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Abstract. Although the nuclear fusion process has received a great deal of

attention in recent years, the amount of mathematical analysis that supports
the stability of the system seems to be relatively insufficient. This paper deals

with the mathematical analysis of the magnetic confinement of the plasma via

kinetic equations. We prove the global wellposedness of the Vlasov-Maxwell
system in a two-dimensional annulus when a huge (but finite-in-time) exter-

nal magnetic potential is imposed near the boundary. We assume that the

solution is axisymmetric. The authors hope that this work is a step towards
a more generalized work on the three-dimensional Tokamak structure. The

highlight of this work is the physical assumptions on the external magnetic
potential well which remains finite within a finite time interval and from that,

we prove that the plasma never touches the boundary. In addition, we pro-

vide a sufficient condition on the magnitude of the external magnetic potential
to guarantee that the plasma is confined in an annulus of the desired thick-

ness which is slightly larger than the initial support. Our method uses the

cylindrical coordinate forms of the Vlasov-Maxwell system.
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1. Introduction

1.1. Motivation. This paper studies the effect of a large external magnetic field on
the initial and boundary value problem for the two-dimensional relativistic Vlasov-
Maxwell system for initial data of unrestricted size.

The magnetic confinement of a collisionless plasma has received a great deal
of attention in both mathematical and numerical perspectives, as it is the main
principle of the nuclear fusion process and there is no doubt that nuclear fusion is
one possible future production of electrical energy [42]. The dynamics of a plasma
have been interpreted numerically and analytically via the magnetohydrodynamic
(MHD) fluid equation and the kinetic Vlasov-Maxwell system, though the compu-
tational challenges for the simulations of the tokamak process have been studied
in [13]. This paper deals with the kinetic approach to the magnetic confinement of
the plasma via a theoretical study of the relativistic Vlasov-Maxwell system.

Indeed, the Vlasov equation without the presence of an external magnetic field
has been extensively studied. Here we introduce a small number of results from
the literature on the Vlasov-Maxwell system by Degond [9], DiPerna-Lions [11],
Glassey-Strauss [20, 27], Glassey-Schaeffer [19, 21, 22, 24, 25] , Horst [35], Guo [30–
33], Rein [46], Bouchut-Golse-Pallard [2], Klainerman-Staffilani [5], and Strain [47].
Recent results include the work on the Strichartz estimates [39] and continuation
criteria [27, 37, 38, 43]. Regarding the rigorous derivation of the Vlasov equations,
see the work of Dobrushin [12].

Regarding the situation where one applies a large external magnetic field to the
system, the general theory of confining devices such as tokamaks and stellarators
were studied in [18,50]. Regarding the magnetic confinement for the Vlasov-Poisson
system, we mention the work of [3–6, 34] and the numerical results of [10, 15–
17]. Regarding the magnetic confinement problem for the Vlasov-Maxwell system
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in the presence of the effect of the self-consistent magnetic field, we mention the
analytic proof by Nguyen-Nguyen-Strauss in a two-dimensional infinite strip with
a symmetry in x2-direction [40, 41]. Also, we introduce that Filbet and Rodrigues
in [14] generalized the work of [10] in the large magnetic field limit.

To the best of authors’ knowledge, there has been no result on the magnetic
confinement of the full Vlasov-Maxwell system by a finite external magnetic poten-
tial, with which the plasma never collides with the boundary. The authors believe
that, even though one can show that the plasma will eventually converge to some
confined steady states in time, the confinement will not be ideal if the plasma can
collide with the boundary during some initial time-interval. This is because just a
tiny amount of hot particles will destroy the nuclear fusion reactor in reality.

This paper is devoted to introducing an analytic proof for the magnetic confine-
ment for the two-dimensional Vlasov-Maxwell system in an annulus by a large but
finite-in-time external magnetic potential, which is the first step to the full three
dimensional analysis in a toroidal geometry for the actual tokamaks or stellarators.
We prove that the finite potential is large enough to confine the plasma for all time
in r0, T s such that the plasma never touches the boundary. In addition, we provide
a sufficient condition on the magnitude of the external magnetic potential to guar-
antee that the plasma is confined to an annulus of the desired thickness which is
slightly larger than the initial support.

One of the difficulties that arises in the implementation of the magnetic con-
finement by imposing a finite external magnetic potential is the fact that the self-
consistent electromagnetic fields are also growing in time and that these fields in-
deed affect the behavior of the particle trajectory. In order to implement it, one
first needs to estimate the precise upper-bounds of the growth of the self-consistent
fields that are coupled to the Vlasov equation. In the geometry of an annulus,
another difficulty arises because the fields can be accelerating each other via the
Maxwell equations even under the symmetry in the angular direction. This can
be shown via estimating the fields as solutions to some wave-type equations by the
method of characteristics and via obtaining an energy identity that is related to the
Poynting theorem in cylindrical coordinates. Once we obtain the upper-bounds for
the growth of the self-consistent fields, then we solve the characteristic ODEs for
the displacement and the velocity of a particle trajectory to obtain the displace-
ment in terms of the velocity and the forcing effects from the fields. By writing the
forcing effects in terms of the potentials, we can derive the maximum displacement
for the trajectory in terms of the upper-bounds of the self-consistent fields and the
external magnetic potential. Then, we can carefully determine an assumption on
the magnitude of the external magnetic potential that we impose in the interior
so that it overcomes the repulsive effects of the growing self-consistent fields and
dominates the behavior of the particle trajectory so that the huge but finite-in-
time external magnetic potential guides the particle trajectory to the center of the
potential well. It was crucial to determine the magnitude of the external magnetic
potential so that it is large enough to control the particle trajectory but at the
same time it is not infinite. Once we obtain the bounds for the quantities that are
related to the particle trajectory, then we proceed and obtain the desired estimates
for the particle distribution and the coupled fields which we use to prove the global
wellposedness.
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1.2. The relativistic Vlasov-Maxwell system. The two-dimensional relativis-

tic Vlasov equation under forcing fields ~E “ pE1, E2q and B̄ reads as

Btf ` p̂ ¨∇xf ` pE1 ` p̂2B̄, E2 ´ p̂1B̄q ¨∇pf “ 0, (1.1)

where f “ fpt, x, pq is a non-negative distribution function of a single species of
charged particles at a certain time t P r0, T s for T ą 0, at a particular location
x P Ω Ă R2, with the momentum p P R2. For mathematical simplicity, we have
already normalized all physical constants including the rest mass, the charge, and
the speed of light to be 1 without loss of generality. Here, the velocity p̂ is defined

as p̂
def
“

p
p0 , where p0 def

“
a

1` |p|2. Throughout the paper we assume that the

spatial/physical domain Ω is a two-dimensional annulus, which can be described as

Ω
def
“ tx P R2 : r1 ă |x| ă r2u,

for some given constants r1 and r2 satisfying 0 ă r1 ă r2. The magnetic field B̄ in
(1.1) consists of two components Bpt, xq and Bextpt, xq,

B̄ “ Bpt, xq `Bextpt, xq,

where Bext is an external magnetic field that will be chosen to be increasing in time
and as x gets closer to the boundary. The self-consistent electric field pE1, E2q and
magnetic field B satisfy the following Maxwell equations:

Bx1
E1 ` Bx2

E2 “ ρ,

BtE1 “ Bx2
B ´ j1,

BtE2 “ ´Bx1
B ´ j2,

BtB “ Bx2
E1 ´ Bx1

E2,

(1.2)

where the macroscopic charge density ρ is defined as ρ
def
“
´
R2 fdp, and the i-th

component of the current density is ji
def
“
´
R2 p̂ifdp for i “ 1, 2.

We are interested in considering the Vlasov-Maxwell system in the cylindrical-
coordinates as our physical domain is a two-dimensional annulus. Therefore, we
consider the change of coordinates px, pq P Ωˆ R2 ÞÑ pr, θ, pr, pθq where

r
def
“

b

x2
1 ` x

2
2, θ

def
“ arctan

ˆ

x2

x1

˙

,

pr
def
“
p1x1 ` p2x2
a

x2
1 ` x

2
2

, and pθ
def
“
p2x1 ´ p1x2
a

x2
1 ` x

2
2

.

Note that the Jacobian determinant for the changes of variables x ÞÑ pr, θq and

p ÞÑ ppr, pθq are r´1 and 1, respectively. Note that |x| “ r and |p| “
a

p2
r ` p

2
θ.

Then we obtain that the Vlasov equation (1.1) is now equal to

Btf ` p̂rBrf ` p̂θ
1

r
Bθf

`

ˆ

Er ` p̂θB̄ `
p0p̂2

θ

r

˙

Bprf `

ˆ

Eθ ´ p̂rB̄ ´
p0p̂rp̂θ
r

˙

Bpθf “ 0, (1.3)

where p0 “
a

1` p2
r ` p

2
θ, p̂r

def
“

pr
p0 , p̂θ

def
“

pθ
p0 , and E1ê1 ` E2ê2 “ Er r̂ ` Eθ θ̂ with

ê1
def
“ p1, 0q, ê2

def
“ p0, 1q, r̂

def
“ pcos θ, sin θq, and θ̂

def
“ p´ sin θ, cos θq such that

E1 “ Er cos θ ´ Eθ sin θ and E2 “ Er sin θ ` Eθ cos θ. (1.4)
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This change of coordinates is standard in the nonrelativistic case, see [48, 49] for
instance. Note that the non-relativistic Vlasov equation in the cylindrical coordi-

nates includes the additional acceleration terms
p2θ
r (the centrifugal force) and prpθ

r

(the Coriolis force). For the relativistic case, we have one more contribution of p0

in the denominators of these additional terms, and we obtain the forces
p0p̂2θ
r and

p0p̂r p̂θ
r as in (1.3). Under the same change of variables, Maxwell’s equations (1.2)

now become

1

r
BrprErq `

1

r
BθEθ “ ρ,

BtEr “
1

r
BθB ´ jr,

BtEθ “ ´BrB ´ jθ,

BtB “
1

r
BθEr ´

1

r
BrprEθq,

(1.5)

where jr and jθ are the macroscopic current densities defined as jr
def
“
´
R2 p̂rfdprdpθ

and jθ
def
“
´
R2 p̂θfdprdpθ, such that

~j
def
“ pj1, j2q “ jr r̂ ` jθ θ̂.

In addition, we further assume that all of the f , Er, Eθ, and B are rotationally
symmetric around the center of the annulus, namely

f “ fpt, r, pr, pθq and pEr, Eθ, Bq “ pEr, Eθ, Bqpt, rq. (1.6)

We note that this symmetry is propagated by the Vlasov-Maxwell system [26].

1.3. Initial and boundary conditions. We assume that pf,Er, Eθ, Bq has the
following initial data of unrestricted size:

fp0, r, pr, pθq “ f0pr, pr, pθq ě 0,

Eθp0, rq “ E0
θ prq,

Bp0, rq “ B0prq,

Erp0, r1q “ λ P R,

(1.7)

where E0
θ and B0 are given C1 functions. Indeed, all the initial values of Erp0, rq

for all r P rr1, r2s can be uniquely determined by directly integrating Gauss’s law
(1.5)1 and using the given initial conditions (1.7)1, (1.7)2, and (1.7)4. For the
initial distribution f0 of particles, we assume that f0 P C1ppr1, r2q ˆR2q and f0 is
compactly supported in the r and p variables in the following sense:

supppf0q Ď
 

px, pq P Ωˆ R2 : r P I0 and |p| ďM0

(

, (1.8)

where

I0
def
“ rr1 ` δ0, r2 ´ δ0s, for some constant δ0 P

ˆ

0,
r2 ´ r1

2

˙

,

and M0 is the maximal radius of the initial momentum support as

M0
def
“ supt|p| : p P R2 and f0px, pq ‰ 0 for some x P R2u ă 8. (1.9)
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In addition, we also assume the boundary conditions for the self-consistent fields
that

Eθpt, r1q “ Ebθpt, r1q,

Eθpt, r2q “ Ebθpt, r2q,
(1.10)

holds where Ebθ is given axisymmetric C1 function defined on the boundary BΩ.
Then we claim that the boundary conditions (1.10) uniquely determine the bound-
ary values Bb of Bpt, rq at r “ r1 and r “ r2 and the boundary values do not blow
up in a finite time. This will be shown in Lemma 2.5 and Remark 2.6.

