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A data-driven model reduction method for parabolic

inverse source problems and its convergence analysis

Zhongjian Wang∗ Wenlong Zhang† Zhiwen Zhang‡

Abstract

In this paper, we propose a data-driven model reduction method to solve parabolic

inverse source problems efficiently. Our method consists of offline and online stages. In

the off-line stage, we explore the low-dimensional structures in the solution space of the

parabolic partial differential equations (PDEs) in the forward problem with a given class of

source functions and construct a small number of proper orthogonal decomposition (POD)

basis functions to achieve significant dimension reduction. Equipped with the POD basis

functions, we can solve the forward problem extremely fast in the online stage. Thus,

we develop a fast algorithm to solve the optimization problem in the parabolic inverse

source problems, which is referred to as the POD algorithm in this paper. Under a weak

regularity assumption on the solution of the parabolic PDEs, we prove the convergence of

the POD algorithm in solving the forward parabolic PDEs. In addition, we obtain the error

estimate of the POD algorithm for parabolic inverse source problems. Finally, we present

numerical examples to demonstrate the accuracy and efficiency of the proposed method.

Our numerical results show that the POD algorithm provides considerable computational

savings over the finite element method.

AMS subject classification: 35R30, 65J20, 65M12, 65N21, 78M34.

Keywords: Parabolic inverse source problems; regularizationmethod; data-drivenmodel reduction; proper

orthogonal decomposition (POD); stochastic error estimate; optimal regularization parameter.

1 Introduction

This paper presents a data-driven model reduction method to solve parabolic inverse source

problems and studies the convergence analysis of the proposed method. Inverse problems are
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very important in physics, engineering, and bioengineering. The inverse source problems, which

seeks reconstruction of source from final time observation, have attached much attention of the

researchers over the past decades, see an introduction and references in [21]. They have been

widely studied in the literature, applied to many physical and engineering source identification

problems, e.g. migration of groundwater, groundwater pollution detection, control of pollution

source and environmental protection [8, 12, 15, 11, 20] and references therein. The accurate

recovery pollutant source is crucial to environmental safeguard in cities with high populations

[9]. The estimation of the strength of acoustic sources from measurements can be found in e.g.

[20, 13, 27]. The inverse source problems that arise from PDEs are ill-posed in the sense of Isakov

and Hadamard [20, 17], since the eigenvalues of the elliptic operators decay exponentially fast,

especially the lack of stability with respect to the uncertainty in the measurement data is the

most difficult challenge for numerical inversions. Namely, a small change in the data may lead to

a significant difference in the reconstructed source strength. Due to the important applications

of inverse source problems, numerical methods have been widely explored [8, 7, 26, 14, 15] and

references can be found therein.

In this paper, we will work on a very practically physical scenario, assuming that the ob-

servational measurement is collected point-wisely over a set of distributed sensors located at

{xi}ni=1 over the physical domain [11, 20, 25, 28]. At each sensor, independently additional

noise or random error will be considered due to the uncertainty of natural noise, measurement

errors, and the other uncertainty of the model itself. We will take one of the realistic approaches

for such inverse problems, i.e. optimizing the mean-square error with a proper Tikhonov type

regularizations [7, 15, 35]. Classical methods such as regression methods [15], linear and non-

linear programming methods [15], linear and nonlinear conjugate gradient methods [1, 35],

Newton-type methods, etc. can be applied during optimization. For the inverse parabolic

source problem, one usually uses iteration optimization methods to find the true source term

[7, 10, 22]. In each iteration, one has to solve the forward parabolic equation one or two times.

However, as the sizes of discrete problems grow (e.g. finite element method (FEM) or finite

difference method (FDM)), the computation time will grow rapidly, especially for such evolu-

tion problems. As a consequence, the computation of the forward equation will cost the most

time throughout the whole procedure. This motivates us to develop efficient model reduction

methods to address this issue.

One of the successful model reduction ideas in solving evolution problems is the proper

orthogonal decomposition (POD) method [31, 5]. The POD method uses the data from an

accurate numerical simulation and extracts the most energetic modes in the system by using

the singular value decomposition. This approach generates low-dimensional structures that can

approximate the solutions of the evolution problems with high accuracy. The POD method has

been used to solve many types of PDEs, including linear parabolic equations [34], Navier-Stokes

equations [23], viscous G-equations [16], Hamilton–Jacobi–Bellman (HJB) equations [24], and

optimal control problem [2]. The interested reader is referred to [29, 3, 18] for a comprehensive

introduction of the model reduction methods.

Since the POD method can significantly accelerate the computation of the forward problem
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compared with the traditional methods, e.g. FEM and FDM, we apply the POD method to

solve parabolic inverse source problems with scattered measured data at the final time. The

key idea is to exploit (model-based) and construct (data-based) the intrinsic approximate low-

dimensional structures of the underlying problem that consists of two components. First, we

have a training component that computes a set of data-driven basis functions (i.e. the POD

basis functions) to achieve significant dimension reduction in the solution space. Following up,

there is a fast-solving component that solves the optimization problem using the constructed

POD basis functions in each iteration. Hence we achieve an effective data-driven model re-

duction method in solving the parabolic inverse source problems and overcome the typical

computational bottleneck in the traditional methods, e.g. FEM and FDM.

Then, we study the convergence analysis of the proposed method. In [7], a general theory

of the stochastic convergence of numerical method has been established for a certain type of

inverse problem. Based on this framework, we explore the convergence theory in the POD

settings. Specifically, we will prove a relatively weaker convergence of the POD method when

the source term only belongs to L2(Ω), where Ω is the computational domain. Unlike the

traditional analysis of the POD method [23] or FEM convergence, we do not assume the higher

regularity for parabolic PDE solution u, i.e. utt to be bounded in L2(Ω), which is quite strict

in many cases. Based on our analysis, we derive the stochastic convergence when applying

the POD method to the parabolic inverse source problem with uncertain data. Our analysis

in Theorem 4.3 shows that the optimal error of the Tikhonov type least-square optimization

problem depends on the noise level, the number of sensors, and without any higher source

regularization but the L2(Ω) norm of the source term. A self-consistent algorithm to get the

optimal smoothing parameter is also established using the POD method to solve the inverse

parabolic source problem, motivated by the recent study in [6, 7]. Finally, we conduct numerical

experiments to demonstrate the accuracy and efficiency of the proposed method. Several kinds

of source functions are involved. Comparing to original optimization with FEM basis functions,

the proposed POD method significantly reduces the computational cost and maintains the same

accuracy as the FEM.

