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The Birth of Information Theory

C. E. Shannon. A mathematical theory of communication. Bell
Syst. Tech. J., 27:379-423,623-656, 1948.
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Fundamentals of Information Theory
00®000000000000000000000

Classical Information Theory
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Classical Information Theory

Data transmission
limit

Data compression
limit

min I(X; X) max I(X: Y)

FIGURE 1.2. Information theory as the extreme points of communication theory.
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Information Theory Nowadays

Information
Theory

Portfolio Theory
Kelly Gambling

FIGURE 1.1. Relationship of information theory to other fields.
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Entropy: Definition

The entropy H(X) of a discrete random variable X is defined by

H(X) == p(x)log p(x).

xeX
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Entropy: Definition

The entropy H(X) of a discrete random variable X is defined by

H(X) == p(x)log p(x).

xeX

Let
X 1 with probability p,
~ |0 with probability 1 — p.

Then,
H(X) = —plogp — (1 — p)log(1 — p) = H(p).
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Entropy: Measure of Uncertainty

0O 01 02 03 04 05 06 07 08 09 1
p

FIGURE 2.1. H(p) vs. p.
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Joint Entropy and Conditional Entropy

The joint entropy H(X, Y) of a pair of discrete random variables
(X, Y) with a joint distribution p(x, y) is defined as

HX,Y)==> > p(x,y)logp(x,y).
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The joint entropy H(X, Y) of a pair of discrete random variables
(X, Y) with a joint distribution p(x, y) is defined as

HX,Y) == p(x,y)logp(x,y).
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If (X,Y) ~ p(x,y), the conditional entropy H(Y|X) is defined as

HYIX) = 3 p(x)H(YIX = X)
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Joint Entropy and Conditional Entropy

The joint entropy H(X, Y) of a pair of discrete random variables
(X, Y) with a joint distribution p(x, y) is defined as

HX,Y)==> > p(x,y)logp(x,y).

xeX ye)
If (X,Y) ~ p(x,y), the conditional entropy H(Y|X) is defined as

HYIX) = 3 p(x)H(YIX = X)

XEX

== p(x)Y_ plylx)log ply|x)

xeX yey

== > p(x,y)log p(y|x).
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All Entropies Together

Chain Rule
H(X,Y) = H(X)+ H(Y|X).
Proof.
=Y > p(x,y) log p(x, y)
xXEX ye)Y
==> > p(x,y)log p(x)p(y|x)
xeX ye)y
:—ZZ p(x, y) log p(x ZZ p(x, y)log p(y|x)
xXEX yc)y xXEX yc)Y
— _Z ) log p(x) — Z ZP(XaY) log p(y|x)
xeX xEX yeY
= H(X) + H(Y|X).
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Mutual Information

Original Definition
The mutual information /(X; Y) between two discrete random
variables X, Y with joint distribution p(x, y) is defined as

(x,y)
1Y) =3 p(x,y) log Y0
XZ; p(x)p(y)
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Original Definition
The mutual information /(X; Y) between two discrete random
variables X, Y with joint distribution p(x, y) is defined as

(x,¥)
106G Y) =Y p(x,y)log 22077
XZ; p(x)p(y)

Alternative Definitions

I(X; Y) = H(X) + H(Y) — H(X, Y)
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Mutual Information

Original Definition
The mutual information /(X; Y) between two discrete random
variables X, Y with joint distribution p(x, y) is defined as

(x,¥)
106G Y) =Y p(x,y)log 22077
XZ; p(x)p(y)

Alternative Definitions

1(X:Y) = H(X) + H(Y) — H(X, Y)
(X) = H(X]Y)
(Y) = H(Y[X)

H
H
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Mutual Information and Entropy

H(X) H(Y)

FIGURE 2.2. Relationship between entropy and mutual information.
Guangyue Han The University of Hong Kong
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Asymptotic Equipartition Property Theorem

AEP Theorem
If X1,Xa,..., are i.i.d ~ p(x), then

1
- log p(X1, X2, ..., Xn) — H(X) in probability.
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Asymptotic Equipartition Property Theorem

AEP Theorem
If X1,Xa,..., are i.i.d ~ p(x), then

1
- log p(X1, X2, ..., Xn) — H(X) in probability.

Proof.

