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Overview

0 Superprocesses in the random environment
@ Framework and one dimensional results
@ Formulation of the branching mechanism
@ Lebesgue density and SPDEs

© Moment estimates of the one-particle motion
@ Non-degeneracy of the Malliavin matrix
@ Moment estimates

© Holder continuity of the density
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Branching particle system

Particle motion:

Consider a branching particle system in the random environment. The
motion of each particle is described by the SDE:

(0 =6+ 80— 8"+ [ [y - (o) Wids. ).

a = (ag,...,ay) € N x {1,2}": label of the N-th generation
particles.

€% € RY: the birth position at time r > 0.
B“: independent d-dimensional Brownian motions.

W: d-dimensional space-time white noise, independent of B¢.

W is regarded as the random environment.
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Branching events:
. . . k _
@ For any n € N, the branching happens at fixed time ©, k =1,2,....

@ At any branching time, each particle dies, and randomly generates at
most 2 offspring.

New particles continue the moving/branching mechanism.
In the n-th approximation, denote by £%" the path of particle motion.

Equip the system an empirical measure

X = % > O,

where the sum is among all alive particles at time t.
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Some notations:

@ p < CX(RYRY @ RY), given by
p(x) = / h(x — z)h*(z)dz.
Rd

@ A:C3(RY) — Cp(RY) given by

d

A6() = 5 3 (07(0)056() + 5 80(),

ij=1

is the generator of one particle motion.
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One dimensional model (known results)

Under the Dawson-Watanabe branching mechanism:

Each particle independently splits into 2 or dies in probabilities (%/%)

Theorem (Wang 97, 98)

Suppose X§ = Xo € Mg(R). Then X{" — X;, that uniquely solves the
martingale problem (MP): for any ¢ € Cg(R),

M(6) = X(6) ~ X0(0) — [ ' X.(Ad)ds

is a continuous square integrable martingale with quadratic variation

o).~ [ V)0l — ¥)VH(y)Xel(db)Xe(dy)ds + / " Xe(6?)ds.
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Theorem (Dawson et al. 00)
X: has a density ui(x) almost surely, that solves the SPDE weakly:

o) =) + [ " A*u(x)ds — / t [ 9l = (N W, )
t V(ds, dx)
—i—/o \/us(x)—dx .

where 1 is the initial “density” that can be any L' function or distribution
on R, V is a space-time white noise independent of W.

v

Theorem (Li et al. 12, Hu et al. 14)

Suppose ;1 € L?(R) bounded, then u is almost surely jointly Hélder
continuous with time exponent %, and spatial exponent %
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Remark:

@ The density SPDE doesn't have a mild representation. The mild
representation is formally written as

ut(x):/p(tx y)u( dy+//\/7ptsx y)V(dsdy)

/ / / — 2)us(2)0;p(t — s, x — z)dzW (dsdy),

then the last term is not integrable at t.

@ When d > 2, it is proved (Dawson and Hochberg 79) that the super
Brownian motion (h = 0) involves a singular measure.
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New branching mechanism (Mytnik 96, Sturm 03)

Let {n(x) € R: x € RY} be the random field on RY:

@ 1 is symmetric: for any x, the distribution of 7(x) is symmetric.
@ Ip>2 st sup En(x)P < oo.

@ The correlation in different points:

E(n(x)n(y)) = k(x,y) € G5(R*).

For any n € N, let n, = (v/n An)V —v/n. The offspring distribution is
described by &,:
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In the n-th approximation:

@ Let {n.}icz, bei.i.d. copies of .

@ At the branching time 1, the offspring distribution of the i-th
generation particle, conditioned on 7!, and its position x, is given by

o 1
PN = 2|1, x) = —=n7 (x),

NG
1
P(N*" =0|n,,x) = ﬁﬁ;(x),
o 1
P(N ’”:1ynn,x)=1—ﬁ\n,,\(x).
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Lebesgue density and SPDEs

Theorem (Hu, nualart, X.)

Suppose X — Xo € Mg(R?) that has a bounded Lebesgue density ju.
Then,

@ X" converges weakly to X in D([0, T], Mg(R?)).
@ X; has a Lebesgue density u; for all t € [0, T].