Remark 1.1. We remark that if we further assume the boundary conditions for
both Ebθ and Bb at both boundaries r “ r1 and r “ r2, then the system is over-
determined. One must assume only one condition on either Ebθ or Bb for each
r “ r1 and r “ r2. Our boundary condition (1.10) is one of the possible boundary
conditions, and this condition makes the calculations below the simplest due to the
presence of additional B on the right-hand side of (2.4). In general, we find that
mixed-type boundary conditions are also fine, but we believe one should consider
estimating the quantity }Eθptq}L8 ` }Bptq}L8 at (2.24) in Proposition 2.7 in this
case. We also note that the only mixed-type boundary condition that we do not

allow is the boundary conditions for P`
def
“ rpEθ ` Bq for r “ r2 as in (2.5) or

P´
def
“ rpEθ ´ Bq for r “ r1 as in (2.6). In these cases, the system is again over-

determined and needs a compatibility condition between the initial conditions and
the boundary conditions due to the characteristic trajectory (2.4).

1.4. A finite external magnetic potential on the boundary. In this section,
we introduce the external magnetic potential that we impose on the system, whose
role is crucial for the magnetic confinement of the plasma.

Before we introduce the finite time-dependent external magnetic potential ψext,
we first introduce an infinite potential ψbase which works as a prototype for the
finite potential in the construction. The finite time-dependent external magnetic
potential ψext will be constructed via the truncation of a time-independent infinite
external potential ψbase, and this will be introduced in Section 3. The key idea
behind the construction of a time-dependent finite external potential is to establish
a time-dependent moving bar Lbarptq as in Hypothesis 1.6. The moving bar is
growing in time and the role of it is to provide the minimal growth rate of the
external potential. As long as it is larger than the maximal kinetic energy that
each particle can have near the boundary, the particles are well-confined and the
external potential can be finite near the boundary. This will be introduced more
in detail in Section 3.2. We remark that the sufficient conditions that we require
on the time-independent infinite potential ψbase are as follows:

Hypothesis 1.2. We suppose that the time-independent magnetic potential ψbase “
ψbaseprq satisfies the following assumptions; for a given distance δ P p0, δ0q from the
spatial boundary BΩ, we assume

(1) ψbase P C
2ppr1 ` δ, r2 ´ δqq.

(2) ψbase satisfies

lim
rÑpr1`δq`

|ψbaseprq| “ lim
rÑpr2´δq´

|ψbaseprq| “ 8.

In the intervals rr1, r`` δq and pr2´ δ, r2s, ψbase can take any arbitrary value. We
recall that the constant satisfies δ0 P

`

0, r2´r12

˘

.
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Remark 1.3. Setting |ψbase| “ 8 in these two sub-intervals rr1, r`` δq and pr2´

δ, r2s is consistent with the definition in (1.15) and Remark 1.14, but it is not
required. One may have a small complaint on which |ψbase| “ 8 in some open
intervals is non-physical because this creates an infinitely strong external magnetic
force. However, this accusation is also a fantasy, because the real/actual/physical
external magnetic field (that we use) is always the ψext defined in (1.13) instead of
the ψbase, which is just a “reference” potential.

Remark 1.4. Hypothesis 1.2 implies that, for any L ą 0, the set

SL
def
“ tx P Ω; |ψbasepxq| ď Lu (1.11)

is a compact, and hence it is a proper subset of the open set Ω
def
“ tx P R2 : r1 ă

|x| ă r2u. This will be sufficient to guarantee a positive distance away from the
spatial boundary BΩ.

Remark 1.5. One of the explicit examples of ψbase is

ψbaseprq
def
“ csc

ˆ

π

r2 ´ r1
pr ´ r1q

˙

´ 1. (1.12)

Then we can construct a finite time-dependent external magnetic potential ψext
def
“

ψextpt, rq as follows:

Hypothesis 1.6 (Hypothesis on the external magnetic potential). Let us denote

the median radius as rm
def
“ r1`r2

2 . Then we define the external magnetic potential
ψext “ ψextpt, rq, using the prototype potential ψbase in Hypothesis 1.2, as

ψextpt, rq
def
“

$

’

&

’

%

ψbaseprq, if ψbaseprq ď Lbarptq

Lbarptq ` 1, if ψbaseprq ě Lbarptq ` 1,

smooth, if Lbarptq ď ψbaseprq ď Lbarptq ` 1,

(1.13)

where the moving bar Lbarptq is defined as

Lbarptq
def
“ max

xPUδ0 ptq
|ψbasepxq|, (1.14)

where Uδ0ptq is defined as

Uδ0ptq
def
“

"

x P Ω; |ψbasepxq| ď
r2

r1

ˆ

max
rPrr1`δ0,r2´δ0s

|ψbaseprq|

˙

`
K

r1
eCt

*

. (1.15)

Here, the initial parameter δ0 is the same constant as the one used in the definition
of I0 at (1.8), C is defined as (2.26), and K is defined as (1.16).

Remark 1.7. We remark that

sup
rPrr1,r1`δ0sYrr2´δ0,r2s

|ψextpt, rq| Ñ 8 as tÑ8.

However, |ψextpt, rq| is finite within any open interval r P U Ă pr1 ` δ0, r2 ´ δ0q for
all time t ě 0. Moreover, it remains finite within any finite time interval r0, T s for
any T ą 0.

Remark 1.8. For the general form of the external magnetic potential defined in
Hypothesis 1.2, we can easily observe that

Lbarptq “ max
xPUδ0 ptq

|ψbasepxq| ď
r2

r1
max

rPrr1`δ0,r2´δ0s
|ψbaseprq| `

K

r1
eCt,
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by the definition of the set Uδ0ptq in (1.15). Here

K
def
“

C̃

2
pr2 ` rmqpr2 ´ r1q ` p2r2 ´ r1q

˜

2C̃

C
`M0

¸

` r2M0 `
C̃rm
C

, (1.16)

where δ0 is the same constant as the one used in the definition of I0 at (1.8). The
constant K has been determined such that (3.9) holds in the arguments of using the
characteristic ODEs for the particle trajectories in the proof of Lemma 3.1. Here,
M0 is the maximal radius of the initial-momentum-support defined in (1.9), C ą 0

and C̃ are defined in (2.25) and (2.26) and depend only on r1, r2, }B
0}L8prr1,r2sq,

}E0
θ }L8prr1,r2sq, }E

b
θ}L8pr0,tsˆBrr1,r2sq, }p

0f0}L1prr1,r2sˆR2q, and λ.

Remark 1.9. For the external potential ψbase which is explicitly defined in (1.12),
we define Lbarptq as

Lbarptq
def
“ ψbase

ˆ

r1 `

ˆ

r2 ´ r1

π

˙

arcsinpCtq

˙

“ Ct ´ 1,

where Ct is defined as

Ct
def
“ 1`

r2

r1

ˇ

ˇ

ˇ

ˇ

csc

ˆ

π

r2 ´ r1
pr2 ´ r1 ´ δ0q

˙

´ 1

ˇ

ˇ

ˇ

ˇ

`
K

r1
eCt,

and K is from (1.16).

We point out that Remark 1.9 is consistent with the definition (1.14). Note that
the absolute value of the explicit magnetic potential (1.12) gets larger if it is closer
to the boundary. So the maximum occurs at r “ r2 ´ δ0 and we obtain Remark
1.9.

Remark 1.10. We would like to provide more details on the size of the finite-in-
time external magnetic potential ψext with respect to the time variable t. Indeed,
we will compute the minimal growth rate of the external potential ψext with respect
to time that we need for the magnetic confinement in (3.10), where the right-hand
side of (3.10) determines the size of the moving bar Lbarptq as in (1.14) and (1.15).

There are several crucial reasons why we can use a finite external magnetic
potential ψext to confine the plasmas. The main observation is that the a priori
estimates for the self-consistent electro-magnetic fields Er, Eθ and B in Proposition
2.1 and Proposition 2.7 are independent of the external magnetic field Bext (or
equivalently, the potential ψext). As a result, our choice of the finite barrier (i.e.,
ψext) will not affect the velocity control (3.6) in Lemma 3.3, which is a direct
consequence of the estimates on Er, Eθ and B indeed. The crucial estimate (3.10)
follows directly from the velocity bound (3.6), and hence it is also independent of
the choice of ψext. In other words, having such an L8 velocity control (3.6) that
is independent of the external magnetic potential ψext is the crucial reason why
we are able to confine the plasma by using a finite magnetic potential. Thus, it
is crucial to note that such a circular reasoning or a catch-22 situation where a
stronger ψext may also speed up the particles and hence a even stronger ψext would
be needed to confine the plasma does not appear in the analysis.

The observation in the physical side is also interesting. Physically, the external
magnetic field and its potential only affect the plasma uniformly, but will not affect
the self-interactions among particles. As a result, the external magnetic field can
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be used to move the particles as in the process of confinement, but it cannot affect
the self-consistent electric and magnetic fields in general.

In Section 3, we will prove that both ψbase and ψext can be used as an external
magnetic potential of the system so that all the charged particles can be confined
globally in time. This will prove Theorem 1.13.

Remark 1.11. It turned out that the Vlasov-Maxwell equations in cylindrical co-
ordinates contains additional forcing terms in the equation which are purely formed
by the coordinate changes; indeed, those additional terms are related to centrifugal
and Coriolis forces, which only appear in the rotating frame. However, these addi-
tional terms create extra singularities when we implement the previously existing
argument. Due to the extra inhomogeneity from the magnetic field that appears
on the right hand side of (2.2) below, the fields and their derivatives have higher
growth and we needed to control the additional growth via considering a sufficiently
large but finite-in-time external magnetic potential well.

1.5. Main results. We now state our main theorems. The first theorem that
we state is on the global well-posedness on the Cauchy problem to the relativistic
Vlasov-Maxwell system in an annulus:

Theorem 1.12 (Global well-posedness of the Cauchy problem). Suppose that Hy-
pothesis 1.6 and the rotational symmetry (1.6) hold. Define the external magnetic
field Bext “ Bextpt, rq as

Bextpt, rq
def
“

1

r

Bprψextpt, rqq

Br
. (1.17)

For some constants δ0 P p0,
r2´r1

2 q and M0 ą 0, we assume that f0 P C1ppr1, r2q ˆ

R2q and f0 is compactly supported in the r and p variables in the sense of (1.8)
and (1.9). Suppose that E0

θ and B0 are C1ppr1, r2qq functions. Then there ex-
ists a unique non-negative C1pr0,8q ˆ pr1, r2q ˆ R2q solution f to the relativistic
Vlasov-Maxwell system (1.3) and (1.5) subject to the initial condition (1.7) and the
boundary condition (1.10).

Additionally, we introduce our main theorem on the confinement of the plasma
by a finite external magnetic field at the boundary:

Theorem 1.13 (Global confinement of the plasma). Let rm
def
“ r1`r2

2 . Suppose
that the support condition (1.8) and (1.9) for the initial condition holds for some
constants δ0 P p0,

r2´r1
2 q and M0 ą 0. Suppose that Hypothesis 1.6 and the rota-

tional symmetry (1.6) hold for a given δ P p0, δ0q. Define the external magnetic field
Bext “ Bextpt, rq as in (1.17). Then the unique C1 solution fpt, r, pr, pθq obtained
in Theorem 1.12 satisfies

distpsuppxpfqptq, BΩq ą δ ą 0,

for any t P r0,8q, where suppxpfqptq is defined as

suppxpfqptq
def
“ tx P Ω | fpt, r, pr, pθq ‰ 0, for some ppr, pθq P R2, where r

def
“ |x|u.

Remark 1.14. We remark that, by choosing ψbase and ψext appropriately as in
Hypotheses 1.2 and 1.6, we are indeed able to confine the plasma in a given compact
set

tx P Ω | r1 ` δ ď |x| ď r2 ´ δu,
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for any given time t P r0,8q as we have

distpUδ0ptq, BΩq ą δ ą 0,

by Hypothesis 1.2 where Uδ0ptq is defined as in (1.15). This set contains the initial
spatial support.

Remark 1.15. In this paper, we implement the magnetic confinement in a compact
set using the full relativistic Vlasov-Maxwell system. We use a finite external
potential to confine the plasma and can control the size of the spatial support of
the plasma as we desire as long as it includes the initial spatial support.

There are many results on the Vlasov-Poisson system with given external mag-
netic field (both stationary and nonstationary, up to the full 3-dimensional) such
as [1, 3–6, 10, 15, 16, 34]. However, there are very few results regarding magnetic
confinement for the relativistic Vlasov-Maxwell system. Including ours, there are
only three results to the best of our knowledge. Others are [17, 40]. Though
the work [40, 41] considers the confinement in the 1.5-dimensional domain with
x1 P r0, 1s and v P R2, their confinement is indeed in a 2-dimensional infinite strip
with the symmetry in x2 variable which is not compact.