The rest of the paper is organized as follows. In Section 2, we introduce the setting of the

parabolic inverse source problems. In Section 3, we develop the data-driven model reduction

method for solving parabolic inverse source problems. In Section 4, we provide the error

estimate for the proposed method. In Section 5, we present numerical results to demonstrate

the accuracy of our method. Finally, concluding remarks are made in Section 6.

2 Parabolic inverse source problems

To start with, we consider a parabolic equation,











ut + Lu = f(x) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = g(x) in Ω ,

(2.1)
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where Ω ⊂ R
d (d = 1, 2, 3) is a bounded domain with C2 boundary or a convex domain

satisfying the uniform cone condition, L is a second-order elliptic operator given by Lu =

−∇ · (a(x)∇u) + c(x)u, and g(x) is the initial value. We assume the elliptic operator L is

uniform elliptic, i.e. there exist amin, amax > 0, such that amin < a(x) < amax for all x ∈ Ω.

Moreover, we assume a(x) ∈ C1(Ω̄), c(x) ∈ C(Ω̄) and c(x) ≥ 0.

Let u be the solution of the parabolic equation (2.1). We define the forward operator S :

L2(Ω) → H2(Ω) by Sf = u(·, T ). The forward problem is to compute the solution u(·, t) for
t > 0 with known source term f(x) and known initial condition g(x).

In the parabolic inverse source problem, f(x) ∈ L2(Ω) is an unknown source term that we

want to reconstruct based on the final time measurement u(·, T ). To be specific, we will focus

on a very practically physical scenario, where we assume that the observational measurement

is collected point-wisely over a set of distributed sensors located at {xi}ni=1 over the physical

domain Ω (see e.g.[11, 20, 25, 28]). We also assume the measurement data is always blurred

by noise and takes the form mi = Sf ∗(xi) + ei, i = 1, · · · , n, where f ∗ ∈ L2(Ω) is the true

source term and {ei}ni=1 are independent and identically distributed (i.i.d.) random variables

on a proper probability space (X,F ,P). From [7] and the analysis therein, we know that

‖u‖C([0,T ];H2(Ω)) ≤ C‖f‖L2(Ω). According to the embedding theorem of Sobolev spaces, we know

that H2(Ω) is continuously embedded into C(Ω̄) so that Sf ∗(x) is well defined point-wisely

for all x ∈ Ω. Without loss of generality, we assume that the scattered locations {xi}ni=1 are

uniformly distributed in Ω, i.e., there exists a constant B > 0 such that dmax/dmin ≤ B, where

dmax and dmin are defined by

dmax = sup
x∈Ω

inf
1≤i≤n

|x− xi| and dmin = inf
1≤i 6=j≤n

|xi − xj |. (2.2)

We denote the inner product between the measurement data and any function v ∈ C(Ω̄)

by (m, v)n = 1
n

∑n
i=1miv(xi). Moreover, we denote the inner product between two func-

tions by (u, v)n = 1
n

∑n
i=1 u(xi)v(xi) for any u, v ∈ C(Ω̄) and the empirical norm ‖u‖n =

(

1
n

∑n
i=1 u

2(xi)
)1/2

for any u ∈ C(Ω̄).
Equipped with these definitions, we can define the parabolic inverse source problem as

to recover the unknown source term f ∗ from the noisy final time measurement data mi =

Sf ∗(xi) + ei, i = 1, ..., n. We will use the regularization method to solve this parabolic inverse

source problem. Specifically, we will look for an approximate solution of the true source term

f ∗ by solving the following least-squares regularized minimization problem:

min
f∈X
‖Sf −m‖2n + λn‖f‖2L2(Ω) , (2.3)

where λn is the regularization parameter.

We first recall an existing work [7], where the optimal stochastic convergence of regularized

solutions and finite element solutions to time-dependent parabolic inverse source problems (2.1)

have been studied. The following result represents the stochastic convergences corresponding

to the random variables with bounded variance.
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Proposition 2.1 (Theorem 3.4 in [7]) Suppose {ei}ni=1 are independent random variables

satisfying E[ei] = 0 and E[e2i ] ≤ σ2. Let fn ∈ L2(Ω) be the solution of the least-squares

regularized minimization problem (2.3). Then there exist constants λ0 > 0 and C > 0 such that

the following estimates hold for any 0 < λn ≤ λ0:

E
[

‖Sfn − Sf ∗‖2n
]

≤ Cλn‖f ∗‖2L2(Ω) +
Cσ2

nλ
d/4
n

, (2.4)

E
[

‖fn − f ∗‖2L2(Ω)

]

≤ C‖f ∗‖2L2(Ω) +
Cσ2

nλ
1+d/4
n

, (2.5)

E
[

‖fn − f ∗‖2H−1(Ω)

]

≤ Cλ1/2n ‖f ∗‖2L2(Ω) +
Cσ2

nλ
1/2+d/4
n

. (2.6)

A stronger stochastic convergence when {ei}ni=1 are independent Gaussian random with

variance σ2 can also be found in [7]. Our convergence analysis below also applies to this case.

From Proposition 2.1, we have an optimal choice of the regularization parameter λn in (2.3) as

follows:

λ1/2+d/8
n = O

(

σn−1/2‖f ∗‖−1
L2(Ω)

)

. (2.7)

It is an a priori estimate with knowing the noise level σ and the knowledge of the true source

term f ∗, yet it is our goal to recover the true source term f ∗ with unknown σ. The noise level

is difficult to measure in many circumstances. In [7], the authors proposed a self-consistent

algorithm to compute the optimal λn without any knowledge of the noise level σ and the true

source term f ∗. Apply the POD method to this algorithm, we will also successfully determine

the optimal parameter λn iteratively. We find the proposed POD method maintains the same

accuracy as the FEM. Details can be found at the end of Section 5.1.

