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Abstract

We propose a novel stochastic reduced-order model (SROM) for complex
systems by combining clustering and classification strategies. Specif-
ically, the distance and centroid of centroidal Voronoi tessellation
(CVT) are redefined according to the optimality of proper orthogonal
decomposition (POD), thereby obtaining a time-dependent general-
ized CVT, and each class can generate a set of cluster-based POD
(CPOD) basis functions. To learn the classification mechanism of ran-
dom input, the naive Bayes pre-classifier and clustering results are
applied. Then for a new input, the set of CPOD basis functions asso-
ciated with the predicted label is used to reduce the corresponding
model. Rigorous error analysis is shown, and a discussion in stochastic
Navier-Stokes equation is given to provide a context for the applica-
tion of this model. Numerical experiments verify that the accuracy of
our SROM is improved compared with the standard POD method.
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1 Introduction

The reduced-order model (ROM) [1] plays a vital role in large-scale sim-
ulations, real-time calculations, and optimal control problems, which first
introduces a low-dimensional subspace of the state space, and then calcu-
lates the coordinates of the system state in this subspace through projection
techniques, also known as reduced state vector. It ensures the essential char-
acteristics of the system while achieves the goal of reducing computational
complexity. There are a variety of ways to construct the low-fidelity ROM.
Among them, proper orthogonal decomposition (POD) based on the optimal
Galerkin projection distance is one of the most successful methods, which has
been widely applied in numerous fields, including signal analysis and pattern
recognition [2, 3], image processing [4], geophysical fluid dynamics [5–7], and
biomedical engineering [8].

In many practical problems, the collected data belongs to categorical data,
such as countable qualitative data or grouped quantitative data. Then, the
natures of these problems can be further explored through the categorical data
analysis [9–12]. Clustering [13, 14] and classification [15] are two advanced
tools. Clustering is a method for statistical analysis of data and has become
an important part of machine learning. It is a process of dividing a given data
set into several subsets according to some defined distances. Its purpose is to
maximize the intra-cluster similarity and minimize the inter-cluster similarity
under the given distance measure. On the one hand, clustering itself is a sta-
tistical analysis technique. On the other hand, it is often used as a tool for
data exploration, data cleaning, and data organizing in the pre-process stage
of other data analysis methods. In the past few decades, clustering approaches
have been applied to the numerical simulations of partial differential equations
(PDEs), and one of the most popular methods is centroidal Voronoi tessella-
tion (CVT) [16]. Some of the notable works in this area are as follows: Burkardt
et al. in [17] introduced a reduced-order modeling methodology based on CVT
for complex systems and in [18] compared the performance of ROMs based
on POD and CVT, Du et al. in [19] proposed a hybrid method named CVT
based POD for model reduction, and Kaiser et al. in [20] combined the clus-
ter analysis and transition matrix models to propose a novel cluster-based
reduced-order modelling strategy for unsteady flows. We refer to [21, 22] for
further discussions.

Classification is another method of data statistical analysis, which assigns
labels to samples according to their features. This method belongs to super-
vised learning and includes two parts: classifier learning and the prediction/-
classification of new samples. When a new sample is assigned to the class with
the highest similarity, using the data in this class to study the sample can make
full use of the existing information and eliminate the redundant information
brought by the data in other classes. Recently, the ideas of classification have
been applied to the study of PDEs. Bright et al. in [23] combined classification
and compressive sensing to determine the flow characteristics around a cylinder
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and in [24] proposed sparse measurements to classify and reconstruct time-
dependent data, and Brunton et al. in [25] developed a classification scheme to
determine the region to which the nonlinear dynamical system belongs. More
discussions can consult the literatures [26–28]. For a stochastic system, there
may be large differences between the realizations of its state in some cases.
In order to reduce the model and reconstruct the state better, clustering and
classification methods can be combined. The former is used to organize the
given data according to similarity, while the latter trains a classifier based on
the clustering results for assigning labels to new samples. Then the samples
can be studied by using the predicted subsets instead of the entire data set.

In this work, we combine clustering and classification methods to propose
a pre-classification based stochastic ROM (SROM) for improving the accu-
racy of the POD reduced-order solutions of stochastic evolution problems.
The method mainly consists of two parts. In the first part, several groups
of cluster-based POD (CPOD) basis functions are generated by constructing
a time-dependent clustering method. Due to the generalizability of the dis-
tance in CVT method, the spatio-temporal projection distance from a function
to a multidimensional space is used to define the time-dependent general-
ized Voronoi tessellation (t-gVT). The corresponding generalized centroid is
defined as the subspace spanned by the POD basis functions according to the
optimality of POD method. Similar to CVT, the time-dependent generalized
CVT (t-gCVT) can be obtained when the generators coincide with the gener-
alized centroids. In order to simplify the construction of t-gCVT, the modified
version is introduced by using the time-sampling snapshots to approximately
calculate the time integral in generalized distance and using the Monte Carlo
(MC) method to estimate the expectation of projection distance. From this,
the spatio-temporal data is divided into several classes, and each class can
generate a set of snapshot-based POD basis functions. In the second part, we
construct the pre-classification based SROM. Considering the mapping rela-
tionship between the input and output of the system, we first use the clustering
results to train a pre-classifier to provide predicted labels for the new inputs,
and then use the CPOD basis functions associated with the labels to reduce
their models. Here, the naive Bayes classifier[29, 30] based on the principle of
maximum posterior probability is adopted to establish the classification mech-
anism. We would like to point out that other classifiers, such as k-nearest
neighbor[31], decision trees[32], support vector machine[33], etc, can also be
combined with our CPOD basis functions without any difficulty. The main
ideas of our method are shown in Figures 1 and 2. We call the method of
combining CPOD basis functions and naive Bayes pre-classifier to construct
SROM as the CPOD-NB method.

The rest of this paper is organized as follows. In section 2, we briefly intro-
duce the traditional POD and CVT methods. In section 3, we describe in detail
the modified t-gCVT for generating the CPOD basis functions and the naive
Bayes method for pre-classification, then combine them to propose the CPOD-
NB method for model reduction. The error estimation of the SROM based
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on CPOD-NB method and the strategy used for estimating the error rate of
naive Bayes pre-classifier are given in section 4. The stochastic Navier-Stokes
equation we use as study background is presented in section 5. Numerical
experiments are shown in section 6. Finally, some conclusions are given in
section 7.

2 Preliminary

We begin by some function spaces and notations needed, then briefly recall
the classical POD and CVT methods related to this work.