The implementation of the magnetic confinement in a compact domain is relevant
to heating in tokamaks [7, 28], magnetic mirror-confined plasma [8, 36, 44, 45], and
electron cyclotron resonance heating [29].

1.6. Organization of the paper. In order to prove our main theorems, we first
need to obtain a priori L8 estimates for the self-consistent fields and the particle
distribution to the system. We first obtain the estimates for the fields in Sec-
tion 2 via applying the method of characteristics to the wave equations. Then,
based on the field-estimates, we start proving our main theorem on the magnetic
confinement, Theorem 1.13, in Section 3. In order to prove the global existence
and the uniqueness of a classical solution in Section 6, we make several estimates
in Section 4 and Section 5 on the electro-magnetic fields and the distribution. In
Section 4, we also obtain the L8-moment propagation of the solution, and the L8

estimates for the macroscopic mass density and the current density. Since we are
interested in constructing C1 solutions to the system, we also need to obtain the
L8 estimates of the first-order derivatives of the fields and the distribution. This
is done in Section 5. Finally, we use the a priori estimates and the iteration argu-
ment to prove the existence, the uniqueness, and the non-negativity of a global C1

solution to the Vlasov-Maxwell system in Section 6.

2. A priori estimates for the self-consistent fields

In the forthcoming sections we will obtain some uniform a priori estimates for
pf,Er, Eθ, Bq. Consider C1 solutions pf,Er, Eθ, Bq to (1.3)-(1.10) on a finite time
interval r0, T s. We a priori let the particles be confined as in Theorem 1.13 through-
out this section.

2.1. Estimates of the field Er. We start with introducing the upper bound for
Er in this section. More precisely, we have the following proposition:

Proposition 2.1. We have

}Er}L8pr0,T sˆrr1,r2sq ď }f
0}L1prr1,r2sˆR2q ` λ.
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Proof. By integrating the continuity equation

Btρ`
1

r
Brprjrq “ 0 (2.1)

with respect to r drdt and using that jr “ 0 on the boundaries, we have the
conservation of total charge: for any t P r0, T s,ˆ r2

r1

ρpt, rqrdr “

ˆ r2

r1

ρp0, rqrdr “ }f0}L1prr1,r2sˆR2q.

On the other hand, it follows from Gauss’s law (1.5)1 that we also have

BrprErq “ rρ,

and hence, for any R P rr1, r2s,

RErpt, Rq ´ r1Erpt, r1q “

ˆ R

r1

rρpt, rqdr.

It follows from Ampère’s circuital law (1.5)2 that BtEr “ ´jr, so we further have

Erpt, r1q “ Erp0, r1q ´

ˆ t

0

jr|r“r1dτ “ λ´

ˆ t

0

jrpτ, r1qdτ “ λ,

since jr|r“r1 ” 0. Therefore, we finally obtain

Erpt, Rq “
1

R

ˆ R

r1

rρdr `
r1

R
λ,

for all r1 ď R ď r2. This implies that

}Er}L8pr0,T sˆrr1,r2sq ď }ρ
0}L1prr1,r2sq ` λ “ }f

0}L1prr1,r2sˆR2q ` λ.

This completes the proof. �

2.2. Estimates of the fields Eθ and B. In this section, we use the method of
characteristics to estimate the fields Eθ and B. First of all, we consider the third
and the fourth equations of (1.5). We multiply the third and the fourth equations
by r and obtain

BtprEθq ` BrprBq “ B ´ rjθ, (2.2)

and

BtprBq ` BrprEθq “ 0. (2.3)

Hence, it follows from direct addition and subtraction that

BtprEθ ˘ rBq ˘ BrprEθ ˘ rBq “ B ´ rjθ. (2.4)

Define P˘
def
“ rEθ ˘ rB and fix t P p0, T s and r P rr1, r2s. We will use the fact

that the solutions of the transport equations (2.4) at pt, rq are affected only by the
values inside the characteristic cone. Therefore, we have

P`pt, rq “ P`pt1pt, rq, r ´ t` t1pt, rqq `

ˆ t

t1pt,rq

pB ´ rjθqpτ, r ´ t` τqdτ, (2.5)

and

P´pt, rq “ P´pt2pt, rq, r ` t´ t2pt, rqq `

ˆ t

t2pt,rq

pB ´ rjθqpτ, r ` t´ τqdτ, (2.6)
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where we define t1 “ t1pt, rq
def
“ maxt0, t ´ r ` r1u and t2 “ t2pt, rq

def
“ maxt0, t ´

r2 ` ru. Then, it follows from direct addition and subtraction that

prEθqpt, rq “
1

2
pP`pt1pt, rq, r ´ t` t1pt, rqq ` P´pt2pt, rq, r ` t´ t2pt, rqqq

`
1

2

ˆ t

t1pt,rq

pB ´ rjθqpτ, r ´ t` τqdτ `
1

2

ˆ t

t2pt,rq

rpB ´ rjθqpτ, r ` t´ τqs dτ, (2.7)

and

prBqpt, rq “
1

2
pP`pt1pt, rq, r ´ t` t1pt, rqq ´ P´pt2pt, rq, r ` t´ t2pt, rqqq

`
1

2

ˆ t

t1pt,rq

pB ´ rjθqpτ, r ´ t` τqdτ ´
1

2

ˆ t

t2pt,rq

rpB ´ rjθqpτ, r ` t´ τqs dτ. (2.8)

Therefore, we need to estimate the upper-bounds of the following two integrals:ˆ t

t1pt,rq

prjθqpτ, r ´ t` τqdτ and

ˆ t

t2pt,rq

prjθqpτ, r ` t´ τqdτ. (2.9)

We are now ready to state our main lemma of this section. The following lemma
is on the upper-bounds of the sum of the two integrals of our interest from the
argument above. We will use this upper-bound estimate to bound our fields Eθ
and B later in this section.

Lemma 2.2. Let t P p0, T s. Suppose that

lim
|p|Ñ8

f “ 0.

Then if r ă r1`r2
2 , we have

ˆ t

t1pt,rq

pr|jθ|qpτ, r ´ t` τqdτ `

ˆ t

t2pt,rq

pr|jθ|qpτ, r ` t´ τqdτ

ď

ˆ r2

r1

r1ept2pt, rq, r
1qdr1 `

ˆ t1pt,rq

t2pt,rq

r1pE
b
θB

bqpτ, r1qdτ, (2.10)

where

ept, rq
def
“

1

2
p|Ept, rq|2 `B2pt, rqq `

ˆ
R2

p0fpt, r, pr, pθqdprdpθ.

On the other hand, if r ě r1`r2
2 , then we instead have

ˆ t

t1pt,rq

pr|jθ|qpτ, r ´ t` τqdτ `

ˆ t

t2pt,rq

pr|jθ|qpτ, r ` t´ τqdτ

ď

ˆ r2

r1

r1ept1pt, rq, r
1qdr1 `

ˆ t1pt,rq

t2pt,rq

r2pE
b
θB

bqpτ, r2qdτ. (2.11)

The proof for Lemma 2.2 heavily relies on the following identity. The identity
(2.12) that we will introduce in the following lemma is the energy identity and this
is related to Poynting’s theorem.

Lemma 2.3. Define

ept, rq
def
“

1

2
p|Ept, rq|2 `B2pt, rqq `

ˆ
R2

p0fpt, r, pr, pθqdprdpθ
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and

mpt, rq
def
“

ˆ
R2

prfpt, r, pr, pθqdprdpθ ` pEθBqpt, rq.

Suppose that

lim
|p|Ñ8

f “ 0.

Then we have

Bte`
1

r
Brprmq “ 0. (2.12)

Proof of Lemma 2.3. It follows from Maxwell’s equations (1.5) that

Bte “

ˆ
R2

p0pBtfqdprdpθ ´

ˆ
R2

pp̂r, p̂θq ¨ pEr, Eθqfdprdpθ ´ EθpBrBq ´
B

r
BrprEθq,

and

1

r
Brprmq “

1

r

ˆ
R2

prfdprdpθ `

ˆ
R2

prBrfdprdpθ `
B

r
BrprEθq ` EθpBrBq.

Therefore, we have

Bte`
1

r
Brprmq “

ˆ
R2

p0pBtfqdprdpθ `

ˆ
R2

prBrfdprdpθ

´

ˆ
R2

pp̂r, p̂θq ¨ pEr, Eθqfdprdpθ `
1

r

ˆ
R2

prfdprdpθ. (2.13)

By (1.3), we further have

p0pBtf ` p̂rBrfq “ ´p
0

ˆ

Er ` p̂θB̄ `
p0p̂2

θ

r
, Eθ ´ p̂rB̄ ´

p0p̂rp̂θ
r

˙

¨ pBprf, Bpθfq.

(2.14)
Note that

´

ˆ
R2

p0pEr, Eθq ¨ pBprf, Bpθfqdprdpθ

“

ˆ
R2

tBpr pp
0Erqf ` Bpθ pp

0Eθqfudprdpθ “

ˆ
R2

pp̂r, p̂θq ¨ pEr, Eθqfdprdpθ,

where we use the integral by parts and that p0f is vanishing at pr “ `8 for the
first identity. Plugging this and (2.14) into (2.13), we have

Bte`
1

r
Brprmq

“
1

r

ˆ
R2

prfdprdpθ ´

ˆ
R2

ˆ

ppθB̄ `
p2
θ

r
,´prB̄ ´

prpθ
r
q ¨ pBprf, Bpθfq

˙

dprdpθ.

Applying integration by parts to the last integral, we finally obtain (2.12). �

Now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. Recall that t1pt, rq
def
“ maxt0, t´r`r1u and t2pt, rq

def
“ maxt0, t´

r2 ` ru. We first consider the case that r1 ď r ă r1`r2
2 . In this case, note that

t1pt, rq ą t2pt, rq. For any fixed θ P r0, 2πq, we consider the two-dimensional space-

time region ∆
def
“ ∆1 Y∆2 as in Figure 1 where

∆1
def
“ tpτ, r1q : t1pt, rq ď τ ď t and |r1 ´ r| ď t´ τu
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and

∆2
def
“ tpτ, r1q : t2pt, rq ď τ ď t1pt, rq and r1 ď r1 ď r ` t´ τu.

Figure 1. The domain ∆

Integrating (2.12) over ∆ with respect to the measure rdrdt and then applying
Green’s theorem with the counterclockwise line integral, we obtain

0 “

ˆ
∆

rBr1pr
1mq ` Bτ pr

1eqsdr1dτ “

˛
B∆

`

´pr1eqdr1 ` pr1mqdτ
˘

“ ´

ˆ r2

r1

pr1eqpt2pt, rq, r
1qdr1 `

ˆ t

t2pt,rq

prm` reqpτ, r ` t´ τqdτ

`

ˆ t1pt,rq

t

prm´ reqpτ, r ´ t` τqdτ `

ˆ t2pt,rq

t1pt,rq

prmqpτ, r1qdτ,

where the first integral is the integration on the bottom line, the second and the
third ones are the integration at the top sides of the cone, and the last one is the
integral on the vertical boundary at r “ r1. Then a direct rearrangement yields

ˆ t

t2pt,rq

pre` rmqpτ, r ` t´ τqdτ `

ˆ t

t1pt,rq

pre´ rmqpτ, r ´ t` τqdτ

“

ˆ r2

r1

pr1eqpt2pt, rq, r
1qdr1 `

ˆ t1pt,rq

t2pt,rq

r1pE
bBbqpτ, r1qdτ, (2.15)

because mpτ, r1q “ pE
bBbqpτ, r1q by the boundary condition (1.10). It follows from

the definitions of e and m that

pre˘ rmqpt, rq “
r

2
r|E|2 `B2s ` r

ˆ
R2

p0fpt, r, pr, pθqdprdpθ ˘ prEθBqpt, rq

˘ r

ˆ
R2

pprfqpt, r, pr, pθqdprdpθ

“
r

2
r|Er|

2 ` pEθ ˘Bq
2s ` r

ˆ
R2

pp0 ˘ prqfpt, r, pr, pθqdprdpθ

ě r

ˆ
R2

|pθ|

p0
fpt, r, pr, pθqdprdpθ,
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where the last inequality holds as f is non-negative and p0 ˘ pr ě
|pθ|
p0 . Together

with (2.15), we finally obtain

ˆ t

t1pt,rq

pr|jθ|qpτ, r ´ t` τqdτ `

ˆ t

t2pt,rq

pr|jθ|qpτ, r ` t´ τqdτ

ď

ˆ r2

r1

r1ept2pt, rq, r
1qdr1 `

ˆ t1pt,rq

t2pt,rq

r1pE
b
θB

bqpτ, r1qdτ. (2.16)

On the other hand, if r1`r2
2 ď r ď r2, then t1pt, rq ď t2pt, rq. For any fixed

θ P r0, 2πq, we consider the two-dimensional space-time region ∆
def
“ ∆1Y∆2 where

∆1
def
“ tpτ, r1q : t2pt, rq ď τ ď t and |r1 ´ r| ď t´ τu

and
∆2

def
“ tpτ, r1q : t1pt, rq ď τ ď t2pt, rq and r ` t´ τ ď r1 ď r2u.

