

Acknowledgements

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

• Consider the above SPDE for t > 0, $x \in (0, 1)$, where:

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Consider the above SPDE for t > 0, $x \in (0, 1)$, where:
- ξ := space-time white noise; i.e., a GRF with $\mathrm{E}\xi(t,x) = 0$ and $\mathrm{Cov}[\xi(t,x),\xi(s,y)] = \delta_0(t-s)\delta_0(x-y)$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Consider the above SPDE for t > 0, $x \in (0, 1)$, where:
- ξ := space-time white noise; i.e., a GRF with $E\xi(t,x) = 0$ and $Cov[\xi(t,x),\xi(s,y)] = \delta_0(t-s)\delta_0(x-y)$
- Homogeneous Dirichlet boundary condition,

$$u(t,0) = u(t,1) = 0$$
 for all $t > 0$,

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Consider the above SPDE for t > 0, $x \in (0, 1)$, where:
- ξ := space-time white noise; i.e., a GRF with $E\xi(t,x) = 0$ and $Cov[\xi(t,x),\xi(s,y)] = \delta_0(t-s)\delta_0(x-y)$
- Homogeneous Dirichlet boundary condition,

$$u(t,0) = u(t,1) = 0$$
 for all $t > 0$,

• σ and *b* are assumed to be nonrandom and measurable real-valued functions on the real line

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Consider the above SPDE for t > 0, $x \in (0, 1)$, where:
- ξ := space-time white noise; i.e., a GRF with $E\xi(t,x) = 0$ and $Cov[\xi(t,x),\xi(s,y)] = \delta_0(t-s)\delta_0(x-y)$
- Homogeneous Dirichlet boundary condition,

$$u(t,0) = u(t,1) = 0$$
 for all $t > 0$,

- σ and *b* are assumed to be nonrandom and measurable real-valued functions on the real line
- Nonrandom initial condition $u(0,\cdot) = u_0 \geqslant 0$, $u_0 \in C_0^1([0,1])$

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Consider the above SPDE for t > 0, $x \in (0, 1)$, where:
- ξ := space-time white noise; i.e., a GRF with $E\xi(t,x) = 0$ and $Cov[\xi(t,x), \xi(s,y)] = \delta_0(t-s)\delta_0(x-y)$
- Homogeneous Dirichlet boundary condition,

$$u(t,0) = u(t,1) = 0$$
 for all $t > 0$,

- σ and *b* are assumed to be nonrandom and measurable real-valued functions on the real line
- Nonrandom initial condition $u(0,\cdot) = u_0 \geqslant 0$, $u_0 \in C_0^1([0,1])$
- Well posed when b and σ are Lipschitz continuous (Donati-Martin and Pardoux, 1993)

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

• Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$

$$u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma(u(t\,,x)) \xi(t\,,x)$$

- Suppose $\sigma \ge 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If $\sigma = 0$ then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002;
 - Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0 then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Aside on the work of Fujita (1966, 1969):

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0 then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Aside on the work of Fujita (1966, 1969):

1
$$\dot{u} = u'' + u^p \text{ (nice } u(0) \geqslant 0)$$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma(u(t\,,x)) \xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0 then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Aside on the work of Fujita (1966, 1969):
 - **1** $\dot{u} = u'' + u^p \text{ (nice } u(0) \geqslant 0)$
 - 2 If 1 then every solution blows up in finite time

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma(u(t\,,x)) \xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0 then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Aside on the work of Fujita (1966, 1969):
 - **1** $\dot{u} = u'' + u^p \text{ (nice } u(0) \geqslant 0)$
 - ② If 1 then every solution blows up in finite time
 - **3** If p > 3 and u(0) is sufficiently large, then u blows up in finite time

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma(u(t\,,x)) \xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0 then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Aside on the work of Fujita (1966, 1969):
 - **1** $\dot{u} = u'' + u^p \text{ (nice } u(0) \geqslant 0)$
 - ② If 1 then every solution blows up in finite time
 - **3** If p > 3 and u(0) is sufficiently large, then u blows up in finite time
 - If p > 3, then there exist small solutions that live globally in time!

