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A noisy reaction-diffusion equation
0

au u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

Hl
T 2 9x2

(t,x)

e Consider the above SPDE for t > 0, x € (0, 1), where:
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e Consider the above SPDE for t > 0, x € (0, 1), where:

@ £ := space-time white noise; i.e., a GRF with E£(t, x) = 0 and
Cov[&(t,x),&(s, y)] = olt — s)So(x — y)
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A noisy reaction-diffusion equation
@
ot

(t,x) u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

Hl
T 2 9x2

e Consider the above SPDE for t > 0, x € (0, 1), where:

@ £ := space-time white noise; i.e., a GRF with E£(t, x) = 0 and
Cov[&(t,x),&(s, y)] = olt — 5)S0(x — y)
@ Homogeneous Dirichlet boundary condition,

u(t,0)=u(t,1)=0 for all t > 0,
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A noisy reaction-diffusion equation
0

au u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

(t,x)

Hl
T 2 9x2

e Consider the above SPDE for t > 0, x € (0, 1), where:

@ £ := space-time white noise; i.e., a GRF with E£(t, x) = 0 and
Cov[&(t,x),&(s,y)] = Solt —s)S0(x — y)
@ Homogeneous Dirichlet boundary condition,

u(t,0) =u(t,1)=0 forall t > 0,

@ 0 and b are assumed to be nonrandom and measurable
real-valued functions on the real line
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A noisy reaction-diffusion equation
%u(t,x) u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

Hl
T 2 9x2

e Consider the above SPDE for t > 0, x € (0, 1), where:

@ £ := space-time white noise; i.e., a GRF with E£(t, x) = 0 and
Cov[&(t,x),&(s,y)] = Solt —s)S0(x — y)
@ Homogeneous Dirichlet boundary condition,

u(t,0) =u(t,1)=0 forall t > 0,

@ 0 and b are assumed to be nonrandom and measurable
real-valued functions on the real line

@ Nonrandom initial condition u(0,-) = uy >0, up € C}([0,1])
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A noisy reaction-diffusion equation
0

au u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

(t,x)

Hl
T 2 9x2

e Consider the above SPDE for t > 0, x € (0, 1), where:

@ £ := space-time white noise; i.e., a GRF with E£(t, x) = 0 and
Cov[&(t,x),&(s, y)] = olt — 5)S0(x — y)

@ Homogeneous Dirichlet boundary condition,

u(t,0) =u(t,1)=0 forall t > 0,

@ 0 and b are assumed to be nonrandom and measurable
real-valued functions on the real line

e Nonrandom initial condition u(0,-) = uy > 0, up € C}([0,1])

@ Well posed when b and o are Lipschitz continuous
(Donati-Martin and Pardoux, 1993)
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A noisy reaction-diffusion equation

0

au(t ,X)

Hl
T 2 9x2

@ Suppose 0 > 0 is a constant:

u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

Ve = %uxx + b(u) + 0&
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A noisy reaction-diffusion equation

0

au(t ,X)

Hl
T 2 9x2

@ Suppose 0 > 0 is a constant:

u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

uy = %UXX + b(u) + o€

@ Suppose b € Lip,,.(R), b > 0, and 35 > 0: b(z) > |z|(log|z|)**° as

|z| = oco.
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A noisy reaction-diffusion equation

t,x) u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

Hl
T 2 9x2

e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip;,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)**° as
|z| = oc.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)
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A noisy reaction-diffusion equation

—u(t,x) = u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

1
2 0x2

e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip,,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)'*¢ as

|z| = oo.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

@ Aside on the work of Fujita (1966, 1969):
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e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip,,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)'*¢ as

|z| = oo.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

@ Aside on the work of Fujita (1966, 1969):

Q o= u"+ uP (nice u(0) > 0)
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A noisy reaction-diffusion equation

—u(t,x) = u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

1
2 0x2

e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip,,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)'*¢ as

|z| = oo.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

@ Aside on the work of Fujita (1966, 1969):

