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ABSTRACT 

Macroscopic traffic flow modeling is essential for describing and forecasting the 
characteristics of traffic flow. However, the classic Lighthill-Whitham-Richards 
(LWR) model only provides equilibrium values for steady-state conditions and 
fails to capture stochastic variabilities, which are commonly observed and 
necessary for accurate modeling of real-time traffic management and control. In 
this paper, a stochastic LWR (SLWR) model that randomizes free-flow speed is 
developed to account for the uncertainties incurred by driving behavior. The 
SLWR model follows a conservation law of stochastic traffic density and flow 
and is formulated as a time-dependent stochastic partial differential equation. The 
model is solved by a dynamically bi-orthogonal (DyBO) method based on spatial 
and stochastic bases. Various scenarios are simulated and compared to the Monte 
Carlo method, and the results show that the SLWR model can effectively describe 
dynamic traffic evolutions and that the DyBO method shows significant 
computational advantages over the Monte Carlo method. 

 

1 INTRODUCTION 
Traffic flow modeling is fundamental for describing and 
predicting the characteristics of vehicular movements, and it 
is an important component of dynamic traffic assignment and 
real-time traffic management and control. At the macroscopic 
level, traffic flow modeling focuses on the dynamic changes 
in flow, density, and speed, as well as shock formation and 

propagation, with the Lighthill-Whitham-Richards (LWR) 
model (Lighthill and Whitham, 1955; Richards, 1956) being a 
classic and popular model. The LWR model is a time-
dependent deterministic partial differential equation that 
obeys a conservation law of traffic density and flow. 
However, it ignores stochastic variabilities, which are 
common because of differences in driving behavior, vehicle 
types, and road conditions. The LWR model must be 
extended to capture these stochastic variabilities in traffic 
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flow. However, stochastic modeling increases the 
computational burden, so an efficient solution method should 
be developed to improve its applicability in engineering 
practice.  

Stochastic phenomena are commonly observed in daily 
traffic (Sumalee et al., 2011a; Szeto et al., 2011; Zhou et al., 
2016). For example, the space-mean speed can change in 
response to a change in mean density. Therefore, it is 
unrealistic to assume that a density evolution pattern is 
consistent across days, even at the same location, with the 
same traffic demands. The average travel time may fluctuate 
within a range at the same period from day to day. Because 
the classic LWR model describes traffic dynamics as 
temporal means (Prigogine and Herman, 1971), considerable 
effort has been made to explore stochastic traffic flow 
modeling. Exploring how stochasticity can affect the traffic 
flow, Sumalee et al. (2011) pointed out that randomness can 
come from exogenous sources such as traffic, road geometry 
design features, and weather conditions, or from endogenous 
sources such as driving. Previous studies have suggested 
three strategies to consider these uncertainties. One is to 
randomize the density function. Sumalee et al. (2011) 
proposed a stochastic cell transmission model with a zero-
mean Gaussian random process to form the probabilistic 
density. Randomizing the speed function can also be 
effective. Li et al. (2012) modified the speed-density function 
by including a random noise term and then developed an 
extended LWR model based on these random fundamental 
relationships. Another option is to randomize the flow 
function. Jabari and Liu (2012) developed a cell transmission 
model (CTM)- based stochastic model using random state-
dependent vehicle time headways. They also argued that 
adding random noise terms to a deterministic equation can 
lead to problems with negative densities and mean dynamics 
that are inconsistent with those in the deterministic dynamics, 
which was a common way to model stochastic traffic flow 
(Gazis and Liu, 2003; Gazis and Knapp, 1971). In their 
research, traffic dynamics can randomly change at any time 
step. However, it is unrealistic to expect random changes in 
driving behavior on the roads. To address this drawback of 
the unreasonable physical meaning of the stochastic process, 
this paper assumed that stochasticity stemmed from driving 
behavior and that once a vehicle entered a road section, its 
free-flow speed should remain constant. Therefore, a random 
free-flow speed was introduced into the LWR model and a 
stochastic partial differential equation (SPDE) was 
constructed. 