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0 then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; extensive surveys by Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Aside on the work of Fujita (1966, 1969):
 - **1** $\dot{u} = u'' + u^p \text{ (nice } u(0) \geqslant 0)$
 - ② If 1 then every solution blows up in finite time
 - **3** If p > 3 and u(0) is sufficiently large, then u blows up in finite time
 - § If p > 3, then there exist small solutions that live globally in time!
 - **1** The maximum principle produces many more solutions.

$$\frac{\partial}{\partial t} u(t,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t,x) + b(u(t,x)) + \sigma(u(t,x)) \xi(t,x)$$

• Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$

$$u_t = \frac{1}{2}u_{xx} + b(u) + \sigma\xi$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0, then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; for surveys see, for example, Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0, then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; for surveys see, for example, Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Contrasts with classical ODEs!! (Osgood, 1898: NASC $\int_{\bullet}^{\infty} dx/b(x) = \infty$)

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0, then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; for surveys see, for example, Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Contrasts with classical ODEs!! (Osgood, 1898: NASC $\int_{\bullet}^{\infty} dx/b(x) = \infty$)
- If $\sigma > 0$ then "order is restored"; i.e.,

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma(u(t\,,x))\xi(t\,,x)$$

- Suppose $\sigma \geqslant 0$ is a constant: $u_t = \frac{1}{2}u_{xx} + b(u) + \sigma \xi$
- Suppose $b \in \text{Lip}_{loc}(\mathbb{R})$, $b \ge 0$, and $\exists \delta > 0$: $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$.
- If σ = 0, then the reaction-diffusion equation can have nontrivial stationary solutions (Fujita, 1966, 1966; for surveys see, for example, Galaktionov+Vàsquez, 2002; Samarskii+Galaktionov+Kurdyumov+Mikhailov, 1995)
- Contrasts with classical ODEs!! (Osgood, 1898: NASC $\int_{\bullet}^{\infty} dx/b(x) = \infty$)
- If $\sigma > 0$ then "order is restored"; i.e.,

Theorem (Bonder+Groisman, 2009)

If $\sigma > 0$ and b = convex, then a.s. \exists finite-time blowup.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x)$$

• Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]
- Define $X_t := \langle u(t), \psi \rangle_{L^2[0,1]}$ for all $t \geqslant 0$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]
- Define $X_t := \langle u(t), \psi \rangle_{L^2[0,1]}$ for all $t \geqslant 0$
- It is easy to see that (weakly)

$$\dot{X}_t = \langle \frac{1}{2} u_{xx}(t) + b(u(t)) + \sigma \xi(t), \psi \rangle_{L^2[0,1]}$$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]
- Define $X_t := \langle u(t), \psi \rangle_{L^2[0,1]}$ for all $t \geqslant 0$
- It is easy to see that (weakly)

$$\dot{X}_t = \langle \frac{1}{2} u_{xx}(t) + b(u(t)) + \sigma \xi(t), \psi \rangle_{L^2[0,1]}$$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]
- Define $X_t := \langle u(t), \psi \rangle_{L^2[0,1]}$ for all $t \ge 0$
- It is easy to see that (weakly)

$$\dot{X}_{t} = \left\langle \frac{1}{2} u_{xx}(t) + b(u(t)) + \sigma \xi(t), \psi \right\rangle_{L^{2}[0,1]}$$

$$= \frac{1}{2} \left\langle u(t), \psi'' \right\rangle_{L^{2}[0,1]} + \left\langle b(u(t)), \psi \right\rangle_{L^{2}[0,1]} + \sigma \left\langle \xi(t), \psi \right\rangle_{L^{2}[0,1]}$$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]
- Define $X_t := \langle u(t), \psi \rangle_{L^2[0,1]}$ for all $t \geqslant 0$
- It is easy to see that (weakly)