Q@ 0= u"+ uP (nice u(0) > 0)
@ If 1 < p < 3 then every solution blows up in finite time
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A noisy reaction-diffusion equation

t,x) u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)
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e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip,,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)'*¢ as
|z| = oo.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)
@ Aside on the work of Fujita (1966, 1969):
Q@ 0= u"+ uP (nice u(0) > 0)
@ If 1 < p < 3 then every solution blows up in finite time
@ If p > 3 and u(0) is sufficiently large, then u blows up in finite
time
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A noisy reaction-diffusion equation

t,x) = u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

1
2 0x2

e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip,,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)'*¢ as
|z| = oo.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)
@ Aside on the work of Fujita (1966, 1969):
Q@ 0= u"+ uP (nice u(0) > 0)
@ If 1 < p < 3 then every solution blows up in finite time
@ If p > 3 and u(0) is sufficiently large, then u blows up in finite
time
@ If p > 3, then there exist small solutions that live globally in time!
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A noisy reaction-diffusion equation

t,x) = u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

1
2 0x2

e Suppose 0 > 0 is a constant: | us = Sux + b(u) + o0&

@ Suppose b € Lip;,.(R), b >0, and 36 > 0: b(z) > |z|(log|z|)**° as
|z| = oo.

o If 0 = 0 then the reaction-diffusion equation can have nontrivial
stationary solutions (Fujita, 1966, 1966; extensive surveys by
Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

@ Aside on the work of Fujita (1966, 1969):
Q@ 0= u"+ uP (nice u(0) > 0)
@ If 1 < p < 3 then every solution blows up in finite time
@ If p > 3 and u(0) is sufficiently large, then u blows up in finite
time

@ If p > 3, then there exist small solutions that live globally in time!
@ The maximum principle produces many more solutions.
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A noisy reaction-diffusion equation

0

au(t ,X)

Hl
T 2 9x2

@ Suppose o > 0 is a constant:

u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

usy =

%UXX + b(u) + o€
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u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

usy =

%UXX + b(u) + o€

@ Suppose b € Lip, (R), b >0, and 36 > 0: b(z) > |z|(log|z|)**° as
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A noisy reaction-diffusion equation
0

au(t,x)

u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

Ml
T 2 9x2

@ Suppose 0 > 0 is a constant: | u; = %uxx + b(u) + 0&

@ Suppose b € Lip,,(R), b > 0, and 35 > 0: b(z) > |z|(log|z|)**° as
|z| = oo.

o If 0 =0, then the reaction-diffusion equation can have
nontrivial stationary solutions (Fujita, 1966, 1966; for surveys
see, for example, Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

D. Khoshnevisan (U. Utah) Global solutions to stochastic reaction-diffus July 2-5, 2018 5/17



A noisy reaction-diffusion equation
) 2

au ﬁu(t,x) + b(u(t,x)) + olu(t, x))&(t, x)

. 1
(t,x) = >

@ Suppose 0 > 0 is a constant: | u; = %uxx + b(u) + 0&

@ Suppose b € Lip,,(R), b > 0, and 35 > 0: b(z) > |z|(log|z|)**° as
|z| = oo.

e If 0 =0, then the reaction-diffusion equation can have
nontrivial stationary solutions (Fujita, 1966, 1966; for surveys
see, for example, Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

@ Contrasts with classical ODEs!! (Osgood, 1898: NASC
1. dx/b(x) = o0)
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A noisy reaction-diffusion equation
0

au u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

(t,x)
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@ Suppose 0 > 0 is a constant: | u; = %uxx + b(u) + 0&

@ Suppose b € Lip,,(R), b > 0, and 35 > 0: b(z) > |z|(log|z|)**° as
|z| = oo.

e If 0 =0, then the reaction-diffusion equation can have
nontrivial stationary solutions (Fujita, 1966, 1966; for surveys
see, for example, Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+Kurdyumov+Mikhailov, 1995)

e Contrasts with classical ODEs!! (Osgood, 1898: NASC
17 dx/b(x) = o0)
o If o0 > 0 then “order is restored”; i.e.,
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A noisy reaction-diffusion equation
0

au u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

(t,x)