Therefore, the counterclockwise line integral for the Green theorem is the same
as the case r ď r1`r2

2 except that now the line integral ´
´ r2
r1
pr1eqpt1pτ, rq, r

1qdr is

along the line τ “ t1 and the line integral
´ t2pt,rq
t1pt,rq

prmqpτ, r1qdτ is now along the line

r1 “ r2, instead. Therefore we obtain
ˆ t

t1pt,rq

pr|jθ|qpτ, r ´ t` τqdτ `

ˆ t

t2pt,rq

pr|jθ|qpτ, r ` t´ τqdτ

ď

ˆ r2

r1

r1ept1pt, rq, r
1qdr1 `

ˆ t1pt,rq

t2pt,rq

r2pE
b
θB

bqpτ, r2qdτ. (2.17)

�

We are now interested in deriving an upper-bound estimate for the energyˆ r2

r1

r1epmintt1pt, rq, t2pt, rqu, r
1qdr1

that appeared in the proof of Lemma 2.2. Indeed, we have the following lemma on
the conservation of the energy.

Lemma 2.4. Define ept, rq as in Lemma 2.3. Then for any t P r0, T s,
ˆ r2

r1

r1ept, r1qdr1

“

ˆ r2

r1

r1ep0, r1qdr1 ´

ˆ t

0

“

pr2E
b
θB

bqpτ, r2q ´ pr1E
b
θB

bqpτ, r1q
‰

dτ.

Proof of Lemma 2.4. We observe that

Bt

ˆ r2

r1

r1ept, r1qdr1 “

ˆ r2

r1

Btpr
1eqpt, r1qdr1 “ ´

ˆ r2

r1

Br1pr
1mqpt, r1qdr1,

because of Identity (2.12). Then we further haveˆ r2

r1

Br1pr
1mqpt, r1qdr1 “ r2mpt, r2q ´ r1mpt, r1q.

Since f vanishes at the boundaries r “ r1, r2, the definition of m further implies
that

r2mpt, r2q ´ r1mpt, r1q “
“

pr2E
b
θB

bqpt, r2q ´ pr1E
b
θB

bqpt, r1q
‰

.
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Therefore, we obtain the lemma by integrating with respect to the time variable. �

Finally, in the following lemma, we obtain the following identity for the boundary
values P`pt, rq at r “ r1 and r “ r2. We can obtain almost the same lemma for
P´ and we omit it.

Lemma 2.5. Define M
def
“

Y

t
r2´r1

]

ě 0. For any t P r0, T s, we have, for even M ,

P`pt, r1q “ ´P´p0, t´Mpr2 ´ r1q ` r1q

´

ˆ t´Mpr2´r1q

0

pB ´ r1jθqpτ, r1 ` t´Mpr2 ´ r1q ´ τqdτ

` 2r1

M{2
ÿ

k“0

Ebθpt´ 2kpr2 ´ r1q, r1q

´ 2r21Mě2

M{2´1
ÿ

k“0

Ebθpt´ p2k ` 1qpr2 ´ r1q, r2q

` 1Mě2

M{2
ÿ

k“1

ˆ t´p2k´1qpr2´r1q

t´2kpr2´r1q

pB ´ r2jθqpτ, r2 ´ t` p2k ´ 1qpr2 ´ r1q ` τqdτ

´ 1Mě2

M{2´1
ÿ

k“0

ˆ t´2kpr2´r1q

t´p2k`1qpr2´r1q

pB ´ r1jθqpτ, r1 ` t´ 2kpr2 ´ r1q ´ τqdτ,

and for odd M ,

P`pt, r1q “ P`p0, r2 ´ t`Mpr2 ´ r1qq

`

ˆ t´Mpr2´r1q

0

pB ´ r2jθqpτ, r2 ´ t`Mpr2 ´ r1q ` τqdτ

` 2r1

M´1
2
ÿ

k“0

Ebθpt´ 2kpr2 ´ r1q, r1q

´ 2r2

M´1
2
ÿ

k“0

Ebθpt´ p2k ` 1qpr2 ´ r1q, r2q

` 1Mě3

M´1
2
ÿ

k“1

ˆ t´p2k´1qpr2´r1q

t´2kpr2´r1q

pB ´ r2jθqpτ, r2 ´ t` p2k ´ 1qpr2 ´ r1q ` τqdτ

´

M´1
2
ÿ

k“0

ˆ t´2kpr2´r1q

t´p2k`1qpr2´r1q

pB ´ r1jθqpτ, r1 ` t´ 2kpr2 ´ r1q ´ τqdτ.

Also, we will obtain similar representations for P`pt, r2q by using

P`pt, r2q “ P`pt´ pr2 ´ r1q, r1q `

ˆ t

t´pr2´r1q

pB ´ r2jθqpτ, r2 ´ t` τqdτ,

if t ě r2 ´ r1 and

P`pt, r2q “ P`p0, r2 ´ tq `

ˆ t

0

pB ´ r2jθqpτ, r2 ´ t` τqdτ,
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if 0 ď t ă r2 ´ r1.

Proof. We first observe that

P`pt, r1q “ ´P´pt, r1q ` 2r1E
b
θpt, r1q.

Then by (2.6) we have

P`pt, r1q “ ´P´pt´ pr2 ´ r1q, r2q

´

ˆ t

t´pr2´r1q

pB ´ r1jθqpτ, r1 ` t´ τqdτ ` 2r1E
b
θpt, r1q.

Then using

P´pt´ pr2 ´ r1q, r2q “ ´P`pt´ pr2 ´ r1q, r2q ` 2r2E
b
θpt´ pr2 ´ r1q, r2q

and using (2.5), we have

P`pt, r1q “ ´P´pt´ pr2 ´ r1q, r2q

´

ˆ t

t´pr2´r1q

pB ´ r1jθqpτ, r1 ` t´ τqdτ ` 2r1E
b
θpt, r1q

“ P`pt´ pr2 ´ r1q, r2q ´ 2r2E
b
θpt´ pr2 ´ r1q, r2q

´

ˆ t

t´pr2´r1q

pB ´ r1jθqpτ, r1 ` t´ τqdτ ` 2r1E
b
θpt, r1q,

and so

P`pt, r1q “ P`pt´2pr2´r1q, r1q`

ˆ t´pr2´r1q

t´2pr2´r1q

pB´r2jθqpτ, r2´t`pr2´r1q`τqdτ

´ 2r2E
b
θpt´ pr2 ´ r1q, r2q

´

ˆ t

t´pr2´r1q

pB ´ r1jθqpτ, r1 ` t´ τqdτ ` 2r1E
b
θpt, r1q

“ ´P´pt´ 2pr2 ´ r1q, r1q ` 2r1E
b
θpt´ 2pr2 ´ r1q, r1q

`

ˆ t´pr2´r1q

t´2pr2´r1q

pB ´ r2jθqpτ, r2 ´ t` pr2 ´ r1q ` τqdτ

´ 2r2E
b
θpt´ pr2 ´ r1q, r2q

´

ˆ t

t´pr2´r1q

pB ´ r1jθqpτ, r1 ` t´ τqdτ ` 2r1E
b
θpt, r1q.
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Repeating this procedure of reducing the time variable M´2 more times, we obtain
for even M

P`pt, r1q “ ´P´pt´Mpr2 ´ r1q, r1q ` 2r1

M{2
ÿ

k“0

Ebθpt´ 2kpr2 ´ r1q, r1q

´ 2r2

M{2´1
ÿ

k“0

Ebθpt´ p2k ` 1qpr2 ´ r1q, r2q

`

M{2
ÿ

k“1

ˆ t´p2k´1qpr2´r1q

t´2kpr2´r1q

pB ´ r2jθqpτ, r2 ´ t` p2k ´ 1qpr2 ´ r1q ` τqdτ

´

M{2´1
ÿ

k“0

ˆ t´2kpr2´r1q

t´p2k`1qpr2´r1q

pB ´ r1jθqpτ, r1 ` t´ 2kpr2 ´ r1q ´ τqdτ,

and for odd M

P`pt, r1q “ P`pt´Mpr2 ´ r1q, r2q ` 2r1

M´1
2
ÿ

k“0

Ebθpt´ 2kpr2 ´ r1q, r1q

´ 2r2

M´1
2
ÿ

k“0

Ebθpt´ p2k ` 1qpr2 ´ r1q, r2q

` 1Mě3

M´1
2
ÿ

k“1

ˆ t´p2k´1qpr2´r1q

t´2kpr2´r1q

pB ´ r2jθqpτ, r2 ´ t` p2k ´ 1qpr2 ´ r1q ` τqdτ

´

M´1
2
ÿ

k“0

ˆ t´2kpr2´r1q

t´p2k`1qpr2´r1q

pB ´ r1jθqpτ, r1 ` t´ 2kpr2 ´ r1q ´ τqdτ.

Finally, using (2.5) and (2.6) we can write P´pt´Mpr2´r1q, r1q and P`pt´Mpr2´

r1q, r2q in each case in terms of the initial data and the integrals as

P´pt´Mpr2 ´ r1q, r1q “ P´p0, t´Mpr2 ´ r1q ` r1q

`

ˆ t´Mpr2´r1q

0

pB ´ r1jθqpτ, r1 ` t´Mpr2 ´ r1q ´ τqdτ,

and

P`pt´Mpr2 ´ r1q, r2q “ P`p0, r2 ´ t`Mpr2 ´ r1qq

`

ˆ t´Mpr2´r1q

0

pB ´ r2jθqpτ, r2 ´ t`Mpr2 ´ r1q ` τqdτ.

Therefore, we obtain the lemma for P`pt, r1q. Also, note that by (2.5)

P`pt, r2q “ P`pt´ pr2 ´ r1q, r1q `

ˆ t

t´pr2´r1q

pB ´ r2jθqpτ, r2 ´ t` τqdτ,

if t ě r2 ´ r1 and

P`pt, r2q “ P`p0, r2 ´ tq `

ˆ t

0

pB ´ r2jθqpτ, r2 ´ t` τqdτ,
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if 0 ď t ă r2 ´ r1, since t1pt, r2q “ maxt0, t´ r2 ` r1u. Thus we obtain the lemma
for P`pt, r2q. This completes the proof. �

Remark 2.6. Lemma 2.5 allows us to represent the “unknown” boundary values
Bbpt, r1q and Bbpt, r2q in terms of only the given initial data (1.7), the boundary
data (1.10), and the integrals of B and jθ. This is because we have

Bbpt, r1q “
P`pt, r1q

r1
´ Ebθpt, r1q,

and

Bbpt, r2q “
P`pt, r2q

r2
´ Ebθpt, r2q.

Finally the previous lemmas imply the following uniform a priori L8 bounds for
the fields Eθ and B.

Proposition 2.7. We have

}Eθ}L8pr0,tsˆrr1,r2sq ď C̃eCt,

}B}L8pr0,tsˆrr1,r2sq ď C̃eCt,

where C̃ and C are defined as (2.25) and (2.26) and depend only on r1, r2, }B
0}L8prr1,r2sq,

}E0
θ }L8prr1,r2sq, }E

b
θ}L8pr0,tsˆBrr1,r2sq, }p

0f0}L1prr1,r2sˆR2q, λ, and t.

Remark 2.8. It is worthwhile to mention that the L8-bounds of the fields Eθ and
B are exponentially growing in time by Proposition 2.7. This exponential growth
of the fields is the outcome of the appearance of the inhomogeneous source term in
the wave equations for Eθ and B and the Grönwall inequality in the mathematical
viewpoint, but this exponential growth is indeed physically relevant in the geometry
of the annulus (or the disk) in the physical viewpoint. The reasoning behind this
is on the relationship between the fields Eθ and B via Ampère’s law (1.5)2-(1.5)3;
i.e., the curl of each can determine the other. Therefore, the symmetry in the x2-
direction assumed in [40] is very strong as all of the fields must be constant in the
x2-direction, while the fields interact via the curl of each other. Therefore, if we just
assume the symmetry in the θ-direction as in this paper, the fields can accelerate
each other and we have less restrictions than the x2-symmetric situation in the case
of the magnetic confinement in an infinite strip [40, Corollary 2.4], where the fields
grow linearly in time. Of course, our proposition does not guarantee the minimal
growth rates on the fields.