$$\begin{split} \dot{X}_t &= \left\langle \frac{1}{2} u_{xx}(t) + b(u(t)) + \sigma \xi(t) , \psi \right\rangle_{L^2[0,1]} \\ &= \frac{1}{2} \left\langle u(t) , \psi'' \right\rangle_{L^2[0,1]} + \left\langle b(u(t)) , \psi \right\rangle_{L^2[0,1]} + \sigma \left\langle \xi(t) , \psi \right\rangle_{L^2[0,1]} \\ &= -\frac{\pi^2}{2} \left\langle u(t) , \psi \right\rangle_{L^2[0,1]} + \left\langle b(u(t)) , \psi \right\rangle_{L^2[0,1]} + \sigma \left\langle \xi(t) , \psi \right\rangle_{L^2[0,1]} \end{aligned}$$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- Let $\psi(x) = \sin(\pi x)$ be the pcpl eigenfunction of Dirichlet Laplacian on [0,1]
- $\psi \geqslant 0$ on [0,1]
- Define $X_t := \langle u(t), \psi \rangle_{L^2[0,1]}$ for all $t \ge 0$
- It is easy to see that (weakly)

$$\begin{split} \dot{X}_t &= \left\langle \frac{1}{2} u_{xx}(t) + b(u(t)) + \sigma \xi(t) , \psi \right\rangle_{L^2[0,1]} \\ &= \frac{1}{2} \left\langle u(t) , \psi'' \right\rangle_{L^2[0,1]} + \left\langle b(u(t)) , \psi \right\rangle_{L^2[0,1]} + \sigma \left\langle \xi(t) , \psi \right\rangle_{L^2[0,1]} \\ &= -\frac{\pi^2}{2} \left\langle u(t) , \psi \right\rangle_{L^2[0,1]} + \left\langle b(u(t)) , \psi \right\rangle_{L^2[0,1]} + \sigma \left\langle \xi(t) , \psi \right\rangle_{L^2[0,1]} \\ &= -\frac{\pi^2}{2} X_t + \left\langle b(u(t)) , \psi \right\rangle_{L^2[0,1]} + \sigma \left\langle \xi(t) , \psi \right\rangle_{L^2[0,1]} \,. \end{split}$$

$$\frac{\partial}{\partial t}u(t\,,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t\,,x)+b(u(t\,,x))+\sigma\xi(t\,,x),\quad X_t=\int_0^1u(t\,,x)\sin(\pi x)\,\mathrm{d}x$$

• We had: $\dot{X}_t = -\frac{\pi^2}{2} X_t + \langle b(u(t)), \psi \rangle_{L^2[0,1]} + \sigma \langle \xi(t), \psi \rangle_{L^2[0,1]}$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

- We had: $\dot{X}_t = -\frac{\pi^2}{2} X_t + \langle b(u(t)), \psi \rangle_{L^2[0,1]} + \sigma \langle \xi(t), \psi \rangle_{L^2[0,1]}$
- Since *b* is convex and $\psi(x) = \sin(\pi x) \ge 0$ for all $0 \le x \le 1$,

$$\dot{X}_t \geqslant -\frac{\pi^2}{2}X_t + b\left(\langle u(t), \psi \rangle_{L^2[0,1]}\right) + \sigma\left\langle \xi(t), \psi \right\rangle_{L^2[0,1]}$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

- We had: $\dot{X}_t = -\frac{\pi^2}{2} X_t + \langle b(u(t)), \psi \rangle_{L^2[0,1]} + \sigma \langle \xi(t), \psi \rangle_{L^2[0,1]}$
- Since *b* is convex and $\psi(x) = \sin(\pi x) \ge 0$ for all $0 \le x \le 1$,

$$\dot{X}_t \geqslant -\frac{\pi^2}{2}X_t + b\left(\langle u(t), \psi \rangle_{L^2[0,1]}\right) + \sigma\left\langle \xi(t), \psi \right\rangle_{L^2[0,1]}$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