Although much research has been done to solve SPDEs, it 
is challenging to balance accuracy and efficiency. The Monte 
Carlo (MC) method is a classic and robust way to calculate 
stochastic solutions, and one of its desirable features is that 
the convergence rate is independent of stochastic 
dimensionality (Cheng et al., 2013a). However, a 
disadvantage of the MC method is its slow convergence. 
Researchers have studied more efficient solution methods 
such as the sparse grid-based stochastic collocation method 

(Babuška et al., 2007), the multi-level Monte Carlo method 
(Giles, 2008), and the internal Monte Carlo method (Jahani et 
al., 2014). Jahani et al. (2014) modeled uncertain variables as 
fuzzy random variables and evaluated them by interval Monte 
Carlo simulation and the interval finite element method. 
These methods can be categorized as sampling techniques. 
Furthermore, generalized polynomial chaos (Xiu et al., 2002) 
and multi-element generalized polynomial chaos (Wan and 
Karniadakis, 2006) are spectral methods for solving 
uncertainty problems. Another approach is to formulate a 
reduced-complexity model that retains as much of the 
original predictive capability as possible, such as the 
Karhunen-Loeve (KL) expansion or the Wiener-Askey 
polynomial chaos expansion. Newman (1996a, 1996b) 
showed how to use the Karhunen-Loeve expansion and 
Galerkin’s method to find reduced-complexity models for 
flow-involved dynamical systems. Xiu and Karniadakis 
(2003) proposed a Wiener-Askey polynomial chaos 
expansion to represent stochastic processes and demonstrated 
an exponential convergence rate by solving a stochastic 
ordinary differential equation. However, these methods 
require the formation of covariance matrices and the solving 
of large-scale eigenvalue problems, both of which are 
computationally expensive. To solve this problem, 
researchers have studied a dynamically bi-orthogonal 
(DyBO) method (Babaee et al., 2017; Cheng et al., 2013a, 
2013b; Choi et al., 2014) that derives an equivalent system 
governing the evolution of the spatial and stochastic bases in 
the KL expansion. This method constructed a reduced basis 
on the fly without the need to form the covariance matrix or 
compute its eigendecomposition. Such a method is rarely 
used in stochastic traffic flow modeling, so it is interesting to 
examine its applicability.  

To capture the stochastic traffic characteristics, a 
Stochastic Lighthill-Whitman-Richards (SLWR) model in 
which the free-flow speed was randomized to account for 
driving behavior, was developed. In addition, in various 
simulation experiments, the DyBO method was used to 
efficiently obtain numerical solutions compared with the 
results of the MC method. 

2 STOCHASTIC TRAFFIC FLOW MODEL 
In macroscopic modeling, traffic flow is described as a 
continuous fluid, and the distribution, evolution, and 
propagation of density, speed, and flow are studied. A 
homogeneous highway with a uniform road configuration is 
assumed, where all vehicles enter the road section at the 
entrance and travel to the exit without any entries or exits 
along the road (see Figure 1). 

The traffic flow at the entrance consists of various drivers, 
each with a different desired speed in free-flow traffic. For 
example, conservative drivers travel more slowly than 
aggressive drivers. This heterogeneous driving behavior may 
result in stochastic phenomena. Therefore, some assumptions 
are made before the SLWR model is developed. 
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•  Different drivers have different driving behaviors 
(represented by the free-flow speed, which is assumed 
to follow a certain distribution). 

• Vehicle compositions at the road entrance are 
randomly affected by the distribution of the free-flow 
speed, and once a vehicle enters the road, its driving 
behavior should remain constant until it exits. 

Let 𝑢𝑢𝑓𝑓 be the free-flow speed, which is a random variable 
that could follow any type of distribution, defined on a 
probability space (Ω,ℱ,ℙ) , representing heterogeneous 
driving behavior, 

𝑢𝑢𝑓𝑓 :𝛺𝛺 → ℝ,                (1) 

where 𝛺𝛺  is a sample space, ℱ  is a 𝜎𝜎 -algebra, ℙ  is a 
probability measure and ℝ is a real line. Then, 𝑢𝑢𝑓𝑓(𝜔𝜔) is the 
random free-flow speed that corresponds to the random event 
𝜔𝜔 ∈ 𝛺𝛺. 

At the entrance, traffic flow is a stochastic process defined 
on the same probability space, 

{𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡,𝜔𝜔): 𝑡𝑡 ∈ [0,𝑇𝑇],𝜔𝜔 ∈ 𝛺𝛺},                  (2) 

where 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡,𝜔𝜔)  is the traffic flow at the entrance and 𝑡𝑡 
represents the evolving time from 0 to 𝑇𝑇. Therefore, every 
𝑡𝑡 ∈ [0,𝑇𝑇] corresponds to some random variable 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡,∙):𝛺𝛺 →
ℝ , which indicates that traffic flow at the entrance can 
randomly change over time.   

