Joint Hölder continuity of the solutions to a class of SPDEs arising from multi-dimensional superprocesses in the random environment

Panqiu Xia

University of Kansas

Joint work with Yaozhong Hu and David Nualart

Workshop on Stochastic Analysis and Related Topics, HKU, 2018

Overview

- Superprocesses in the random environment
 - Framework and one dimensional results
 - Formulation of the branching mechanism
 - Lebesgue density and SPDEs
- 2 Moment estimates of the one-particle motion
 - Non-degeneracy of the Malliavin matrix
 - Moment estimates
- Hölder continuity of the density

Branching particle system

Particle motion:

Consider a branching particle system in the random environment. The motion of each particle is described by the SDE:

$$\xi^{\alpha}(t) = \xi^{\alpha}_r + B^{\alpha}(t) - B^{\alpha}(r) + \int_r^t \int_{\mathbb{R}^d} h(y - \xi^{\alpha}(s)) W(ds, dy).$$

- $\alpha = (\alpha_0, \dots, \alpha_N) \in \mathbb{N} \times \{1, 2\}^N$: label of the *N*-th generation particles.
- $\xi_r^{\alpha} \in \mathbb{R}^d$: the birth position at time $r \geq 0$.
- **9** B^{α} : independent *d*-dimensional Brownian motions.
- W: d-dimensional space-time white noise, independent of B^{α} .
- lacktriangledown is regarded as the random environment.

Pangiu Xia (KU) Hölder continuity 3/27

Branching events:

- For any $n \in \mathbb{N}$, the branching happens at fixed time $\frac{k}{n}$, $k = 1, 2, \ldots$
- At any branching time, each particle dies, and randomly generates at most 2 offspring.
- New particles continue the moving/branching mechanism.
- In the *n*-th approximation, denote by $\xi^{\alpha,n}$ the path of particle motion.
- Equip the system an empirical measure

$$X_t^n = \frac{1}{n} \sum_{\alpha \sim_n t} \delta_{\xi_t^{\alpha,n}},$$

where the sum is among all alive particles at time t.

Some notations:

$$\rho(x) = \int_{\mathbb{R}^d} h(x-z)h^*(z)dz.$$

 $\bullet \quad A: \mathit{C}^{2}_{b}(\mathbb{R}^{d}) \to \mathit{C}_{b}(\mathbb{R}^{d}) \text{ given by }$

$$A\phi(x) = \frac{1}{2} \sum_{i,j=1}^{d} \left(\rho^{ij}(0) \partial_{ij} \phi(x) \right) + \frac{1}{2} \Delta \phi(x),$$

is the generator of one particle motion.

Panqiu Xia (KU)

Hölder continuity

One dimensional model (known results)

Under the Dawson-Watanabe branching mechanism:

Each particle independently splits into 2 or dies in probabilities $(\frac{1}{2}/\frac{1}{2})$.

Theorem (Wang 97, 98)

Suppose $X_0^n \Rightarrow X_0 \in M_F(\mathbb{R})$. Then $X_t^n \to X_t$, that uniquely solves the martingale problem (MP): for any $\phi \in C_b^2(\mathbb{R})$,

$$M_t(\phi) := X_t(\phi) - X_0(\phi) - \int_0^t X_s(A\phi)ds$$

is a continuous square integrable martingale with quadratic variation

$$\langle M(\phi) \rangle_t = \int_0^t \nabla \phi(x) \rho(x-y) \nabla \phi(y) X_s(dx) X_s(dy) ds + \int_0^t X_s(\phi^2) ds.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

6/27

Panqiu Xia (KU) Hölder continuity

Theorem (Dawson et al. 00)

 X_t has a density $u_t(x)$ almost surely, that solves the SPDE weakly:

$$u_t(x) = \mu(x) + \int_0^t A^* u_s(x) ds - \int_0^t \int_{\mathbb{R}} \nabla_x [h(y-x)u_s(x)] W(ds, dy) + \int_0^t \sqrt{u_s(x)} \frac{V(ds, dx)}{dx}.$$

where μ is the initial "density" that can be any L^1 function or distribution on \mathbb{R} , V is a space-time white noise independent of W.