1 1<
——log p(X1, Xa, ..., Xn) = —— 2 log p(X;)
=

O
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AEP Theorem
If X1,Xa,..., are i.i.d ~ p(x), then

1
- log p(X1, X2, ..., Xn) — H(X) in probability.
Proof.
1
—~log p(Xe, Xz, Xn) = —leogp ) = —E[log p(X)]

O
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Asymptotic Equipartition Property Theorem

AEP Theorem
If X1,Xa,..., are i.i.d ~ p(x), then

1
- log p(X1, X2, ..., Xn) — H(X) in probability.
Proof.
1
—log p(X1, Xz, ... X =—leogp ) = —E[log p(X)] = H(X).
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The Shannon-McMillan-Breiman Theorem
The Shannon-McMillan-Breiman Theorem
Let {X,} be a finite-valued stationary ergodic process. Then, with
probability 1,

1
7; |Og P(X]_,X2, s 7Xn) — H(X)’
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The Shannon-McMillan-Breiman Theorem
Let {X,} be a finite-valued stationary ergodic process. Then, with
probability 1,

1
7; |Og P(X]_,X2, s 7Xn) — H(X)’
where H(X) here denotes the entropy rate of the process {X,},

namely,
H(X) = lim H(X1, Xa,...,X,)/n.

n—o0
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The Shannon-McMillan-Breiman Theorem
The Shannon-McMillan-Breiman Theorem
Let {X,} be a finite-valued stationary ergodic process. Then, with
probability 1,
1
7; |Og P(X]_,X2, s 7Xn) - H(X)a

where H(X) here denotes the entropy rate of the process {X,},

namely,
H(X) = Ii_>m H(X1, Xa,...,X5)/n.
Proof.
There are many. The simplest is the sandwich argument by
Algoet and Cover [1988]. O

Guangyue Han The University of Hong Kong
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Typical Set: Definition and Properties

Definition
The typical set AE”) with respect to p(x) is the set of sequence
(x1,%2,...,%n) € X" with the property

1
H(X)—e < —=logp(x1,x2,...,%xn) < H(X) + €.
n
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Typical Set: Definition and Properties

Definition
The typical set AE”) with respect to p(x) is the set of sequence
(x1,%2,...,%n) € X" with the property

1
H(X)—e < —=logp(x1,x2,...,%xn) < H(X) + €.
n

Properties

> (1—¢)2rHX)-9 < ]Ag")] < 2nHX)+e) for n sufficiently large.
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Typical Set: Definition and Properties

Definition
The typical set AE”) with respect to p(x) is the set of sequence
(x1,%2,...,%n) € X" with the property

1
H(X)—e < —=logp(x1,x2,...,%xn) < H(X) + €.
n
Properties

> (1—¢)2rHX)-9 < ]Ag")] < 2nHX)+e) for n sufficiently large.

> Pr{AE")} > 1 — € for n sufficiently large.

Guangyue Han The University of Hong Kong
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Typical Set: A Pictorial Description

Consider all the instances (x1,x2,...,%,) € X" of i.i.d.
(X1, X2, -+, X,) with distribution p(x).

212" elements

3 ‘{j— Non-typical set

25050525

; \ Typical set

A 2n(H+€) glements

SRS 5%

FIGURE 3.1. Typical sets and source coding.

Guangyue Han The University of Hong Kong
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Source Coding (Data Compression)
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Source Coding (Data Compression)

Non-typical set
Description: n log 121 + 2 bits

Typical set
Description: n(H + €) + 2 bits

FIGURE 3.2. Source code using the typical set.

The University of Ho
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Source Coding (Data Compression)

» Represent each typical
sequence with about
nH(X) bits.

Non-typical set
Description: n log 121 + 2 bits

Typical set
Description: n(H + €) + 2 bits

FIGURE 3.2. Source code using the typical set.
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Typical set
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Source Coding (Data Compression)

» Represent each typical
sequence with about
nH(X) bits.

Represent each
non-typical sequence with
about nlog|X| bits.

Non-typical set
Description: n log 121 + 2 bits >

» Then we have a
Typical set one-to-one and easily

Description: n(H+ €) + 2 bits
decodable code.
FIGURE 3.2. Source code using the typical set.

