Abstract

The seminorm form of Morrey’s inequality is summarized as follows: Let \(u \in L^1_{\text{loc}}(\mathbb{R}^n) \) be such that \(Du \in L^p(\mathbb{R}^n) \) and \(p > n \). Then there is some \(C > 0 \) depending only on \(n \) and \(p \) such that

\[
C\|Du\|_p \geq [u]_{C^{0,1-n/p}}
\]

(0.1)

where \([u]_{C^{0,1-n/p}}\) is the \(C^{0,1-n/p} \)-Hölder seminorm given by \([u]_{C^{0,1-n/p}} := \sup_{x \neq y} \left\{ \frac{|u(x) - u(y)|}{|x - y|^{1-n/p}} \right\}\). This inequality was (essentially) proven 80 years ago by C. B. Morrey Jr. However, until recently, nothing was known about extremals or the sharp constant of Morrey’s inequality. In a recent project, R. Hynd and I proved the existence of extremals and some of their qualitative characteristics. The key to our results is to show that a function, \(v \), is an extremal of Morrey’s Inequality if and only if it satisfies a PDE:

\[
-\Delta_p v = c(\delta_x - \delta_y)
\]

(0.2)

where \(\delta_x \) and \(\delta_y \) are dirac masses at some \(x, y \in \mathbb{R}^n \) and \(c \) is any nonzero constant. The points \(x \) and \(y \) in (0.2) are essential in the structure of \(v \). In a recent project, we show that \(x \) and \(y \) are the unique pair of points where \(v \) achieves its \(C^{0,1-n/p} \)-Hölder seminorm, they are the points where \(v \) achieves its absolute maximum and minimum, and \(v \) is analytic except at \(x \) and \(y \). Moreover, using the PDE, (0.2), we are able to show that extremals of Morrey’s inequality are cylindrically symmetric (if \(n \geq 3 \)) or evenly symmetric (if \(n = 2 \)) about the line containing \(x \) and \(y \), reflectionally antisymmetric (up to addition by a constant), and unique up to operations that are invariant on the ratio of the seminorms in (0.1). We also give explicit solutions for extremals when \(n = 1 \) and some numerical approximations of extremals for \(n = 2 \) and \(p = 4 \). This work is a collaboration with R. Hynd.