Theorem (Li et al. 12, Hu et al. 14)

Suppose $\mu \in L^2(\mathbb{R})$ bounded, then u is almost surely jointly Hölder continuous with time exponent $\frac{1}{4}$, and spatial exponent $\frac{1}{2}$.

4□ > 4□ > 4 = > 4 = > = 90

Panqiu Xia (KU) Hölder continuity 7 / 27

Remark:

 The density SPDE doesn't have a mild representation. The mild representation is formally written as

$$u_t(x) = \int_{\mathbb{R}} p(t, x - y) \mu(y) dy + \int_0^t \int_{\mathbb{R}} \sqrt{u_s(y)} p(t - s, x - y) V(dsdy) + \int_0^t \int_{\mathbb{R}} \int_{\mathbb{R}} h(y - z) u_s(z) \partial_z p(t - s, x - z) dz W(dsdy),$$

then the last term is not integrable at t.

• When $d \ge 2$, it is proved (Dawson and Hochberg 79) that the super Brownian motion ($h \equiv 0$) involves a singular measure.

8 / 27

Panqiu Xia (KU) Hölder continuity

New branching mechanism (Mytnik 96, Sturm 03)

Let $\{\eta(x) \in \mathbb{R} : x \in \mathbb{R}^d\}$ be the random field on \mathbb{R}^d :

- \bullet η is symmetric: for any x, the distribution of $\eta(x)$ is symmetric.
- The correlation in different points:

$$\mathbb{E}(\eta(x)\eta(y)) = \kappa(x,y) \in C_b^2(\mathbb{R}^{2d}).$$

For any $n \in \mathbb{N}$, let $\eta_n = (\sqrt{n} \wedge \eta) \vee -\sqrt{n}$. The offspring distribution is described by ξ_n :

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ で

Panqiu Xia (KU) Hölder continuity 9 / 27

In the *n*-th approximation:

- Let $\{\eta_n^i\}_{i\in\mathbb{Z}_+}$ be i.i.d. copies of η_n .
- At the branching time $\frac{i+1}{n}$, the offspring distribution of the *i*-th generation particle, conditioned on η_n^i and its position x, is given by

$$P(N^{\alpha,n} = 2 | \eta_n, x) = \frac{1}{\sqrt{n}} \eta_n^+(x),$$

$$P(N^{\alpha,n} = 0 | \eta_n, x) = \frac{1}{\sqrt{n}} \eta_n^-(x),$$

$$P(N^{\alpha,n} = 1 | \eta_n, x) = 1 - \frac{1}{\sqrt{n}} |\eta_n|(x).$$

Panqiu Xia (KU) Hölder continuity 10 / 27

Lebesgue density and SPDEs

Theorem (Hu, nualart, X.)

Suppose $X_0^n \to X_0 \in M_F(\mathbb{R}^d)$ that has a bounded Lebesgue density μ . Then,

- X^n converges weakly to X in $D([0, T], M_F(\mathbb{R}^d))$.
- X_t has a Lebesgue density u_t for all $t \in [0, T]$.
- u_t is the unique weak solution to the following SPDE:

$$u_{t} = \mu + \int_{0}^{t} A^{*} u_{s} ds + \int_{0}^{t} \int_{\mathbb{R}^{d}} \nabla^{*} \cdot [u_{s}(y)h(y-x)]W(ds, dy)$$
$$+ \int_{0}^{t} u_{s}(x) \frac{V(ds, dx)}{dx}. \tag{1}$$

Here A^* is the adjoint of A, V is an independent noise, that is white in time, and colored in space with correlation κ .

