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Lecture 1. Mean-Variance Optimization
Theory: An Overview
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Outline

• Chapter 3 of Statistical Models and Methods for Financial
Markets.

• The mean-variance portfolio optimization theory of
Markowitz (1952, 1959) is widely regarded as one of the
major theories in financial economics.

• It is a single-period theory on the choice of portfolio
weights that provide optimal tradeoff between the mean
and the variance of the portfolio return for a future period.
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Framework

• A portfolio consisting of p assets

Pt : = the value of the portfolio at time t ,
wi : = the weight of the portfolio value invested in asset i ,
Pit : = wiPt = the value of asset i ,
rit : = (Pit − Pi ,t−1)/Pi ,t−1,

r : = (r1t , . . . , rpt )
T ,

µ : = E(rt ), Σ = Cov(rt ),

w : = (w1, . . . , wp)T , 1 = (1, . . . , 1)T ,

• The mean and the variance of the portfolio return:

(wT µ, wT
Σw).
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Markowitz portfolio optimization

Given a target value µ∗ for the mean return of a portfolio,
Markowitz characterizes an efficient portfolio by

weff = arg min
w

wT
Σw subject to wT µ = µ∗, wT 1 = 1.

where µ∗ is the target return.
• When short selling is allowed,

weff =
{

BΣ
−11 − AΣ

−1µ + µ∗

(
CΣ

−1µ − AΣ
−11

)}/
D,

where A = µT
Σ

−11 = 1T
Σ

−1µ, B = µT
Σ

−1µ,
C = 1T

Σ
−11, and D = BC − A2.

• When short selling is not allowed (w ≥ 0), weff is solved via
quadratic programming.
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Feasible region and efficient frontier
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The "plug-in" principle

• A natural idea is to replace the mean and covariance
matrix by their sample estimates.

• However, Different studies have documented that sample
estimates are not as effective as other estimates.

• The efficient portfolio based on sample estimates may not
be as effective as an equally weighted portfolio.
(Frankfurther et al, 1971; Korkie, 1980)

• The mean-variance portfolio based on sample esimates
has serious deficiencies, in practice, often called
“Markowitz optimization enigma” (Michaud, 1989; Best &
Brauer, 1991; Chopra et al, 1993; Canner et al, 1997;
Simann, 1997; Britten-Jones, 1999).
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APT and multifactor pricing models
Multifactor pricing models relate the p asset returns ri to k
factors f1, . . . , fk in a regression model of the form

ri = αi + (f1, . . . , fk )T βi + εi ,

in which αi and βi are unknown regression parameters and εi is
an unobserved random disturbance that has mean 0 and is
uncorrelated with f := (f1, . . . , fk )T .

• Arbitrage pricing theory (APT), introduced by Ross (1976),
relates the expected return µi of the i th asset to the
risk-free return, or to a more general parameter λ0 without
assuming the existence of a risk-free asset, and to a k × 1
vector λ of risk premiums:

µi ≈ λ0 + βT
i λ, i = 1, . . . , p, (1)
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Captial asset pricing model (CAPM)
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Figure: Minimum-variance portfolios of risky assets and a risk-free
asset. Left panel: short selling is allowed. Right panel: short selling is
not allowed.

• The one-fund theorem: There is a single fund M of risky
assets such that any efficient portfolio can be constructed
as a linear combination of the fund M and the risk-free
asset.
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Captial asset pricing model (CAPM)

• Sharpe ratio: For a portfolio whose return has mean µ and
variance σ2, its Sharpe ratio is (µ − rf )/σ, which is the
expected excess return per unit of risk.

• The beta, denoted by βi , of risky asset i that has return ri is
defined by βi = Cov(ri , rM)/σ2.

• CAPM: The CAPM relates the expected excess return
µi − rf of asset i to its beta via

µi − rf = βi(µM − rf ).

• The alpha (or Jensen index) is the α in the generalization
of CAPM to µ − rf = α + β(µM − rf ).
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Choice of factors

• The economic approach specifies
• macroeconomic and financial market variables that are

thought to capture the systematic risks of the economy
(Chen, Roll and Ross, 1986).

• characteristics of firms that are likely to explain differential
sensitivity to the systematic risks, forming factors from
portfolios of stocks based on the characteristics (Fama &
French, 1992, 1993).

• The statistical approach includes principal component
analysis and factor analysis. (Section 3.4.2 of Chapter 3)
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Bootstrapping and resampled frontier

• To correct for the bias of ŵeff, Michaud (1989) proposed to
use the average of the bootstrap weights

w̄ =
1
B

B∑

b=1
ŵ∗

b, (∗)

where ŵ∗

b is the estimated optimal portfolio weight vector
based on the bth bootstrap sample {r∗b1, . . . , r∗bn} drawn
with replacement from the observed sample {r1, . . . , rn}.

• Michaud’s resampled efficiency corresponds to the plot√
w̄T Σ̂w̄ versus w̄T r̄ = µ∗ for a fine grid of µ∗ values.

• Although Michaud claims that (*) provides an improvement
over ŵeff, there have been no convincing theoretical
developments and simulation studies to support the claim.
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Bayes Procedure
In statistical decision theory, the problem of estimation and
hypothesis testing have the following ingredients:

• a parameter space Θ and a family of distribution {Pθ, θ ∈ Θ};
• data (X1, . . . , Xn) ∈ X sampled from the distribution Pθ when θ is

the true parameter, where X is called the “sample space”;
• an action space A = { all available actions to be chosen };
• a loss function L : Θ ×A → [0,∞) representing the loss L(θ, a)

when θ is the parameter value and action a is taken.
A statistical decision rule is a function d : X → A that takes
action d(X) when X = (X1, . . . , Xn) is observed. Its
performance is evaluated by the risk function

R(θ, d) = EθL
(
θ, d(X)

)
, θ ∈ Θ.

Given a prior distribution π on Θ, the Bayes risk of a statistical
decision rule d is B(d) =

∫
R(θ, d)dπ(θ). A Bayes rule is a

statistical decision rule that minimizes the Bayes risk.
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Bayes and shrinkage estimators

rt i.i.d. N(µ,Σ),

• Bayes estimate: Denote m the number of assets and IW
the inverted Wishart distribution. Consider the prior
distribution of (µ,Σ),

µ|Σ ∼ N(ν,Σ/κ), Σ ∼ IWm(Ψ, n0),

the posterior distribution of (µ,Σ) given r1, . . . , rn is given
by

µ|Σ ∼ N
(

nr̄ + κν

n + κ
,

Σ

n + κ

)
,

Σ ∼ IWm

(
Ψ+

n∑

i=1
(ri − r̄)(ri − r̄)T +

nκ

n + κ
(̄r−ν)(̄r−ν)T , n +n0

)
.
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Bayes and shrinkage estimators

• Shrinkage estimators:
Σ̂ = δF + (1 − δ)S,

where S is the MLE of Σ, F is a structured covariance
matrix, and δ is the shrinkage parameter.

• Ledoit and Wolf (2003, 2004): How to choose an optimal
shrinkage constant δ∗.

• F can be estimated via multifactor models, or assigned
certain structure (e.g., constant correlation).

• The estimators have relatively small “estimation error” in
comparison with the MLE of Σ.
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