Hl
T 2 9x2

@ Suppose 0 > 0 is a constant: | u; = %UXX + b(u) + o€

@ Suppose b € Lip,,.(R), b > 0, and 36 > 0: b(z) > |z|(log|z|)**° as
|z| = oo.

e If 0 = 0, then the reaction-diffusion equation can have
nontrivial stationary solutions (Fujita, 1966, 1966; for surveys
see, for example, Galaktionov+Vasquez, 2002;

Samarskii+ Galaktionov+ Kurdyumov+Mikhailov, 1995)

e Contrasts with classical ODEs!! (Osgood, 1898: NASC
17 dx/b(x) = o0)
o If o0 > 0 then “order is restored”; i.e.,

Theorem (Bonder+Groisman, 2009)
If 0 > 0 and b = convex, then a.s. 3 finite-time blowup.
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Bonder-Groisman’s Method

é (t )Mlﬁ
atu X = 2 Ox?

u(t,x) + blu(t, x)) + c&(t, x)

@ Let Y(x) = sin(;rx) be the pepl eigenfunction of Dirichlet
Laplacian on [0, 1]
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Bonder-Groisman’s Method
t,x) =

u(t,x) + blu(t, x)) + c&(t, x)

1
2 0x2

o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

@ Y>0o0n][0,1]
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Bonder-Groisman’s Method

18

—u(t,x) = Eﬁu(t,x) + b(u(t, x)) + 0&(t, x)

o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

e Yp>0o0n]0,1]
@ Define X; := (u(t),¥);210,1) forall t > 0
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Bonder-Groisman’s Method

—u(t,x) = u(t,x) + blu(t, x)) + c&(t, x)

1
2 0x2

o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

e Yp>0o0n]0,1]
@ Define X; := (u(t),¥);2[0,1) for all t > 0
@ It is easy to see that (weakly)

Xe = (Buxlt) + blut)) + 0&(), $) 2o
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Bonder-Groisman’s Method

—u(t,x) = u(t,x) + blu(t, x)) + c&(t, x)

1
2 0x2

o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

e Yp>0o0n]0,1]
@ Define X; := (u(t),¥);2[0,1) for all t > 0
o It is easy to see that (weakly)

Xt = <%Uxx(t) + b(U(t)) + GS(t) ’ l/)>L2[0,1]
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Bonder-Groisman’s Method
—u(t,x) =

u(t,x) + blu(t, x)) + c&(t, x)

1
2 0x2

o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

e Yp>0o0n]0,1]
@ Define X; := (u(t),¥);2[0,1) for all t > 0
o It is easy to see that (weakly)

Xe = (3uxe(t) + blu(t)) + 0€(t),¥) o0,
= {ult) ,1l)">L2[0,1] + (b(u(t)), ¥) 2101 + T (E(2), ¥) 120015
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o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

e Yp>0o0n]0,1]
@ Define X; := (u(t),¥);2[0,1) for all t > 0
o It is easy to see that (weakly)

Xe = {(3uwlt) + blult)) + 0&(t), ¥) 201y

(u ,ll)">L2[011] + (b(u(t)), ¢>L2[o,1] + 0 (&(t), 1P>L2[o,1]
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Bonder-Groisman’s Method

—u(t,x) = u(t,x) + blu(t, x)) + c&(t, x)

1
2 0x2

o Let ¥(x) = sin(7x) be the pcpl eigenfunction of Dirichlet
Laplacian on [0, 1]

e Yp>0o0n]0,1]
@ Define X; := (u(t),¥);2[0,1) for all t > 0
o It is easy to see that (weakly)

Lu(t) + blult)) + 0£(8), ) 01,

<U rll)">Lz[o t (b(u(t)), ¢>L2[o,1] + 0 (&(t), 1P>L2[o,1]
=% (ult), ¥)gapo g + (B(E)), B)zp0y + 0 (E(E), V)20