Denote the system of stochastic partial differential equations (SPDEs) of
unknown function u as

F (u(t,x, ξ); ξ) = 0 (t,x, ξ) ∈ [0, T ]×D × Γ, (2.1)

where function u has proper initial and boundary value conditions, x is the
spatial variable, t is the time variable and ξ could be other parameters. Let
L2(D) be the set of square-integrable functions defined on domain D with
inner product 〈·, ·〉 and norm ‖ · ‖L2(D). We denote the space of all measurable
functions u : [0, T ]→ L2(D) by

L2([0, T ]; L2(D)) :=
{
u : [0, T ]→ L2(D) | u measurable, ‖u‖L2([0,T ]; L2(D)) <∞

}
(2.2)

where

‖u‖L2([0,T ]; L2(D)) =

(∫ T

0

‖u‖2L2(D)dt

)1/2

. (2.3)

2.1 Proper orthogonal decomposition

Given a positive integer d, for the system of SPDEs (2.1), the POD proce-
dure is to find the orthonormal basis functions {φj(x)}dj=1 that minimize error
measure

EPOD(Πd) = E
[∥∥u−Πdu

∥∥2

L2([0,T ]; L2(D))

]
, (2.4)

where E[·] denotes expectation, Πd is a d-dimensional subspace spanned by

{φj}dj=1, and Πdu =
∑d

j=1〈u, φj〉φj represents the projection of u onto the
subspace. By the Lagrange multiplier method, the minimization problem is
equivalent to

E

[∫ T

0

〈u, φj〉udt

]
= λjφj j = 1, 2, . . . , d, (2.5)

where ({λj}, {φj}) is called the eigenpair of operator C defined as

Cφj = E

[∫ T

0

〈u, φj〉udt

]
. (2.6)
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We use the MC method to estimate the expectation and time-sampling
snapshots to calculate the time integral, then (2.6) can be approximated as

Cφj =
∆t

n

n∑
i=1

J∑
k=1

〈u(tk,x, ξi), φj〉u(tk,x, ξi), (2.7)

where t0 = 0, ∆t = T/J and tk = tk−1 + ∆t for k = 1, 2, . . . , J . Denote the
snapshot set as

W =[v1, . . . , vnJ ]

:=[u(t1,x, ξ1), . . . , u(tJ ,x, ξ1), . . . , u(t1,x, ξn), . . . , u(tJ ,x, ξn)]. (2.8)

Combining (2.5) and (2.7), the orthonormal POD basis functions can be
represented as

φj =
1√
nJσj

nJ∑
i=1

y
(j)
i vi j = 1, 2, . . . , d. (2.9)

Here, {y(j)
i } and {σj} satisfy the following eigenvalue problem

RY = Y Λ, (2.10)

where the components of matrices R and Y are defined as Rij = 1
nJ 〈vi, vj〉

and Yij = y
(j)
i respectively, and Λ = diag(σ1, . . . , σnJ) with σ1 ≥ σ2 ≥ . . . ≥

σnJ ≥ 0 and σj =
λj

T for j = 1, 2, . . . , nJ . Therefore, with snapshot set (2.8)
and POD basis functions (2.9), the minimum value of measure (2.4) can be
approximated as

EPOD(Πd) =

nJ∑
j=d+1

λj = T

nJ∑
j=d+1

σj , (2.11)

which is referred to as the “POD energy”.
We summarize the above discussions by giving the following MC-based

method for generating POD basis functions (Algorithm 1).

2.2 Centroidal Voronoi tessellation

Given a set of functions U = {vi ∈ L2(D)}ni=1, the CVT of set U is a special
Voronoi tessellation with the centroids {z∗k ∈ L2(D)}Kk=1 of Voronoi regions

Uk = {v ∈ U | D(v, zk) ≤ D(v, zi) for all i 6= k} k = 1, 2, . . . ,K (2.12)

satisfying z∗k = zk for k = 1, 2, . . . ,K, where {zk ∈ L2(D)}Kk=1 are called
the generators of set {Uk}Kk=1, K refers to the number of clusters, and the
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Algorithm 1 MC-based POD method

Input: input set X = {ξi}ni=1, time step ∆t, a positive integer d.
Output: POD basis functions {φj}dj=1.

1: Solve system (2.1) with inputs X and step size ∆t to obtain set

{u(tk,x, ξi)}n, J
i=1,k=1, which forms the snapshot set W defined in (2.8).

2: Generate the POD basis functions {φj}dj=1 defined in (2.9) by solving
eigenvalue problem (2.10).

distance can be selected as any metric, for example the L2(D) distance as
D(v, zk) = ‖v − zk‖L2(D) [16]. When the distances between a point v and two
generators zi, zj are same and the smallest, the principle of random assignment
between these two classes is adopted. According to the partition rule of CVT,
we know that it minimizes the error measure

ECVT
(
{Uk}Kk=1; {zk}Kk=1

)
=

K∑
k=1

∑
v∈Uk

D2(v, zk), (2.13)

and (2.13) is referred to as the “CVT energy”.
There are several methods that can be used to construct a CVT for a given

data set. Among them, the iterative-based Lloyd’s method (Algorithm 2) [34]
is one of the most popular and simplest approaches.

Algorithm 2 Lloyd’s method

Input: data set U , a positive integer K, a set of initial generators {zk}Kk=1.
Output: CVT

(
{Uk}Kk=1; {z∗k}Kk=1

)
of set U .

1: Construct the Voronoi tessellations {Uk}Kk=1 of U associated with genera-
tors {zk}Kk=1.

2: Compute the centroids {z∗k}Kk=1 of Voronoi regions {Uk}Kk=1.
3: For k = 1, 2, . . . ,K, if z∗k = zk, stop; otherwise, let zk = z∗k and return to

step 1.

3 Pre-classification based SROM

For a given SPDE, we first use the similarity and difference between sam-
ple solutions to cluster them, and each class can generate a set of POD basis
functions. Then, a pre-classifier is trained by clustering results for assigning
unlabelled input, and the corresponding model is reduced by the basis func-
tions of the predicted class. In this section, we propose the t-gCVT clustering
method for generating multiple sets of POD basis functions and the naive
Bayes pre-classifier based SROM.
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3.1 Time-dependent generalized CVT

As mentioned above, the distance in CVT can be extended to other general
distances. And from the measurement formula (2.4), we can see that the POD
method is to find a subspace that minimizes the expected value of projection
distance. Therefore, it is natural to consider combining the POD and CVT
methods.

For a given solution u, in order to ensure that the basis functions of a subset
after clustering can be used to generate its reduced-order approximation in
the entire time domain, the time-dependent distance is defined as

D̂(u,Πdu) = ‖u−Πdu‖L2([0,T ]; L2(D)) (3.1)

for any d-dimensional subspace Πd. Given a set of multidimensional subspaces
{Πdk

k }Kk=1, dk ∈ N+, for the solution u of SPDE (2.1), the t-gVT is given as

Ûk = {u ∈ Us |D̂2(u,Πdk
k u) ≤ D̂2(u,Πdi

i u) for all i 6= k} k = 1, 2, . . . ,K,
(3.2)

where Us denotes the solution space, which is composed of all functions u
satisfying system (2.1). Similar to (2.12), the principle of random assignment
in the appropriate classes is used to break the deadlock. It is well-known that
the traditional CVT method clusters data by trying to separate samples into
several classes that have the equal variance in the sense of the given distance.
Therefore, the generalized centroid can be naturally defined as the subspace
Π̂dk
k spanned by orthonormal basis functions, which minimizes

Êt-gCVT
k

(
Π̂dk
k

)
= E

[
‖u− Π̂dk

k u‖
2
L2([0,T ]; L2(D))

]
k = 1, 2, . . . ,K, (3.3)

where u ∈ Ûk for k = 1, 2, . . . ,K. Next, the t-gCVT is derived from the
definition of CVT.

