THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

COLLOQUIUM

How Many Entries of A Typical Orthogonal Matrix Can Be Approximated By Independent Normals?

Professor Tiefeng Jiang School of Statistics, University of Minnesota IMR Fellow at HKU

Abstract

I will present my solution to the well-known open problem by Diaconis stated as follows: what are the largest orders of p_n and q_n such that Z_n , the $p_n \times q_n$ left upper block of an n by n typical orthogonal matrix Γ_n , can be approximated by independent standard normals? This problem is solved by two different approximation methods.

First, we show that the largest order of p_n and q_n are $o(\sqrt{n})$ in the sense of approximation by the variation norm.

Second, suppose $\Gamma_n = (\gamma_{ij})_{n \times n}$ is generated by $\mathbf{Y}_n = (y_{ij})_{n \times n}$ through the Gram-Schmidt algorithm where $\{y_{ij}; 1 \leq i, j \leq n\}$ are i.i.d. standard normals. We show that the largest order of $m = m_n$ such that $\epsilon_n(m) := \max_{1 \leq i \leq n, 1 \leq j \leq m} |\sqrt{n}\gamma_{ij} - y_{ij}|$ goes to zero in probability is $o(n/\log n)$.

A history from 1914 to 2003 of the problem from Mechanics, Statistics and Imagine Analysis will also be presented.

Date:	December 22, 2005 (Thursday)
Time:	4:00 – 5:00pm
Place:	Room 517, Meng Wah Complex

Tea will be held in Room 516, Meng Wah Complex at 3:40pm

All are welcome