= =X, + (b(ult), ¥) 201 + O (E(), V)20

Xt =

N[ /\

JT

D. Khoshnevisan (U. Utah) Global solutions to stochastic reaction-diffus July 2-5, 2018 6 /17



Bonder-Groisman’s Method
t,x) =

u(t, x) + blu(t, x)) + c&(t, x), = fo u(t, x) sin(rx) dx

1
2 0x2

"] We had: Xt = '—‘%2Xt + <b(u<t)) ) ¢>L2[0,1] + 0 <£(t) , w>L2[O,1}
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Bonder-Groisman’s Method

—u(t,x) = u(t, x) + blu(t, x)) + c&(t, x), = fo u(t, x) sin(rx) dx

1
2 0x2

@ We had: Xt = —%ZXt + <b(U(t)) y ¢>L2[0,1] + 0 <£(t) ’ lp)LZ[O’l]
@ Since b is convex and ¥(x) = sin(;tx) > 0 for all 0 < x < 1,

Xe > —ZX;+b <<u(t),zp>L2[O,1]) + 0 (E(t), )20
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Bonder-Groisman’s Method

—u(t,x) = u(t, x) + blu(t, x)) + c&(t, x), = [o u(t, x) sin(rx) dx

1
2 0x2

o We had: Xt = —%ZXt + <b(U(t)) ) ¢>L2[0,1] + 0 <£(t) y lp)LZ[O’l]
@ Since b is convex and ¥(x) = sin(;tx) > 0 for all 0 < x < 1,

Xe > —ZXe+b <<u(t),¢>Lz[o,1]> + 0 (&(t), )20
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Bonder-Groisman’s Method

—u(t,x) = u(t, x) + blu(t, x)) + c&(t, x), = [o u(t, x) sin(rx) dx

1
2 0x2

o We had: Xt = —%ZXt + <b(U(t)) ) ¢>L2[0,1] + 0 <£(t) y lp)LZ[O’l]
@ Since b is convex and ¥(x) = sin(;tx) > 0 for all 0 < x < 1,

Xe > —ZXe+b <<u(t),¢>Lz[o,1]> + 0 (&(t), )20
= —”72Xt + b(Xe) + 0 (£(t), ¥) 2001 -
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Bonder-Groisman’s Method

—u(t,x) = u(t, x) + blu(t, x)) + c&(t, x), = [o u(t, x) sin(rx) dx

1
2 0x2

o We had: Xt = —%ZXt + <b(U(t)) ) ¢>L2[0,1] + 0 <£(t) y lp)LZ[O’l]
@ Since b is convex and ¥(x) = sin(;tx) > 0 for all 0 < x < 1,

Xe > —ZXe+b <<u(t),¢>Lz[o,1]> + 0 (&(t), )20
= —”72Xt + b(Xe) + 0 (£(t), ¥) 2001 -

@ Since [[Y] 20,1 = 1, it follows that (£(t), 1)),2[0,1) is a temporal
white noise dW,;/dt, for a 1-D Brownian motion W
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Bonder-Groisman’s Method

—u(t,x) = u(t, x) + blu(t, x)) + c&(t, x), = [o u(t, x) sin(rx) dx

1
2 0x2

o We had: Xt = —%ZXt + <b(U(t)) ) ¢>L2[0,1] + 0 <£(t) 5 lp)LZ[O’l]
@ Since b is convex and ¥(x) = sin(;tx) > 0 for all 0 < x < 1,
X > _%2Xt +b <<U(t) , ¢>L2[0,1]> + 0 (&(t), )20
= —Z X, + b(Xe) + 0 (E(t), Y) 2001 -

@ Since [[Y] 1201 = 1, it follows that (£(t), 1)),2[0,1) is a temporal
white noise dW;/dt, for a 1-D Brownian motion W