Definition 3.1 The t-gVT ({Ûk}Kk=1; {Πdkk }
K
k=1) of the solution space Us is called

t-gCVT if and only if the generator Πdkk of class Ûk is the corresponding generalized

centroid, i.e. Πdkk = Π̂dkk , for k = 1, 2, . . . ,K.

As can be seen from the above description, in the process of t-gCVT
clustering, the calculation of distance (3.1) involves time integral, and the con-
struction of the generalized centroid is difficult because it is required to be
optimal over the entire time domain in the sense of expectation. Therefore,
the MC method with sample set Û = {ui}ni=1 := {u(t,x, ξi)}ni=1 is used for
the expectation, and the time-sampling snapshots at equal interval are used
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to define a modified distance as

D̃2(ui,Π
dui) =

J∑
j=1

‖u(tj ,x, ξi)−Πdu(tj ,x, ξi)‖2L2(D) i = 1, 2, . . . , n, (3.4)

where {tj}Jj=1 are the corresponding time points of snapshots, t0 = 0 and
tj+1 = tj + ∆t for j = 0, 1, . . . , J − 1 with time interval ∆t = T/J . This
is equivalent to using the snapshots to approximately calculate the integral
with respect to time in distance (3.1), and the scaling factor is ∆t. Then the
modified t-gVT can be defined as

Ũk = {u ∈ Û | D̃2(u,Πdk
k u) ≤ D̃2(u,Πdi

i u) for all i 6= k} k = 1, 2, . . . ,K,
(3.5)

and the modified generalized centroid Π̃dk
k = span{φk1 , . . . , φkdk} minimizes

Ẽt-gCVT
k

(
Π̃dk
k

)
=
∑
u∈Ũk

J∑
j=1

‖u(tj ,x, ξ)− Π̃dk
k u(tj ,x, ξ)‖2L2(D) k = 1, 2, . . . ,K.

(3.6)

Denote the cardinality of Ũk as nk, which satisfies
∑K

k=1 nk = n. According to
the optimality of POD, for k = 1, 2, . . . ,K, the modified generalized centroid
Π̃dk
k is actual the subspace spanned by the POD basis functions, which are

generated by the snapshots of set Ũk.
If the approximate error of the time integral is negligible, that is,

D̂2(u,Πdu) = ∆tD̃2(u,Πdu) (3.7)

holds for any given subspace Πd. Then the following inequality is known from
the relationship between the minimum value of the expected value and the
expectation of the minimum value

minE
[
D̂2(u,Πdu)

]
≥ ∆tE

[
min D̃2(u,Πdu)

]
. (3.8)

Therefore, {Êt-gCVT
k }Kk=1 and {Ẽt-gCVT

k }Kk=1 satisfy

min Êt-gCVT
k ≥ ∆t

nk
min Ẽt-gCVT

k k = 1, 2, . . . ,K (3.9)

by using the MC method with nk samples of set Ũk to estimate the right-hand
side of inequality (3.8).

Similar to Definition 3.1, the definition of modified t-gCVT is given as
follows.
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Definition 3.2 The modified t-gVT ({Ũk}Kk=1; {Πdkk }
K
k=1) of the set Û is called

modified t-gCVT if and only if the generator Πdkk of set Ũk is the corresponding

generalized centroid, i.e. Πdkk = Π̃dkk , for k = 1, 2, . . . ,K. And the POD basis func-

tions {φkj }
dk
j=1 corresponding to the generalized centroid Π̃dkk of modified t-gCVT are

called its subclass bases or cluster-based POD (CPOD) basis functions.

It can be seen from the above definition that the modified t-gCVT of set
Û minimizes the error

Ẽt-gCVT =

K∑
k=1

Ẽt-gCVT
k

(
Π̃dk
k

)
, (3.10)

and the minimum value is

Ẽt-gCVT =

K∑
k=1

Jnk

Jnk∑
j=dk+1

σkj , (3.11)

where {σkj }
Jnk
j=1 are the eigenvalues of correlation matrix R associated with

set Ũk, as difined in (2.10). Here, (3.11) is referred to as “modified t-gCVT
energy”, and

νk =

dk∑
j=1

σkj

/ Jnk∑
j=1

σkj k = 1, 2, . . . ,K (3.12)

is called the energy ratio of CPOD bases {φkj }
dk
j=1.

To reduce the complexity of model construction, the modified t-gCVT is
used in the following processes, and its structure is shown in Figure 1. Note
that the modified t-gCVT is reduced to the standard snapshot-based POD
method when K = 1, and the number of CPOD basis functions {φkj }

dk
j=1 is not

neccessarily equal for k = 1, 2, . . . ,K.

X SPDEs !𝑈 Modified 
t-gCVT

{ 𝜙!"}!#"
$!

{ 𝜙!%}!#"
$"

{ 𝜙!&}!#"
$#

…

Fig. 1: The framework of modified t-gCVT method

Remark 3.3 When the modified t-gCVT ({Ũk}Kk=1; {Π̃dkk }
K
k=1) of set Û is known, we

can naturally cluster the inputs {ξi}ni=1 according to the clustering results of data
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Û . Namely, the image space Γ of input ξ can be divided into {Γk}Kk=1, which satisfies

Γi ∩ Γj = ∅ if i 6= j, Γk ⊂ Γ for k = 1, 2, . . . ,K and
⋃K
k=1 Γk = Γ. If u(t,x, ξ) ∈ Ũk,

then the corresponding input, ξ ∈ Γ, is belonging to Γk, i.e.,

Γk = {ξ ∈ Γ | u(t,x, ξ) ∈ Ũk} k = 1, 2, . . . ,K, (3.13)

where k is called the class label of ξ.

The details of using the modified t-gCVT method to generate the CPOD
basis functions are given in Algorithm 3.

Algorithm 3 The modified t-gCVT clustering method for generating CPOD
basis functions

Input: set Û = {u(t,x, ξi)}ni=1, a positive integer K, dimensions {dk}Kk=1,
step size ∆t.

Output: modified t-gCVT ({Ũk}Kk=1; {Π̃dk
k }Kk=1) of Û , and K groups of

CPOD basis functions {{φ1
j}
d1
j=1, . . . , {φKj }

dK
j=1}.

1: Select a set of initial generalized generators {Πdk
k }Kk=1 with dimensions

{dk}Kk=1.

2: Construct the modified t-gVT {Ũk}Kk=1 of Û associated with {Πdk
k }Kk=1.