Pangiu Xia (KU) Hölder continuity 11/27

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Martingale Problems

- By the typical tightness argument, we show that $\{X^n\}_{n\in\mathbb{N}}$ is tight in $D([0,T];M_F(\mathbb{R}^d))$:
 - **)** By Itô's formula, $\phi \in C^2_b(\mathbb{R}^d)$, one can decompose

$$X_{t}^{n}(\phi) := \int_{\mathbb{R}^{d}} \phi(x) X_{t}^{n}(dx) = X_{0}^{n}(\phi) + Z_{t}^{n}(\phi) + B_{t}^{n}(\phi) + U^{n}(\phi) + M^{r,n}(\phi),$$

where $Z^n_t(\phi)$ denotes the drift term, $B^n_t(\phi)$ denotes the martingale from B^{α} , $U^n(\phi)$ denotes the random environment martingale, and $M^{r,n}(\phi)$ denotes the branching martingale.

- $X^n(\phi)$, $Z^n(\phi)$, $M^{b,n}(\phi)$, $U^n(\phi)$ are C-Tight in $D([0,T],\mathbb{R})$. $B^n_t(\phi) \to 0$ in $L^2(\Omega)$ for all $t \in [0,T]$.
- (Dawson) X^n is C-tight in $D([0, T], M_F(\mathbb{R}^d))$. (Mitoma) Z^n , M^n , U^n , and B^n are C-tight in $D([0, T], \mathcal{S}'(\mathbb{R}^d))$.

Panqiu Xia (KU) Hölder continuity 12 / 27

• Any limit X of a convergent subsequence X^{n_k} is a solution to the MP: for any $\phi \in C_b^2(\mathbb{R}^d)$,

$$M_t(\phi) = X_t(\phi) - X_0(\phi) - \int_0^t X_s(A\phi) ds$$
 (2)

is a continuous square integrable martingale with quadratic variation

$$\langle M(\phi) \rangle_t = \int_0^t \int_{\mathbb{R}^d \times \mathbb{R}^d} \nabla \phi(x)^* \rho(x - y) \nabla \phi(y) X_s(dx) X_s(dy) ds + \int_0^t \int_{\mathbb{R}^d \times \mathbb{R}^d} \kappa(x, y) \phi(x) \phi(y) X_s(dx) X_s(dy) ds.$$
(3)

Panqiu Xia (KU) Hölder continuity 13/27

Absolute continuity w.r.t. the Lebesgue measure

Lemma

Let X_t be any solution to the MP (2) - (3). $X_0 \in M_F(\mathbb{R}^d)$ has a bounded Lebesgue density μ . Then X_t also has Lebesgue density a.s.

Sketch of the proof: We prove the theorem by showing

$$\begin{split} \sup_{h \in (0,1)} \int_0^T \int_{\mathbb{R}^d} \mathbb{E} \left| X_t(p_h^x) \right|^2 dx dt < \infty, \\ \lim_{h_1,h_2 \downarrow 0} \int_0^T \int_{\mathbb{R}^d} \mathbb{E} \left| X_t(p_{h_1}^x) - X_t(p_{h_2}^x) \right|^2 dx dt = 0, \end{split}$$

where p_h^{\times} is the heat kernel:

$$p_h^{\mathsf{X}}(\cdot) = (4\pi h)^{-\frac{d}{2}} \exp\Big(-\frac{|\mathsf{X}-\cdot|^2}{4h}\Big).$$

- $\{X_t(p_h^x)\}_{h>0}$ is Cauchy in $L^2(\Omega \times [0,T] \times \mathbb{R}^d)$.
- The limit $u_t(x)$ is the Lebesgue density of X_t a.s.