@ In other words, X solves the Itd-type stochastic diff. inequality:

dX; > —Z X,dt + b(X;)dt + odW;
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Bonder-Groisman’s Method

t,x) = u(t, x) + blu(t, x)) + c&(t, x), = fo u(t, x) sin(rx) dx

1
2 0x2

@ Once again, X solves the Itd-type stochastic diff. inequality:

dX; > —Z X,dt + b(X;)dt + odW;
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Bonder-Groisman’s Method
L1 ®
o'\ = 55

u(t, x) + blu(t, x)) + c&(t, x), = fo u(t, x) sin(rx) dx

@ Once again, X solves the Itd-type stochastic diff. inequality:

dX; > —Z X, dt + b(X;)dt + od W,

o [t follows easily from this that where Y solves the Itd

SDE

dY; = —Z Y, dt + b(Yy)dt + odW;
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o'\ = 55

u(t, x) + blu(t, x)) + c&(t, x), = [o u(t, x) sin(rx) dx

@ Once again, X solves the Itd-type stochastic diff. inequality:

dX; > —Z X, dt + b(X;)dt + od W,

o It follows easily from this that where Y solves the It
SDE

dY; = —Z Y, dt + b(Yy)dt + odW;

@ Since b(z) > |z|(log|z|)}*° as |z| — oo, we can apply Feller’s test

to see that Y blows up in finite time a.s., whence so does X.
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Bonder-Groisman’s Method
L1 ®
o'\ = 55

u(t, x) + blu(t, x)) + c&(t, x), = [o u(t, x) sin(rx) dx

@ Once again, X solves the Itd-type stochastic diff. inequality:

dX; > —Z X, dt + b(X;)dt + od W,

o It follows easily from this that where Y solves the It
SDE

dY; = —Z Y, dt + b(Yy)dt + odW;

e Since b(z) > |z|(log|z|)}*° as |z| — oo, we can apply Feller’s test

to see that Y blows up in finite time a.s.,, whence so does X.
@ Whence so does sup,¢o,1j u(t,x) = X¢. QED
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Optimality of the Bonder-Groisman Theorem

0 . 1@

au(t,x) = Eﬁu(t,x) + b(u(t, x)) + 0&(t, x)

@ The Bonder-Groisman theorem (2009) says that if 35 > 0 such
that b(z) > |z|(log|z|)}*¢ as |z| — oo then the SPDE blows up in
finite time a.s.
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au(t,x) = Eﬁu(t,x) + b(u(t, x)) + 0&(t, x)

@ The Bonder-Groisman theorem (2009) says that if 35 > 0 such
that b(z) > |z|(log|z|)**¢ as |z| — oo then the SPDE blows up in
finite time a.s.

@ Is this sharp?
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0 . 1@

au(t,x) = Eﬁu(t,x) + b(u(t, x)) + 0&(t, x)

@ The Bonder-Groisman theorem (2009) says that if 35 > 0 such
that b(z) > |z|(log|z|)**¢ as |z| — oo then the SPDE blows up in
finite time a.s.

@ Is this sharp?

@ The answer is “yes.” To state the theorem we need some
notation.
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Optimality of the Bonder-Groisman Theorem

0

au

_1&
B 2Bx2u

(t,x) (t,x) + b(ult,x)) + 0&(t, x)

@ The Bonder-Groisman theorem (2009) says that if 35 > 0 such
that b(z) > |z|(log|z|)**¢ as |z| — oo then the SPDE blows up in
finite time a.s.

@ Is this sharp?

@ The answer is “yes.” To state the theorem we need some
notation.

@ Va > 0 let C§ denote the collection of all functions f:[0,1] - R
such that £(0) = (1) = 0 and | f||cg < oo, where

g = sup LRI
0<x#y<1 IX yI
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Optimality of the Bonder-Groisman Theorem

0

au

_1&
B 2Bx2u

(t,x) (t,x) + b(ult,x)) + 0&(t, x)

@ The Bonder-Groisman theorem (2009) says that if 35 > 0 such
that b(z) > |z|(log|z|)**¢ as |z| — oo then the SPDE blows up in
finite time a.s.

@ Is this sharp?

@ The answer is “yes.” To state the theorem we need some
notation.

@ Va > 0 let C§ denote the collection of all functions f:[0,1] - R
such that f(0) = (1) = 0 and | f||cg < oo, where

f(x) — f(

Flog = sup LI=TUL
0<xty<t X~y

o If 0: R — R is locally Lipschitz then let

o(a) — o(b)|
Ky :=  sup |
N _ncagben  la— b
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Optimality of the Bonder-Groisman Theorem

0 . 1@

au(t,x) = Eﬁu“')() + b(u(t, x)) + ol(ult, x))&(t, x)

Theorem (Dalang+K+Zhang, 2018)

Suppose u(0) € C§ for some a > 0, 0 and b are locally Lipschitz,
and

|b(z)] = o([zl |og|z[> and K =0 <| log /v]1/4) as N, |z| = oo.