Proof of Proposition 2.7. First of all, it follows from Formula (2.8) and P˘
def
“ rEθ˘

rB that

prBqpt, rq “
1

2

ˆ

P`pt1pt, rq, r ´ t` t1pt, rqq ` P`pt2pt, rq, r ` t´ t2pt, rqq

´ 2pr ` t´ t2pt, rqqEθpt2pt, rq, r ` t´ t2pt, rqq

˙

`
1

2

ˆ t

t1pt,rq

pB ´ rjθqpτ, r ´ t` τqdτ ´
1

2

ˆ t

t2pt,rq

rpB ´ rjθqpτ, r ` t´ τqs dτ,
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where t1pt, rq “ maxt0, t´ r ` r1u and t2pt, rq “ maxt0, t´ r2 ` ru, since

´ P´pt2pt, rq, r ` t´ t2pt, rqq

“ P`pt2pt, rq, r ` t´ t2pt, rqq ´ 2pr ` t´ t2pt, rqqEθpt2pt, rq, r ` t´ t2pt, rqq.

Then using r ` t´ t2pt, rq ď r2, we have

|Bpt, rq| ď
1

2r1

ˆ

|P`pt1pt, rq, r ´ t` t1pt, rqq ` P`pt2pt, rq, r ` t´ t2pt, rqq|

` 2r2|Eθpt2pt, rq, r ` t´ t2pt, rqq|

`

ˆ t

t1pt,rq

|Bpτ, r ´ t` τq|dτ `

ˆ t

t1pt,rq

pr|jθ|qpτ, r ´ t` τqdτ

ˆ t

t2pt,rq

|Bpτ, r ` t´ τq|dτ `

ˆ t

t2pt,rq

pr|jθ|qpτ, r ` t´ τqdτ

˙

. (2.18)

Here we note that both tuples pt1pt, rq, r´ t` t1pt, rqq and pt2pt, rq, r´ t` t2pt, rqq
are either on the initial line t “ 0 or on the boundaries r “ r1 or r “ r2. Thus, note
that |Eθpt2pt, rq, r ` t´ t2pt, rqq| is given by either E0

θ of (1.7) or Ebθ of (1.10). We
can also express P` using Lemma 2.5. Now define

M1
def
“

Z

t1pt, rq

r2 ´ r1

^

and M2
def
“

Z

t2pt, rq

r2 ´ r1

^

.

By Lemma 2.5, we have, for even M1,

|P`pt1pt, rq, r ´ t` t1pt, rqq|

ď r2

ˆ

}E0
θ }L8prr1,r2sq ` }B

0}L8prr1,r2sq

˙

` 4r2pM1 ` 1q}Ebθ}L8pr0,t1pt,rqsˆBrr1,r2sq

`

ˆ t1pt,rq´M1pr2´r1q

0

p|B| ` r1|jθ|qpτ, r1 ` t1pt, rq ´M1pr2 ´ r1q ´ τqdτ

`1M1ě2

M1{2
ÿ

k“1

ˆ t1pt,rq´p2k´1qpr2´r1q

t1pt,rq´2kpr2´r1q

p|B|`r2|jθ|qpτ, r2´t1pt, rq`p2k´1qpr2´r1q`τqdτ

`1M1ě2

M1{2´1
ÿ

k“0

ˆ t1pt,rq´2kpr2´r1q

t1pt,rq´p2k`1qpr2´r1q

p|B|`r1|jθ|qpτ, r1`t1pt, rq´2kpr2´r1q´τqdτ,

(2.19)



MAGNETIC CONFINEMENT FOR THE VLASOV-MAXWELL SYSTEM 21

and for odd M1,

|P`pt1pt, rq, r ´ t` t1pt, rqq|

ď r2

ˆ

}E0
θ }L8prr1,r2sq ` }B

0}L8prr1,r2sq

˙

` 4r2pM1 ` 1q}Ebθ}L8pr0,t1pt,rqsˆBrr1,r2sq

`

ˆ t1pt,rq´M1pr2´r1q

0

p|B| ` r2|jθ|qpτ, r2 ´ t1pt, rq `M1pr2 ´ r1q ` τqdτ

`1M1ě3

M1´1
2
ÿ

k“1

ˆ t1pt,rq´p2k´1qpr2´r1q

t1pt,rq´2kpr2´r1q

p|B|`r2|jθ|qpτ, r2´t1pt, rq`p2k´1qpr2´r1q`τqdτ

`

M1´1
2
ÿ

k“0

ˆ t1pt,rq´2kpr2´r1q

t1pt,rq´p2k`1qpr2´r1q

p|B| ` r1|jθ|qpτ, r1 ` t1pt, rq ´ 2kpr2 ´ r1q ´ τqdτ.

(2.20)

Similarly, by Lemma 2.5, we have, for even M2,

|P`pt2pt, rq, r ` t´ t2pt, rqq|

ď r2

ˆ

}E0
θ }L8prr1,r2sq ` }B

0}L8prr1,r2sq

˙

` 4r2pM2 ` 1q}Ebθ}L8pr0,t2pt,rqsˆBrr1,r2sq

` 1M2ě2

ˆ t2pt,rq

t2pt,rq´pr2´r1q

p|B| ` r2|jθ|qpτ, r2 ´ t2pt, rq ` τqdτ

`

ˆ t2pt,rq´M2pr2´r1q

0

p|B| ` r2|jθ|qpτ, r2 ´ t2pt, rq `M2pr2 ´ r1q ` τqdτ

`1M2ě4

M2´2
2
ÿ

k“1

ˆ t2pt,rq´p2k´1qpr2´r1q

t2pt,rq´2kpr2´r1q

p|B|`r2|jθ|qpτ, r2´t2pt, rq`p2k´1qpr2´r1q`τqdτ

`1M2ě2

M2´2
2
ÿ

k“0

ˆ t2pt,rq´2kpr2´r1q

t2pt,rq´p2k`1qpr2´r1q

p|B|`r1|jθ|qpτ, r1`t2pt, rq´2kpr2´r1q´τqdτ,

(2.21)
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and for odd M2,

|P`pt2pt, rq, r ` t´ t2pt, rqq|

ď r2

ˆ

}E0
θ }L8prr1,r2sq ` }B

0}L8prr1,r2sq

˙

` 4r2pM2 ` 1q}Ebθ}L8pr0,t2pt,rqsˆBrr1,r2sq

`

ˆ t2pt,rq

t2pt,rq´pr2´r1q

p|B| ` r2|jθ|qpτ, r2 ´ t2pt, rq ` τqdτ

`

ˆ t2pt,rq´M2pr2´r1q

0

p|B| ` r1|jθ|qpτ, r1 ` t2pt, rq ´M2pr2 ´ r1q ´ τqdτ

`1M2ě3

M2´1
2
ÿ

k“1

ˆ t2pt,rq´p2k´1qpr2´r1q

t2pt,rq´2kpr2´r1q

p|B|`r2|jθ|qpτ, r2´t2pt, rq`p2k´1qpr2´r1q`τqdτ

`1M2ě3

M2´3
2
ÿ

k“0

ˆ t2pt,rq´2kpr2´r1q

t2pt,rq´p2k`1qpr2´r1q

p|B|`r1|jθ|qpτ, r1`t2pt, rq´2kpr2´r1q´τqdτ.

(2.22)

Then we plug (2.19)-(2.22) into (2.18) and apply Lemma 2.2 with Lemma 2.4 and
Proposition 2.1 to obtain

}Bptq}L8prr1,r2sq

ď
r2

2r1

ˆ

4}E0
θ }L8prr1,r2sq`2}B0}L8prr1,r2sq`

ˆ

8

R

t

r2 ´ r1

V

` 2

˙

}Ebθ}L8pr0,tsˆBrr1,r2sq

˙

`
1

2r1

ˆ

2

ˆ t

0

}Bpτq}L8prr1,r2sqdτ

` 2r2
2

R

t

r2 ´ r1

V

`

p}f0}L1prr1,r2sˆR2q ` λq
2 ` }E0

θ }
2
L8 ` }B

0}2L8
˘

` 2

R

t

r2 ´ r1

V

}rp0f0}L1prr1,r2sˆR2q

` 4r2

R

t

r2 ´ r1

Vˆ t

0

`

|pEbθB
bqpτ, r2q| ` |pE

b
θB

bqpτ, r1q|
˘

dτ

˙

. (2.23)
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For further explanations on how we obtain (2.23), see Remark 2.9 below. Hence,
by (2.23) we obtain

}Bptq}L8prr1,r2sq

ď
r2

r1

ˆ

2}E0
θ }L8prr1,r2sq`}B

0}L8prr1,r2sq`

ˆ

4

R

t

r2 ´ r1

V

` 2

˙

}Ebθ}L8pr0,tsˆBrr1,r2sq

˙

`
1

2r1

ˆ

2r2
2

R

t

r2 ´ r1

V

`

p}f0}L1prr1,r2sˆR2q ` λq
2 ` }E0

θ }
2
L8 ` }B

0}2L8
˘

` 2

R

t

r2 ´ r1

V

}rp0f0}L1prr1,r2sˆR2q

˙

`
1

r1

ˆ

1` 4r2

R

t

r2 ´ r1

V

}Ebθ}L8pr0,tsˆBrr1,r2sq

˙ ˆ t

0

}Bpτq}L8prr1,r2sqdτ

def
“ C̃ ` C

ˆ t

0

}Bpτq}L8prr1,r2sqdτ, (2.24)

where C̃ and C are defined as

C̃
def
“
r2

r1

ˆ

2}E0
θ }L8prr1,r2sq ` }B

0}L8prr1,r2sq

`

ˆ

4

R

t

r2 ´ r1

V

` 2

˙

}Ebθ}L8pr0,tsˆBrr1,r2sq

˙

`
1

2r1

ˆ

2r2
2

R

t

r2 ´ r1

V

`

p}f0}L1prr1,r2sˆR2q ` λq
2 ` }E0

θ }
2
L8 ` }B

0}2L8
˘

` 2

R

t

r2 ´ r1

V

}rp0f0}L1prr1,r2sˆR2q

˙

, (2.25)

and

C
def
“

1

r1

ˆ

1` 4r2

R

t

r2 ´ r1

V

}Ebθ}L8pr0,tsˆBrr1,r2sq

˙

. (2.26)

Note that C̃ and C are functions depending only on r1, r2, and given data }B0}L8prr1,r2sq,

}E0
θ }L8prr1,r2sq, }E

b
θ}L8pr0,tsˆBrr1,r2sq, }rp

0f0}L1prr1,r2sˆR2q, λ, and t. Then by the
Grönwall lemma, we obtain

}Bptq}L8prr1,r2sq ď C̃eCt. (2.27)

For the estimate on Eθ, we can directly apply the same argument as in the
estimation on B, since the right-hand sides of (2.7) and (2.8) are essentially the
same except for changes of some positive and negative signs. Thus, by using the
estimate (2.27), we also have

}Eθptq}L8prr1,r2sq ď C̃ ` C

ˆ t

0

}Bpτq}L8prr1,r2sqdτ

ď C̃ ` C̃peCt ´ 1q “ C̃eCt. (2.28)

This completes the proof of Proposition 2.7. �

Remark 2.9. In this remark, we briefly explain how we obtain the first bound on
Bptq in (2.23). We briefly explain how we get the exact constants for the upper-
bound of }Bptq}L8prr1,r2sq. By (2.18), the contributions on the upper-bound for

}Bptq}L8prr1,r2sq are the followings: the bounds for |P`pti, ¨q|, |Eθ|,
´ t
t1
pB`r|jθ|qdτ ,
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and
´ t
t2
pB` r|jθ|qdτ . We note that M1 and M2 can be either even or odd, and here

we just introduce the case that both are even. Other cases are similar.
For the contributions on P`pt1, ¨q and P`pt2, ¨q we use (2.19) and (2.21) since M1

and M2 are even. Here we note that there appear in the upper-bound r2 copies of
}E0