Guangyue Han The University of Hong Kong
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Shannon's Source Coding Theorem

The average bits needed is

E[/(X1,...,X,)] = Z p(x1, -y Xa)l(X1, .oy Xn)

X1s--+3Xn
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Shannon's Source Coding Theorem

The average bits needed is

E[/(X1,...,X,)] = Z p(x1, -y Xa)l(X1, .oy Xn)

X1s--+3Xn

= Z p(Xty .oy Xa) (X1, ooy Xn) + Z p(x1y .oy Xa) (X1, .oy Xn)

Xt yee ey xn CAW X1,~~1Xn€A(sn)
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The average bits needed is

E[/(X1,...,X,)] = Z p(x1, -y Xa)l(X1, .oy Xn)

X1yeesXn
= Z p(Xty .oy Xa) (X1, ooy Xn) + Z p(x1y .oy Xa) (X1, .oy Xn)
Xt X €A Xy Xn EAL)
= Z p(xi, ..., xa)nH(X) + Z p(xi, ..., x,)nlog|X| = nH(X).
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Shannon's Source Coding Theorem

The average bits needed is

E[/(X1,...,X,)] = Z p(x1, -y Xa)l(X1, .oy Xn)

X1yeesXn
= Z p(Xty .oy Xa) (X1, ooy Xn) + Z p(x1y .oy Xa) (X1, .oy Xn)
Xt X €A Xy Xn EAL)
= Z p(xi, ..., xa)nH(X) + Z p(xi, ..., x,)nlog|X| = nH(X).
xl,...,x,,eA(E") xl,...,x,,gA(:)

Source Coding Theorem

For any information source distributed according to
X1, X2, -+ ~ p(x), the compression rate is always greater than
H(X), but it can be arbitrarily close to H(X).

Guangyue Han The University of Hong Kong
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Communication Channel: Definition

=  Encoder
Message

b

Channel
pylx)

yn

FIGURE 7.8. Communication channel.

Decoder

A

w

e
Estimate

of
Message
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=  Encoder
Message
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Channel
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» A message W results in channel inputs Xi(W),. ..

FIGURE 7.8. Communication channel.

Decoder

A
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of

Message

aXn(W);
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Channel
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» A message W results in channel inputs Xi(W),. ..

Decoder

A
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FIGURE 7.8. Communication channel.

» And they are received as a random sequence

Y1,---7YnNP(Y1,---

s Ynlxt, ...

s Xn)-

Message

aXn(W);
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=  Encoder
Message

b

Channel
pylx)

yn

» A message W results in channel inputs Xi(W),. ..

Decoder

A

w

e
Estimate
of

FIGURE 7.8. Communication channel.

» And they are received as a random sequence

Y1,---7YnNP(Y1,---

s Ynlxt, ...

s Xn)-

Message

aXn(W);

» The receiver then guesses the index W by an appropriate

decoding rule W = g(Y,...

, Yn)-

Guangyue Han The University of Hong Kong
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Communication Channel: Definition

n n A
—W> Encoder X Channel Y Decoder —W>
Message pylx) Estimate
of
Message

FIGURE 7.8. Communication channel.

» A message W results in channel inputs X1 (W), ..., X,(W);
» And they are received as a random sequence
Yi, -, Yo~ p(V1, - o YalX1s ooy Xn)-
» The receiver then guesses the index W by an appropriate
decoding rule W = g(Yi,..., YL’)

» The receiver makes an error if W is not the same as W that
was transmitted.

Guangyue Han The University of Hong Kong
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Communication Channel: An Example

Binary Symmetric Channel

p(Y =0/X=0)=1-—p, p(Y =1|X =0) = p,
p(Y =0[X =1) =p, p(Y=1X=1)=1-p.

Guangyue Han The University of Hong Kong
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Communication Channel: An Example

Binary Symmetric Channel

p(Y =0/X=0)=1-—p, p(Y =1|X =0) = p,
p(Y =0[X =1) =p, p(Y=1X=1)=1-p.
1-p
0 0

P
P
1 1p 1
FIGURE 7.5. Binary symmetric channel. C =1 — H(p) bits.

Guangyue Han The University of Hong Kong
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Tradeoff between Speed and Reliability

Speed
To transmit 1: we transmit 1. It is likely that we receive 0. Note
that the transmission rate is 1.