Then, the SPDE has a unique continuous “random field solution.”
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Theorem (Dalang+K+Zhang, 2018)

Suppose u(0) € C§ for some a > 0, 0 and b are locally Lipschitz,
and

|b(z)] = o([zl |og|z[> and K =0 <| log /v]1/4) as N, |z| = oo.

Then, the SPDE has a unique continuous “random field solution.”

@ lLe, Under the above conditions, the SPDE is well posed.
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Optimality of the Bonder-Groisman Theorem

Theorem (Dalang+K+Zhang, 2018)

Suppose u(0) € C§ for some a > 0, 0 and b are locally Lipschitz,
and

|b(z)] = o([zl |og|z[> and K =0 <| log /v]1/4) as N, |z| = oo.

Then, the SPDE has a unique continuous “random field solution.”

@ lLe., Under the above conditions, the SPDE is well posed.
@ To simplify I will assume henceforth that 0 = 1
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Optimality of the Bonder-Groisman Theorem

Theorem (Dalang+K+Zhang, 2018)

Suppose u(0) € C§ for some a > 0, 0 and b are locally Lipschitz,
and

|b(z)] = o([zl |og|z[> and K =0 <| log /v]1/4) as N, |z| = oo.

Then, the SPDE has a unique continuous “random field solution.”

@ lLe., Under the above conditions, the SPDE is well posed.
@ To simplify I will assume henceforth that 0 = 1

@ We have a second set of conditions for optimality of b € Llog L.
Leads to a conditional result that uses the sharp form of Gross’
log-Sobolev inequality for Lebesgue measure
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
9 1

& .
au(_t,x) = E@u(t,x) + b(u(t, x)) + -

@ Goal: If |b(z)| = O(|z|log|z|) then the SPDE is well posed.
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9 1

& .
au(_t,x) = E@u(t,x) + b(u(t, x)) + -

@ Goal: If |b(z)| = O(|z|log|z|) then the SPDE is well posed.
e [ will ignore technical issues with u(0) € C§.
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

5} 16 .
au(_t,x) = E@u(t,x) + b(u(t, x)) + -

@ Goal: If |b(z)| = O(|z|log|z|) then the SPDE is well posed.
e [ will ignore technical issues with u(0) € C§.

@ Suffice it to say that this condition ensures a priori “optimal
regularity”:

u(0)e Cy = P{u(t)eCqVvt>0}=1.
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
9 1

& .
au(_t,x) = E@u(t,x) + b(u(t, x)) + -

o Goal: If |b(z)| = O(|z|log |z|) then the SPDE is well posed.

@ In order to simplify the exposition, let us consider only b of the
form

b(z) =1+ |z|log. |Z] Vz e R.
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
9 1

au(_t,x) = E%u(t,x} + b(u(t, x)) + -

o Goal: If |b(z)| = O(|z|log |z|) then the SPDE is well posed.

@ In order to simplify the exposition, let us consider only b of the
form

b(z) =1+ |z|log. |Z] Vz € R.
@ VN > 1 define

bu(z) =1+ (|z| A N)log, (|z] A N).
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Optimality of the Bonder-Groisman Theorem

(Proof outline)

%u(t,x) = %%u(t,x} + b(u(t, x)) + -

o Goal: If |b(z)| = O(|z|log |z|) then the SPDE is well posed.

@ In order to simplify the exposition, let us consider only b of the
form

b(z) =1+ |z|log. |Z] Vz € R.
@ VN > 1 define

bn(z) :=1+ (|z| A N)log, (|z] A N).