3: From {Ũk}Kk=1 and step size ∆t, determine the snapshot sets {Wk}Kk=1

defined in (2.8).
4: Generate K groups CPOD basis functions {{φ1

j}
d1
j=1, . . . , {φKj }

dK
j=1} defined

in (2.9) by solving eigenvalue problems (2.10) associated with {Wk}Kk=1

5: For k = 1, 2, . . . ,K, let Π̃dk
k = span(φk1 , . . . , φ

k
dk

), if Πdk
k = Π̃dk

k , stop;

otherwise, let Πdk
k = Π̃dk

k and return to step 2.

3.2 Naive Bayes pre-classifier and pre-classification
based SROM

Since the modified t-gCVT method is to cluster the spatio-temporal function
u, then for a given u, a set of suitable CPOD basis functions can be used
to calculate its reduced-order approximation in the whole time interval. In
modified t-gCVT, the set Ũk with the highest similarity to the function u is
called its best-matched set, and the corresponding CPOD bases are called the
best-matched bases. In general, the reduced-order approximation generated by
the best-matched bases is better than the standard POD approximation with
the same degree of freedom (DoF). This is because that the samples in the
same class are similar after clustering, then the same number of basis functions
can capture more useful information, which is beneficial for the reconstruction
of function u. That is to say, if we know the best-matched bases of a given
function, the accuracy of its reduced-order approximation can be improved
compared with the standard POD method. Note that the spatio-temporal
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function u(t,x, ξ) is determined by the random input ξ, and our aim is to
construct a SROM such that the approximate solution can be obtained for
any given input ξ. Therefore, a pre-classifier is constructed here to select the
best-matched bases from the perspective of random input.

In this paper, the naive Bayes pre-classifier based on Bayes’ theorem and
the assumption of feature condition independence is adopted. For a given inte-
ger K ≥ 1, the image space Γ is divided into disjoint subspace set {Γk}Kk=1 as
introduced in Remark 3.3. Suppose γ is a random vector defined on the input
space Γ ⊂ Rp composed of p-dimensional vectors. Its realization, also known as
the feature vector, is denoted as ξ = [ξ1, . . . , ξp]

> ∈ Γ. Let ι be a random vari-
able defined on the class label set L = {1, . . . ,K}. Its realization, also known
as class label, is denoted as k ∈ L. Let X = {ξi}ni=1 be the independent and

identically distributed (i.i.d.) input set of the given data Û , and {ιi}ni=1 be the
corresponding class labels obtained by the modified t-gCVT method, then the
training data set is given as

D = {(ξ1, ι1), . . . , (ξn, ιn)} . (3.14)

Denote the prior probability distributions

P(ι = k) = πk k = 1, 2, . . . ,K, (3.15)

and conditional probability distributions

P(γ = ξ|ι = k) =

p∏
i=1

P(γi = ξi|ι = k) = fk(ξ) k = 1, 2, . . . ,K (3.16)

as
πk =

nk
n

k = 1, 2, . . . ,K (3.17)

and

fk(ξ) =

p∏
i=1

fk(ξi) =

p∏
i=1

1
√

2πσ
(k)
i

exp

(
−|ξi − µ

(k)
i |2

2(σ
(k)
i )2

)
k = 1, 2, . . . ,K,

(3.18)

respectively. Here, the means {µ(k)
i } and variances {σ(k)

i } can be estimated by

µ
(k)
i =

1

nk

∑
ξ∈Γk

ξi i = 1, 2, . . . , p, k = 1, 2, . . . ,K, (3.19)

σ
(k)
i =

1

nk − 1

∑
ξ∈Γk

(
ξi − µ(k)

i

)2

i = 1, 2, . . . , p, k = 1, 2, . . . ,K. (3.20)
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According to the Bayes’ theorem, the posterior probability has form

P(ι = k|γ = ξ) =
πkfk(ξ)∑K
k=1 πkfk(ξ)

. (3.21)

The principle of naive Bayes pre-classifier is to assign input to the class with
the largest posterior probability, that is, input ξ is assigned to the subspace
Γk if

k = arg max
1≤i≤K

P(ι = i|γ = ξ). (3.22)

The denominator of (3.21) is a fixed constant for a given ξ, so (3.22) is
equivalent to

k = arg max
1≤i≤K

πifi(ξ). (3.23)

If the result in (3.23) is not unique, a random assignment is used to break the

tie. Here, k is the predicted label of input ξ, and the corresponding Ũk and
{φkj }

dk
j=1 are called the predicted best-matched set and predicted best-matched

bases of solution u(t,x, ξ), respectively.
The naive Bayes classifier is based on the assumption of normality and

independence of variables, which will affect the accuracy of the algorithm to a
certain extent. But this algorithm is easy to implement and has high learning
and prediction efficiency. Therefore, it is still one of the popular classification
tools.

When the naive Bayes pre-classifier assigns an unlabelled input ξ to the
subspace Γk, that is to say, the probability of ξ ∈ Γk is the largest, then the
continuity of the input-output mapping shows that its solution u is most likely
to belong to the set Ũk. Therefore, it is feasible to use k-th group CPOD bases
{φkj }

dk
j=1 of modified t-gCVT to evaluate the corresponding model, and the

approximation of solution u is given by

ũK(t,x, ξ) =

dk∑
j=1

αj(t, ξ)φkj (x), (3.24)

where {αj}dkj=1 can be obtained by solving the following reduced system〈
F

(
dk∑
j=1

αj(t, ξ)φkj (x); ξ

)
, φki (x)

〉
= 0 i = 1, 2, . . . , dk. (3.25)

We call the method of combining CPOD basis functions and naive Bayes
pre-classifier to construct SROM as the CPOD-NB method, and ũK defined
in (3.24) is the CPOD-NB reduced-order approximation of solution u with
the number of clusters K. The structure of the model reduction based on
CPOD-NB method is shown in Figure 2.
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Fig. 2: The framework of model reduction based on CPOD-NB method

So far, the modified t-gCVT method and pre-classification based SROM
have been introduced, and the details of CPOD-NB method for model
reduction are described in Algorithm 4.

Algorithm 4 SROM based on CPOD-NB method

Input: input set X = {ξi}ni=1, a positive integer K, dimensions {dk}Kk=1, step
size ∆t.

Output: CPOD-NB approximate solution ũK of new input ξ.
1: Generate data set Û by solving system (2.1) with inputs X.

2: Obtain the modified t-gCVT ({Ũk}Kk=1; {Π̃dk
k }Kk=1) of Û and K groups of

CPOD basis functions {{φ1
j}
d1
j=1, . . . , {φKj }

dK
j=1} by using Algirithm 3.

3: For i = 1, 2, . . . , n, if u(t,x, ξi) ∈ Ũk, then denote the label of ξi as ιi = k,
where k ∈ {1, 2, . . . ,K}.

4: Use the input set X and the labels {ιi}ni=1 to form the training data set
D, then learn the prior probability distributions {πk}Kk=1 and conditional
probability density functions {fk}Kk=1.

5: For a given new input ξ, compute the values of {πk, fk(ξ)}Kk=1, then assign
ξ to Γk if (3.23) holds.