@ u; is the unique weak solution to the following SPDE:

t t
vt [ Audst [ [ 9y~ 0IW(ds,d)
0 0 JR

£ V(ds,dx)
+ /0 us(x)T.

Here A* is the adjoint of A, V is an independent noise, that is whi

in time, and colored in space with correlation k.

(1)

te
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Martingale Problems

@ By the typical tightness argument, we show that {X"},cy is tight in
D([0, T]; Mg (R7)):
@ By Itd's formula, ¢ € CZ(R?), one can decompose

X{ () = Rdéb(X) ¢ (dx) = X3(0)+2:(¢) +B{ () + U"(¢) + M""(¢),

where Z(¢) denotes the drift term, B{(¢) denotes the martingale
from B®, U"(¢) denotes the random environment martingale, and
M""(¢) denotes the branching martingale.

@ X(¢), Z"(¢), MP"(4), U"(¢) are C-Tight in D([0, T],R).
B (¢) — 0in L2(Q) for all t € [0, T].

@ (Dawson) X" is C-tight in D([0, T], Mr(R?)).
(Mitoma) Z", M", U", and B" are C-tight in D([0, T}, S'(R?)).
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@ Any limit X of a convergent subsequence X" is a solution to the
MP: for any ¢ € C2Z(RY),

Mi() =Xe(0) - X6(0) — |  X.(Ad)ds 2)

is a continuous square integrable martingale with quadratic variation
wen. - [ | X)*x — y)V0(y)Xs(d) Xs(dy )ds
Rded
[ / KO )B)O() X Xeldy)ds. (3)
0 JRIXRI
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Absolute continuity w.r.t. the Lebesgue measure

Lemma

Let X; be any solution to the MP (2) - (3). Xo € Mg(RY) has a bounded
Lebesgue density ;1. Then X; also has Lebesgue density a.s.

Sketch of the proof: We prove the theorem by showing

T
sup / / E | X;(p})|? dxdt < oo,
he(o,1)Jo JRrd

]
. 2
| E (X:(py.) — X:(pF dxdt =0
Jim /0 / E|Xe(pi) ~ Xelpi) ot =0,

where py is the heat kernel:
g x — |2
() = (4h)~% (_7)
Ph(-) = (4mh) "2 exp 0

@ {X:(pf)}hso is Cauchy in L2(Q x [0, T] x R9).
@ The limit ut(x) is the Lebesgue density of X; a.s.
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By using the moment duality, one can obtain the moment formula:

Lemma (Moment formula)
For any f € C2(R"),

EXZ"(F) = X5 (v(t, ),

where v is the solution to the PDE

1
atv(t,x)—[A<">v(1s,x)+5 3 H(X,-,Xj)v(t,x)}zo, (4)
1<i,j<n
i

with v(0,x) = f(x), A" is the generator of the n-particle motion:

0?f
AN f __Af_|_ 112 = TyevesXn)-
lhglﬂglpl 8XJ16XJ2( )
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Density Equation and Conditional Mild Formulation

@ Any solution to the MP has a Lebesgue density.

@ Every limit process of the particle approximation is a solution to the
MP.

Thus every limit process has a density. It solves the SPDE (1) weakly.

@ Uniqueness: Let di(x) = ul(x) — u?(x), then d is a solution to the
SPDE with initial condition © = 0, and thus a solution to the MP. By
the moment duality,

E<dta ¢> = ]E<,LL, ¢t> = 0)
for all ¢ € C2(RY), which means d =0, as..

The uniqueness of the solution to the SPDE implies the convergence of
empirical measures.
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Conditional mild representation: (Li et al. 12)
The SPDE (1) has a unique weak solution that is the unique strong
solution to the equation:

= z WrZ' X)az t WrZ' X)Uus\z S,az
w() = [ w(@p"(rzexgde+ [ p¥(rzexus(a)Vies.do)

where p" is the transition density density of one-particle motion
conditional on W.

The well-posedness of the equation can be proved by using the moment
estimates of p"V below.
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Moment estimate of one-particle motion
Recall the one-particle motion &; = £, described by the SDE:

t
€= x+ B B,+/O /R hy — €)W (du, dy),

where B is a Brownian motion, W is a space-time white noise,
independent of B, and h € H3(RY; RY @ RY).

