I nstitute of M athematical Research
 D epartment of M athematics
 Geometry Seminar
 A pril 15, 2004 (T hursday)
 517 M eng W ah Complex, HKU

Mr. HoYuTSUI
The U niversity of Hong Kong
TheIndex of K odaira Surfaces
3:00-4:00pm

Abstract
A K odaira surface (or fibration) is a complex two-dimensional fibered manifold that is locally non-trivial. Over a topological manifold one can define the index (signature) which is a topological invariant like the Euler characteristic, the genus and the Chern numbers, etc. It has multiplicative property i.e. the index of a product manifold equals the product of the indices of its factors. According to a theorem of Chern-H irzebruch-Serre this still holds on fibered manifold under certain assumptions. In 1967, K odaira constructed a series of complex surfaces which do not obey this rule. He proved that these surfaces have positive indices. In this talk we shall explain K odaira's construction. W e shall also show that the indices of K odaira's examples have the properties as mentioned.

4:00-4:15 Tea Break

Mr. Jianjun CHENG
The Hong Kong U niversity of Science and T echnology
Invariants of R eflections and Dirac Cohomology
4:15-5:15pm
Abstract

Let (g ; k) be a complex semisimple symmetric pair, and let h and t be suitable Cartan subalgebras of g and t respectively. We will study the restriction map

$$
\text { Res }_{w t}: S(h)^{w(g h)} \rightarrow S(t)^{w(k t)} ;
$$

where W (g; h) and W ($k ; t$) are, respectively, the W eyl groups of (g; h) and (k; h). W e will also discuss K ostant's result on the above map when k is replaced by a reductive subalgebra of g and its relation to Dirac cohomology.