In combination with the definitional relationship and the 
Greenshield’s model, the traffic dynamics of any certain 
driver can be described by 

𝑞𝑞�𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� = 𝑘𝑘�𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)�𝑢𝑢�𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)�,           (3) 

𝑢𝑢 �𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� = 𝑢𝑢𝑓𝑓(𝜔𝜔) −    𝑢𝑢𝑓𝑓
(𝜔𝜔)

𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗
𝑘𝑘 �𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)�,     (4) 

where 𝑞𝑞�𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� is the traffic flow, 𝑘𝑘�𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� is the 
traffic density, 𝑢𝑢�𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� is the traffic speed, and 𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗 is 
the jam density. These show that for a given free-flow speed, 
traffic dynamics are non-random variables across the 
highway section over time. 

In light of fluid mechanics, vehicular movements through 
the assumed homogeneous highway section can be described 
in terms of the conservation law, so general specification of 
the SLWR model can be described as follows: 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔))
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕�𝑥𝑥,𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)�
𝜕𝜕𝜕𝜕

= 0, 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏], 𝑡𝑡 ∈ [0,𝑇𝑇],𝜔𝜔 ∈ Ω, (5)  

𝑘𝑘�𝑥𝑥, 0,𝑢𝑢𝑓𝑓(𝜔𝜔)� = 𝑘𝑘0 �𝑥𝑥,𝑢𝑢𝑓𝑓(𝜔𝜔)�,                  (6) 

𝑞𝑞�𝑎𝑎, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� = 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡,𝜔𝜔),                  (7) 

where 𝑥𝑥 represents the spatial dimension, i.e., the length of 
the road section from point 𝑎𝑎 to point 𝑏𝑏; Equation (5) is the 
conservation law, Equation (6) shows the initial condition, 
and Equation (7) shows the boundary condition. 

The proposed model indicates that the boundary condition 
will evolve randomly, but once the free-flow speed is 
sampled, its corresponding traffic dynamics will obey the 

conservation law. This means that randomness only enters the 
system through the boundary condition because of 
heterogeneous driving behavior, which satisfies our 
assumptions.  

3 SOLUTION METHODS 

To numerically solve the SLWR model, the DyBO method 
was first adopted to transform the SPDE into a series of 
deterministic partial differential equations (PDE) and 
ordinary differential equations (ODE). Classic finite 
difference methods can then be applied. The fifth-order 
weighted essentially non-oscillatory (WENO5) scheme was 
used. 

3.1 Dynamically bi-orthogonal solution method 
The derivation of the DyBO formulation of the SLWR model 
is presented below. Combining Equations (3), (4), and (5), 
the SLWR model can be written as 

𝜕𝜕𝜕𝜕�𝑥𝑥 ,𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)�

𝜕𝜕𝜕𝜕
= ℒ𝑘𝑘 = �2 𝑢𝑢𝑓𝑓(𝜔𝜔)

𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗
𝑘𝑘 �𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� −

𝑢𝑢𝑓𝑓(𝜔𝜔)�
𝜕𝜕𝜕𝜕�𝑥𝑥 ,𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)�

𝜕𝜕𝜕𝜕
,                (8) 

where ℒ is a differential operator and 𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗 is the jam density 
(a constant value). 

According to the KL expansion (Newman, 1996a), denote 
by 𝑘𝑘�  the m-term truncated solution of Equation (8), 

  𝑘𝑘� = 𝑘𝑘� + 𝒌𝒌𝒀𝒀𝑇𝑇 ,                (9) 

𝒌𝒌(𝑥𝑥, 𝑡𝑡) = �𝑘𝑘1(𝑥𝑥, 𝑡𝑡), 𝑘𝑘2(𝑥𝑥, 𝑡𝑡), … , 𝑘𝑘𝑚𝑚(𝑥𝑥, 𝑡𝑡)�,                (10) 

𝒀𝒀(𝜔𝜔, 𝑡𝑡) = �𝑌𝑌1(𝜔𝜔, 𝑡𝑡),𝑌𝑌2(𝜔𝜔, 𝑡𝑡), … ,𝑌𝑌𝑚𝑚(𝜔𝜔, 𝑡𝑡)�,               (11) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝐸𝐸 �(𝑘𝑘 �𝑥𝑥, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� −