An effective way to approximate the optimal control problem (2.3) with a proper regular-

ization parameter λn is the iteration method. For each iteration, one has to solve the forward

problem (2.1) and its adjoint problem for at least one time. In [7], the FEM was used to approx-

imate (2.3) and the optimal second-order convergence with respect to space has been proved.

But as the DOF grows for a discrete method such as FEM and FDM, the iteration method

will cost too much computational time. Therefore, we need to design numerical methods that

allow us to efficiently and accurately solve (2.3).

3 The data-driven model reduction method

In this section, we will use the POD method to accelerate the inverse problem computation. We

first construct the POD basis functions from the snapshot solutions of the parabolic equation

(2.1) with some known type of source function. Then, we solve the optimization problem in

the inverse problems with the constructed POD basis.
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3.1 Construction of the POD basis functions

Assume that u ∈ H1
0 (Ω) is the solution to the following weak formulation of the parabolic

equation (2.1)

(∂tu, ψ) + a(u, ψ) = (f, ψ), ∀ψ ∈ H1
0 (Ω), t ∈ [0, T ], (3.1)

where Ω ⊂ R
d and a(·, ·) is a bilinear form on H1

0 (Ω)×H1
0 (Ω) that is defined according to the el-

liptic operator L. Given a set of solutions at different time instances
{

u(·, t0), u(·, t1), . . . , u(·, tm)
}

where tk = k∆t with ∆t = T
m
, we first get the solution snapshopts

{

y1, . . . , ym+1, ym+2, . . . , y2m+1

}

,

where yk = u(·, tk−1), k = 1, . . . , m + 1, and yk = ∂u(·, tk−m−1), k = m + 2, . . . , 2m + 1 with

∂u(·, tk) = u(·,tk)−u(·,tk−1)

∆t
, k = 1, . . . , m.

Then, the POD basis functions {ψk}Npod

k=1 are built from the solution snapshopts by minimiz-

ing the following error:

1

2m+ 1

(

m
∑

j=0

‖u(tj)−
Npod
∑

k=1

(u(tj), ψk)L2(Ω)ψk‖2L2(Ω) +

m
∑

j=1

‖∂u(tj)−
Npod
∑

k=1

(∂u(tj), ψk)L2(Ω)ψk‖2L2(Ω)

)

(3.2)

subject to the constraints that
(

ψk1(·), ψk2(·)
)

L2(Ω)
= δk1k2, 1 ≤ k1, k2 ≤ l, where δk1k2 = 1 if

k1 = k2, otherwise δk1k2 = 0.

Using the method of snapshot proposed by Sirovich [32], we know that the optimization

problem (3.2) can be reduced to an eigenvalue problem:

Kv = µv, (3.3)

where the correlation matrixK is computed from the solution snapshots {y1, y2, . . . , y2m+1} with
entries Kij = (yi, yj)L2(Ω), i, j = 1, . . . , 2m+1, and is symmetric and semi-positive definite. We

sort the eigenvalues in a decreasing order as µ1 ≥ µ2 ≥ ... ≥ µ2m+1 > 0 and the corresponding

eigenvectors are denoted by vk, k = 1, ..., 2m + 1. It can be shown that if the POD basis

functions are constructed by

ϕk(·) =
1√
µk

2m+1
∑

j=1

(vk)ju(·, tj), 1 ≤ k ≤ 2m+ 1, (3.4)

where (vk)j is the j-th component of the eigenvector vk, they will minimize the error (3.2). This

result as well as the error formula were proved in [19].

Proposition 3.1 (Sec. 3.3.2, [19] or p. 502, [4]) Let µ1 ≥ µ2 ≥ ... ≥ µ2m+1 > 0 denote

the positive eigenvalues of K in (3.3). Then {ψk}Npod

k=1 constructed according to (3.4) is the set

of POD basis functions, and we have the following error formula:

∑2m+1
i=1

∣

∣

∣

∣

∣

∣
yi −

∑Npod

k=1

(

yi, ψk(·)
)

L2(Ω
ψk(·)

∣

∣

∣

∣

∣

∣

2

L2(Ω)
∑2m+1

i=1 ||yi||
2
L2(Ω)

=

∑2m+1
k=Npod+1 µk
∑2m+1

k=1 µk

, (3.5)

where the number Npod is determined according to the ratio ρ =

∑2m+1

k=Npod+1
µk

∑2m+1

k=1
µk

.
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In practice, we shall make use of the decay property of eigenvalues in µk and choose the first

m dominant eigenvalues such that the ratio ρ is small enough to achieve an expected accuracy,

for instance ρ = 1%. One would prefer the eigenvalues decays as fast as possible so that one

can ensure high accuracy with few POD basis functions.

3.2 A Fast algorithm for solving parabolic inverse source problems

We now propose the fast algorithm for solving parabolic inverse source problems based on some

given discretization, including our proposed POD method. We first define the functional J to

be

J [f ] = ‖Sf −m‖2n + λn‖f‖2L2(Ω). (3.6)

Then, the least-squares regularized minimization problem (2.3) becomes to solve the following

misfit functional:

min
f∈L2(Ω)

J [f ]. (3.7)

Lemma 3.2 The misfit functional J [f ] is Fréchet-differentiable.

Proof. From the definition of Fréchet-differentiable, we need to compute

dJ [f ](v) = lim
t→0

J [f + tv]−J [f ]
t

= (Sf −m,Sv)n + λn(f, v)

=
(

S∗(Sf −m), v
)

+ λn(f, v)

=
(

S∗(Sf −m) + λnf, v
)

, (3.8)

where v ∈ L2(Ω). In (3.8), the second equality is easily to get from the quadratic form of the

misfit functional J [f ] and S∗ is the adjoint operator of S in the third equality. Thus, one can

directly obtain that

dJ [f ] = S∗(Sf −m) + λnf. (3.9)

The formula (3.9) in Lemma 3.2 allows us to apply the gradient descent method to minimize

the discrepancy functional J [f ]. Let f0 be the initial guess and fk denote the the solution of

the least-squares regularized minimization problem (2.3) at the k-th iteration step, we update

the iterative solution by

fk+1 = fk − αdJ [fk], ∀k ∈ N, (3.10)

where α is the step size.