6: Obtain the reduced states {αj}dkj=1 by solving the system (3.25) with k-th

group CPOD basis functions {φkj }
dk
j=1, then the CPOD-NB approximate

solution ũK of ξ can be represented as (3.24).

Remark 3.4 For a given input ξ, in the CPOD-NB method, we hope to find the set
of CPOD basis functions such that the error between its finite element solution and
the reduced-order solution is the smallest. Therefore, the true label of input ξ can
be defined as

i = arg min
1≤k≤K

∥∥∥∥u(t,x, ξ)− Π̃dkk u(t,x, ξ)

∥∥∥∥2

L2([0,T ]; L2(D))

, (3.26)

and the corresponding Ũi and {φij}
di
j=1 are called the true best-matched set and true

best-matched bases of solution u(t,x, ξ), respectively.



Springer Nature 2021 LATEX template

14 Pre-classification based SROM for time-dependent complex system

4 Error estimation

In this section, we first give the error estimation of the SROM based on CPOD-
NB method, and then introduce the estimation method of error rate of the
naive Bayes pre-classifier.

4.1 Error estimation of CPOD-NB based SROM

In order to characterize the validity of the CPOD-NB model, the error between
the full finite element solution u and the CPOD-NB approximate solution ũK

is defined as
ẼK = E

[
‖u− ũK‖2L2([0,T ]; L2(D))

]
(4.1)

and
ṼK = V

[
‖u− ũK‖2L2([0,T ]; L2(D))

]
, (4.2)

where V[·] represents the variance.
The error estimation of the CPOD-NB reduced-order solution is given in

following theorem.

Theorem 4.1 In the naive Bayes pre-classifier, if the random input ξ can always
get the true label with the maximum posterior probability, then there exist constants
C1, C2 > 0, such that with probability close to one, the space-time L2(D)-norm error

ẼK between the finite element solution u and the CPOD-NB approximate solution
ũK satisfies

ẼK ≤
K∑
k=1

Tnk
n

Jnk∑
j=dk+1

σkj

+ C1

√
ṼK/n+ C2

T∆t

2
, (4.3)

where C2 depends on the regularity of ‖u(t) − ũK(t)‖2L2(D), while constant C1 is
universal.

Proof By using the MC method, the error can be estimated by

ẼK =
1

n

n∑
i=1

‖u(t,x, ξi)− ũK(t,x, ξi)‖2L2([0,T ]; L2(D)) + Ẽs,

where Ẽs denotes statistical error and satisfies

Ẽs ∼ N(0, ṼK/n)

according to the central limit theorem. For a constant C1 ≥ 1.65, the inequality

|Ẽs| ≤ C1

√
ṼK/n

can hold with probability close to 1. Then using data Û and its clustering results,
the following can be obtained

ẼK − Ẽs =
1

n

K∑
k=1

∑
u∈Ũk

‖u− ũK‖2L2([0,T ]; L2(D)).
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The time-sampling snapshots at equal interval are used to approximate the time
integral, that is

‖u− ũK‖2L2([0,T ]; L2(D)) = ∆t

J∑
j=1

‖u(tj)− ũK(tj)‖2L2(D) +R[u, ũK ],

where time step ∆t = T/J , t0 = 0 and tj+1 = tj + ∆t for j = 0, 1, . . . , J − 1.

R[u, ũK ] is the residual of the approximation which depends on the regularity of
f(t; u) := ‖u(t)− ũK(t)‖2L2(D) and satisfies

R[u, ũK ] =
T∆t

2
f ′(η; u)

for some η ∈ (0, T ). Therefore,

ẼK − Ẽs =
∆t

n

K∑
k=1

∑
u∈Ũk

J∑
j=1

‖u(tj)− ũK(tj)‖2L2(D) +
1

n

K∑
k=1

∑
u∈Ũk

T∆t

2
f ′(η; u).

Let
C2 = max

u∈Û,η∈(0,T )
|f ′(η; u)|,

then according to the energy (3.11)

ẼK − Ẽs ≤
K∑
k=1

Jnk∆t

n

Jnk∑
j=dk+1

σkj

+ C2
T∆t

2

holds, which completes the proof. �

4.2 Error rate estimation of the naive Bayes pre-classifier

In general, classification rules have their error rate. When the Bayes classifier
with the maximum posterior decision rule is used to classify the problem with
known conditional probability density functions and prior probability distribu-
tions, its error rate should be fixed. Next, we consider the error rate estimation
of the naive Bayesian pre-classifier.

According to the statistical decision theory [35], denote the discriminant
functions as

gk(ξ) = πkfk(ξ) k = 1, 2, . . . ,K, (4.4)

and their decision regions are defined by

Γ̃k = {ξ ∈ Γ | gk(ξ) > gi(ξ) for i = 1, 2, . . . ,K, i 6= k} k = 1, 2, . . . ,K.
(4.5)

Then the decision surface between regions Γ̃i and Γ̃j is given as

Sij = {ξ ∈ Γ | gi(ξ) = gj(ξ), i 6= j} i, j = 1, 2, . . . ,K. (4.6)

Note that the decision region set {Γ̃k}Kk=1 is also a partition of the feature
space Γ. Although we hope that it is consistent with the segmentation {Γk}Kk=1

in the modified t-gCVT so that the input samples can always be assigned to
the best subspace with the maximum posterior probability, it is difficult to
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achieve in practice due to the defects of the classifier itself and the lack of
data. Therefore, it is necessary to study the error rate of classifier.

According to the classification rules of naive Bayes, its error rate P(e) is the
probability of assigning sample that belongs to subspace Γk to other subspace
Γi, where i, k = 1, 2, . . . ,K and i 6= k. That is

P(e) =

K∑
k=1

K∑
i=1
i 6=k

P(ξ ∈ Γ̃i, ι = k) =

K∑
k=1

K∑
i=1
i 6=k

P(ξ ∈ Γ̃i|ι = k)P(ι = k) =

K∑
k=1

K∑
i=1
i6=k

πkPki(e),

(4.7)
where

Pki(e) = P(ξ ∈ Γ̃i|ι = k) =

∫
Γ̃i

P(γ = ξ|ι = k)dξ =

∫
Γ̃i

fk(ξ)dξ. (4.8)

Then the correct rate of the classifier takes the form

P(c) = 1− P(e) =

K∑
k=1

πkPkk(e). (4.9)

For high-dimensional stochastic problems, it is difficult to determine the
decision regions {Γ̃k} and the decision surfaces {Sij}, so the calculation of
integrals (4.8) is a huge challenge. Here, a more practical method can be used
to estimate the error rate for testing the performance of the classifier.