- We had: $\dot{X}_t = -\frac{\pi^2}{2} X_t + \langle b(u(t)), \psi \rangle_{L^2[0,1]} + \sigma \langle \xi(t), \psi \rangle_{L^2[0,1]}$
- Since *b* is convex and $\psi(x) = \sin(\pi x) \ge 0$ for all $0 \le x \le 1$,

$$\begin{split} \dot{X}_t & \geq & -\frac{\pi^2}{2} X_t + b \left(\left\langle u(t), \psi \right\rangle_{L^2[0,1]} \right) + \sigma \left\langle \xi(t), \psi \right\rangle_{L^2[0,1]} \\ & = & -\frac{\pi^2}{2} X_t + b(X_t) + \sigma \left\langle \xi(t), \psi \right\rangle_{L^2[0,1]}. \end{split}$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

- We had: $\dot{X}_t = -\frac{\pi^2}{2} X_t + \langle b(u(t)), \psi \rangle_{L^2[0,1]} + \sigma \langle \xi(t), \psi \rangle_{L^2[0,1]}$
- Since *b* is convex and $\psi(x) = \sin(\pi x) \ge 0$ for all $0 \le x \le 1$,

$$\begin{split} \dot{X}_t & \geq & -\frac{\pi^2}{2} X_t + b \left(\left\langle u(t) \,, \psi \right\rangle_{L^2[0,1]} \right) + \sigma \left\langle \xi(t) \,, \psi \right\rangle_{L^2[0,1]} \\ & = & -\frac{\pi^2}{2} X_t + b(X_t) + \sigma \left\langle \xi(t) \,, \psi \right\rangle_{L^2[0,1]} \,. \end{split}$$

• Since $\|\psi\|_{L^2[0,1]} = 1$, it follows that $\langle \xi(t), \psi \rangle_{L^2[0,1]}$ is a temporal white noise $\mathrm{d}W_t/\mathrm{d}t$, for a 1-D Brownian motion W

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

- We had: $\dot{X}_t = -\frac{\pi^2}{2}X_t + \langle b(u(t)), \psi \rangle_{L^2[0,1]} + \sigma \langle \xi(t), \psi \rangle_{L^2[0,1]}$
- Since *b* is convex and $\psi(x) = \sin(\pi x) \ge 0$ for all $0 \le x \le 1$,

$$\begin{split} \dot{X}_t & \geq & -\frac{\pi^2}{2} X_t + b \left(\left\langle u(t) \,, \psi \right\rangle_{L^2[0,1]} \right) + \sigma \left\langle \xi(t) \,, \psi \right\rangle_{L^2[0,1]} \\ & = & -\frac{\pi^2}{2} X_t + b(X_t) + \sigma \left\langle \xi(t) \,, \psi \right\rangle_{L^2[0,1]} \,. \end{split}$$

- Since $\|\psi\|_{L^2[0,1]} = 1$, it follows that $\langle \xi(t), \psi \rangle_{L^2[0,1]}$ is a temporal white noise $\mathrm{d}W_t/\mathrm{d}t$, for a 1-D Brownian motion W
- In other words, *X* solves the Itô-type **stochastic diff. inequality:**

$$\mathrm{d}X_t \geqslant -\frac{\pi^2}{2}X_t\mathrm{d}t + b(X_t)\,\mathrm{d}t + \sigma\mathrm{d}W_t$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

• Once again, X solves the Itô-type stochastic diff. inequality:

$$\mathrm{d}X_t \geqslant -\frac{\pi^2}{2}X_t\mathrm{d}t + b(X_t)\,\mathrm{d}t + \sigma\mathrm{d}W_t$$

$$\frac{\partial}{\partial t} u(t,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t,x) + b(u(t,x)) + \sigma \xi(t,x), \quad X_t = \int_0^1 u(t,x) \sin(\pi x) \, \mathrm{d}x$$

• Once again, X solves the Itô-type stochastic diff. inequality:

$$\mathrm{d}X_t \geqslant -\frac{\pi^2}{2}X_t\mathrm{d}t + b(X_t)\,\mathrm{d}t + \sigma\mathrm{d}W_t$$

• It follows easily from this that $X_t \ge Y_t$, where Y solves the Itô SDE $(Y_0 = X_0$ — use Picard's iteration, for example)

$$dY_t = -\frac{\pi^2}{2}Y_t dt + b(Y_t)dt + \sigma dW_t$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