7



Given a fully discrete scheme with solution space Vdis, we define an approximate forward

operator Sdis: L2(Ω)→ Vdis, such that, given any source function f , Sdisf gives the numerical

solution at final time. In such discrete setting, we turn to solve the following misfit functional:

min
f∈Ψ
Jdis[f ], (3.11)

where the functional Jdis[f ] = ‖Sdisf − m‖2n + λn‖f‖2L2(Ω). We can compute the Fréchet

derivative of Jdis[f ] and obtain the following iterative scheme:

fk+1 = fk − αdJdis[fk], ∀k ∈ N, (3.12)

where α is the step size, dJdis[f ] = S∗
dis(Sdisf −m) + λnf , and f0 is some initial guess.

The iterative scheme (3.12) works with both FEM-based Galerkin method and POD-based

Galerkin method. However, we emphasize that the DOF of the POD basis functions is much

smaller than that of the FEM space. Thus, the POD-based Galerkin method can provide

significant computational savings in solving the parabolic equation (2.1) than the FEM, which

allows us to quickly compute the iterative scheme (3.12). Therefore, we obtain a fast algorithm

in solving parabolic inverse source problem.

3.3 Complete algorithm

Due to the nature of the inverse source problem, the source term is unknown. We assume

it to be a sample from some random space. Such random space may not have a closed form

or a finite-dimensional parameterization, so we further assume that we have Nf realizations,

{fl}l=1,··· ,Nf
of the source term. In other words, {fl}l=1,··· ,Nf

are some possible ground truth

source function in the inverse problem. Hence, deviating from the classic POD algorithm in

solving parabolic equation introduced in Section 3.1, we include snapshots from each proposed

source function into the minimization (3.2). Estimation in (3.5) still holds as it is only an

algebraic result.

Finally, we summarize the proposed data-driven model reduction method for solving parabolic

inverse source problems in Algorithm 1, where the notations have been defined before.

4 Convergence analysis

In this section, we will first present the general discrete approximation to the optimization

problem (2.3). Recall that Vdis ⊂ X be the discrete function space with dimension Ndis and

Sdis be the discrete approximation of the operator S : L2(Ω)→ H2(Ω). We make the following

assumptions on the discrete function space Vdis and the discretized operator Sdis.

Assumption 4.1 (1) There exists an error estimate term edis such that the discrete operator

Sdis satisfies

‖Sf − Sdisf‖2n ≤ Cedis‖f‖2L2(Ω). (4.1)

8



Algorithm 1: A fast algorithm for solving parabolic inverse source problem

1 Input: Observation data m. Proposed source function {fl}l=1,··· ,Nf
, error thresholds

for constructing POD basis functions ǫ > 0 and for the optimization problem tol,

computational time T , time step of the FEM ∆t, NT = ⌈T/∆t⌉, mesh size of the

FEM h, one step finite element solver for the forward problem OFEM , where

SFEMf = (OFEM(f))NTu0, and step size in the gradient descent method α.

2 for l = 1 : Nf do

3 Solve the forward problem and store the snapshots (OFEM(fl))
iu0 for i = 1, · · · , NT .

4 end

5 Concatenate all snapshots as {Sj}j=1,··· ,NS=NT×Nf
= ∪i=1,··· ,NT ,l=1,··· ,Nf

{(OFEM(fl))
iu0};

6 compute covariance matrix K = (Kij) where Kij =
1
NS

(Si, Sj)L2(Ω);

7 compute the SVD of K = (Kij) and denote the eigenvalues in a decreasing order as

µ1 ≥ µ2 ≥ ... ≥ µNS
> 0 and the corresponding eigenvectors are denoted by vk;

8 find minimal Npod such that

∑NS
k=Npod+1

µk

∑NS
k=1

µk

< ǫ;

9 construct POD basis by ϕk(·) = 1√
µk

∑NS

j=1(vk)jSj, 1 ≤ k ≤ Npod;

10 construct Galerkin type solver for forward problem on POD basis {ϕk}k=1,··· ,Npod
as

SPOD;

11 Set f as an initial guess f = f0.

12 while Jpod[fk] = ‖Spodfk −m‖2n + λn‖fk‖2L2(Ω) > tol do

13 update fk+1 ← fk − αdJpod[fk] where dJpod[fk] = S∗
pod(Spodfk −m) + λnfk.

14 end

15 Output: computed source term f .

(2) For any f ∈ L2(Ω), there exists v ∈ Vdis such that,

λn‖f − v‖2L2(Ω) + ‖Sdis(f − v)‖2n ≤ C(λn + edis)‖f‖2L2(Ω). (4.2)

In the general discrete approximation of the problem (2.3), we will solve the least-squares

regularized minimization problem:

min
fdis∈Vdis

‖Sdisfdis −m‖2n + λn‖fdis‖2L2(Ω). (4.3)

The following proposition gives the convergence analysis for the discretized optimization schemes

in solving the parabolic inverse source problems, which is proved in [7].