A test set T = {ξi}Ni=1 with size N is randomly selected from the feature
space Γ, and its components are mutually independent and independent of
the training data D. Let the total number of samples in Γk be Nk for k =
1, 2, . . . ,K, which satisfy

∑K
k=1Nk = N . The number of samples belonging

to subspace Γk that are misjudged into subspace Γi is denoted as nki for
k, i = 1, 2, . . . ,K and i 6= k. Obviously, nki is a discrete random variable that
obeys a binomial distribution and satisfies

P(nki) = Cnki

Nk
[Pki(e)]nki [1− Pki(e)]Nk−nki , (4.10)

where Cnki

Nk
= Nk!

nki!(Nk−nki)!
. By solving

∂ lnP(nki)

∂Pki(e)
= 0 (4.11)

can obtain the maximum likelihood estimation of Pki(e) as

P̂ki(e) =
nki
Nk

, (4.12)
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which is also a random variable, and the mean has form

E
[
P̂ki(e)

]
=

E [nki]

Nk
= Pki(e). (4.13)

Therefore, P̂ki(e) is an unbiased estimate of Pki(e), and further an unbiased
estimate of P(e) can be obtained as

P̂(e) =

K∑
k=1

K∑
i=1
i6=k

πkP̂ki(e). (4.14)

In numerical experiments of this work, we use formula (4.14) to estimate the
error rate of the naive Bayes pre-classifier.

5 Stochastic Navier-Stokes equations

In this work, we use the proposed CPOD-NB based SROM to deal with
stochastic flow over a backward-facing step[36] described as

ut −
1

Re
∆u + (u · ∇)u +∇P = 0 (0, T ]×D, (5.1)

∇ · u = 0 (0, T ]×D, (5.2)

where Re is the Reynolds number of the fluid, u(t,x) = (u1, u2)> and P (t,x)
denote the velocity and pressure fields, respectively. The boundary of physical
domain D is denoted by ∂D, which consists of six parts as depicted in Figure
3. For t ∈ (0, T ], the boundary conditions are given by

u = (uin, 0)> on ∂Di, (5.3)

u = (0, 0)> on ∂Dt ∪ ∂Db ∪ ∂Dd ∪ ∂Dc, (5.4)

Pn− 1

Re

∂u

∂n
= (0, 0)> on ∂Do, (5.5)

and the initial velocity field satisfies

u(0,x) = u0(x, y) =

{
uin(0,x) on ∂Di,
0 otherwise.

(5.6)

Assume that the fluid can be injected along ∂Di, so uin ≥ 0 is required. Fur-
ther assume that the injected fluid contains uncertainties. Thus, for a properly
defined probability space (Ω,F ,P), uin can be modelled with random variable
ω ∈ Ω as

uin = A(t, ξ(ω))h(y), (5.7)
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where A is a time-dependent parameter that determines the strength of
the parabolic inflow velocity profile h(y). For the sake of simplicity, denote
A(t, ξ(ω)) as A(t, ξ) or A(t; ω).

Fig. 3: Physical domain D of Navier-Stokes equation

5.1 Full discrete and Newton linearization

In this paper, finite element method, θ-scheme and Newton’s method are used
for spatial discretization, time discretization, and the linearization of nonlinear
convective term, respectively.

Let T h be a shape-regular triangular finite element mesh of domain D,
which is parameterized by mesh width h = maxG∈T h diam(G), where G is a
typical finite element in the triangulation T h. The finite element mesh used
in this work is shown in Figure 4. For vector valued function u, define the
following finite element spaces

Vh = {vh = (vh1 , v
h
2 )> : vhi ∈ C0(D̄), vhi |G ∈ P2 for any G ∈ T h, i = 1, 2},

Vh
0 = {vh ∈ Vh : vhi = 0 on ∂D \ ∂Do for i = 1, 2},

Qh = {qh : qh ∈ C0(D̄), qh|G ∈ P1 for any G ∈ T h},

where Pr denotes the polynomial space with degree less than or equal to r, r ∈
N+. The Taylor-Hood finite element spaces are considered in our computation,
i.e. quadratic finite element space for velocity field u and linear finite element
space for pressure field P .

Let τm = {ti}mi=0 be a partition of [0, T ] with equal interval Dt = T/m,
where t0 = 0 and ti = ti−1+Dt for i = 1, 2, . . . ,m. Then for i = 0, 1, . . . ,m−1,
the linearized full discrete weak formulation of system (5.1)-(5.5) is given as:
find ui+1

θ ∈ Vh and P i+1
θ ∈ Qh such that

1

θ∆t

∫
D

(
ui+1
θ − ui

)
vdx +

1

Re

∫
D

∇ui+1
θ : ∇vdx +

∫
D

ui+1
θ · ∇ui · vdx

+

∫
D

ui · ∇ui+1
θ · vdx−

∫
D

P i+1
θ ∇ · vdx =

∫
D

ui · ∇ui · vdx

(5.8)∫
D

q∇ · ui+1
θ dx =

{
0 if i > 0,
(1− θ)

∫
D
q∇ · u0dx if i = 0,
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for any test functions vh ∈ Vh
0 and qh ∈ Qh. Here, ui = u(ti,x) and θ is taken

as 1
2 . By solving linear system (5.8), the pair (ui+1, P i+1) can be recovered

from
ui+1 = 2ui+1

θ − ui and P i+1 = 2P i+1
θ − P i. (5.9)

0 1 2 3 4 5
0

0.5

1

Fig. 4: Finite element mesh with h = 0.2, 1279 triangles and 703 vertices

5.2 Modified velocity field

Here, instead of the original finite element solution u, a CPOD-NB model
is constructed for the modified velocity field with homogeneous Dirichlet
boundaries.

Denote the solutions of the steady-state version of Navier-Stokes system
(5.1)-(5.5) with constant strengths A = a1 and A = a2 in inflow velocity uin

as ua1 and ua2 , respectively. Let

w =
ua1 − ua2
a1 − a2

, (5.10)

and denote the average of the velocity field as

u(x) =
1

n

n∑
i=1

(
1

J

J∑
j=1

(u(tj ,x, ξi)−A(tj , ξi)w(x))

)
. (5.11)

Then the modified state is given by

v(t,x, ξ) = u(t,x, ξ)− u(x)−A(t, ξ)w(x), (5.12)

which satisfies v = 0 on ∂D \ ∂Do.
Using the modified t-gCVT method for modified state v, we can obtain

K sets of basis functions {{φ1
j (x)}d1j=1, . . . , {φKj (x)}dKj=1}. If the class label

of a given input ξ is k, the original system (5.8) can be reduced to a dk-
dimensional ordinary differential equations by using {φkj (x)}dkj=1, then the

reduced states {αj(t, ξ)}dkj=1 can be calculated by Runge-Kutta method, finally
the approximation of the original velocity field can be represented as

u(t,x, ξ) = u(x) +A(t, ξ)w(x) +

dk∑
j=1

αj(t, ξ)φkj (x). (5.13)
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6 Numerical experiments

To illustrate the feasibility and effectiveness of the proposed CPOD-NB model,
we provide comparisons with the standard POD method (i.e. K = 1). All
computations were performed using MATLAB R2017a on a personal computer
with 2.3 GHz CPU and 256 GB RAM.