@ Easy to see that

bn(x) — buly)| < (L +log N)|x —y| = bn € Lip
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
9 1

& .
au(_t,x) = E@u(t,x) + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by :=1+ (|z| A N)log.,(|z]| A N)
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
9 1

& .
au(_t,x) = E@u(t,x) + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by =1+ (|z] A N)log,(|z| A N)
@ t+— Uy(t) is a nice diffusion on C(0, 0o)
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
9 1

au(_t,x) = E%u(t,x} + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by :=1+ (|z| A N)log. (]z]| A N)

@ t+ Up(t) is a nice diffusion on C(0, 0c0)

@ Define

Tf\}) s=inf {t>0: sup |Un(t,x)| >N
x€[0,1]
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Optimality of the Bonder-Groisman Theorem

(Proof outline)

%u(t,x) = %%u(t,x} + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by :=1+ (|z| A N)log. (]z]| A N)

@ t+ Up(t) is a nice diffusion on C(0, 0c0)

@ Define

‘r,(\}) :=inf {t>0: sup |Un(t,x)| >N
x€[0,1]

@ Enough to prove that limy_ Tf\:}) =00 a.s. ©
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
5} 18 .
au(_t,x) = Eﬁu(t,x) + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by :=1+ (|z| A N)log. (]z]| A N)

@ t+ Up(t) is a nice diffusion on C(0, 0c0)

@ Define

‘r,(\}) :=inf {t>0: sup |Un(t,x)| >N
x€[0,1]

@ Enough to prove that limy_ Tf\}) =o00as. ©

@ Can't quite do this. ©
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Optimality of the Bonder-Groisman Theorem

(Proof outline)

%u(t,x) = %%u(t,x} + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by :=1+ (|z| A N)log. (]z]| A N)

t — Upn(t) is a nice diffusion on C(0, co)

Define

‘r,(\}) :=inf {t>0: sup |Un(t,x)| >N
x€[0,1]

Enough to prove that limy_ Tf\}) =00 a.s. ©

Can’t quite do this. @
CAN prove that 3e > 0 such that limy_, T,(\}) > e€as ©
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Optimality of the Bonder-Groisman Theorem

(Proof outline)
5} 18 .
au(_t,x) = Eﬁu(t,x) + b(u(t, x)) + -

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by =1+ (|z] A N)log,(|z| A N)
@ t+ Up(t) is a nice diffusion on C(0, 0c0)

@ Define
‘r,(\}) :=inf {t>0: sup |Un(t,x)| >N
x€[0,1]
@ Enough to prove that limy_ Tf\}) =o00as. ©
e Can'’t quite do this. ©
@ CAN prove that de > 0 such that limy_ T,(\}) >€eas ©
o In fact, we develop delicate moment bounds: Je,6 « 1:

E( sup sup |Un(t,x)[*| = O<Nk5> Vk > 2.
t[0,€] x€[0,1]
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

(u(t,x))+-

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log,. |z| replaced
by by := 1+ (|]z| A N)log, (|z] A N)
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

(u(t,x))+-

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log,. |z| replaced
by by := 1+ (|]z| A N)log, (|z] A N)

e Define 7\ := inf {t > 0:supecpoq|Unlt,x)| > N}
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

(u(t,x))+-

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log,. |z| replaced
by by := 1+ (|]z| A N)log, (|z] A N)

e Define 7\ := inf {t > 0:supecpoq|Unlt,x)| > N}

@ Want to prove that de > 0 such that limy_ T,%) > € a.s.
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

(u(t,x))+-

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log,. |z| replaced
by by := 1+ (|]z| A N)log, (|z] A N)

@ Define T;\:,L) i=inf {t > 0:sup,cioq |Un(t,x)| > N}

@ Want to prove that de > 0 such that limy_ T,%) > € a.s.
@ Je,6 < 1: E (supc(o,e) SUPxefo,1] |Un(t,x)[K) = O (Nk)  Vk >2.
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

(u(t,x))+-

® Let Uy solve our SPDE but with b(z) = 1 + |z|log, |z| replaced
by by =1+ (|z] A N)log.(|z] A N)

@ Define T;\:,L) i=inf {t > 0:sup,cioq |Un(t,x)| > N}

@ Want to prove that de > 0 such that limy_ T,%) > € a.s.