Proposition 4.2 (Theorem 3.10 in [7]) Let {ei}ni=1 are independent random variables sat-

isfying E[ei] = 0 and E[e2i ] ≤ σ2 for i = 1, · · · , n and fdis be the solution of (4.3). Then there

exist constants λ0 > 0 and C > 0, such that for any λn ≤ λ0 the following estimates hold true:

E
[

‖Sf ∗ − Sdisfdis‖2n
]

≤ C(λn + edis)‖f ∗‖2L2(Ω) + C

(

1 +
edis
λn

+
Ndisedis

λ
1−d/4
n

)

σ2

nλ
d/4
n

, (4.4)
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E
[

‖f ∗ − fdis‖2L2(Ω)

]

≤ C
λn + edis

λn
‖f ∗‖2L2(Ω) + C

(

1 +
edis
λn

+
Ndisedis

λ
1−d/4
n

)

σ2

nλ
1+d/4
n

, (4.5)

and

E
[

‖f ∗ − fdis‖2H−1(Ω)

]

≤ C(λ1/2n + e
1/2
dis )

λn + edis
λn

‖f ∗‖2L2(Ω)

+ C(λ1/2n + e
1/2
dis )

(

1 +
edis
λn

+
Ndisedis

λ
1−d/4
n

)

σ2

nλ
1+d/4
n

. (4.6)

Now we study the error analysis of the proposed method in solving the parabolic inverse source

problem, where we used the backward Euler scheme to discretize the temporal derivative. Let

u be the solution to (3.1) and û is the solution computed by semi-discrete scheme based on

FEM basis functions. We also assume the POD basis functions are constructed by snapshots

of û and their temporal finite differences. The FEM space and POD space are denoted by Vh
and Ψ, respectively. The fully discrete scheme is constructed on Ψ and the solution is denoted

by Uk for k = 1 · · ·m with m = T
∆t
. To be precise, we seek Uk such that

(∂̄Uk, ψ) + a(Uk, ψ) = (f, ψ), ∀ψ ∈ Ψ. (4.7)

Now we denote the solution operator from source term f to the final time solution Um as Spod,
such that Spodf = Um.

Theorem 4.3 Let fpod be the solution of (4.3), then there exist constants λ0 > 0 and C > 0,

such that for any λn ≤ λ0 the following estimates hold true:

E
[

‖Sf ∗ − Spodfpod‖2n
]

≤ C(λn + epod)‖f ∗‖2L2(Ω) + C

(

1 +
epod
λn

+
Npodepod

λ
1−d/4
n

)

σ2

nλ
d/4
n

, (4.8)

E
[

‖f ∗ − fpod‖2L2(Ω)

]

≤ C
λn + epod

λn
‖f ∗‖2L2(Ω) + C

(

1 +
epod
λn

+
Npodepod

λ
1−d/4
n

)

σ2

nλ
1+d/4
n

, (4.9)

and

E
[

‖f ∗ − fpod‖2H−1(Ω)

]

≤ C(λ1/2n + e
1/2
pod)

λn + epod
λn

‖f ∗‖2L2(Ω)

+ C(λ1/2n + e
1/2
pod)

(

1 +
epod
λn

+
Npodepod

λ
1−d/4
n

)

σ2

nλ
1+d/4
n

, (4.10)

where

epod =

(

h2 +∆t| ln(∆t)|+
√

T

∆t
ρ

)2

. (4.11)

Proof. To simplify the notation in the proof, let ‖ · ‖ denote the norm in L2(Ω), unless

otherwise specified. For k = 1, ..., m , we consider the decomposition as follows:

Uk − û (tk) = Uk −PNpod û (tk) + PNpodû (tk)− û (tk) = ϑk + ̺k, (4.12)

10



where ϑk = Uk − PNpod û (tk), ̺k = PNpod û (tk)− û (tk), and PNpod denotes the Ritz-projection

to Ψ under the bilinear form a(·, ·). The projection error ̺m can be bounded by (3.5). In

addition, by applying classic result of parabolic equation, i.e., ‖u(·, tj)‖ ≤ C‖f‖, ∀j = 1, · · · , m
and ‖ut(·, tj)‖ ≤ C‖f‖, ∀j = 1, · · · , m, we know that,

̺m ≤ C
√

(2m+ 1)ρ‖f‖. (4.13)

Now we only need to estimate the term ϑm. According to (4.7), we have

(

∂̄ϑk, ψ
)

+ a (ϑk, ψ) =
(

∂̄Uk, ψ
)

+ a (Uk, ψ)−
(

∂̄PNpod û (tk) , ψ
)

− a
(

PNpodû (tk) , ψ
)

= (f (tk) , ψ)−
(

∂̄PNpod û (tk) , ψ
)

− a (û (tk) , ψ)
= (vk, ψ) ,

(4.14)

where

vk = ût (tk)− ∂̄PNpod û (tk) = ût (tk)− ∂̄û (tk) + ∂̄û (tk)− ∂̄PNpodû (tk) .

We define wk = ût (tk) − ∂̄û (tk) and zk = ∂̄û (tk) − PNpod ∂̄û (tk). Substituting ψ = ϑk into

(4.14), we derive that

‖ϑk‖2 − (ϑk, ϑk−1) + ∆ta (ϑk, ϑk) ≤ ∆t ‖vk‖ ‖ϑk‖ (4.15)

and therefore,

‖ϑk‖ ≤
1

1 + amin

α
∆t

(‖ϑk−1‖+∆t ‖vk‖) , (4.16)

where amin is the minimum of the coefficient a(x) in the elliptic operator and α is a constant

such that

‖φ‖2L2
≤ α‖φ‖H1 ∀φ ∈ Vh. (4.17)

Taking γ = amin

α
, we have

‖ϑm‖ ≤
(

1

1 + γ∆t

)m

‖ϑ0‖+∆t
m
∑

j=1

(

1

1 + γ∆t

)m−j+1

‖vj‖ . (4.18)

As ‖vj‖ ≤ ‖wk‖+ ‖zk‖, so (4.18) is taken into two parts.