Pangiu Xia (KU) Hölder continuity 14/27

By using the moment duality, one can obtain the moment formula:

Lemma (Moment formula)

For any $f \in C_b^2(\mathbb{R}^{nd})$,

$$\mathbb{E} X_t^{\otimes n}(f) = X_0^{\otimes n}(v(t,\cdot)),$$

where v is the solution to the PDE

$$\partial_t v(t,x) - \left[A^{(n)} v(t,x) + \frac{1}{2} \sum_{\substack{1 \le i,j \le n \\ i \ne i}} \kappa(x_i,x_j) v(t,x) \right] = 0, \tag{4}$$

with v(0,x) = f(x), $A^{(n)}$ is the generator of the n-particle motion:

$$A^{(n)}f = \frac{1}{2}\Delta f + \frac{1}{2}\sum_{i_1,i_2=1}^n \sum_{j_1,j_2=1}^d \rho^{j_1j_2}(x_{i_1} - x_{i_2}) \frac{\partial^2 f}{\partial x_{j_1}^{j_1} \partial x_{j_2}^{j_2}}(x_1, \dots, x_n).$$

Density Equation and Conditional Mild Formulation

- Any solution to the MP has a Lebesgue density.
- Every limit process of the particle approximation is a solution to the MP.

Thus every limit process has a density. It solves the SPDE (1) weakly.

• Uniqueness: Let $d_t(x) = u_t^1(x) - u_t^2(x)$, then d is a solution to the SPDE with initial condition $\mu \equiv 0$, and thus a solution to the MP. By the moment duality,

$$\mathbb{E}\langle d_t, \phi \rangle = \mathbb{E}\langle \mu, \phi_t \rangle = 0,$$

for all $\phi \in C^2_b(\mathbb{R}^d)$, which means $d \equiv 0$, a.s..

The uniqueness of the solution to the SPDE implies the convergence of empirical measures.

 ✓ロ > 〈母 > 〈き > 〈き > 〈き > 〉き

 Y ○ ○

 Pangiu Xia (KU)

 Hölder continuity

 16/27

Conditional mild representation: (Li et al. 12)

The SPDE (1) has a unique weak solution that is the unique strong solution to the equation:

$$u_t(x) = \int_{\mathbb{R}^d} \mu(z) \rho^W(r, z; t, x) dz + \int_0^t \int_{\mathbb{R}^d} \rho^W(r, z; t, x) u_s(z) V(ds, dz),$$

where p^W is the transition density density of one-particle motion conditional on W.

The well-posedness of the equation can be proved by using the moment estimates of p^W below.

Panqiu Xia (KU) Hölder continuity 17/27

Moment estimate of one-particle motion

Recall the one-particle motion $\xi_t = \xi_t^{r,x}$, described by the SDE:

$$\xi_t = x + B_t - B_r + \int_0^t \int_{\mathbb{R}^d} h(y - \xi_u) W(du, dy),$$

where B is a Brownian motion, W is a space-time white noise, independent of B, and $h \in H_2^3(\mathbb{R}^d; \mathbb{R}^d \otimes \mathbb{R}^d)$.

Lemma

Let $p^W(r,x;t,y)$ be the transition density of ξ_t conditioned on W. Then

$$\|p^{W}(r,x;t,y)\|_{2p} \leq C \exp\left(-\frac{|x-y|^{2}}{t-r}\right) (t-r)^{-\frac{d}{2}},$$

$$\int_{\mathbb{R}^{d}} \left\|p^{W}(r,z;t,y_{2}) - p^{W}(r,z;t,y_{1})\right\|_{2p} dz \leq C(t-r)^{-\frac{1}{2}\beta} |y_{2}-y_{1}|^{\beta},$$

$$\int_{\mathbb{R}^{d}} \left\|p^{W}(r,z;t,y) - p^{W}(r,z;s,y)\right\|_{2p} dz \leq C(s-r)^{-\frac{1}{2}\beta} (t-s)^{\frac{1}{2}\beta}.$$

Panqiu Xia (KU) Hölder continuity 18/27

Preliminaries and notations

• Let $B = \{B_t : 0 \le t \le T\}$ be the standard *d*-dimensional Brownian motion.

 $H = L^2([0, T]; \mathbb{R}^d)$ is then the basic Hilbert space with B.

• Denote by D the Malliavin derivative operator and δ the divergence operator.