@ Je,6 < 1: E (supc(o,¢) SUPxefo,1] |Un(t,x)[K) = O (Nk)  Vk >2.

@ Chebyshev inequality =

N—oo N—oo

p {NI@OOT,(\P < 8} = |lim P {T;\}) < 5} = lim O (N"k(l"‘s)> =0
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Optimality of the Bonder-Groisman Theorem
(Proof outline)

(u(t,x))+-

@ Let Uy solve our SPDE but with b(z) = 1 + |z|log,. |z| replaced
by by := 1+ (|]z| A N)log, (|z] A N)

Define 7\ := inf {t > 0:supecpoq|Unlt,x)| > N}

Want to prove that de > 0 such that limy_ T,%) > € a.s.
Je,6 < 1t E (Supycio,e) SUPxe[0,1] |Un(t,x)[K) = O (Nk)  Vk >2.
Chebyshev inequality =

N—o00 N—o0

@ The same if b(z) = ¢ + &|z|log, |z|. Now use and
to finish. QED

p {Nli_r)noor,(\}) < e]» = lim P{TE\}) < e} = |lim O (N‘k(1_6)> =0
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A conditional theorem

0 . 1@

au(t,x) = Eﬁu(t,x) + b(u(t, x)) + olu(t, x))&(t, x)

2

loc SOlution if

@ Say visan L
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A conditional theorem

0 . 1@

au(t,x) = Eﬁu(t,x) + b(u(t, x)) + olu(t, x))&(t, x)

e Say v is an L2  solution if
@ There exists a stopping time T € (0, col;
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A conditional theorem

0 . 1@

au(t,x) = Eﬁu(t,x) + b(u(t, x)) + olu(t, x))&(t, x)

e Say v is an L2  solution if

@ There exists a stopping time T € (0, col;
Q {ult)}o<i<r is an adapted L2[0, 1]-valued process;
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A conditional theorem

é (t )Mlﬁ
atu X = 2 Ox?

u(t, x) + blu(t, x)) + o(u(t, x))&(t, x)

e Say v is an L2  solution if

@ There exists a stopping time T € (0, col;
@ {u(t)}o<t<r is an adapted L3[0, 1]-valued process;
@ For all ¢ € C}([0,1)),

1 1 1 1 B
/0 u(t, x)p(x) dx = /0 ug(x)p(x) dx + 5/0 u(s, x)9"(x) dx
+ / b(u(s, x))p(x) ds dx + / o(u(s, x))p(x) £(ds dx),
(0,8)%(0,1) (0,£)x(0,1)

as.on {t>th
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A conditional theorem

0 . 1@

au(t,x) = Eﬁu(t,x) + b(u(t, x)) + olu(t, x))&(t, x)
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A conditional theorem

18

—u(t,x) = Eﬁu“')() + b(u(t, x)) + ol(ult, x))&(t, x)

Theorem (Dalang+K+Zhang, 2018)

Suppose u(0) € L?[0,1] is nonrandom and o is bounded. Then,
P{t = 00} = 1 for every L2 _ solution u. Moreover,

sup /l (t,x)|? dx < oo a.s. forall T > 0.
t€(0,T)
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A conditional theorem

18

—u(t,x) = Eﬁu“')() + b(u(t, x)) + ol(ult, x))&(t, x)

Theorem (Dalang+K+Zhang, 2018)

Suppose u(0) € L?[0,1] is nonrandom and o is bounded. Then,
P{t = 00} = 1 for every L2 _ solution u. Moreover,

sup /l (t,x)|? dx < oo a.s. forall T > 0.
t€(0,T)

@ We don’t know if any such solution exists.
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A conditional theorem

Among other things, this theorem uses the following form of the
log-Sobolev inequality for the law Unif [0, 1]:

Theorem (Gross, 1993)
For every h € C}([0,1]) and € € (0, 1),

1
/O |h(x)|? log |h(x)] dx < e]| ||z + 7 log(1/€)|hllf= + [IAlIF2 log (IIAlIE2) .

where 0log0 := 0.
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