∆t

m
∑

j=1

ξm−j+1 ‖zj‖ ≤∆t

√

√

√

√(

m
∑

j=1

ξ2(m−j+1))(

m
∑

j=1

‖zk‖2), (4.19)

where ξ denotes 1
1+γ∆t

. Using the facts that
(

1
ξ

)2m

= (1 + γ∆t)2m =
(

1 + 2γT
2m

)2m ≤ e2γT and

11



ξ−2 − 1 = (1 + γ∆t)2 − 1 ≥ 2γ∆t, we can obtain that

∆t

√

√

√

√(

m
∑

j=1

ξ2(m−j+1))(

m
∑

j=1

‖zk‖2) =T

√

√

√

√(
1

m

m
∑

j=1

ξ2(m−j+1))(
1

m

m
∑

j=1

‖zj‖2)

≤T

√

√

√

√(
1

m

1− ξ2m
ξ−2 − 1

)(
1

m

m
∑

j=1

‖zj‖2)

≤T

√

√

√

√

1− e−2γT

2γT
(
1

m

m
∑

j=1

‖zj‖2). (4.20)

By Corollary 4 in [23], we have that 1
m

∑m
j=1 ‖zj‖2 ≤ Cρ‖f‖2, which implies that

∆t

m
∑

j=1

ξm−j+1 ‖zj‖ ≤ C(T )
√
ρ‖f‖. (4.21)

Now we turn to estimate the term ∆t
∑m

j=1 ξ
m−j+1 ‖wj‖. By definition,

wj = ut (tj)−
u (tj)− u (tj−1)

∆t

=
1

∆t
(∆tut (tj)− (u (tj)− u (tj−1)))

=
1

∆t

∫ tj

tj−1

(s− tj−1)utt(s)ds.

(4.22)

By the analytic semigroup theory [30] or Lemma 3.6 in [7], we have the following regularity

estimate,

‖utt(s)‖ ≤
C

s
‖f‖, (4.23)

which implies,

‖wj‖ ≤
1

∆t

∫ tj

tk−1

(s− tk−1)
1

s
‖f‖ds. (4.24)

When j = 1,

‖w1‖ ≤
1

∆t

∫ ∆t

0

‖f‖ds = ‖f‖, (4.25)

and when j ≥ 2,

‖wk‖ ≤
1

∆t

∫ tj

tj−1

(s− tj−1)
1

tj−1
‖f‖ds = 1

2
‖f‖ 1

(j − 1)
≤ ‖f‖

j
. (4.26)

Therefore, we obtain that

∆t
m
∑

j=1

ξm−j+1 ‖wj‖ ≤ ∆t
m
∑

j=1

ξm−j+1‖f‖
j
≤ ∆t

m
∑

j=1

‖f‖
j
≤ C∆t| ln(∆t)|‖f‖. (4.27)
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Summing up (4.21), (4.27) and using the classic parabolic FEM theory (e.g. Theorem 1.2 in

[33]), we have that

‖û (tm)− u (tm) ‖ ≤ Ch2‖f‖. (4.28)

Therefore, we can prove that

‖Um − u(T )‖ ≤ C

(

h2 +∆t| ln(∆t)|+
√

T

∆t
ρ

)

‖f‖. (4.29)

Finally, we apply the Proposition 4.2 by taking Spod as Sdis and fpod as fdis, and prove the

estimates in the Theorem 4.3. Clearly, epod =
(

h2 +∆t| ln(∆t)|+
√

T
∆t
ρ
)2

.

Remark 4.4 Theorem 4.3 suggests that the optimal smoothing parameter in Eq.(2.7) may still

apply. In particular, if epod ≤ Cλn and Npodepod ≤ Cλ
1−1/α
n , we have

E
[

‖Sf ∗ − Spodfpod‖2n
]

≤ Cλn‖f ∗‖2L2(Ω) +
Cσ2

nλ
d/4
n

, (4.30)

E
[

‖f ∗ − fpod‖2L2(Ω)

]

≤ C‖f ∗‖2L2(Ω) +
Cσ2

nλ
1+d/4
n

, (4.31)

and

E
[

‖f ∗ − fpod‖2H−1(Ω)

]

≤ Cλ1/2n ‖f ∗‖2L2(Ω) +
Cσ2

nλ
1/2+d/4
n

. (4.32)

Note that ρ depends on the number of POD basis functions, Npod, and quickly decreases to zero

when increasing Npod. Assumptions above are achievable by taking h and ∆t to be small and

Npod to be small with respect to the DOF of the FEM.

5 Numerical examples

In this section, we present numerical examples to investigate the performance of the proposed

POD method in solving parabolic inverse source problems. Two types of source functions, i.e.,

letters and circles at different locations, will be studied. In the example of letters, we verify

the convergence introduced in Theorem 4.3 and apply the iterative method to find optimal

smoothing parameters. In the second example, we mainly study the approximation property

of our POD basis functions.

5.1 Recovering Letters

General Settings For the first example, we apply the POD method to recover the source

term f in form of discontinuous patterns. To be precise, f is an indicator function, with the

13



maximum value 1, of a set in [0, 1]2 domain whose shape is decided by a capital letter. For

each observation data, we first apply the FEM with h = 1/32 and time step ∆t = 1/32 to

get the solution of the forward problem with exact source term f at final time T = 1. We

interpolate the FEM solution to locations of 100 × 100 evenly distributed sensor and add a

Gaussian unbiased noise with stand derivation 10−3 to each observation. It corresponds to a

10% noise level. Initial value g = 0 in (2.1).

To construct the POD basis functions, we generate the snapshots source term decided by

letters from A to O. The snapshots are generated by solving the forward problem with each

source term via FEM (space mesh size h = 1/32, time step ∆t = 1/32). Under such settings,

21 POD basis functions are constructed to resolve the snapshots of the forward problem with

10−4 accuracy. In other words, the POD basis functions cover 1− 10−4 of eigenspace from the

snapshots with respect to the L2 norm. To solve the inverse problem, λ is set to be 10−6 and

we will discuss how to find the optimal λ later.

Computational Cost In Figure 1, we show some of the letters recovered. The computational

cost of the POD method includes two parts. First, we will construct the POD basis functions

for all the 15 letters, which will take about 40.3 seconds on a desktop computer (3.1GHz, 6-

core, i5, Matlab). Then, for each letter, it will take about 164 seconds to solve the optimization

problem via gradient descend (relative L2 threshold 10−5) using the POD basis functions. As a

comparison, with the FEM basis functions, it takes 1328.4 seconds to recover similar patterns

with the same configuration during optimization. In the case of recovering one single letter,

the POD method has increased the speed by 6.5×, and in the case of recovering all 15 letters,

it achieves about 8× speed-up.