For any *n*-dimensional random variable F, denoted by γ_F , σ_F the $n \times n$ Malliavin matrix and its inverse respectively, if exists.

The integration by parts formula:

$$\mathbb{E}(\partial_i \phi(F)G) = \sum_{j=1}^n \mathbb{E}\big[\phi(F)\delta(G\sigma_F^{ij}DF_j)\big],$$

for all $F \in \mathbb{D}^{1,2}(\mathbb{R}^n)$, and $G \in \mathbb{D}^{1,2}(\mathbb{R})$.

4 D > 4 D > 4 E > 4 E > E = 990

Panqiu Xia (KU) Hölder continuity 19 / 27

Lemma (Malliavin and Thalmaier 05, Bally and Caramellino 11)

Let $F \in \mathbb{D}^{2,p}(\mathbb{R}^n)$, and $\sigma_F^{ij} \in L^p(\Omega)$ for all $p \geq 1$. Then F has the Lebesgue density:

$$p(x) = -\mathbb{E}\sum_{i,j=1}^{n} \mathbf{1}_{B(x,\rho)} \partial_{i} Q_{n}(F-x) \delta \left[\phi_{\rho}^{x}(F) \sigma_{F}^{ij} D F_{j}\right],$$

where $\partial_i Q_n(x) = C_n \frac{x_i}{|x|^{n-1}}$, and $\phi_\rho^x \in C^1(\mathbb{R}^d)$: $1_{B(x,\rho)} \le \phi_\rho^x \le 1_{B(x,2\rho)}$ and $|\nabla \phi_\rho^x| \le 1/\rho$.

For simplification, we denote by

$$H_{(i)}(F,G) := \sum_{j=1}^{n} \delta(G\sigma_F^{ij}DF_j)$$

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□▶ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</

Panqiu Xia (KU) Hölder continuity 20 / 27

Non-degeneracy of the Malliavin matrix

By differentiating the equation of particle motion:

$$D_{\theta}^{(k)}\xi_t = I - \int_{\theta}^t \int_{\mathbb{R}^d} D_{\theta}^{(k)}\xi_s^* dM_s,$$

where M is a matrix-valued martingale, with entries

$$M_t^{ij} := \sum_{k=1}^d \int_r^t \int_{\mathbb{R}^d} \partial_i h^{jk} (y - \xi_t) W^k (ds, dy).$$

Denote by

$$g_k^{ij}(t,y) = \partial_i h^{jk}(y - \xi_t).$$

• Let
$$\lambda_{ heta}^{ij}(t) = \sum_{k=1}^d D_{ heta}^{(k)} \xi_t^i D_{ heta}^{(k)} \xi_t^j$$
, then

$$\lambda_{\theta}(t) = I - \int_{\theta}^{t} \lambda_{\theta}(s) dM_{s} - \int_{\theta}^{t} dM_{s}^{*} \cdot \lambda_{\theta}(s)$$

$$+ \sum_{k=1}^{d} \int_{\theta}^{t} \int_{\mathbb{R}^{d}} g_{k}^{*}(s, y) \lambda_{\theta}(s) g_{k}(s, y) dy ds.$$

• It turns out that fix $\theta \in [r, t)$, λ is invertible, with $\lambda_{\theta}(t)^{-1} = \beta_{\theta}(t)$, satisfies the SDE:

$$\beta_{\theta}(t) = I + \int_{\theta}^{t} \beta_{\theta}(s) dM_{s}^{*} + \int_{\theta}^{t} dM_{s} \cdot \beta_{\theta}(s)$$

$$+ \sum_{k=1}^{d} \int_{\theta}^{t} \int_{\mathbb{R}^{n}} \left[g_{k}(s, y)^{2} \beta_{\theta}(s) + g_{k}(s, y) \beta_{\theta}(s) g_{k}^{*}(s, y) + \beta_{\theta}(s) g_{k}^{*}(s, y)^{2} \right] dyds.$$

