when κ1−κ2
κ2

is large. The derivation of a

sharper error bound for this iterative algorithm is our focal point in the near future.
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If we consider the convection-diffusion equation (14) with periodic boundary conditions

and a spatially periodic velocity field b, then we consider û = u − ū, where ū is the spatial

mean

ū(t) =
1

|Ω|

∫
Ω

u(t, x)dx. (57)

The Poincaré inequality still applies to û and hence the subsequent convergence analysis also

applies. A similar treatment can be found in [26]. Therefore, we can still obtain the conver-

gence result for the iterative algorithm of POD basis adaptation in solving the convection-

diffusion equation (14) with periodic boundary conditions. We will show numerical results

to confirm this case in the next section.

5. Numerical experiments

In this section, we show several numerical examples to demonstrate the convergence of our

iterative algorithm. The relative errors at final time T are considered. We consider the L2

relative error

eL2 =
‖U (N)(T )− u2(T )‖L2

‖u2(T )‖L2

(58)

and the H1 relative error

eH1 =
‖U (N)(T )− u2(T )‖H1

‖u2(T )‖H1

, (59)

where u2 is the reference solution of the small diffusivity κ2 and U (N) is the numerical solution

with N as the number of iteration.

5.1. Verification of the convergence

Example 5.1. Consider a one-dimensional convection-diffusion equation

∂

∂t
u+

∂

∂x
u− κ ∂

2

∂x2
u = 0, x ∈ (0, 1), t ∈ [0, T ],

u(t, 0) = u(t, 1) = 0, u(0, x) = −x2 + x

(60)

where we choose T = 1 and κ1 = 0.1, κ2 = 0.01.

Let Solver 1 be the Crank-Nicolson finite volume method with ∆x = 1/400 and ∆t =

1/1000, Solver 2 be the combination of fifth-order WENO scheme [30] for first-order spatial

derivatives, central difference scheme for the spatial laplacian and third-order Runge-Kutta

method in temporal discretization with ∆x = 1/800 and ∆t = 1/16000. The reference

solution u1 of κ1 is computed using Solver 1 and the reference solution u2 of κ2 is computed

using Solver 2.

For the iterative POD basis adaptation algorithm, 1001 solution snapshots at tj = j
1000

,

j = 0, 1, . . . , 1000 and their finite difference quotients are used in each iteration. The number

of POD basis functions is chosen according to the smallest `(i) such that
∑`(i)

k=1 λ
(i)
k∑2m+1

k=1 λ
(i)
k

> 1 − ε
with m = 1000 and ε = 10−7. In each iteration, backward-Euler POD Galerkin method with

∆t = 1/1000 is applied for POD approximation and Solver 1 is applied for the full-order

model simulation. The iteration is stopped when the iteration number reaches N = 50.

13



The solutions at different iterations are shown in Figure 1 and the relative errors at

T = 1 in the iteration process are shown in Figure 2. The relative errors of U (50) at T = 1

are eL2 = 3.679e − 2 and eH1 = 2.951e − 2. It can be seen from Figure 1 that the reduced-

order model approximation using basis functions extracted from u1, i.e. U (1), does not

recover u2 and hence a direct application of the pre-constructed reduced-order model can

probably lead to an incorrect approximation if the parameter changes into a different value

in the simulation. And we can also see from Figures 1 and 2 that our method can adapt the

reduced-order model to the new small diffusivity κ2 since the iterated solution approximates

u2 with progressively higher accuracy as N increases.

(a) N = 1 (b) N = 10

(c) N = 50 (d) u2

Figure 1: U (N) and u2 at T = 1 of Example 5.1
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(a) L2 relative error (b) H1 relative error

Figure 2: Relative errors of U (N) at T = 1 of Example 5.1

We also show the first three basis functions at several iterations in Figure 3. It can

be seen from Figure 3 that the iterated POD basis functions are gradually adapted to the

basis functions extracted from u2 as N increases. The basis functions extracted in the 25-th

iteration are almost the same as those extracted from u2.

(a) First mode (b) Second mode (c) Third mode

Figure 3: First 3 POD modes extracted in the N -th iteration and from u2 of Example 5.1

Let uFVM
2 be the FVM solution at κ2 using Solver 1. The comparison between uFVM

2 and

U (50) is given in Table 1 and Figure 4. It can be seen that the relative errors of U (50) at

T = 1 are smaller than those of uFVM
2 at T = 1, which implies that the combination of a

coarse-grid solver and our iteration process leads to a better approximation than the direct

simulation using the coarse-grid solver in this case.