We also compare the POD method with the FEM in the case when h = 1/20. We construct

the POD basis from snapshots of the forward problem with h = 1/20. 23 basis functions are

constructed to achieve 10−4 accuracy. As the DOF during the optimization procedure stays

near, the computational cost with POD basis functions is similar between different h’s (i.e.,

47 seconds in constructing basis functions and 159 seconds in solving optimization problems).

While with the FEM basis functions, the computation cost drops near quadratically against the

DOF. It takes 340 seconds for h = 1/20 case, which corresponds to 400 DOF. In Figure 2 we

show the comparison between the FEM and POD method with different h’s. The observation

noise is the same under the same h. Generally speaking, the restoration by the POD method is

less affected by the noise than the FEM. This is due to the fact that the noise is perpendicular

to the space of the POD basis functions. For a convincing outcome, the POD method is

significantly faster than the FEM.

Error Investigation According to the convergence analysis studied in Theorem 4.3, there

are three factors that affect the accuracy of our algorithm, i.e., mesh size of FEM basis, regu-

larization factor, and approximation property of the POD basis functions. As such, we set up

three experiments when recovering the letter ’A’. Under each experiment, we generate 100 set

of observation y’s and solve the optimization with the pre-computed POD basis functions. The
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(a) A (b) C (c) G

(d) reference A (e) D (f) O

Figure 1: Recovering letters based on basis constructed from ’A’ to ’O’

standard derivation of the noise is still 10−3. It corresponds to a 10% noise level. We compute

the mean of the error in each set of parameters and show them in Figure 3.

Dependence on the mesh size In Figure 3(a) we verify that given λ when the mesh size

h of the FEM basis functions goes down, the error of Sf will first decrease and then converged

to a limit that is greater than zero. In the first stage, the order of convergence against mesh

size h is 2. The limit in the second stage depends on λ and the dependence is non-monotone.

The number of POD basis functions does not change remarkably (also see in the previous

example that compares the POD method with FEM) under different mesh sizes. Along with

the monotonic decreasing of the error against h→ 0, it indicates all sets of POD basis functions

all approximate some fixed continuous function space.

Dependence on the regularization factor To further investigate the limiting error,

in 3(b), we keep h = 1/32 fixed and use different regularization factor λ’s. We find that the

optimal λ for h = 1/32 with the 10% noise level is between 10−7 and 10−8. The error is a

V-shape function near the optimal λ.

Dependence on the number of POD basis functions The last experiment is to study

how the number of POD basis functions affects the error. In 3(c), we show the mean square

error with 100 sets of random generated observation. The error goes down as we increase the

number of POD basis functions. The fitted slope in the loglog plot is −0.0145, which indicates
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(a) POD, h = 1/20 (b) FEM, h = 1/20

(c) POD, h = 1/32 (d) FEM, h = 1/32

Figure 2: Recovering letter ’A’ with different basis and h

the errors exponentially decay with a coefficient −0.0145. The p-value for the fitted slope is

smaller than 0.001.

Iterative algorithm for finding the optimal λ As analyzed in Eq.(2.7), the optimal λ

relies on ‖f ∗‖2L2(Ω). While in the setting of inverse problems, the norm of input f ∗ is unknown.

A natural choice is to find the optimal λ by using a fixed-point iteration. To be precise, we

start from an initial guess like λn,0 = n−4/(d+4) and solve for f0 with the POD basis functions.

After solving fj the j-th step, we update λ as,

λ
1/2+d/8
n,j+1 = n−1/2 ‖Sτ,hfj −m‖n ‖fj‖

−1
L2(Ω) . (5.1)

We will stop the iteration of λ until ‖fj‖L2(Ω) converges. As shown in Figure 4 such iterative

algorithms, with either POD or FEM basis, finds the correct scale of λ with a similar pattern.

It implies that the POD method captures the whole solution subspace with given known source

function and is robust in iteration. To be noted, in Eq.(2.7), constant C is not 1 so the fixed-

point iteration Eq.(5.1) only finds the correct scale of λ comparing with Figure 3(b), in which

the error due to λ is computed with the knowledge of the ground truth solution u(·, T ).
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Figure 4: Finding optimal λ

5.2 Recovering Moving Circles

In addition to letter examples, we also applied the POD method to recover a ball pattern

that moves on some given trajectories in two-dimensional space. Similar to recovering letters,

we construct the POD basis functions from snapshots that are generated by solving forward

problems with classic FEM, where the mesh size h = 1/32 and time step ∆t = 1/32. λ is set

to be 10−6 and σ = 2.75× 10−3 which corresponds to a 10% noise level.

Moving along a horizontal line In such case, the source term f is given by indicator

function of set Ωs = {x ∈ [0, 1]2|(x1 − s)2 + (x2 − 0.5)2 ≤ 0.12}. When constructing the POD

basis functions, we use 17 values of s that are equally distributed between interval [0.15, 0.85]

including two terminal points. 14 basis functions are extracted for 10−4 accuracy calculated by

eigenvalues. In 5 we use the constructed basis on detecting circles with the same size. We find

that the performance of the POD method is still acceptable even the centers of the circle do

not coincide with the ones when we construct the POD basis functions.

Moving along a ring In addition, as shown in 6 we recover the same pattern whose center

are on a circle. To be specific, the source term f is given by indicator function of set Ωθ = {x ∈
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[0, 1]2|(x1 − 0.5 − cos(θ)/4)2 + (x2 − 0.5 − sin(θ)/4)2 ≤ 0.12}. 33 basis are extracted for 10−4

accuracy. Even with a higher DOF, the POD method still yields 10× acceleration comparing

with FEM (60 seconds vs 615 seconds).