𝑘𝑘�(𝑥𝑥, 𝑡𝑡))(𝑘𝑘 �𝑦𝑦, 𝑡𝑡,𝑢𝑢𝑓𝑓(𝜔𝜔)� − 𝑘𝑘�(𝑦𝑦, 𝑡𝑡))�,                                 (12) 

where 𝑘𝑘� = 𝐸𝐸[𝑘𝑘�], 𝒌𝒌(𝑥𝑥, 𝑡𝑡) is the spatial basis, i.e., a vector of 
eigenfunctions of the associated covariance function of 
Equation (12); 𝒀𝒀(𝜔𝜔, 𝑡𝑡) is the stochastic basis, i.e., a vector of 
zero-mean random variables; and 𝑚𝑚  is the number of 
truncated terms. Correspondingly, 〈𝒌𝒌𝑇𝑇 ,𝒌𝒌〉 and 𝐸𝐸[𝒀𝒀𝑇𝑇𝒀𝒀] are m-
by-m matrices and satisfy the bi-orthogonality condition as 

〈𝒌𝒌𝑇𝑇 ,𝒌𝒌〉(𝑡𝑡) = �〈𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑗𝑗〉� = (𝜆𝜆𝑖𝑖(𝑡𝑡)𝛿𝛿𝑖𝑖𝑖𝑖)𝑚𝑚×𝑚𝑚,                (13) 

𝐸𝐸[𝒀𝒀𝑇𝑇𝒀𝒀](𝑡𝑡) = �𝐸𝐸�𝑌𝑌𝑖𝑖𝑌𝑌𝑗𝑗�� = 𝑰𝑰,                (14) 

where 𝜆𝜆𝑖𝑖(𝑡𝑡)  is the corresponding eigenvalues of the 
covariance function of Equation (12),  𝛿𝛿𝑖𝑖𝑖𝑖  is the Kronecker 
product, and 𝑰𝑰 is the identity matrix.  

Substitute Equation (9) into Equation (8), 

𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝒌𝒌

𝜕𝜕𝜕𝜕
𝒀𝒀𝑇𝑇 + 𝒌𝒌 𝑑𝑑𝒀𝒀𝑇𝑇

𝑑𝑑𝑑𝑑
= ℒ𝑘𝑘� + �ℒ𝑘𝑘 − ℒ𝑘𝑘�� − �𝜕𝜕𝒌𝒌

�

𝜕𝜕𝜕𝜕
𝒀𝒀�𝑇𝑇 + 𝒌𝒌� 𝑑𝑑𝒀𝒀�𝑇𝑇

𝑑𝑑𝑑𝑑
�,

               (15) 
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and assume that the eigenvalues in the KL expansion decay 
fast enough and the differential operator is stable; then, the 
last two terms on the right-hand side will be small and can be 
dropped. 

𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝒌𝒌

𝜕𝜕𝜕𝜕
𝒀𝒀𝑇𝑇 + 𝒌𝒌 𝑑𝑑𝒀𝒀𝑇𝑇

𝑑𝑑𝑑𝑑
= ℒ𝑘𝑘� .                (16) 

Take expectations on both sides of Equation (15), and 
because 𝒀𝒀 is a zero-mean random variable, 

𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
= 𝐸𝐸�ℒ𝑘𝑘��,  (17) 

which gives the evolution equation for the mean of the 
solution. 

Multiplying both sides of Equation (16) by Y from the 
right and taking expectations, the evolution equation of the 
spatial basis can be obtained. Similarly, multiplying both 
sides of Equation (16) by k from the right, the evolution 
equation of the stochastic basis can be obtained. More 
detailed steps of the derivation can be found in Cheng et al. 
(2013). 

𝜕𝜕𝒌𝒌
𝜕𝜕𝜕𝜕

= −𝒌𝒌𝑫𝑫𝑇𝑇 + 𝐸𝐸�ℒ̃𝑘𝑘�𝒀𝒀�,                (18) 

𝑑𝑑𝒀𝒀
𝑑𝑑𝑑𝑑

= −𝒀𝒀𝑪𝑪𝑇𝑇 + 〈ℒ̃𝑘𝑘� ,𝒌𝒌〉𝚲𝚲𝒌𝒌−1,                (19) 

where 𝑪𝑪  and 𝑫𝑫  are m-by-m matrices representing the 
projection coefficients of 𝜕𝜕𝒌𝒌

𝜕𝜕𝜕𝜕
 and 𝑑𝑑𝒀𝒀

𝑑𝑑𝑑𝑑
 into 𝒌𝒌 and 𝒀𝒀, respectively. 