θ }L8 and }B0
θ}L8 and 4r2pM1 ` 1q copies of }Ebθ}L8 in the upper-bound. Then

together with the 2r2 copies of Eθ in (2.18) which is either E0
θ or Ebθ, we obtain the

upper bounds of

r2

2r1

ˆ

4}E0
θ }L8prr1,r2sq ` 2}B0}L8prr1,r2sq

`

ˆ

8

R

t

r2 ´ r1

V

` 2

˙

}Ebθ}L8pr0,tsˆBrr1,r2sq

˙

in (2.23). The leftovers in the contributions of |P`pt1, ¨q| and |P`pt2, ¨q| via (2.19)
and (2.21) are the integrals on B and r|jθ| in the different time intervals. If we
consider }B}L8prr1,r2sq in the integral, then we can patch all the time intervals
tr0, t1´M1pr2´r1qs, rt1´M1pr2´r1q, t1´pM1´1qpr2´r1qs, ..., and rt1´pr2´r1q, t1su
and also tr0, t2 ´M2pr2 ´ r1qs, rt2 ´M2pr2 ´ r1q, t2 ´ pM2 ´ 1qpr2 ´ r1qs, ..., and

rt2 ´ pr2 ´ r1q, t2su and obtain
´ t1

0
}B}L8dτ and

´ t2
0
}B}L8dτ . Then together with

the upper-bounds of
´ t
t1
|Bpτ, r ´ t` τq|dτ and

´ t
t2
|Bpτ, r ` t´ τq|dτ appearing in

(2.18), we obtain exactly two copies of
´ t

0
}B}L8dτ in the final upper-bound. So

the only thing left in the upper-bound estimate for Bptq is the upper-bounds forˆ t1´p2k´1qpr2´r1q

t1´2kpr2´r1q

r2|jθ|pτ, r2 ´ t1 ` p2k ´ 1qpr2 ´ r1q ` τqdτ,

ˆ t1´2kpr2´r1q

t1´p2k`1qpr2´r1q

r1|jθ|pτ, r1 ` t1 ´ 2kpr2 ´ r1q ´ τqdτ,

ˆ t2´p2k´1qpr2´r1q

t2´2kpr2´r1q

r2|jθ|pτ, r2 ´ t2 ` p2k ´ 1qpr2 ´ r1q ` τqdτ, and

ˆ t2´2kpr2´r1q

t2´p2k`1qpr2´r1q

r1|jθ|pτ, r2 ´ t1 ´ 2kpr2 ´ r1q ´ τqdτ

from (2.19) and (2.21). For each of the integral, we use the estimate either (2.10)
or (2.11) in Lemma 2.2 with different t1s and r1s; for instance, we choose t “

t1 ´ p2k ´ 1qpr2 ´ r1q and r “ r2 for the estimate of
´ t1´p2k´1qpr2´r1q

t1´2kpr2´r1q
r2|jθ|pτ, r2 ´

t1 ` p2k ´ 1qpr2 ´ r1q ` τqdτ such that t1pt, rq “ t1 ´ 2kpr2 ´ r1q in (2.11) of
Lemma 2.2. Then for each piece of the temporal integral, we will have one copy
of
´
r1ep¨, ¨qdr1 bound and

´
r2|E

b
θB

b|pτ, ¨qdτ in the upper-bound by Lemma 2.2,
which will further be bounded from above by Lemma 2.4. This corresponds to the
rest of the upper-bound

1

2r1

ˆ

2r2
2

R

t

r2 ´ r1

V

`

p}f0}L1prr1,r2sˆR2q ` λq
2 ` }E0

θ }
2
L8 ` }B

0}2L8
˘

` 2

R

t

r2 ´ r1

V

}rp0f0}L1prr1,r2sˆR2q

` 4r2

R

t

r2 ´ r1

Vˆ t

0

`

|pEbθB
bqpτ, r2q| ` |pE

b
θB

bqpτ, r1q|
˘

dτ

˙
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in (2.23).

3. Confinement of the plasma for all time

This section is devoted to proving the magnetic confinement of the plasma in
the spatial domain. For any initial point pr, pr, pθq P rr1 ` δ0, r2 ´ δ0s ˆ R2, we
first define the characteristics Rpsq “ Rps; 0, r, pr, pθq, which initially started in
a compactly supported set, will never reach the boundary. Fixing pr, pr, pθq P
rr1`δ0, r2´δ0sˆR2, we define the characteristics for the system (1.3) corresponding
to the initial point pr, pr, pθq as the solution

s ÞÑ pRpsq, Prpsq, Pθpsqq “ pRps; 0, r, pr, pθq, Prps; 0, r, pr, pθq, Pθps; 0, r, pr, pθqq

that solves

dR

ds
“ P̂r,

dPr
ds

“ Er ` P̂θB̄ `
P 2
θ

RP 0
,

dPθ
ds

“ Eθ ´ P̂rB̄ ´
PrPθ
RP 0

,

Rp0; 0, r, pr, pθq “ r, Prp0; 0, r, pr, pθq “ pr, Pθp0; 0, r, pr, pθq “ pθ,

(3.1)

where P 0 def
“

a

1` P 2
r ` P

2
θ , P̂r

def
“ Pr

P 0 and P̂θ
def
“

Pθ
P 0 . Furthermore, the functions

Er, Eθ and B̄ in (3.1) are all evaluated at the point ps,Rpsqq. We can write the
self-consistent magnetic field B in terms of its potential ψ; more precisely, we have

Bpt, rq “
1

r

ˆ

Bprψpt, rqq

Br

˙

. (3.2)

Without loss of generality, we additionally suppose that ψ satisfies

ψpt, rmq “ 0 (3.3)

for all t P r0, T s, where rm
def
“ r1`r2

2 is the median radius. Otherwise, we can

consider our potential ψ̃ as ψ̃pt, rq “ ψpt, rq ´ rm
r ψpt, rmq.

Furthermore, if Er, Eθ, B P C1pr0, T s ˆ rr1, r2sq, then the C1 solutions to the
system (3.1) exist for a finite time and can be extended to the whole time interval
r0, T s if Rpsq does not hit the spatial boundary Rpsq “ r1 or Rpsq “ r2 for any
s P r0, T s. Via Lemma 3.1 below, we will prove that the characteristic Rpsq never
reach the spatial boundary BΩ, provided that the external magnetic field Bext is
well-chosen. Throughout this section, we will omit the dependency on θ, since we
assume that all the functions f , Er, Eθ, and B are rotationally symmetric, namely
they are independent of θ.

3.1. Construction of the external magnetic potential. In this section, we first
construct an infinite time-independent external magnetic potential ψbase “ ψbaseprq
that confines the charged particles. Later, in Section 3.2, by defining a moving bar
that increases in time, we will be able to truncate the infinite potential ψbase and
construct a finite time-dependent external magnetic potential that also confines the
charged particles.

As mentioned in Remark 1.10, our truncation method in this section makes sense
and works because we can prove that the a priori estimates on the self-consistent
electromagnetic fields Er, Eθ, and B are independent of the external magnetic
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potential ψext. Hence, we can also obtain the velocity bound (3.6) independent
of the external magnetic potential as in Lemma 3.3 and this allows us to choose
a finite barrier independent of the external potential, which will be used for the
truncation.

To begin with, as we introduced in Hypothesis 1.2, the minimal sufficient condi-
tions for the magnetic confinement that we require on the time-independent infinite
potential ψbase are as follows; for a given distance δ P p0, δ0q from the spatial bound-
ary BΩ, we assume

(1) ψbase P C
2ppr1 ` δ, r2 ´ δqq.

(2) ψbase satisfies

lim
rÑpr1`δq`

|ψbaseprq| “ lim
rÑpr2´δq´

|ψbaseprq| “ 8.

We first show that the infinite external potential ψbase can be used to confine all
the charged particles in the interior as in the following lemma:

Lemma 3.1. Assume Er, Eθ, B P C
1pr0, T sˆ rr1, r2sq satisfy Maxwell’s equations

(1.5). Suppose

| ~Ept, rq|, |Bpt, rq| ď C̃eCt, (3.4)

for any pt, rq P r0, T s ˆ pr1, r2q where C and C̃ ą 0 are the same functions defined
as (2.25) and (2.26) in Proposition 2.7. Fix any pr, pr, pθq P rr1 ` δ0, r2 ´ δ0s ˆ tp P
R2 : |p| ď M0u for some δ0 P

`

0, r2´r12

˘

and M0 ą 0. Consider the characteris-

tics ps,Rpsq, Prpsq, Pθpsqq
def
“ ps,Rps; 0, r, pr, pθq, Prps; 0, r, pr, pθq, Pθps; 0, r, pr, pθqq

of the system (1.3) corresponding to the point p0, r, pr, pθq as the solutions of the
system of ODEs (3.1). Suppose that the external magnetic field Bext is defined via
a given time-independent potential ψbaseprq in Hypothesis 1.2 as

Bext “ Bbaseprq
def
“

1

r

Bprψbaseprqq

Br
,

where ψbase is defined as in Hypothesis 1.2. Then we have for any θ P r´π, πq,

distpRpsqr̂ ` θθ̂, BΩq ě distpUδ0psq, BΩq ą δ ą 0.

for any s P r0, T s, where Uδ0psq is defined as in (1.15).
Furthermore, if we define ψbase as (1.12), then we have for any θ P r´π, πq,

distpRpsqr̂ ` θθ̂, BΩq ě

ˆ

r2 ´ r1

π

˙

arcsinpCsq ą δ ą 0, (3.5)

for any s P r0, T s where Cs is a positive constant for each fixed s P r0, T s which also

depends on δ0, r1, r2, C, C̃psq, and M0.

Remark 3.2. We remark that (3.4) is not an actual assumption. Indeed, (3.4) is
just a direct consequence of Proposition 2.1 and Proposition 2.7.

Before we prove Lemma 3.1, we first introduce an estimate on the bound of the
speed of propagation:

Lemma 3.3. Assume (3.4). Denote P p0q as P p0q “ p. Then we have

sup
τPr0,ss

|P pτq| ď 2C̃psq
|eCs ´ 1|

C
` |p|, (3.6)

where C and C̃psq are the same functions defined as (2.25) and (2.26) in Proposition
2.7.
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Proof. A direct computation yields

d

ds
|P |2 “ 2

ˆ

PrEr ` PrP̂θB̄ `
PrP

2
θ

RP 0
` PθEθ ´ PθP̂rB̄ ´

PrP
2
θ

RP 0

˙

“ 2pPrEr`PθEθq.

Then the bounds (3.4) further imply that

|P psq|2 ď |p|2 ` 2C̃psq

ˇ

ˇ

ˇ

ˇ

ˆ s

0

|P pτq|eCτdτ

ˇ

ˇ

ˇ

ˇ

ď |p|2 ` 2C̃psq sup
τPr0,ss

|P pτq|
|eCs ´ 1|

C
.

Therefore, we obtain the lemma. �

Proof of Lemma 3.1. Recall that we denote P “ pPr, Pθq and p “ ppr, pθq. Without

loss of generality, suppose r ě rm
def
“ r1`r2

2 ; the case for r ă rm
def
“ r1`r2

2 will be
similar, and left for the interested readers. By (3.1) and (3.2), we observe that

dPθ
ds

“ Eθ ´ P̂rB̄ ´
PrPθ
RP 0

“ Eθ ´
P̂r
R

BpRpψ ` ψbaseqq

BR
´
PrPθ
RP 0

“ Eθ ` Btψ ´
1

R

dpRpψ ` ψbaseqq

ds
´
PrPθ
RP 0

.

Therefore, we have

d

ds
pRPθ `Rpψ ` ψbaseqq “ RBtψ ` 9RPθ ` REθ ´

PrPθ
P 0

“ RBtψ ` REθ.

Integrating with respect to s over the time interval r0, ss, we have

RPθ `Rpψps,Rq ` ψbasepRqq “ rpθ ` rpψp0, rq ` ψbaseprqq

`

ˆ s

0

pRpτqBtψpτ,Rpτqq `RpτqEθpτ,Rpτqqq dτ. (3.7)

Also recall (3.3) that we have assumed that ψpt, rmq “ 0 for all t P r0, T s and hence
we have Btψpt, rmq “ 0. Since

RpτqBtpψpτ,Rpτqqq “

ˆ Rpτq

rm

r1BtBpτ, r
1qdr1 “

ˆ Rpτq

rm

´Br1pr
1Eθpτ, r

1qqdr1

“ rmEθpτ, rmq ´RpτqEθpτ,Rpτqq,

we have

RPθ `Rpψps,Rq ` ψbasepRqq “ rpθ ` rpψp0, rq ` ψbaseprqq

`

ˆ s

0

prmEθq pτ, rmqdτ. (3.8)

Indeed, we can easily control the terms rψp0, rq and Rψps,Rq by integrating (3.2)

and using the hypothesis }Bpτq}L8prr1,r2sq ď C̃pτqeCτ as follows:

|Rpτqψpτ,Rpτqq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ Rpτq

rm

yBpτ, yqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď eCτ C̃pτq
|Rpτq2 ´ r2

m|

2
ď eCτ C̃pτq

pr2 ` rmqpr2 ´ r1q

4
,

for both τ “ 0 and τ “ s as we have

|Rpτq2´ r2
m| “ |Rpτq ` rm| ¨ |Rpτq ´ rm| ď pr2` rmq ¨min

"

|r ´ rm| ` τ,
r2 ´ r1

2

*

,
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since |Rpτq ´ rm| ď
 

|r ´ rm| ` τ,
r2´r1

2

(

. Using (3.6) and |Pθ ´ pθ| ď |P | ` |p|, we
also have

|R´ r||Pθ| ` r|Pθ ´ pθ| ď pr2 ´ r1q|Pθ| ` r2p|P | ` |p|q

ď p2r2 ´ r1q

˜

2C̃psq

C
peCs ´ 1q ` |p|

¸

` r2|p|.