Guangyue Han The University of Hong Kong
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Tradeoff between Speed and Reliability

Speed

To transmit 1: we transmit 1. It is likely that we receive 0. Note
that the transmission rate is 1.

Reliability
To transmit 1: we transmit 11111. Though it is likely that we
receive something else, such as 11011, but more likely than not, we

can correct the possible error. Note that the transmission rate is
however 1/5.

Guangyue Han The University of Hong Kong
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Shannon's Channel Coding Theorem: Statement

Channel Coding Theorem

For any discrete memoryless channel, asymptotically perfect
transmission rate below the capacity

C =maxI(X;Y)
p(x)

is always possible, but is not possible above the capacity.

Guangyue Han The University of Hong Kong
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Shannon's Channel Coding Theorem: Proof

Yﬂ

FIGURE 7.7. Channels after n uses.
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Shannon's Channel Coding Theorem: Proof
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Shannon's Channel Coding Theorem: Proof
P For each typical input n-sequence, there are approximately

27nH(YIX) possible typical output sequences, all of them equally
likely.

Guangyue Han The University of Hong Kong



Shannon's Channel Coding Theorem: Proof

P For each typical input n-sequence, there are approximately
27nH(YIX) possible typical output sequences, all of them equally

likely.

> We wish to ensure that no two X input sequences produce the
same Y output sequence. Otherwise, we will not be able to
decide which X sequence was sent.
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P For each typical input n-sequence, there are approximately
27nH(YIX) possible typical output sequences, all of them equally
likely.

> We wish to ensure that no two X input sequences produce the
same Y output sequence. Otherwise, we will not be able to
decide which X sequence was sent.

» The total number of possible typical Y sequences is
approximately 2"H(Y)  This set has to be divided into sets of
size 2"M(Y1X) corresponding to the different input X
sequences.

Guangyue Han The University of Hong Kong



Shannon's Channel Coding Theorem: Proof

P For each typical input n-sequence, there are approximately
27nH(YIX) possible typical output sequences, all of them equally
likely.

> We wish to ensure that no two X input sequences produce the
same Y output sequence. Otherwise, we will not be able to
decide which X sequence was sent.

» The total number of possible typical Y sequences is
approximately 2"H(Y)  This set has to be divided into sets of
size 2"M(Y1X) corresponding to the different input X
sequences.

» The total number of disjoint sets is less than or equal to
2n(H(Y)=H(Y[X)) — onl(X;Y), Hence, we can send at most
approximately 2"(X:Y) distinguishable sequences of length n.

Guangyue Han The University of Hong Kong
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Capacity of Binary Symmetric Channels

The capacity of a binary symmetric channel with crossover
probability p is C =1 — H(p), where

H(p) = —plogp — (1 — p) log(1 — p).
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Capacity of Binary Symmetric Channels

The capacity of a binary symmetric channel with crossover
probability p is C =1 — H(p), where

H(p) = —plogp — (1 — p) log(1 — p).
Proof.

I(X; Y) = H(Y) — H(Y|X)
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Capacity of Binary Symmetric Channels

The capacity of a binary symmetric channel with crossover
probability p is C =1 — H(p), where

H(p) = —plogp — (1 — p) log(1 — p).

Proof.
I(X:Y) = H(Y) (YrX)
Z H(Y|X = x)
Z
_ H(Y) — H(p)
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Capacity of Binary Symmetric Channels

The capacity of a binary symmetric channel with crossover
probability p is C =1 — H(p), where

H(p) = —plogp — (1 — p) log(1 — p).
Proof.

NKY%=WY%*(YW)
E:p H(Y|X = x)
ZHOQ—E:MHH@)

X
= H(Y) — H(p)
<1-—H(p).



Fundamentals of Information Theory
00000000000000000000000e

Capacity of Additive White Gaussian Channels

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory
00000000000000000000000e

Capacity of Additive White Gaussian Channels

The capacity of an additive white Gaussian channel Y = X + Z,
where E[X?] < P and Z ~ N(0,1), is C = 3 log(1 + P).
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Capacity of Additive White Gaussian Channels

The capacity of an additive white Gaussian channel Y = X + Z,
where E[X?] < P and Z ~ N(0,1), is C = 3 log(1 + P).

Proof.