By Jensen's inequality (Stroock 83.), almost surely we have

$$\|\sigma_t\|_{H.S.} = \left\| \left(\int_r^t \lambda_{\theta}(t) d\theta \right)^{-1} \right\|_{H.S.} \leq \frac{1}{(t-r)^2} \left\| \int_r^t \lambda_{\theta}(t)^{-1} d\theta \right\|_{H.S.}$$

Panqiu Xia (KU)

Sketch of the proof: Let $\rho = \sqrt{t-r}$. By the density lemma:

$$\rho^{W}(r,x;t,y) = -\sum_{i=1}^{d} \mathbb{E}^{W} \left(\mathbf{1}_{B_{(y,2\rho)}}(\xi_{t}) \partial_{i} Q_{d}(\xi_{t} - y) H_{(i)}(\xi_{t}, \phi_{\rho}^{y}(\xi_{t})) \right).$$

 \bullet ξ_t is a Gaussian process:

$$\mathbb{P}(\xi_t \in B(y, 2\rho)) \le C \exp(-\frac{k|x-y|^2}{t-r}).$$

• (Nualart and Nualart) By integration by parts formula:

$$\sup_{y \in \mathbb{R}^d} \|\partial_i Q_d(\xi_t - y)\|_p \le C \max_{1 \le i \le d} \|H_{(i)}(\xi_t; 1)\|_{\frac{p}{p-1}}^{d-1}.$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Pangiu Xia (KU) Hölder continuity 23/27

• For $H_{(i)}(\xi_t, \phi_\rho^y(\xi_t))$, we have the identity by integration by parts formula:

$$H_{(i)}(\xi_t,\phi(\xi_t)) = \phi_\rho^{\mathsf{y}}(\xi_t)H_{(i)}(\xi_t,1) + \partial_i\phi_\rho^{\mathsf{y}}(\xi_t).$$

• By Meyer's inequality and the estimates of Sobolev norms of ξ_t , and σ_t :

$$||H_{(i)}(\xi_t,1)||_p \leq C(t-r)^{-\frac{1}{2}}.$$

The moment estimation of $p^{W}(r, x; t, y)$ follows from Hölder's inequality.

Panqiu Xia (KU) Hölder continuity 24/27

Final result

Based on the conditional mild representation and moment estimates, we easily show:

Theorem (Hu, Nualart, X.)

For any $\beta_1, \beta_2 \in (0,1)$, p > 1, $0 < s < t \le T$, there exists $C = C_{p,T,\beta_1,\beta_2}$, s.t.

$$\|u(t,x)-u(s,y)\|_{2p} \leq Cs^{-\frac{1}{2}}\left(|x-y|^{\beta_1}+(t-s)^{\frac{1}{2}\beta_2}\right).$$

Hence by Kolmogorov's continuity criteria, u(t,x) is almost surely jointly Hölder continuous, with exponent $\beta_1 \in (0,1)$ in space and $\beta_2 \in (0,\frac{1}{2})$ in time.

□ → < □ → < □ → < □ →
 □ → < □ →

25 / 27

Panqiu Xia (KU) Hölder continuity

- Bally, Caramellino. *Riesz transform and integration by parts formulas for random variables.* Stochastic Process. Appl. 121, 6 (2011), 1332–1355.
- Dawson, Vaillancourt, Wang. Stochastic partial differential equations for a class of interacting measure-valued diffusions. Ann. Inst. Henri. Poincare Probab. Stat. 36, 2 (2000), 167-180.
- Hu, Lu, Nualart. Hölder continuity of the solutions for a class of nonlinear spde's arising from one dimensional superprocesses. Probab. Theory and Related Fields 156, 1-2 (2013), 27-49.
- Li, Wang, Xiong, Zhou. *Joint continuity of the solutions to a class of nonlinear spdes*. Probab. Theory and Related Fields 153, 3-4 (2012), 441–469.
- Sturm. On convergence of population processes in random environments to the stochastic heat equations with colored noise. Electron. J. Probab. 8 (2003), 1–39.

Thanks!