Also, we observe that
ˇ

ˇ

ˇ

ˇ

ˆ s

0

prmEθq pτ, rmqdτ

ˇ

ˇ

ˇ

ˇ

ď
C̃psqrm
C

`

eCs ´ 1
˘

.

Thus, we use (3.8) and obtain

|RpsqψbasepRpsqq| ď |rψbaseprq| ` e
CsC̃psq

pr2 ` rmqpr2 ´ r1q

2

` p2r2 ´ r1q

˜

2C̃psq

C
peCs ´ 1q ` |p|

¸

` r2|p| `
C̃psqrm
C

peCs ´ 1q

ď |rψbaseprq| `Ke
Cs, (3.9)

for any s P r0, T s for some constant K “ KpC, C̃psq, r1, r2,M0q ą 0 that is defined
as

KpC, C̃psq, r1, r2,M0q

def
“
C̃psq

2
pr2 ` rmqpr2 ´ r1q ` p2r2 ´ r1q

˜

2C̃psq

C
`M0

¸

` r2M0 `
C̃psqrm
C

,

since |p| ďM0. Therefore, for any s P r0, T s,

|RpsqψbasepRpsqq| ď |rψbaseprq| `Ke
Cs ď r2 max

rPrr1`δ0,r2´δ0s
|ψbaseprq| `Ke

Cs,

and hence,

|ψbasepRpsqq| ď
r2

r1

ˆ

max
rPrr1`δ0,r2´δ0s

|ψbaseprq|

˙

`
K

r1
eCs. (3.10)

It follows from Hypothesis 1.2 that the set

Uδ0psq
def
“

"

x P Ω; |ψbasepxq| ď
r2

r1

ˆ

max
rPrr1`δ0,r2´δ0s

|ψbaseprq|

˙

`
K

r1
eCs

*

is a compact and proper subset of the open domain Ω; in addition, we have
distpUδ0psq, BΩq ą δ by Hypothesis 1.2. Thus, the inequality (3.10) implies that for
any θ P r´π, πq,

distpRpsqr̂ ` θθ̂, BΩq ě distpUδ0psq, BΩq ą δ ą 0.

In addition, if we assume that ψbase is in the explicit form of (1.12), then we
further have that

csc

ˆ

π

r2 ´ r1
pRpsq ´ r1q

˙

ď 1`
r

r1

ˇ

ˇ

ˇ

ˇ

csc

ˆ

π

r2 ´ r1
pr ´ r1q

˙

´ 1

ˇ

ˇ

ˇ

ˇ

`
K

r1
eCs

ď 1`
r2

r1

ˇ

ˇ

ˇ

ˇ

csc

ˆ

π

r2 ´ r1
pr2 ´ r1 ´ δ0q

˙

´ 1

ˇ

ˇ

ˇ

ˇ

`
K

r1
eCs “: Cs, (3.11)
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by (1.12) and that the initial distribution is supported only on rr1 ` δ0, r2 ´ δ0s.
Thus we have

r1 `

ˆ

r2 ´ r1

π

˙

arcsinpCsq ď Rpsq ď r2 ´

ˆ

r2 ´ r1

π

˙

arcsinpCsq,

for all s P r0, T s. This completes the proof for this lemma. �

Using this lemma, we will construct a moving bar Lbarpsq that will be used for
the truncation of the infinite potential in the next section.

3.2. Truncated time-dependent external potential. Equipped with the mag-
netic confinement via the time-independent external magnetic potential ψbase “
ψbaseprq that is infinite at the boundary r “ r1 and r “ r2, we can now define a
moving bar Lbarpsq that is an increasing function Lbar : r0, T s Ñ r0,8q. The mov-
ing bar Lbarpsq physically stands for the maximum level of the external potential
that we need to impose so that we can confine all the particle trajectory Rpsq in the
interior domain whose initial state pRp0q, P p0qq is in the support of f0. We will use
this to truncate the infinite potential ψbase and construct a finite time-dependent
external magnetic field that also confines the particles in the interior. The key
strategy is to find a moving bar which increases fast enough with respect to time
s P r0, T s, so that the truncated potential will still confine all the particles.

For the general form of the external potential ψbase from Hypothesis 1.2, we
define Lbarpsq as

Lbarpsq
def
“ max

xPUδ0 psq
|ψbasepxq|, (3.12)

where Uδ0psq is defined as in (1.15). Then we define the finite time-dependent
external magnetic potential ψext “ ψextps, rq for s P r0, T s as in (1.13). Note
that as long as ψbaseprq ď Lbarpsq, ψextps, rq is equal to ψbaseprq, which is time-
independent. Therefore, if we consider a particle whose initial state pRp0q, P p0qq is
in the support of f0, then we always have ψbasepRpsqq ď Lbarpsq for all s ě 0, due
to the construction of Lbar. Therefore, as long as the particle trajectory starts at
pRp0q, P p0qq in the support of f0, we always control the trajectory pRpsq, P psqq of
the particle via the time-independent potential ψextps,Rpsqq “ ψbasepRpsqq. There-
fore, we can replace ψbasepRpsqq by ψextps,Rpsqq in the proof of Lemma 3.1, since
ψextps,Rpsqq “ ψbasepRpsqq always hold throughout the whole proof. This com-
pletes the proof for Theorem 1.13.

The external potential ψbase can be chosen explicitly, such as the form in (1.12);
see Remark 1.9 for more details.

3.3. A unique global trajectory. Lemma 3.1 further implies that any particles
which are initially away from the boundary can never reach the spatial boundary.
Therefore, we obtain the following corollary on the unique trajectory:

Corollary 3.4. Assume Er, Eθ, B P C1pr0, T s ˆ rr1, r2sq satisfy Maxwell’s equa-
tions (1.5). Suppose

| ~Ept, rq|, |Bpt, rq| ď C̃eCt,

for all pt, rq P r0, T s ˆ pr1, r2q where the functions C and C̃ ą 0 are defined as
(2.25) and (2.26). Then for any fixed pr, pq P rr1 ` δ0, r2 ´ δ0s ˆ t|p| ď M0u for
some δ0 P

`

0, r2´r12

˘

and M0 ą 0, the characteristic ODEs (3.1) admits a unique

C1 solution pRpsq, P psqq in r0, T s with Rpsq P pr1, r2q for all s P r0, T s.
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4. Propagation of the L8 moment and the bounds for the momentum
support

This section is devoted to proving the propagation of the L8 moment of the
distribution function f and proving that the particle distribution has a compact
support in p variable within any finite time interval. In order to prove the global
existence and the uniqueness of a classical solution, we need to prove the a priori
L8 estimate for the distribution solution f and the derivatives of the fields E and
B and the distribution f . The L8 estimate on f will be given in this section, and
the estimates on the derivatives will be given in Section 5. This can be shown as a
consequence of the magnetic confinement and the uniqueness of the characteristic
trajectory.

We first suppose pf,Er, Eθ, Bq is a C1 solution to (1.3). Then another direct
consequence of Corollary 3.4 is that the solution f to (1.3) is constant along the
unique characteristic trajectory. Therefore, we obtain

}f}L8pr0,T sˆrr1,r2sˆR2q “ }f
0}L8prr1,r2sˆR2q. (4.1)

In addition, we can also prove that the solution fpt, r, pr, pθq to the system (1.3)
has a compact support in the p variables within any finite time interval. Define
Mptq as follows:

Definition 4.1. Let pf,Er, Eθ, Bq be a C1 solution to (1.3). For each t P r0, T s,
define the maximum radius of the momentum support Mptq as

Mptq “ max
pPsuppppfqptq

|p|,

where

suppppfqptq
def
“ tp P R2 | fpt, r, pr, pθq ‰ 0, for some r P rr1, r2su.

Then we have the following estimate:

Lemma 4.2. Suppose that supppf0q P rr1 ` δ0, r2 ´ δ0s ˆ t|p| ď M0u for some
δ0 P

`

0, r2´r12

˘

and M0 ą 0. Then we have

Mptq ďM0 ` 4C̃
eCt

C
,

where C and C̃ are the same functions defined as (2.25) and (2.26) obtained in
Proposition 2.7.

Proof. By Lemma 3.3, it follows from a direct computation that

d

ds
|P psq|2 “ 2pPrEr ` PθEθq,

so using Proposition 2.1, Proposition 2.7 and (3.6), we have

|P ptq|2 ď |P p0q|2 ` 2C̃

ˆ t

0

|P pτq|eCτdτ ď |P p0q|2 ` 2C̃p2C̃
eCt

C
` |p|q

eCt

C
.

Thus,

|P ptq| ď |P p0q| ` 4C̃
eCt

C
.
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Since we have assumed that supppf0q P rr1 ` δ0, r2 ´ δ0s ˆ t|p| ď M0u for some
δ0,M0 ą 0, we have

Mptq ďM0 ` 4C̃
eCt

C
.

This completes the proof. �

4.1. L8 bounds for the density and the flow. Finally, it is worthwhile to
mention that the finite momentum support of the particle distribution implies the
following L8 bounds on the charge and current densities as well:

Corollary 4.3. We have

}ρ}L8pr0,T sˆrr1,r2sq, }j}L8pr0,T sˆrr1,r2sq

ď π}f0}L8prr1,r2sˆR2q

ˆ

M0 ` 4C̃
eCt

C

˙2

.

Proof. Note that

ρpt, xq “

ˆ
R2

fpt, x, pqdp “

ˆ
|p|ďM0`4C̃ eCt

C

fpt, x, pqdp

ď π}f0}L8prr1,r2sˆR2q

ˆ

M0 ` 4C̃
eCt

C

˙2

.

Similarly, we have

|jpt, xq| ď

ˆ
R2

|p̂fpt, x, pq|dp ď

ˆ
|p|ďM0`4C̃ eCt

C

|fpt, x, pq|dp

ď π}f0}L8prr1,r2sˆR2q

ˆ

M0 ` 4C̃
eCt

C

˙2

.

This completes the proof. �

5. Estimates for the derivatives

This section is devoted to a priori L8 estimates on the derivatives of the fields
pEr, Eθ, Bq and the distribution f .

5.1. Derivatives of E and B. We begin with the field Er. Since 1
rBrprErq “ ρ,

we have

}BrprErq}L8pr0,T sˆrr1,r2sq ď πr2}f
0}L8prr1,r2sˆR2q

ˆ

M0 ` 4C̃
eCt

C

˙2

,

by Corollary 4.3.
Now recall that in Section 2.2 we have defined P˘ “ rEθ ˘ rB. The rest of

this section is devoted to showing the estimates on the derivatives. Recall that,
by Lemma 4.2, f has a compact support in p if f0 does. Then, for the confined
solutions, we have the following lemma:

Lemma 5.1. Suppose that f0 is supported in rr1 ` δ0, r2 ´ δ0s ˆ t|p| ď M0u for
some δ0 ą 0 and M0 ą 0. Then for the confined solution, we have

}BrprEθq}L8pr0,T sˆrr1,r2sq, }BrprBq}L8pr0,T sˆrr1,r2sq ď CT ,

for some constant CT ą 0 which depends only on M0, T , λ, }f0}L8 , the C1 norm
of E0

θ , B0 on rr1, r2s, and the C1 norm of Ebθ, B
b on r0, T s.
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Proof. By (2.5), (2.6), and the Leibniz rule, the derivative BrP` is now equal to

BrP`pt, rq “ Qpt, rq `

ˆ t

t1pt,rq

BrBpτ, r ´ t` τqdτ

´

ˆ t

t1pt,rq

ˆ
R2

p̂θfpτ, r ´ t` τ, pr, pθqdprdpθdτ

´

ˆ t

t1pt,rq

r

ˆ
R2

p̂θBrfpτ, r ´ t` τ, pr, pθqdprdpθdτ, (5.1)

where

Qpt, rq
def
“ BrpP`pt1pt, rq, r ´ t` t1pt, rqqq ` 1răt`r1pB ´ rjθqpt´ r ` r1, r1q

“ ´1răt`r1

`

r1BtE
b
θpt´ r ` r1, r1q ` r1BtB

bpt´ r ` r1, r1q ´B
bpt´ r ` r1, r1q

˘

` 1rět`r1

`

pE0
θ `B

0qpr ´ tq ` pr ´ tqBrpE
0
θ `B

0qpr ´ tq
˘

and we recall that j “ 0 at the boundary due to the confinement. Then we have

}Q}L8pr0,T sˆrr1,r2sq ď CT , (5.2)

where CT is a constant depending on M0, T , λ, }f0}L8 , the C1 norm of E0
θ , B0 on

rr1, r2s, and the C1 norm of Ebθ, B
b on r0, T s.