I(X;Y) = H(Y) = H(Y|X)
= H(Y) — H(X + Z|X)
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where E[X?] < P and Z ~ N(0,1), is C = 3 log(1 + P).

Proof.
I(X;Y) = H(Y) — H(Y|X)
(Y)— H(X + Z|X)
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Capacity of Additive White Gaussian Channels

The capacity of an additive white Gaussian channel Y = X + Z,
where E[X?] < P and Z ~ N(0,1), is C = 3 log(1 + P).

Proof.
I(X;Y) = H(Y) — H(Y|X)
= H(Y) - H(X + Z|X)
= H(Y) — H(Z|X)
= H(Y) - H(2)
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The capacity of an additive white Gaussian channel Y = X + Z,
where E[X?] < P and Z ~ N(0,1), is C = 3 log(1 + P).

Proof.
1(X; Y) = H(Y) — H(Y|X)
= H(Y) - H(X + Z|X)
= H(Y) - H(Z|X)
=H(Y)—- H(2)
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Capacity of Additive White Gaussian Channels

The capacity of an additive white Gaussian channel Y = X + Z,
where E[X?] < P and Z ~ N(0,1), is C = 3 log(1 + P).

Proof.
1(X;Y) = H(Y) — H(Y|X)
= H(Y) - H(X + Z|X)
= H(Y) - H(Z|X)
=H(Y)—- H(2)
< % log2me(l + P) — = log2me
= % log(1 + P)

Guangyue Han The University of Hong Kong



Memory Channels
900000000000

Memory Channels

yue Han The University of Hong Ki



Memory Channels
0®0000000000

Memoryless Channels

gyue Han The University of Hong Kol



Memory Channels
0®0000000000

Memoryless Channels

» Channel transitions are characterized by time-invariant
transition probabilities {p(y|x)}.

Guangyue Han The University of Hong Kong



Memory Channels
0®0000000000

Memoryless Channels

» Channel transitions are characterized by time-invariant
transition probabilities {p(y|x)}.

» Channel inputs are independent and identically distributed.

Guangyue Han The University of Hong Kong



Memory Channels
0®0000000000

Memoryless Channels

» Channel transitions are characterized by time-invariant
transition probabilities {p(y|x)}.
» Channel inputs are independent and identically distributed.

> Representative examples include (memoryless) binary
symmetric channels and additive white Gaussian channels.

Guangyue Han The University of Hong Kong



Memory Channels
000000000000

Capacity of Memoryless Channels

Guangyue Han The University of Hong Kong



Memory Channels
000000000000

Capacity of Memoryless Channels

Shannon’s channel coding theorem

C=supl(X;Y)
p(x)
p(x y)
= sup — p(x,y) Iog —_—

Guangyue Han The University of Hong Kong
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Capacity of Memoryless Channels

The Blahut-Arimoto algorithm (BAA)

owor

Lo

P) Pj

( 31 )

ey = exp (1, 9, log ——
3 *® %[5

Ep%yls

e Ciok)]

Shannon’s channel coding theorem el (%)

C=supl(X;Y)
p(x) cns, oy ny —L
P(x,y)
= sup — p(x,y)log ———=". i L |
P(X ) ; ( )p (.y ) Fig. 1. Capacity algorithm.

The University of Hong Kong
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» Channel transitions are characterized by probabilities
{p(yilxt, - s Xisy1, -, Yie1,8i) )
where channel outputs are possibly dependent on previous and
current channel inputs and previous outputs and current
channel state; for example, inter-symbol interference channels,
flash memory channels, Gilbert-Elliot channels.
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necessitate dependence among channel inputs; for example,
(d, k)-RLL constraints, more generally, finite-type constraints.

Guangyue Han The University of Hong Kong



000®00000000
Memory Channels

» Channel transitions are characterized by probabilities
{p(yilxt, - X y1, -+ 5 Yie1, 8i) b
where channel outputs are possibly dependent on previous and
current channel inputs and previous outputs and current
channel state; for example, inter-symbol interference channels,
flash memory channels, Gilbert-Elliot channels.

» Channel inputs may have to satisfy certain constraints which
necessitate dependence among channel inputs; for example,
(d, k)-RLL constraints, more generally, finite-type constraints.