Lemma

Let p(r,x; t,y) be the transition density of £; conditioned on W. Then

1
/d ,DW(r,z;t,y2)—pW(r7z;t,y1)H2 dzgc(t_r)_éﬁb/z_yl’B’
R P

J.
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X=Yy _d
10" (r xi t,y)l2p < Cexp (— ’tf))(f— N4,

PM(rzity) = p(rzisy)|, dz < Cs— )73t - 9)3”.

v
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Preliminaries and notations

@ Let B={B;:0<t< T} be the standard d-dimensional Brownian
motion.

H = L2([0, T]; R¥) is then the basic Hilbert space with B.

@ Denote by D the Malliavin derivative operator and ¢ the divergence
operator.

For any n-dimensional random variable F, denoted by g, of the
n x n Malliavin matrix and its inverse respectively, if exists.

@ The integration by parts formula:
E(9i9(F)G) = ZE )3(GoEDF;)),

for all F € DY2(R™), and G € DY2(R).
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Lemma (Malliavin and Thalmaier 05, Bally and Caramellino 11)

Let F € D*P(R"), and o}, | € LP(Q) for all p > 1. Then F has the
Lebesgue density:

p(x) = —E Y 1p(,)0iQu(F — x)3[¢5(F)oLDF}].,
ij=1

where 0; Qn(x) = C,,|X|Xﬁ, and ¢3; € CHRY): 1B(x,p) < ¢ < 1p(x,2p) and
Vsl < 1/p.

For simplification, we denote by

Hiy(F, G) Zé(Ga;{-DF)
j=1
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Non-degeneracy of the Malliavin matrix
@ By differentiating the equation of particle motion:

t
D=1~ [ [ Dfeam,

where M is a matrix-valued martingale, with entries

e d t .
Ml =3 [ [ ok cow(ds. dy)
k=1"

@ Denote by ) '
gl(t,y) = 0 (y — &).

@ Let M(t) =59, DWeiD{Fel then

Nolt) =1 — /et)\g(s)dMs - /et M - A (s)

d t
' /e /Rd 8k(s,y)Aa(s)gx(s, y)dyds.
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@ It turns out that fix § € [r, t), A is invertible, with \g(t)™! = By(t),
satisfies the SDE:

Bo(t) =1+ /et,ﬁg(s)dMs* + /et dMs - By (s)

d. ,t
+ ;/9 /]R" [gk(S,y)2,30(S) + gx(s,¥)Bo(s)gi (s, y)

+B0(s)gi (s, y)?] dyds.

@ By Jensen’s inequality (Stroock 83.), almost surely we have

loelns. = H (/ txe(r)de)l

1
<

_m /rx\g(t)_ldﬁ

HS. H.S.
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Sketch of the proof: Let p =/t — r. By the density lemma:

p

@ ¢&: is a Gaussian process:

klx — 2
P& < B(y.29) < Cop(~ =T

@ (Nualart and Nualart) By integration by parts formula:

. _ (¢ . qyd—1
508 10:Qu(€ = 1)l = € a1 (66 1%
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@ For Hj)(&r, ¢p(&r)), we have the identity by integration by parts
formula:

Hiy(&e, #(&e)) = ¢%(ft)H(i)(ft, 1)+ ai¢%(§t)-

@ By Meyer's inequality and the estimates of Sobolev norms of &;, and
Ot

“H(I)(gh 1)||p S C(t — r)_%.

The moment estimation of pW(r,x; t,y) follows from Holder's inequality.
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Final result

Based on the conditional mild representation and moment estimates, we
easily show:

Theorem (Hu, Nualart, X.)
For any 1,5, € (0,1), p>1,0<s <t < T, there exists C = Cp T3, 8,
s.t.

1 1
lu(t, x) = u(s,y)p < €575 (Ix = y1 + (£ = 5)2%) .

Hence by Kolmogorov's continuity criteria, u(t, x) is almost surely jointly
Hélder continuous, with exponent 1 € (0,1) in space and (3 € (0, %) in
time.
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