(a) s = 0.3 (b) s = 0.4 (c) s = 0.5 (d) s = 0.6 (e) s = 0.7

Figure 5: Recovering Moving Circles with centers point at different x, red circle: ground truth

(a) θ = 0 (b) θ = π

4
(c) θ = π

2
(d) θ = 3π

4

(e) θ = π (f) θ = 5π

4
(g) θ = 3π

2
(h) θ = 7π

4

Figure 6: Recovering Moving Circles with centers point at different x, red circle: ground truth

6 Conclusion

We have developed a data-driven and model-based approach for solving parabolic inverse source

problems. The key idea is to exploit (model-based) and construct (data-based) the intrinsic

approximate low-dimensional structure of the underlying parabolic PDEs that consists of two

components – a training component that constructs a small number of POD basis functions

to achieve significant dimension reduction in the solution space, and a fast algorithm that

computes the optimization problem in inverse source problem by using the constructed POD

basis functions. Hence, we achieve an effective data and model-based approach for the inverse

source problems and overcome the typical computational bottleneck of FEM in solving such

problems.
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Under a weak assumption on the regularity of the solution, we provide the convergence

analysis of our POD algorithm in solving the forward parabolic PDEs and thus obtain the error

estimate of the POD algorithm for the parabolic inverse source problems. Finally, we carried

out numerical experiments to demonstrate the accuracy and efficiency of the proposed method.

Through numerical results, we found that our POD algorithm yields as good approximations

as the reference solution obtained by the FEM. But our algorithm can be much cheaper. We

expect an even better performance of efficiency can be obtained in 3D problems, which is one of

our future topics. We also studied other issues of the POD algorithm, such as the dependence

of the error on the mesh size, on the regularization parameter in the least-squares regularized

minimization problems, and on the number of POD basis functions.
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[10] S. D’haeyer, B. Johansson, and M. Slodička. Reconstruction of a spacewise-dependent heat

source in a time-dependent heat diffusion process. IMA Journal of Applied Mathematics,

79(1):33–53, 2014.

[11] A. El Badia, A. El Hajj, M. Jazar, and H. Moustafa. Lipschitz stability estimates for

an inverse source problem in an elliptic equation from interior measurements. Applicable

Analysis, 95(9):1873–1890, 2016.

[12] A. El Badia, T. Ha Duong, and F. Moutazaim. Numerical solution for the identification of

source terms from boundary measurements. Inverse Problems in Engineering, 8(4):345–

364, 2000.

[13] A. El Badia and T. Nara. An inverse source problem for Helmholtz’s equation from the

Cauchy data with a single wave number. Inverse Problems, 27(10):105001, 2011.

[14] G. Garcia, A. Osses, and M. Tapia. A heat source reconstruction formula from single

internal measurements using a family of null controls. Journal of Inverse and Ill-posed

Problems, 21(6):755–779, 2013.

[15] S. Gorelick, B. Evans, and I. Remson. Identifying sources of groundwater pollution: an

optimization approach. Water Resources Research, 19(3):779–790, 1983.

[16] H. Gu, J. Xin, and Z. Zhang. Error estimates for a POD method for solving viscous

G-equations in incompressible cellular flows. SIAM Journal on Scientific Computing,

43(1):A636–A662, 2021.

[17] J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. Courier

Corporation, 2003.

[18] J. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for parametrized

partial differential equations. Springer, 2016.

[19] P. Holmes, J. Lumley, and G. Berkooz. Turbulence, coherent structures, dynamical systems

and symmetry. Cambridge University Press, 1998.

[20] V. Isakov. Inverse problems for partial differential equations, volume 127. Springer, 2006.

20



[21] V. Isakov, S. Leung, and J. Qian. A three-dimensional inverse gravimetry problem for ice

with snow caps. Inverse Problems & Imaging, 7(2):523, 2013.

[22] T. Johansson and D. Lesnic. Determination of a spacewise dependent heat source. Journal

of computational and Applied Mathematics, 209(1):66–80, 2007.

[23] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for

parabolic problems. Numerische Mathematik, 90(1):117–148, 2001.

[24] K. Kunisch, S. Volkwein, and L. Xie. HJB-POD-based feedback design for the optimal

control of evolution problems. SIAM Journal on Applied Dynamical Systems, 3(4):701–722,

2004.

[25] X. Liu. Identification of indoor airborne contaminant sources with probability-based inverse

modeling methods. Boulder, CO: PhD dissertation. University of Colorado at Boulder,

2008.

[26] X. Liu and Z. Zhai. Inverse modeling methods for indoor airborne pollutant tracking:

literature review and fundamentals. Indoor air, 17(6):419–438, 2007.

[27] P. Nelson and S. Yoon. Estimation of acoustic source strength by inverse methods: Part i,

conditioning of the inverse problem. Journal of sound and vibration, 233(4):639–664, 2000.

[28] G. Nunnari, A. Nucifora, and C. Randieri. The application of neural techniques to the

modelling of time-series of atmospheric pollution data. Ecological Modelling, 111(2-3):187–

205, 1998.

[29] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential

equations: an introduction, volume 92. Springer, 2015.

[30] M. Renardy and R. Rogers. An introduction to partial differential equations, volume 13.

Springer Science & Business Media, 2006.

[31] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures.

Quarterly of applied mathematics, 45(3):561–571, 1987.

[32] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures.

Quarterly of applied mathematics, 45(3):561–571, 1987.

[33] V. Thomée. The finite element method for parabolic problems. In Mathematical Theory

of Finite and Boundary Element Methods, pages 135–218. Springer, 1990.

[34] S. Volkwein. Proper orthogonal decomposition: Theory and reduced-order modelling.

Lecture Notes, University of Konstanz, 4(4), 2013.

[35] J. Wong and P. Yuan. A FE-based algorithm for the inverse natural convection problem.

International Journal for numerical methods in fluids, 68(1):48–82, 2012.

21


	1 Introduction
	2 Parabolic inverse source problems
	3 The data-driven model reduction method
	3.1 Construction of the POD basis functions
	3.2 A Fast algorithm for solving parabolic inverse source problems
	3.3 Complete algorithm

	4 Convergence analysis
	5 Numerical examples
	5.1 Recovering Letters
	5.2 Recovering Moving Circles

	6 Conclusion