• Once again, *X* solves the Itô-type stochastic diff. inequality:

$$\mathrm{d}X_t \geqslant -\frac{\pi^2}{2}X_t\mathrm{d}t + b(X_t)\,\mathrm{d}t + \sigma\mathrm{d}W_t$$

• It follows easily from this that $X_t \ge Y_t$, where Y solves the Itô SDE $(Y_0 = X_0$ — use Picard's iteration, for example)

$$dY_t = -\frac{\pi^2}{2}Y_t dt + b(Y_t)dt + \sigma dW_t$$

• Since $b(z) \ge |z|(\log |z|)^{1+\delta}$ as $|z| \to \infty$, we can apply Feller's test to see that Y blows up in finite time a.s., whence so does X.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x), \quad X_t = \int_0^1 u(t,x)\sin(\pi x)\,\mathrm{d}x$$

• Once again, *X* solves the Itô-type stochastic diff. inequality:

$$\mathrm{d}X_t \geqslant -\frac{\pi^2}{2}X_t\mathrm{d}t + b(X_t)\,\mathrm{d}t + \sigma\mathrm{d}W_t$$

• It follows easily from this that $X_t \ge Y_t$, where Y solves the Itô SDE $(Y_0 = X_0$ — use Picard's iteration, for example)

$$dY_t = -\frac{\pi^2}{2}Y_t dt + b(Y_t)dt + \sigma dW_t$$

- Since $b(z) \ge |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$, we can apply Feller's test to see that Y blows up in finite time a.s., whence so does X.
- Whence so does $\sup_{x \in [0,1]} u(t,x) \geqslant X_t$. QED

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

• The Bonder–Groisman theorem (2009) says that if $\exists \delta > 0$ such that $b(z) \geqslant |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$ then the SPDE blows up in finite time a.s.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x)$$

- The Bonder–Groisman theorem (2009) says that if $\exists \delta > 0$ such that $b(z) \geqslant |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$ then the SPDE blows up in finite time a.s.
- Is this sharp?

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma\xi(t,x)$$

- The Bonder–Groisman theorem (2009) says that if $\exists \delta > 0$ such that $b(z) \geqslant |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$ then the SPDE blows up in finite time a.s.
- Is this sharp?
- The answer is "yes." To state the theorem we need some notation.

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- The Bonder–Groisman theorem (2009) says that if $\exists \delta > 0$ such that $b(z) \geqslant |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$ then the SPDE blows up in finite time a.s.
- Is this sharp?
- The answer is "yes." To state the theorem we need some notation.
- $\forall \alpha > 0$ let \mathbb{C}_0^{α} denote the collection of all functions $f : [0,1] \to \mathbb{R}$ such that f(0) = f(1) = 0 and $||f||_{\mathbb{C}_0^{\alpha}} < \infty$, where

$$||f||_{\mathbb{C}_0^{\alpha}} := \sup_{0 \leqslant x \neq y \leqslant 1} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

$$\frac{\partial}{\partial t} u(t\,,x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} u(t\,,x) + b(u(t\,,x)) + \sigma \xi(t\,,x)$$

- The Bonder–Groisman theorem (2009) says that if $\exists \delta > 0$ such that $b(z) \geqslant |z| (\log |z|)^{1+\delta}$ as $|z| \to \infty$ then the SPDE blows up in finite time a.s.
- Is this sharp?
- The answer is "yes." To state the theorem we need some notation.
- $\forall \alpha > 0$ let \mathbb{C}_0^{α} denote the collection of all functions $f : [0,1] \to \mathbb{R}$ such that f(0) = f(1) = 0 and $||f||_{\mathbb{C}_0^{\alpha}} < \infty$, where

$$||f||_{\mathbb{C}_0^{\alpha}} := \sup_{0 \leqslant x \neq y \leqslant 1} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

• If $\sigma : \mathbb{R} \to \mathbb{R}$ is locally Lipschitz then let

$$K_N^{\sigma} := \sup_{-N \leqslant a \neq b \leqslant N} \frac{|\sigma(a) - \sigma(b)|}{|a - b|}.$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Theorem (Dalang+K+Zhang, 2018)

Suppose $u(0) \in \mathbb{C}_0^\alpha$ for some $\alpha > 0$, σ and b are locally Lipschitz, and

$$|b(z)| = O(|z|\log|z|)$$
 and $K_N^{\sigma} = O(|\log N|^{1/4})$ as $N, |z| \to \infty$.