Table 1: Relative errors of uFVM
2 and U (50) at T = 1 of Example 5.1

L2 relative error H1 relative error

uFVM
2 8.704e-2 6.928e-2

U (50) 3.679e-2 2.951e-2
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(a) uFVM
2 (b) U(50) (c) u2

Figure 4: Solutions at T = 1 of Example 5.1

Example 5.2. Consider a two-dimensional convection-diffusion equation

∂tu+ b · ∇u− κ∆u = 0, (x, y) ∈ Ω = (0, 1)2, t ∈ [0, T ],

u|∂Ω = 0, u(0, x) = (x2 − x)(y2 − y)
(61)

with

b = (cos(2πy), cos(2πx)), (62)

where we choose T = 1 and κ1 = 0.1, κ2 = 0.005.

Let Solver 1 be the Crank-Nicolson finite volume method with ∆x = ∆y = 1/400 and

∆t = 1/1000, Solver 2 be the combination of fifth-order WENO scheme for first-order spatial

derivatives, central difference scheme for the spatial laplacian and third-order Runge-Kutta

method in temporal discretization with ∆x = ∆y = 1/800 and ∆t = 1/16000. The reference

solution u1 of κ1 is computed using Solver 1 and the reference solution u2 of κ2 is computed

using Solver 2.

For the iterative POD basis adaptation algorithm, 1001 solution snapshots at tj = j
1000

,

j = 0, 1, . . . , 1000 and their finite difference quotients are used in each iteration. The number

of POD basis functions is chosen according to the smallest `(i) such that
∑`(i)

k=1 λ
(i)
k∑2m+1

k=1 λ
(i)
k

> 1 − ε
with m = 1000 and ε = 10−9. In each iteration, backward-Euler POD Galerkin method with

∆t = 1/1000 is applied for POD approximation and Solver 1 is applied for the full-order

model simulation. We stop the iteration at N = 100.

The solutions at different iterations and the relative errors at T = 1 are shown in Figures

5 and 6 respectively. The relative errors of U (100) at T = 1 are eL2 = 1.097e − 2 and

eH1 = 3.258e − 2. Similar phenomena to the one-dimensional case in Example 5.1 are

observed. U (1) is not a good approximation for u2 and the iterated solution also approximates

u2 with progressively higher accuracy as N increases.
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(a) N = 1 (b) N = 20

(c) N = 100 (d) u2

Figure 5: U (N) and u2 at T = 1 of Example 5.2

(a) L2 relative error (b) H1 relative error

Figure 6: Relative errors of U (N) at T = 1 of Example 5.2

We also show the basis functions of the first mode at several iterations in Figure 7. The

iterated POD basis function is also gradually adapted to the basis function extracted from

u2 as N increases. The basis function extracted in the 35-th iteration is almost the same as

that extracted from u2.
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(a) N = 1 (b) N = 15

(c) N = 35 (d) u2

Figure 7: The first POD mode extracted in the N -th iteration and from u2 of Example 5.2

Let uFVM
2 be the FVM solution at κ2 using Solver 1. We still compare uFVM

2 with U (100)

in Table 2 and Figure 8. We can still observe that the relative errors of U (100) at T = 1 are

smaller than those of uFVM
2 at T = 1 in this case. This observation shows that a coarse-grid

solver combined with our iteration process is able to construct a reduced-order model that

yields an approximation of higher accuracy than the full-order model simulation barely using

the coarse-grid solver.

Table 2: Relative errors of uFVM
2 and U (50) at T = 1 of Example 5.2

L2 relative error H1 relative error

uFVM
2 3.761e-2 9.016e-2

U (100) 1.097e-2 3.258e-2
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(a) uFVM
2 (b) U(100) (c) u2

Figure 8: Solutions at T = 1 of Example 5.2

Example 5.3. Consider the following two-dimensional convection-diffusion equation with

periodic boundary conditions

∂tu+ b · ∇u− κ∆u = 0, (x, y) ∈ Ω = (0, 1)2, t ∈ [0, T ],

u periodic, u(0, x) = sin(2πx) sin(2πy),
(63)

with a time dependent velocity field

b =
(

cos(2πy) + 0.5 cos(2πt) sin(2πy), cos(2πx) + 0.5 cos(2πt) sin(2πx)
)
, (64)

where we choose T = 1 and κ1 = 0.08, κ2 = 0.002.

Let Solver 1 be the Crank-Nicolson finite volume method with ∆x = ∆y = 1/200 and

∆t = 1/1000, Solver 2 be the combination of fifth-order WENO scheme for first-order spatial

derivatives, central difference scheme for the spatial laplacian and third-order Runge-Kutta

method in temporal discretization with ∆x = ∆y = 1/400 and ∆t = 1/4000. The reference

solution u1 of κ1 is computed using Solver 1 and the reference solution u2 of κ2 is computed

using Solver 2.

For the iterative POD basis adaptation algorithm, 1001 solution snapshots at tj = j
1000

,

j = 0, 1, . . . , 1000 and their finite difference quotients are used in each iteration. The number

of POD basis functions is chosen according to the smallest `(i) such that
∑`(i)

k=1 λ
(i)
k∑2m+1

k=1 λ
(i)
k

> 1 − ε
with m = 1000 and ε = 10−9. In each iteration, backward-Euler POD Galerkin method with

∆t = 1/1000 is applied for POD approximation and Solver 1 is applied for the full-order

model simulation. We still stop the iteration at N = 100.