» Such channels are widely used in a variety of real-life
applications, including magnetic and optical recording, solid
state drives, communications over band-limited channels
with inter-symbol interference.

Guangyue Han The University of Hong Kong
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Capacity of Memory Channels

Despite a great deal of efforts by Zehavi and Wolf [1988], Mushkin
and Bar-David [1989], Shamai and Kofman [1990], Goldsmith and
Varaiya [1996], Arnold, Loeliger, Vontobel, Kavcic and Zeng
[2006], Holliday, Goldsmith, and Glynn [2006], Vontobel, Kavcic,
Arnold and Loeliger [2008], Pfister [2011], Permuter, Asnani and
Weissman [2013], Han [2015], ...

Guangyue Han The University of Hong Kong
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Capacity of Memory Channels

Shannon's channel coding theorem

C=supl(X;Y)

p(x)
L1 P, y7)
=sup lim —= p(x{, yi) log ————.
p(x) " n X%«V:ln P(Xf)P(yf)

Guangyue Han

The University of Hong Kong
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Capacity of Memory Channels

The Generalized Blahut-Arimoto
algorithm (GBAA) by Vontobel,
Kavcic, Arnold and Loeliger [2008]

Algorithm 45 (Generalized BAA): Let Q = Q(B) be a given
FSMS manifold and let W' be the channel law of a given FSMC.
Let {Q§‘j>} € relint(Q) be some initial (freely chosen) FSMS
process. Foriterations » = 0, 1,2,..., perform alternatively the
following two steps.

N

) . « First Step: For each (i,j) € B calculate Il(j'v =
Shannon S Channel COdIng theorem T;; (Qf?,W) according to Definition 41. The values

Tf,) can be approximated by the procedure given in

Section V-C.
Second Step: The new FSMS process {Qﬁ}'+l>} is chosen

to maximize \II(Q ,Qij, W), i

{Q(r+l)}—arg Jax ‘I’(Qu Qij» )

C=supl(X;Y)
p(x)

1 X;
=sup lim —= E (Xl,yl)logip(“yl) .
p(x) n—oo n X{) «Vl (Xl )P (y 1 ) and is calculated according to the algorithm in Lemma 44
? N

with inputs {Q;;} 2 {Q” } and W and output
Q™) £ Qi)

Guangyue Han The University of Hong
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I(X;Y) and H(X|Y) are both concave with respect to a chosen
parameterization.
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Convergence of the GBAA

The GBAA will converge if the following conjecture is true.

Concavity Conjecture [Vontobel et al. 2008]

I(X;Y) and H(X|Y) are both concave with respect to a chosen
parameterization.

Unfortunately, the concavity conjecture is not true in general [Li
and Han, 2013].

Guangyue Han The University of Hong Kong
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A Randomized Algorithm [Han 2015]
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A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes a, = 1/n?, a > 0,

9n+1 =0,+ angnb(gn)7

where

Guangyue Han The University of Hong Kong
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» 0y is randomly selected from the parameter space ©;
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A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes a, = 1/n?, a > 0,

9n+1 =0,+ angnb(gn)7

where
» 0y is randomly selected from the parameter space ©;
> g.»(0) is a simulator for I'(X(0); Y(0));
>
0<pf<a<l/3, b>0, 2a+b—3b3>1,

here, a, 5 are some “hidden” parameters involved in the
definition of g,»(6).

Guangyue Han The University of Hong Kong
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Our Simulator of I'(X;Y)

Define
q= q(n) £ nlga pP = p(n) £ na, k = k(n) S n/(na + nﬁ)

Guangyue Han The University of Hong Kong



Our Simulator of I'(X;Y)
Define

g=gq(n)2n’ p=p(n) 2n* k=k(n)=n/(n®+nP).