Then, the SPDE has a unique continuous "random field solution."

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Theorem (Dalang+K+Zhang, 2018)

Suppose $u(0) \in \mathbb{C}_0^\alpha$ for some $\alpha > 0$, σ and b are locally Lipschitz, and

$$|b(z)| = O(|z|\log|z|)$$
 and $K_N^{\sigma} = O(|\log N|^{1/4})$ as $N, |z| \to \infty$.

Then, the SPDE has a unique continuous "random field solution."

• I.e., Under the above conditions, the SPDE is well posed.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Theorem (Dalang+K+Zhang, 2018)

Suppose $u(0) \in \mathbb{C}_0^\alpha$ for some $\alpha > 0$, σ and b are locally Lipschitz, and

$$|b(z)| = O(|z|\log|z|)$$
 and $K_N^{\sigma} = O(|\log N|^{1/4})$ as $N, |z| \to \infty$.

Then, the SPDE has a unique continuous "random field solution."

- I.e., Under the above conditions, the SPDE is well posed.
- To simplify I will assume henceforth that $\sigma \equiv 1$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Theorem (Dalang+K+Zhang, 2018)

Suppose $u(0) \in \mathbb{C}_0^\alpha$ for some $\alpha > 0$, σ and b are locally Lipschitz, and

$$|b(z)| = O(|z|\log|z|)$$
 and $K_N^{\sigma} = O(|\log N|^{1/4})$ as $N, |z| \to \infty$.

Then, the SPDE has a unique continuous "random field solution."

- I.e., Under the above conditions, the SPDE is well posed.
- To simplify I will assume henceforth that $\sigma = 1$
- We have a second set of conditions for optimality of $b \in L \log L$. Leads to a conditional result that uses the sharp form of Gross' log-Sobolev inequality for Lebesgue measure

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

• Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.
- I will ignore technical issues with $u(0) \in \mathbb{C}_0^{\alpha}$.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.
- I will ignore technical issues with $u(0) \in \mathbb{C}_0^{\alpha}$.
- Suffice it to say that this condition ensures *a priori* "optimal regularity":

$$u(0) \in \mathbb{C}_0^{\alpha} \quad \Rightarrow \quad P\{u(t) \in \mathbb{C}_0^{\alpha} \ \forall t > 0\} = 1.$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

• Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.
- In order to simplify the exposition, let us consider only *b* of the form

$$b(z) = 1 + |z| \log_+ |z| \quad \forall z \in \mathbb{R}.$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.
- In order to simplify the exposition, let us consider only *b* of the form

$$b(z) = 1 + |z| \log_+ |z| \quad \forall z \in \mathbb{R}.$$

• $\forall N > 1$ define

$$\tilde{b}_N(z) := 1 + (|z| \wedge N) \log_+(|z| \wedge N).$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Goal: If $|b(z)| = O(|z| \log |z|)$ then the SPDE is well posed.
- In order to simplify the exposition, let us consider only *b* of the form

$$b(z) = 1 + |z| \log_+ |z| \quad \forall z \in \mathbb{R}.$$

• $\forall N > 1$ define

$$\tilde{b}_{N}(z) := 1 + (|z| \wedge N) \log_{+}(|z| \wedge N).$$

Easy to see that

$$\left|\tilde{b}_{N}(x) - \tilde{b}_{N}(y)\right| \leqslant (1 + \log N)|x - y| \quad \Rightarrow \quad \tilde{b}_{N} \in \text{Lip}$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

• Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \land N) \log_+ (|z| \land N)$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- $t \mapsto U_N(t)$ is a nice diffusion on $C(0, \infty)$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- $t \mapsto U_N(t)$ is a nice diffusion on $C(0, \infty)$
- Define

$$\tau_N^{(1)} := \inf \left\{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \right\}$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- $t \mapsto U_N(t)$ is a nice diffusion on $C(0, \infty)$
- Define

$$au_N^{(1)} := \inf \left\{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \right\}$$

• Enough to prove that $\lim_{N\to\infty} \tau_N^{(1)} = \infty$ a.s. \odot

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- $t \mapsto U_N(t)$ is a nice diffusion on $C(0, \infty)$
- Define

$$au_N^{(1)} := \inf \left\{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \right\}$$

- Enough to prove that $\lim_{N\to\infty} \tau_N^{(1)} = \infty$ a.s. \odot
- Can't quite do this. ©

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- $t \mapsto U_N(t)$ is a nice diffusion on $C(0, \infty)$
- Define

$$au_N^{(1)} := \inf \left\{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \right\}$$

- Enough to prove that $\lim_{N \to \infty} \tau_N^{(1)} = \infty$ a.s. \odot
- Can't quite do this. 😊
- CAN prove that $\exists \varepsilon > 0$ such that $\lim_{N \to \infty} \tau_N^{(1)} > \varepsilon$ a.s. ©

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \land N) \log_+ (|z| \land N)$
- $t \mapsto U_N(t)$ is a nice diffusion on $C(0, \infty)$
- Define

$$\tau_N^{(1)} := \inf \left\{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \right\}$$

- Enough to prove that $\lim_{N\to\infty} \tau_N^{(1)} = \infty$ a.s. \odot
- Can't quite do this. 😊
- CAN prove that $\exists \varepsilon > 0$ such that $\lim_{N \to \infty} \tau_N^{(1)} > \varepsilon$ a.s. \odot
- In fact, we develop delicate moment bounds: $\exists \varepsilon, \delta \ll 1$:

$$E\left(\sup_{t\in[0,\varepsilon]}\sup_{x\in[0,1]}|U_N(t,x)|^k\right)=O\left(N^{k\delta}\right)\quad\forall k\geqslant 2.$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

• Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \land N) \log_+ (|z| \land N)$
- Define $\tau_N^{(1)} := \inf \{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \}$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- Define $\tau_N^{(1)} := \inf \{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \}$
- Want to prove that $\exists \varepsilon > 0$ such that $\lim_{N \to \infty} \tau_N^{(1)} > \varepsilon$ a.s.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- Define $\tau_N^{(1)} := \inf \{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \}$
- Want to prove that $\exists \varepsilon > 0$ such that $\lim_{N \to \infty} \tau_N^{(1)} > \varepsilon$ a.s.
- $\exists \varepsilon, \delta \ll 1$: $\mathbb{E}\left(\sup_{t \in [0,\varepsilon]} \sup_{x \in [0,1]} |U_N(t,x)|^k\right) = O\left(N^{k\delta}\right) \quad \forall k \geqslant 2$.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \mathcal{E}(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \wedge N) \log_+ (|z| \wedge N)$
- Define $\tau_N^{(1)} := \inf \{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \}$
- Want to prove that $\exists \varepsilon > 0$ such that $\lim_{N \to \infty} \tau_N^{(1)} > \varepsilon$ a.s.
- $\exists \varepsilon, \delta \ll 1$: $\mathrm{E}\left(\sup_{t \in [0,\varepsilon]} \sup_{x \in [0,1]} |U_N(t,x)|^k\right) = O\left(N^{k\delta}\right) \quad \forall k \geqslant 2$.
- Chebyshev inequality ⇒

$$P\left\{\lim_{N\to\infty}\tau_N^{(1)}\leqslant\varepsilon\right\}=\lim_{N\to\infty}P\left\{\tau_N^{(1)}\leqslant\varepsilon\right\}=\lim_{N\to\infty}O\left(N^{-k(1-\delta)}\right)=0$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \xi(t,x)$$

