

Institute of Mathematical Research Department of Mathematics

GEOMETRY SEMINAR

Tannaka-Krein duality and quantization of Poisson structures defined by *r*-matrices

Dr. Victor Mouquin Shanghai Jiaotong University

Abstract

By Kontsevich's formality theorem, any Poisson variety (P, π) admits a formal deformation quantization. But in the presence of a Poisson action by a Lie bialgebra (\mathfrak{g}, δ) , it is not known if (P, π) can be quantized as an associative algebra object in the appropriate monoidal category. This talk is about a special kind of Poisson structures where this "equivariant" quantization problem always has a solution, namely when π is defined by a quasitriangular structure of (\mathfrak{g}, δ) . Numerous varieties important in geometric representation theory, such as Bott-Samelson varieties and (products) of flag varieties, support holomorphic Poisson structures of this kind. If (\mathfrak{g}, δ) is quasitriangular, the category \mathcal{C} of representations of the corresponding quantum group is braided, and I will explain how the Tannaka-Krein duality for bialgebras implies that Poisson structures defined by a quasitriangular structure of (\mathfrak{g}, δ) can be quantized as *commutative* associative algebra objects in \mathcal{C} .

Date: October 10, 2017 (Tuesday)

Time: 4:00 – 5:00pm

Venue: Room 210, Run Run Shaw Bldg., HKU