In our computation, the physical domain D and its triangulation used in
the finite element method are shown in the Figure 4. The Reynolds number Re
is taken as 500. The finite element solutions of steady-state version of Navier-
Stokes system associated with a1 = 2 and a2 = 1 are used to generate the
modified state, as defined in (5.12). The time interval [0, T ], T = 2, is divided
by the time step Dt = 1/200, and the modified snapshots are obtained at each
time point for computing the modified distance, i.e. ∆t = Dt. The parabolic
profile h(y) of inflow velocity has form

h(y) = (1− y)(y − 0.5). (6.1)

Let the random input of system (5.1)-(5.6) be the time-discrete form of
strength A(t; ω), i.e.

ξ(ω) = [ξ1(ω), . . . , ξm+1(ω)]> = [A(t0; ω), A(t1; ω), . . . , A(tm; ω)]>, (6.2)

where t0 = 0, tj = tj−1 +Dt for j = 1, 2, . . . ,m. The number of CPOD basis
functions of each class is not necessarily equal in our method, but in order to
compare with the standard POD method, it is set to be equal and determined
by the 97% cumulative energy ratio of the standard POD bases.

In addition to estimating absolute error statistics ẼK and ṼK , we also give
the estimations of relative error statistics defined as

ẼrK = E

[
‖u− ũK‖2L2([0,T ]; L2(D))

‖u‖2L2([0,T ]; L2(D))

]
(6.3)

and

ṼrK = V

[
‖u− ũK‖2L2([0,T ]; L2(D))

‖u‖2L2([0,T ]; L2(D))

]
. (6.4)

These statistics are all estimated by the MC method. Next, we consider two
different strengths A, one is expanded by the trigonometric functions, and the
other is hat-type functions of different heights with white noise.

6.1 Strength expanded by trigonometric functions

In this experiment, the strength A is given by

A(t; ω) = A0(t) + σ

N∑
i=1

δi

[
sin(πit)η

(1)
i (ω) + cos(πit)η

(2)
i (ω)

]
, (6.5)
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where the mean strength A0(t) ≡ 70, amplification factor σ = 12, the number

of expanded terms N = 100, δi = 1/i for i = 1, 2, . . . , N , and {η(j)
i }Ni=1, j =

1, 2, are i.i.d. random variables and satisfy η
(j)
i ∼ N (0, 1). Here, 300 samples of

velocity field are used to generate the CPOD bases and train the naive Bayes
pre-classifier, and the other 100 samples form the test set to estimate the error
of the SROM based on the pre-classifier.

6.1.1 Generating CPOD basis functions

Figure 5 shows the clustering results of these 300 samples with modified t-
gCVT method. On the left is the number of samples in each class, nk, under
different cluster numbers K. The middle is the corresponding energy defined
in (3.11), which gradually decreases with the increase of K. On the right is the
logarithm of eigenvalues corresponding to the first 30 CPOD basis functions
in each class. The dimensions and cumulative energy ratios used in this exper-
iment are given in Table 1. On the whole, for K = 2 and 3, the energy ratios
of the CPOD basis functions generated by our method are higher than that of
the standard POD method. It is not difficult to understand that the samples in
each class are similar after clustering, so their eigenvalues decay faster, which
leads to the same number of basis functions can obtain more information. That
is to say, some information that is ignored by standard POD method can be
captured after clustering. The contours of the first four CPOD basis functions
in every class are given in Figure 6.
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Fig. 5: Population nk (left), energy Ẽt-gCVT (middle) of data Û , and the
logarithm of eigenvalues (right) corresponding to the first 30 CPOD basis
functions in each class for K = 1, 2 and 3

Table 1: The dimension dk and cumulative energy ratio νk of CPOD basis
functions in each class for K = 1, 2 and 3

K = 1 K = 2 K = 3

class - 1 2 1 2 3
dk 16 16 16 16 16 16
νk 0.9704 0.9765 0.9713 0.9719 0.9768 0.9798
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K=1, class 1 K=2, class 1 K=2, class 2

K=3, class 1 K=3, class 2 K=3, class 3

Fig. 6: Contours of the first four CPOD basis functions in each class for
K = 1, 2 and 3

From the clustering results of modified t-gCVT, the labels of these 300
training samples are known. The errors of CPOD-based SROM that directly
use the training data and their known labels are given in the Table 2, and
the statistics of L2(D)-norm error between finite element solution and CPOD
reduced-order solution are shown in Figure 7. Clearly, when the class labels of
samples are known, the CPOD-based SROM is more accurate and more stable
than the standard POD-based SROM. This illustrates that it is feasible to use
CPOD basis functions to improve the accuracy of the reduced-order model.
Figure 8 gives the simulation results of two samples in the training set, which
more intuitively shows the performance of the CPOD basis functions.

Table 2: Error estimates of CPOD-based SROM by using 300 labelled training
data Û

K ẼK ẼrK ṼK ṼrK
1 0.6736 3.0114% 0.6788 0.1325%

2 0.6229 2.7493% 0.1879 0.0361%

3 0.5516 2.4526% 0.1280 0.0261%
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Fig. 7: Error estimates of CPOD-based SROM with different K
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Fig. 8: Two realizations of the strength A(t) in stochastic inlet velocity uin

(left), and their corresponding finite element solutions u = (u1, u2)> at time
T (middle), and the errors of CPOD approximate solutions (right)

6.1.2 Simulation results of CPOD-NB based SROM

Use 300 inputs {ξi}300
i=1 associated with data set Û and the clustering results of

modified t-gCVT method to train a naive Bayes pre-classifier. Here, we directly
use the naive Bayes classification toolbox of MATLAB. For these 100 test data,
use the pre-classifier to get their predicted labels, and use formula (3.26) to
get their true labels. The resulting confusion matrices are shown in Figure 9.
It can be observed that when K = 2, all 53 samples with the true label of 1
are predicted correctly, while 20 of the 47 samples with the true label of 2 are
predicted incorrectly. In other words, the predicted labels of 80% of the test
data are consistent with their true labels. Similarly, 70% of the test samples
are correctly predicted for K = 3. As defined in (4.14), the error rates of the
naive Bayes pre-classifier are 9.22% when K = 2 and 20.10% when K = 3.
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Fig. 9: Confusion matrices of test data set with 100 samples for K = 2 and 3

Table 3 lists the errors of the CPOD-NB based SROM estimated with the
test data. The results on the left are associated with the true labels, while the
results on the right are associated with predicted labels. Obviously, whether
the true labels or the predicted labels are used, the accuracy of CPOD-NB
based SROM is gradually improving with the increase of K, even though the
misjudgment samples have an impact on the accuracy of our SROM. Figure 10
shows the errors of 4 samples in the test data. It can be seen that the reduced-
order solutions calculated by our true best-matched CPOD basis functions
have better accuracy than the standard POD reduced-order solution, but the
errors may be larger than that of the standard POD method in the case of
misjudgment.