- Let U_N solve our SPDE but with $b(z) = 1 + |z| \log_+ |z|$ replaced by $\tilde{b}_N := 1 + (|z| \land N) \log_+ (|z| \land N)$
- Define $\tau_N^{(1)} := \inf \{ t > 0 : \sup_{x \in [0,1]} |U_N(t,x)| > N \}$
- Want to prove that $\exists \varepsilon > 0$ such that $\lim_{N \to \infty} \tau_N^{(1)} > \varepsilon$ a.s.
- $\exists \varepsilon, \delta \ll 1$: $\mathbb{E}\left(\sup_{t \in [0,\varepsilon]} \sup_{x \in [0,1]} |U_N(t,x)|^k\right) = O\left(N^{k\delta}\right) \quad \forall k \geqslant 2$.
- Chebyshev inequality ⇒

$$P\left\{\lim_{N\to\infty}\tau_N^{(1)}\leqslant\varepsilon\right\}=\lim_{N\to\infty}P\left\{\tau_N^{(1)}\leqslant\varepsilon\right\}=\lim_{N\to\infty}O\left(N^{-k(1-\delta)}\right)=0$$

• The same if $b(z) = c_1 \pm c_2 |z| \log_+ |z|$. Now use comparison and SMP to finish. QED

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

• Say u is an \mathbb{L}^2_{loc} solution if

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Say *u* is an \mathbb{L}^2_{loc} solution if
 - **1** There exists a stopping time $\tau \in (0, \infty]$;

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Say *u* is an \mathbb{L}^2_{loc} solution if
 - **1** There exists a stopping time $\tau \in (0, \infty]$;
 - $\{u(t)\}_{0 \le t \le \tau}$ is an adapted $L^2[0,1]$ -valued process;

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

- Say *u* is an \mathbb{L}^2_{loc} solution if
 - **1** There exists a stopping time $\tau \in (0, \infty]$;
 - $\{u(t)\}_{0 \le t \le \tau}$ is an adapted $L^2[0,1]$ -valued process;
 - **6** For all $\phi \in C_0^1([0,1])$,

$$\int_{0}^{1} u(t, x)\phi(x) dx = \int_{0}^{1} u_{0}(x)\phi(x) dx + \frac{1}{2} \int_{0}^{1} u(s, x)\phi''(x) dx + \int_{(0,t)\times(0,1)} b(u(s, x))\phi(x) ds dx + \int_{(0,t)\times(0,1)} \sigma(u(s, x))\phi(x) \xi(ds dx),$$

a.s. on $\{\tau > t\}$.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Global solutions to stochastic reaction-diffus

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Theorem (Dalang+K+Zhang, 2018)

Suppose $u(0) \in L^2[0,1]$ is nonrandom and σ is bounded. Then, $P\{\tau = \infty\} = 1$ for every \mathbb{L}^2_{loc} solution u. Moreover,

$$\sup_{t\in(0,T)}\int_0^1|u(t,x)|^2\,dx<\infty\qquad a.s.\ for\ all\ T>0.$$

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Theorem (Dalang+K+Zhang, 2018)

Suppose $u(0) \in L^2[0,1]$ is nonrandom and σ is bounded. Then, $P\{\tau=\infty\}=1$ for every \mathbb{L}^2_{loc} solution u. Moreover,

$$\sup_{t\in(0,T)}\int_0^1|u(t,x)|^2\,dx<\infty\qquad a.s.\ for\ all\ T>0.$$

• We don't know if any such solution exists.

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) + b(u(t,x)) + \sigma(u(t,x))\xi(t,x)$$

Among other things, this theorem uses the following form of the log-Sobolev inequality for the law Unif [0,1]:

Theorem (Gross, 1993)

For every $h \in C_0^1([0,1])$ and $\varepsilon \in (0,1)$,

$$\int_0^1 |h(x)|^2 \log |h(x)| \, dx \leqslant \varepsilon \|h'\|_{\mathbb{L}^2}^2 + \frac{1}{4} \log(1/\varepsilon) \|h\|_{\mathbb{L}^2}^2 + \|h\|_{\mathbb{L}^2}^2 \log \left(\|h\|_{\mathbb{L}^2}^2\right),$$

where $0 \log 0 := 0$.

