THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

Numerical Analysis Seminar

Battling Gibbs Phenomenon: On Finite Element Approximations of Discontinuous Solutions of PDEs

Professor Shun Zhang

City University of Hong Kong

Abstract

We discuss the Gibbs phenomenon when adaptive continuous and discontinuous finite elements are used to approximate discontinuous or nearly discontinuous PDE solutions in this paper. For a simple discontinuous function, we explicitly compute its continuous and discontinuous piecewise constant or linear projections on discontinuity matched or non-matched meshes. For the simple discontinuity- aligned mesh case, piecewise discontinuous approximations are always good. For the general non-matched case, we explain that the piecewise discontinuous constant approximation combined with adaptive mesh refinements is a good choice to achieve accuracy without overshoots. For discontinuous piecewise linear approximations, non-trivial overshoots will be observed unless the mesh is matched with discontinuity. For continuous piecewise linear approximations, the computation is based on a "far away assumption" and non-trivial overshoots will always be observed under regular meshes. Also, we comment the L1-minimization-based method, and do not recommend such method due to its similar behavior as L2 based methods and more complicated implementations.

Date:October 26, 2021 (Tuesday)Time:4:00 - 5:00pm (Hong Kong Time)Venue:Room 210, Run Run Shaw Bldg., HKU
and
ZOOM: https://hku.zoom.us/j/Attendance limited
Register NowPassword: 310656

All are welcome