Table 3: Error estimates of the CPOD-NB based SROM by using 100 test
samples under the true labels (left) and predicted labels (right)

True labels Predicted labels

K ẼK Ẽr
K ṼK Ṽr

K ẼK Ẽr
K ṼK Ṽr

K

1 0.6256 2.8137% 0.4200 0.0871% 0.6256 2.8137% 0.4200 0.0871%
2 0.5062 2.2723% 0.0738 0.0160% 0.5477 2.4340% 0.0925 0.0191%
3 0.4576 2.0594% 0.0611 0.0133% 0.5038 2.2353% 0.0754 0.0156%
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Fig. 10: The errors of the CPOD-NB approximate solutions of four samples
in the test data
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6.2 Hat-type strength with white noise

In this numerical experiment, the strength A takes the following form

A(t; ω) = σ
dW

dt
+ 60

{
1 + at t ∈ [0, 1],
1 + a(2− t) t ∈ [1, 2],

(6.6)

where the height parameter a ∈ {0.8, 0.9, 1.0, 1.1, 1.2}, and the amplification
factor of white noise σ = 1.5. The white noise dW

dt is approximated by the
piecewise constant

dWm

dt
=

1√
Dt

m−1∑
i=0

χi(t)ηi(ω), (6.7)

where the components of η(ω) = [η0(ω), . . . , ηm−1(ω)]> are i.i.d. random
variables and satisfy the standard normal distribution N (0, 1), and the
characteristic function χi(t) is defined by

χi(t) =

{
1 t ∈ [ti, ti+1),
0 otherwise.

(6.8)

Figure 11 shows the strengths A corresponding to different coefficients a when
not affected by white noise.
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Fig. 11: Strengths A corresponding to different coefficients a (σ = 0)

Here, we take a = 0.8, 0.9, 1.0, 1.1 and 1.2 to generate 80 samples of velocity
field respectively, and use these samples to form a data set Û for constructing
the CPOD basis functions and training the naive Bayes pre-classifier. In addi-
tion, use these coefficients a to generate 20 samples respectively to form a test
set for estimating the error of CPOD-NB based SROM.

6.2.1 Generating CPOD basis functions

Figure 12 shows the clustering results of these 400 training data by using the
modified t-gCVT method. The dimensions and cumulative energy ratios used
in this experiment are listed in Table 4. Although the energy ratios of the
second class with K = 2 and the second and third classes with K = 3 are
all slightly smaller than that with K = 1, the energy ratios of the first class
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with K = 2 and K = 3 are much larger than that of the standard POD basis
functions. Figure 13 shows the contours of the first four CPOD basis functions
in each class for different K.
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Fig. 12: Population nk (left), energy Ẽt-gCVT (middle) of data Û , and the
logarithm of eigenvalues (right) corresponding to the first 30 CPOD basis
functions in each class for K = 1, 2 and 3

Table 4: The dimension dk and cumulative energy ratio νk of CPOD basis
functions in each class for K = 1, 2 and 3

K = 1 K = 2 K = 3

class - 1 2 1 2 3
dk 11 11 11 11 11 11
νk 0.9714 0.9761 0.9698 0.9793 0.9710 0.9709

Table 5 gives the estimated error of the CPOD-based SROM by using
400 labelled training data. Obviously, from the perspective of expectation,
the accuracy of our SROM increases with the increase of K. The variance of
absolute error is also increasing, but only slightly in terms of the relative error.
Figure 14 shows two samples in the training data and their errors of CPOD
approximate solutions.

Table 5: Error estimates of CPOD-based SROM by using 400 labelled training
data Û

K ẼK ẼrK ṼK ṼrK
1 0.6242 1.9596% 0.0454 0.0406%

2 0.5915 1.8572% 0.0515 0.0499%

3 0.5456 1.7731% 0.0519 0.0515%
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K=1, class 1 K=2, class 1 K=2, class 2

K=3, class 1 K=3, class 2 K=3, class 3

Fig. 13: Contours of the first four CPOD basis functions in each class for
K = 1, 2 and 3
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ũ
K
‖2 L

2
(D

)

t

0 0.5 1 1.5 2
0

0.4

0.8

1.2
K=1

K=2

K=3

t
0 0.5 1 1.5 2

A
(t

)

0

30

60

90

120

150

180

‖u
−

ũ
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Fig. 14: Two realizations of the strength A(t) in stochastic inlet velocity uin

(left), and their corresponding finite element solutions u = (u1, u2)> at time
T (middle), and the errors of CPOD approximate solutions (right)

6.2.2 Simulation results of CPOD-NB based SROM

For these 100 test data, the confusion matrices are shown in Figure 15. The
corresponding error rates of naive Bayes pre-classifier are 15.80% when K = 2
and 31.99% when K = 3. Although the error rate of the pre-classifier is higher
for the high-dimensional data affected by white noise, our SROM can still
maintain its advantages within the acceptable range. The errors of the CPOD-
NB based SROM estimated by using the test data are given in Table 6. It is
clearly that under the influence of misjudgment samples, our SROM still has
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a significant improvement compared to the standard POD method. The errors
of four samples in test set are shown in Figure 16.
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Fig. 15: Confusion matrices of test data set with 100 samples for K = 2 and 3

Table 6: Error estimates of the CPOD-NB based SROM by using 100 test
samples under the true labels (left) and predicted labels (right)

True labels Predicted labels

K ẼK Ẽr
K ṼK Ṽr

K ẼK Ẽr
K ṼK Ṽr

K

1 0.6319 1.9262% 0.0478 0.0125% 0.6319 1.9262% 0.0478 0.0125%
2 0.5888 1.7472% 0.0510 0.0080% 0.6115 1.8178% 0.0555 0.0081%
3 0.5464 1.6587% 0.0502 0.0086% 0.5722 1.7240% 0.0594 0.0090%
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Fig. 16: The errors of the CPOD-NB approximate solutions of four samples
in the test data

Compared with the results in section 6.1, it can be seen from Tables 5 and
6 that the improvement of our SROM in this experiment is relatively limited,
mainly includes the following two reasons. First of all, although affected by
the white noise, the strength A still shows a hat-shaped trend as a whole, so
the similarity between the realizations of the velocity field is higher, thereby
the resulting CPOD basis functions are less different from the standard POD
basis functions. Secondly, the stronger randomness of input ξ leads to worse
classification results, which increases the influence of misjudgment.
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7 Conclusion

We develop a method for model reduction by combining clustering and classifi-
cation. According to the mapping relationship between input and output of the
system, we use the modified t-gCVT method to cluster the output samples and
generate several sets of CPOD basis functions, then use the clustering results
to learn the classification mechanism of input. For a given input, compared to
the standard POD bases, the best-matched CPOD basis functions can reduce
the model better. However, as the number of clusters increases, not only the
computational complexity increase due to a large number of distance calcula-
tions, but also the error rate of the pre-classifier increases, which will affect
the accuracy of our SROM. Therefore, it is necessary to study the appropri-
ate number of clusters. In order to improve the stability of our algorithm, the
classification of high-dimensional data is also a subject worth studying in the
future, such as combining the state-of-the-art deep learning techniques. This
paper is mainly to provide a prototype of reduced-order modelling by using
statistical analysis methods, and this idea can be applied to more complex
problems, such as uncertainty quantification, optimal control, etc.
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