THE UNIVERSITY

Institute of Mathematical Research Department of Mathematics

GEOMETRY SEMINAR

Projective-algebraicity of minimal compactifications of non-arithmetic quotients of the complex unit ball

Professor Ngaiming MOK The University of Hong Kong

Abstract

Let Ω be a bounded symmetric domain and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free discrete group of automorphisms such that $X := \Omega/\Gamma$ is of finite volume with respect to the canonical Kähler-Einstein metric. If $\Gamma \subset \operatorname{Aut}(\Omega)$ is arithmetic, it is well-known that the minimal compactification \overline{X}_{\min} of Satake-Baily-Borel is projective-algebraic.

When X is globally irreducible according to Margulis' arithmeticity theorem Γ is necessarily arithmetic unless Ω is the complex unit ball, which is of strictly negative sectional curvature bounded between two negative constants. For a complete Kähler manifold (*Z*, *h*) of finite volume and of strictly negative curvature it was proven already in 1982 by Siu-Yau that *Z* can be compactified by adding a finite number of normal isolated singularities to give the minimal compactification \overline{Z}_{\min} . By the method of L^2 -estimates of $\overline{\partial}$ and a theorem due to Andreotti-Tomassini it was proven that *Z* is biholomorphic to a quasi-projective manifold. It was however left open the question whether the minimal compactification is itself projective-algebraic.

In this talk we give a proof of projective-algebraicity of the minimal compactification \overline{X}_{\min} for not necessarily arithmetic quotients $X = \Omega/\Gamma$ of the complex unit ball. For this purpose we first generalize the Mumford compactification \overline{X}_M to the non-arithmetic case. This generalization relies on the geometric description of the structure of ends of Siu-Yau. We then prove by means of L^2 -estimates of $\overline{\partial}$ that the *q*-th power of the logarithmic canonical line bundle of \overline{X}_M with respect to the compactifying divisor D (which is a disjoint union of Abelian varieties) is base point-free whenever $q \ge 2$, which is the essential fact allowing the compactifying divisors to be blown down to normal isolated singularites. The general question whether the minimal compactification \overline{Z}_{\min} (as in the above) is projective-algebraic remains open.

In a recent article Koziarz-Mok has studied the Submersion Problem, viz., submersions $f: X \to X'$ between finite volume quotients of the complex unit ball. We prove that any such holomorphic submersion must be a biholomorphism provided that either X is compact or it is noncompact but of complex dimension at least 2. One motivation of the proof of projective-algebraicity of \overline{X}_{\min} was to give an alternative deduction of the finite-volume case from the cohomological arguments of the compact case by slicing by hyperplane sections.

Date:	March 11, 2009 (Wednesday)
Time:	4:00 – 5:00pm
Place:	Room 517, Meng Wah Complex, HKU

All are welcome