By treating the radial derivative of B on the right-hand side of (5.1) via consid-
ering Ampère’s circuital law (1.5)3, we obtain

BrP`pt, rq “ Qpt, rq ´

ˆ t

t1pt,rq

BtEθpτ, r ´ t` τqdτ

´ 2

ˆ t

t1pt,rq

ˆ
R2

p̂θfpτ, r ´ t` τ, pr, pθqdprdpθdτ

´

ˆ t

t1pt,rq

r

ˆ
R2

p̂θBrfpτ, r ´ t` τ, pr, pθqdprdpθdτ.

Now we are going to use the following splitting of the operator Br motivated by [21]:

Br “
T` ´ S

1´ p̂r
, (5.3)

where

T`
def
“ Bt ` Br and S

def
“ Bt ` p̂rBr.

Then we further have

BrP`pt, rq “ Qpt, rq ´

ˆ t

t1pt,rq

BtEθpτ, r ´ t` τqdτ

´ 2

ˆ t

t1pt,rq

ˆ
R2

p̂θfpτ, r ´ t` τ, pr, pθqdprdpθdτ

´

ˆ t

t1pt,rq

ˆ
R2

d

dτ

rp̂θ
1´ p̂r

fpτ, r ´ t` τ, pr, pθqdprdpθdτ

`

ˆ t

t1pt,rq

ˆ
R2

rp̂θ
1´ p̂r

Sfpτ, r ´ t` τ, pr, pθqdprdpθdτ.
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Now we implement the temporal integration and use the Vlasov equation

Sf `

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bprf `

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθf “ 0

to obtain that

BrP`pt, rq “ Qpt, rq ´ Eθpt, rq ` Eθpt1, r ´ t` t1q

´ 2

ˆ t

t1pt,rq

ˆ
R2

p̂θfpτ, r ´ t` τ, pr, pθqdprdpθdτ

´

ˆ
R2

rp̂θ
1´ p̂r

fpt, r, pr, pθqdprdpθ `

ˆ
R2

rp̂θ
1´ p̂r

fpt1, r ´ t` t1, pr, pθqdprdpθ

´

ˆ t

t1pt,rq

ˆ
R2

rp̂θ
1´ p̂r

ˆˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bprf

`

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθf

˙

pτ, r ´ t` τ, pr, pθqdprdpθdτ.

Thus we have

BrP`pt, rq “ Qpt, rq ´ Eθpt, rq ` Eθpt1pt, rq, r ´ t` t1pt, rqq

´ 2

ˆ t

t1pt,rq

ˆ
R2

p̂θfpτ, r ´ t` τ, pr, pθqdprdpθdτ

´

ˆ
R2

rp̂θ
1´ p̂r

fpt, r, pr, pθqdprdpθ `

ˆ
R2

rp̂θ
1´ p̂r

fpt1, r ´ t` t1, pr, pθqdprdpθ

`

ˆ t

t1pt,rq

ˆ
R2

„

Bpr

ˆˆ

rp̂θ
1´ p̂r

˙ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙˙

f

` Bpθ

ˆˆ

rp̂θ
1´ p̂r

˙ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙˙

f



pτ, r ´ t` τ, pr, pθqdprdpθdτ,

by an integration by parts. Here we note that the denominators 1´ p̂r are bounded
below as due to the compact momentum support by Lemma 4.2 as 1 ´ p̂r ą
cpT,M0, C, C̃q ą 0. Therefore, we use Proposition 2.7, Lemma 4.2, (5.2), and (4.1)
to obtain that

}BrP`}L8pr0,T sˆrr1,r2sq ď CT ,

for some CT ą 0 which depends on M0, T , λ, }B0}L8 , }E0
θ }L8 , }Bb}L8 , }Ebθ}L8 ,

and }p1` p0qf0}L1 .
Similarly, we can also obtain }BrP´}L8pr0,T sˆrr1,r2sq ď CT , by using

Br “
S ´ T´
1` p̂r

,

where T´
def
“ Bt ´ Br and S

def
“ Bt ` p̂rBr, in place of (5.3). This completes the

proof. �

5.2. Derivatives of f . Finally, we are ready to obtain an estimate for the deriva-
tives of the solution f .

Lemma 5.2. Suppose f P C2pr0, T s ˆ rr1, r2s ˆ R2q. Then we have

}f}C1pr0,T sˆrr1,r2sˆR2q ď CT ,



34 J. W. JANG, R. M. STRAIN, AND T. K. WONG

for some constant CT ą 0 which depends only on M0, T , λ, }f0}L8 , the C1 norm
of f0, E0

θ , B0 on rr1, r2s, and the C1 norm of Ebθ, B
b on r0, T s.

Proof. We start with differentiating the Vlasov equation in cylindrical-coordinates
(1.3) with respect to r variables. Then we observe that

ˆ

Bt ` p̂rBr `

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bpr `

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθ

˙

Brf

“ ´Br

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bprf ´ Br

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθf.

Recall Lemma 3.1 and Lemma 4.2 and define

M̄ptq
def
“ M0 ` 4C̃

eCt

C
. (5.4)

Then we integrate this identity along the characteristics and obtain

}Brfptq}L8ppr1,r2qˆt|p|ďM̄ptquq ď }Brf
0}L8prr1`δ0,r2´δ0sˆt|p|ďM̄ptquq

`

ˆ t

0

›

›

›

›

´Br

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bprf ´ Br

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθf

›

›

›

›

L8
ds

. }Brf
0}L8 `

ˆ t

0

`

}E}C1 ` }B}C1 ` M̄ptq
˘

}∇pf}L8 ds, (5.5)

as
ˇ

ˇ

ˇ

pr
p0

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ

pθ
p0

ˇ

ˇ

ˇ
ď 1. On the other hand, we differentiate (1.3) with respect to p

variables and obtain

Bt∇pf ` p̂rBr∇pf `

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bpr∇pf `

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθ∇pf

“ ´∇ppp̂rqBrf ´∇p

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bprf ´∇p

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθf

“ ´∇ppp̂rqBrf ´∇p

ˆ

p̂θB̄ `
p2
θ

rp0

˙

Bprf ´∇p

ˆ

´p̂rB̄ ´
prpθ
rp0

˙

Bpθf.

We similarly integrate this identity along the characteristics and obtain

}∇pfptq}L8ppr1,r2qˆt|p|ďM̄ptquq ď }∇pf
0}L8prr1`δ0,r2´δ0sˆt|p|ďM̄ptquq

`

ˆ t

0

›

›

›

›

´∇ppp̂rqBrf ´∇p

ˆ

p̂θB̄ `
p2
θ

rp0

˙

Bprf ´∇p

ˆ

´p̂rB̄ ´
prpθ
rp0

˙

Bpθf

›

›

›

›

L8
ds

. }∇pf
0}L8 `

ˆ t

0

`

}Brf}L8 `
`

}B}L8 ` |M̄ptq|
˘

}∇pf}L8
˘

ds (5.6)

By adding (5.5) and (5.6) and noting that the support of f is in pr1, r2q ˆ t|p| ď
M̄ptqu, we finally have

Dpfqptq . 1`

ˆ t

0

Dpfqpsqds,

where Dpfqpsq
def
“ }Brf}L8 ` }∇pf}L8 . This yields the bounds for }Brf}L8 and

}∇pf}L8 . Finally, we use the Vlasov equation

Btf “ ´p̂rBrf ´

ˆ

Er ` p̂θB̄ `
p2
θ

rp0

˙

Bprf ´

ˆ

Eθ ´ p̂rB̄ ´
prpθ
rp0

˙

Bpθf
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and further obtain the bound for }Btf}L8 . This completes the proof. �

6. Global wellposedness: Proof of Theorem 1.12

Together with all the estimates on the functions f , E, B, and their derivatives
from the previous sections, we can obtain the global wellposedness of the problem
(1.3), (1.5),(1.7), and (1.10), and Hypothesis 1.6 as follows.
(Existence) First of all, we obtain the existence of a global C1 solution via the
standard iteration argument which was introduced in the literature [21–25,40], etc.
We leave these standard details to the interested readers.
(Uniqueness) Fix any time interval r0, T s for some T ą 0. For the uniqueness,
we suppose that there are two global C1 solutions pf i, Ei, Biq for i “ 1, 2 to the
problem (1.3), (1.5), (1.7), and (1.10), and Hypothesis 1.6. Then we have

Btf̃ ` p̂rBrf̃ ` p̂θ
1

r
Bθf̃

`

ˆ

E2
r ` p̂θB̄

2 `
p2
θ

rp0

˙

Bpr f̃ `

ˆ

E2
θ ´ p̂rB̄

2 ´
prpθ
rp0

˙

Bpθ f̃

“ ´

´

Ẽr ` p̂θB̃
¯

Bprf
1 ´

´

Ẽθ ´ p̂rB̃
¯

Bpθf
1, (6.1)

where B̄i “ Bi `Bext and

f̃
def
“ f1 ´ f2, Ẽ

def
“ E1 ´ E2, and B̃

def
“ B1 ´B2.

Also, note that f̃p0, r, pr, pθq “ 0 for all pr, pr, pθq P pr1, r2q ˆ R2. By Section 3, we
obtain that the characteristic trajectories never touch the boundaries. Thus, we
integrate (6.1) along the characteristics and obtain that

}f̃ptq}L8ppr1,r2qˆR2q ď }∇pf
1}L8pr0,tsˆpr1,r2qˆR2q

ˆ

ˆ t

0

´

}Ẽpsq}L8ppr1,r2qq ` }B̃psq}L8ppr1,r2qq

¯

ds, (6.2)

for each t P r0, T s. We first estimate the upperbound for }Ẽrpsq}L8ppr1,r2qq. Since

BrprẼrq “ rρpf̃q where ρpf̃q is defined as

ρpf̃qpt, rq “

ˆ
R2

f̃pt, r, pqdp,

we observe that

}Ẽrpsq}L8ppr1,r2qq ď
1

r1

ˆ r2

r1

ˆ
|p|ďM̄psq

rf̃ps, r, pr, pθq dprdpθdr .T }f̃psq}L8 ,

where M̄ is defined as (5.4). For the estimates on }Ẽθpsq}L8ppr1,r2qq and

}B̃psq}L8ppr1,r2qq, we observe that Ẽθ and B̃ satisfy

BtprẼθq ` BrprB̃q “ B̃ ´ rjθpf̃q,

and

BtprB̃q ` BrprẼθq “ 0.
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Then since B̃0, B̃b, Ẽ0, and Ẽb are all zero in (2.18), we have

|B̃pt, rq| ď
1

r1

ˆˆ t

0

}Bpτq}L8prr1,r2sqdτ

`

ˆ t

mintt1,t2u

ˆ
|p|ďM̄pτq

r|p̂θ||f̃pτ, r ´ t` τ, pr, pθq|dprdpθdτ

˙

, (6.3)

by the definition jθ
def
“
´
R2 p̂θfdprdpθ. Then by taking the supremum in r variable

and taking |p̂θ| ď 1, we have

}B̃psq}L8ppr1,r2qq .T sup
rPpr1,r2q

ˆ s

0

ˆ
|p|ďM̄pτq

|f̃pτ, r, pr, pθq|dprdpθdτ

.T sup
τPr0,ss

}f̃pτq}L8 .

Similarly we obtain }Ẽθpsq}L8 .T supτPr0,ss }f̃pτq}L8 . Now we go back to (6.2)
and observe that

ũptq .T

ˆ t

0

ũpsqds,

where ũpsq
def
“ supτPr0,ss }f̃pτq}L8 , as we have }∇pf

1}L8 ď CT for some CT ą 0.

Since ũp0q “ 0, we obtain that ũpsq “ 0 for any s P r0, T s, and hence, f̃ptq “ Ẽptq “

B̃ptq “ 0 for any t P r0, T s. This completes the proof for the uniqueness. �

(Non-negativity) Suppose that f0 is initially non-negative. Then f is constant
along the characteristics defined in Section 3 and hence is non-negative. �
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