For any j with ig + (i — 1)p+ 1 < j < ig + ip, define

(P Yee) P ,| J.7|_1Q/2J) J
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Define
q= q(n) = nlga P = p(n) = n®, k= k(n) = n/(na + nﬁ)
For any j with ig + (i — 1)p+ 1 < j < ig + ip, define

(P Yee) P ,| J.7|_1Q/2J) J

and furthermore

k
G = Wigt(i-1)p+1 + -+ Wigtip, Sn 2 >oim1 ") Gi-
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Our Simulator of I'(X;Y)

Define
q= q(n) = nlga P = p(n) = n®, k= k(n) = n/(na + nﬁ)
For any j with ig + (i — 1)p+ 1 < j < ig + ip, define

(P Yee) P ,| J.7|_1Q/2J) J

and furthermore
G = Wigt(i-1)p+1 + -+ Wigtip, Sn 2 Zk(n) Gi-
Our simulator for I'(X; Y):

8n(X7, Y1) = H'(Xal X1) + Sa(YT')/ (kp) — Sn(XT', YT')/ (kp)-

Guangyue Han The University of Hong Kong
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Convergence of Our Algorithm
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Convergence of Our Algorithm

Convergence and convergence rate with concavity

If I(X;Y) is concave with respect to 6, then 6, converges to the
unique capacity achieving distribution 6* almost surely. And for
any 7 with 2a+ b — 3b5 — 27 > 1, we have

10, — 0*| = O(n™7).

Guangyue Han The University of Hong Kong
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The ldeas for the Proofs
Analyticity result [Han, Marcus, 2006]

The entropy rate of hidden Markov chains is analytic.

Refinements of the Shannon-MaMillan-Breiman theorem [Han, 2012]

Limit theorems for the sample entropy of hidden Markov chains
hold.

Guangyue Han The University of Hong Kong
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The ldeas for the Proofs
Analyticity result [Han, Marcus, 2006]

The entropy rate of hidden Markov chains is analytic.

Refinements of the Shannon-MaMillan-Breiman theorem [Han, 2012]

Limit theorems for the sample entropy of hidden Markov chains
hold.

The analyticity result states that /(X; Y) = H(X) + H(Y) — H(X, Y)
is a “nicely behaved” function.

The refinement results confirm that using Monte Carlo simulations,
I(X;Y) and its derivatives can be “well-approximated”.

Guangyue Han The University of Hong Kong
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Continuous-Time Information Theory
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Continuous-Time Gaussian Non-Feedback Channels

Consider the following continuous-time Gaussian channel:

Y(t) = \/sTr/OtX(s)der B(t), t € [0, T],

where {B(t)} is the standard Brownian motion.

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Non-Feedback Channels

Theorem (Ducan 1970)
The following I-CMMSE relationship holds:
1

)
105 YT) = 58 [ (X() ~BIX(9)] Y57 .

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Non-Feedback Channels
Theorem (Ducan 1970)
The following I-CMMSE relationship holds:
T T 1 T s1\2
I(Xy ;Yo ) = EE ; (X(s) — E[X(s)|Y5])" ds

Theorem (Guo, Shamai and Verdu 2005)
The following I-MMSE relationship holds:

d

)
IO Y = 3B | (x(s) ~ BIX(9) ¥ 1

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Feedback Channels

Consider the following continuous-time Gaussian feedback channel:

Y(t) = \/sTr/OtX(s, M, Y3)ds + B(t), t € [0, T],

where {B(t)} is the standard Brownian motion.

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Feedback Channels
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Continuous-Time Gaussian Feedback Channels

Theorem (Kadota, Zakai and Ziv 1971)
The following I-CMMSE relationship:

1 T
I(M: YT = 2IE/O (X(s, M, YE) — E[X(s, M, Y§)| Y$])? ds.

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Feedback Channels

Theorem (Kadota, Zakai and Ziv 1971)
The following I-CMMSE relationship:

1 T
I(M: YT = ZIE/O (X(s, M, YE) — E[X(s, M, Y§)| Y$])? ds.

Theorem (Han and Song 2016)
The following I-MMSE relationship holds:

%/(M; Yy ) = ;/OTE [(X(s) - E[X(s)|Y0T]>2] ds
—l—snr/oTE [(X(s) —-E [X(s)| YOTD dij(s)] ds.

Guangyue Han The University of Hong Kong
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Capacity of Continuous-Time Gaussian Channels
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Capacity of Continuous-Time Gaussian Channels

For either the following continuous-time Gaussian channel:

Y(t) = \/ﬁ/otX(s)der B(t), t € [0, T],

or the following continuous-time Gaussian feedback channel:

Y(t) = \/ﬁ/otx(s, M, Yg)ds + B(t), t € [0, T],

the capacity is P/2.

Guangyue Han The University of Hong Kong
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Thank youl
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