We still have solutions at different iterations shown in Figure 9 and relative errors at

T = 1 shown in Figure 10. The relative errors of U (100) at T = 1 are eL2 = 1.639e − 2

and eH1 = 4.113e − 2. Again, similar phenomena to Examples 5.1 and 5.2 are observed.

U (1) is not a good approximation for u2. And the iterated solution can approximate u2 with

progressively higher accuracy as N increases.

The basis functions of the first mode at several iterations are shown in Figure 11. It can

still be seen that the iterated POD basis function is gradually adapted to the basis function

extracted from u2 as N increases. The basis function extracted in the 25-th iteration is

almost the same as that extracted from u2.
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(a) N = 1 (b) N = 20

(c) N = 100 (d) u2

Figure 9: U (N) and u2 at T = 1 of Example 5.3

(a) L2 relative error (b) H1 relative error

Figure 10: Relative errors of U (N) at T = 1 of Example 5.3
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(a) N = 1 (b) N = 10

(c) N = 25 (d) u2

Figure 11: The first POD mode extracted in the N -th iteration and from u2 of Example 5.3

As we can see from Examples 5.1, 5.2 and 5.3, the reduced-order model for the convection-

diffusion equation is sensitive the diffusivity and hence a direct application of the pre-

constructed reduced-order model will possibly lead to an incorrect approximation if the

diffusivity changes into a different value in the simulation. And we can also see that our

method can adapt the POD basis functions and the reduced-order model to a new small

diffusivity in the iteration process. Moreover, our iterative POD basis adaptation method

combined with a coarse-grid solver can construct an accurate reduced-order model for the

convection-diffusion model with a small diffusivity.

5.2. Computing the effective diffusivity in passive tracer models

Example 5.4. We apply our iterative POD basis adaptation method in computing the

effective diffusivity for the stream function

H(x, y) =
1

4π2
sin(2πx) sin(2πy). (65)

We solve
∂tu+ b · ∇u− κ∆u = 0, (x, y) ∈ Ω = (0, 1)2, t > 0,

u periodic, u(0, x) = u0(x, y),
(66)
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where

b(x, y) =
1

θ
∇⊥H(

x

θ
,
y

θ
) =

1

θ

(
−Hy(

x

θ
,
y

θ
), Hx(

x

θ
,
y

θ
)
)

=
1

2πθ

(
− sin(

2πx

θ
) cos(

2πy

θ
), cos(

2πx

θ
) sin(

2πy

θ
)
)

(67)

and

u0(x, y) =
1

2πσ2
exp

(
− (x− 0.5)2 + (y − 0.5)2

2σ2

)
(68)

with θ = 0.05 and σ = 0.01. If we define the quantity

φκ(t) =
1

4t

∫ ∫
(x2 + y2)u(t, x, y)dxdy, (69)

then the effective diffusivity [21, 38] can be defined as φEff
κ = lim

t→∞
φκ(t). We solve equation

(66) using our iterative POD basis adaptation method. We start at κ1 = 0.1 and adapt the

reduced-order model for solutions of κ2 = 0.08, κ3 = 0.04 and κ4 = 0.02. Each adaptation is

stopped at the 50-th iteration.

The result is shown in Figure 12.

0 0.05 0.1 0.15

t

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(t)

2 = 0.08

3 = 0.04

4 = 0.02

2

Eff = 0.813

3

Eff = 0.422

4

Eff = 0.230

Figure 12: Temporal behavior of φκ(t)

6. Conclusion

In this paper, we propose an iterative algorithm for the POD basis adaptation in solving

linear parametric PDEs. The idea exploits the dependence of the solution on the parameter.

The algorithm and its corresponding convergence analysis are presented for the convection-

diffusion equation with the diffusivity as the parameter, where we adapt the POD basis

22



functions constructed at the large diffusivity κ1 for the construction of an accurate reduced-

order model at the small diffusivity κ2 without resorting to a fine-grid solver at κ2. It

is found that the difference of the solutions of two different parameters would satisfy a

convection-diffusion equation with κ1 as the diffusivity, which can be efficiently simulated

using a coarse-grid full-order model solver. Hence the algorithm iteratively performs the

full-order model simulation at κ1 and the reduced-order model simulation at κ2. We also

provide convergence analysis for the proposed method. The algorithm and analysis can also

be easily generalized to other types of linear parametric PDEs without any difficulty. This

idea of POD basis adaptation is particularly useful for constructing a reduced-order model

for singularly perturbed problems with a small parameter. Numerical results show that a

coarse-grid solver combined with the iterative process can achieve an accurate reduced-order

model at a small diffusivity. In the future, we will derive sharper error bounds for the iterative

algorithm. In addition, we will study the basis adaptation for solving nonlinear parametric

PDEs.
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