MATHEMATICS of FAIRNESS

HKMS Texts in General Education Volume 1

> SUNG NOK CHIU LEEVAN LING

Preface

The arrival of universal suffrage in Hong Kong, currently the most popular political topic in town, remains surrounded by uncertainty. We still do not know when-or whether-the dream of universal suffrage will come true, as the Government claims that it still has a significant number of issues to consider, the most important of which is which election method to adopt. Hong Kong, a so-called democratic city, has never had a truly democratic election. Hong Kong citizens do not have a single, agreed-upon concept of the best election system, and most of us are politically apathetic. Political issues are different from cake-cutting problems in mathematics, but there are many similarities between the two. To encourage a passionate interest in problems of fairness, this book presents students with a variety of relatively simple examples that are familiar from our everyday lives. These examples are intended to consolidate students' mathematical knowledge and provide them with a foundation for tackling such real-life problems as Legislative Council (LegCo) elections. Real-life, local examples not only offer students a sense of familiarity, and render all of the techniques they will acquire in this course applicable to the Hong Kong situation, but equip them with logical-thinking and problem-solving skills.

Objectives

This textbook is intended for use in university-level general education courses. It is written in a clear and concise manner, with numerous real-life examples offered in each chapter. There are six chapters in total, each of which introduces one major fairness concept. The book is not intended to teach students calculation processes, but rather the logical processes that are involved in obtaining answers to problems we encounter in daily life.

The book begins with an introduction to the way in which statistical information

can be used to interpret and affect election phenomena and other everyday issues. Three very basic, but sometimes confusing, statistical terms-mean, mode and medianare employed to analyze a variety of Hong Kong-specific examples. We then cover more advanced decision-making concepts. Students will learn about a number of election systems and address the problem of finding the best decision-making procedures. Our ultimate goal is to identify an election system that can turn individual preferences for different candidates into a single choice made by an entire group. Moreover, a variety of possible methods of electing our future Chief Executive are investigated (although we cannot promise you that he or she will ever be elected through universal suffrage). In the process, we consider the pros and cons of each method, including their vulnerability to manipulation. After equipping you with knowledge of different election systems, we then introduce you to the weighted voting system, in which voters may be treated unequally. This may be a novel concept for you, but you will soon see that, in many cases, the only way to treat voters fairly is to assign them unequal degrees of power. The book next turns to an investigation of a number of simplified, but real-life cases, such as the distribution of seats in LegCo. Finally, we address the mathematically well-known cake-cutting problem, which is formally known as the fairness problem. When the demands or desires of one party are in conflict with those of another, how can we meet or satisfy those demands or desires in such a way that both parties believe that they have received their fair share? You will find the answer-and those to many other fairness-related questions-in this book.

To the students

In response to the new 3-3-4 curriculum, the academic structure will be more focused than ever on all-rounded personal development. The need for language ability and mathematical skill has risen significantly and therefore new courses have been introduced to meet these requirements. To streamline the teaching and learning processes, we have created a custom series of books. *Mathematics of Fairness* assists students in developing the most vital concept in a democratic city—concept of fairness. Grasping the relationship between mathematics and fairness demands a wider scope and deeper understanding of mathematical modeling. This book demonstrates how mathematics can help in searching for procedures that allow for fair and equitable resolutions to conflicts.

Topics that are covered include algorithms for envy-free sharing, fair division pro-

cedures for labor-management negotiations, the relevance and theory behind mathematics in voting systems, calculations of voting power and its implications to society, and methods of apportionment concerning seat allocation within elections. This book attempts to capture local examples from real-life situations in Hong Kong in order to ensure that the material is applicable to its readers. It is our hope that the concepts and skills portrayed in this book will help readers identify, model, and solve social problems that they may encounter. Under proper guidance, it is not out of your reach. Enjoy your learning!

Acknowledgements

We would like to thank my leading team members Eric Cheung, Ka Man Cheung, Man Yee Choi, Hang Wai Chui, Wai Fong Lai, and Hiu Yan Mo for their efforts in making this project possible. Our team was assembled from various backgrounds including Applied Statistics, Commerce, Communications, Economics, Electronic Engineering, English, Mathematics, Mechanical Engineering, and Translations in order to ensure that the material presented here is suitable for all students. We hope this book will provide our readers with some insights into the political situation in Hong Kong.

Hong Kong, November 2010

Leevan Ling

Contents

Pr	Preface														
1	Polit	Politicians Go Extreme													
	1.1	Two-ca	andidate spatial model	1											
		1.1.1	Mean, median and mode	4											
	1.2	Multi-	candidate spatial model	9											
	1.3	Expect	ted votes	13											
		1.3.1	Expected popular vote	13											
		1.3.2	Expected electoral vote	18											
2	Ideal Voting System														
	2.1	Ideal v	oting criteria	20											
	2.2	Voting	systems with single-tick ballots	23											
		2.2.1	Plurality method	24											
		2.2.2	Runoff system	25											
	2.3	Voting	systems with rank ballots	27											
		2.3.1	Alternative vote method	27											
		2.3.2	Sequential pairwise voting	31											
		2.3.3	Condorcet's method	34											
		2.3.4	Rank methods	35											
		2.3.5	Range voting	38											
	2.4	Voting	systems with multi-tick ballots	40											
		2.4.1	Approval voting	40											
	2.5	Multip	le-winner voting systems	42											
		2.5.1	Party list system	43											

3	Stra	tegic Voting	47									
	3.1	Manipulating voting systems	47									
	3.2 Manipulable or not?											
		3.2.1 Nonmanipulability of the plurality method	51									
		3.2.2 Nonmanipulability is impossible	53									
	3.3	Group manipulation	53									
4	Wei	ghted Voting System	59									
	4.1	Weighted voting systems in LegCo	59									
	4.2	The Shapley-Shubik power index	62									
		4.2.1 Permutations and factorials	65									
	4.3	The Banzhaf power index	70									
		4.3.1 Voting combination	74									
	4.4	Comparing voting systems	79									
5	Geo	graphical Seats in LegCo	87									
	5.1	Apportionment	87									
	5.2	The Hamilton method	91									
		5.2.1 The quota rule and paradoxes	92									
	5.3	Divisor methods	96									
		5.3.1 The Jefferson method	96									
		5.3.2 The Webster method	99									
		5.3.3 The Hill-Huntington method	103									
	5.4	LegCo election 2008	105									
		5.4.1 Which method is fairer?	112									
6	Fair	Division 1	116									
	6.1 Sharing discrete objects											
		6.1.1 Taking turns	117									
		6.1.2 The adjusted winner procedure	121									
		6.1.3 The Knaster inheritance procedure	123									
	6.2	Continuous fair division	125									
		6.2.1 Divide and choose	126									
		6.2.2 The lone-divider method	129									
		6.2.3 The last diminisher method	131									
	6.3	Envy-free procedure for three	133									

6.3.1	Divide-Trim-Choose	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	133
6.3.2	Sharing the trimming	•	•		•	•		•	•				•	•		•	•				134