The solutions of 𝑪𝑪 and 𝑫𝑫 are given entry-wisely, 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐺𝐺∗𝑖𝑖𝑖𝑖 ,                (20) 

𝐶𝐶𝑖𝑖𝑖𝑖 =
�𝑘𝑘𝑗𝑗�

2

�𝑘𝑘𝑗𝑗�
2
−‖𝑘𝑘𝑖𝑖‖2

�𝐺𝐺∗𝑖𝑖𝑖𝑖 + 𝐺𝐺∗𝑗𝑗𝑗𝑗�, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗,                 (21) 

𝐷𝐷𝑖𝑖𝑖𝑖 = 0,                (22) 

𝐷𝐷𝑖𝑖𝑖𝑖 = 1

�𝑘𝑘𝑗𝑗�
2
−‖𝑘𝑘𝑖𝑖‖2

��𝑘𝑘𝑗𝑗�
2𝐺𝐺∗𝑗𝑗𝑗𝑗 + ‖𝑘𝑘𝑖𝑖‖2𝐺𝐺∗𝑖𝑖𝑖𝑖� , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗,(23) 

where 𝐶𝐶𝑖𝑖𝑖𝑖 , 𝐶𝐶𝑖𝑖𝑖𝑖  are elements of the matrix 𝑪𝑪 ; 𝐷𝐷𝑖𝑖𝑖𝑖 , 𝐷𝐷𝑖𝑖𝑖𝑖 are 
elements of the matrix 𝑫𝑫; and 𝐺𝐺∗𝑖𝑖𝑖𝑖 , 𝐺𝐺∗𝑗𝑗𝑗𝑗  are elements of the 
matrix 𝑮𝑮∗, which can be calculated as 

𝑮𝑮∗ = 𝚲𝚲𝒌𝒌−1〈𝒌𝒌𝑇𝑇 ,𝐸𝐸�ℒ̃𝑘𝑘�𝒀𝒀�〉,                 (24) 

 𝚲𝚲𝒌𝒌 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(〈𝒌𝒌𝑇𝑇 ,𝒌𝒌〉).                (25) 

Equations (18) and (19) still involve random variables. 
Because the random free-flow speed is assumed to follow a 
normal distribution in this paper, Hermite polynomials can be 
used to represent the stochastic terms. 

Denote by 𝑯𝑯 = (𝐻𝐻1 ,𝐻𝐻2,⋯ ,𝐻𝐻𝑁𝑁𝑝𝑝)  the 𝑁𝑁𝑝𝑝 -term Hermite 
polynomials, which exclude the zero-index 𝑯𝑯0 = 1. Then, 

𝒀𝒀 = 𝑯𝑯𝑯𝑯,                (26)  

where 𝑨𝑨 is a 𝑁𝑁𝑝𝑝-by-𝑚𝑚 matrix. 

Denote by 𝑍𝑍𝑢𝑢𝑓𝑓 = 𝒄𝒄𝑯𝑯𝑇𝑇  a standard normal (i.e., 
𝑍𝑍𝑢𝑢𝑓𝑓~𝑁𝑁(0,1)),  where 𝒄𝒄 = (1,0,⋯ ,0)  is the expansion 
constants; then, the free-flow speed can be represented as 

𝑢𝑢𝑓𝑓(𝜔𝜔) = 𝑢𝑢𝑓𝑓��� + 𝜎𝜎𝑢𝑢𝑓𝑓𝒄𝒄𝑯𝑯
𝑇𝑇 ,                 (27) 

where 𝑢𝑢𝑓𝑓��� is the mean and 𝜎𝜎𝑢𝑢𝑓𝑓  is the standard deviation of the 
random free-flow speed. 

Substituting Equations (9), (26), and (27) into Equation 
(8),  

ℒ𝑘𝑘� = �2 𝑢𝑢𝑓𝑓(𝜔𝜔)

𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗
𝑘𝑘� − 𝑢𝑢𝑓𝑓(𝜔𝜔)� 𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
+ � 2𝑘𝑘�

𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗
− 1� 𝑢𝑢𝑓𝑓���𝑯𝑯𝑯𝑯

𝜕𝜕𝒌𝒌𝑇𝑇

𝜕𝜕𝜕𝜕
+

� 2𝑘𝑘�

𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗
− 1� 𝜎𝜎𝑢𝑢𝑓𝑓𝒄𝒄𝑯𝑯

𝑇𝑇𝑯𝑯𝑯𝑯 𝜕𝜕𝒌𝒌𝑇𝑇

𝜕𝜕𝜕𝜕
+ 2

𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
𝑢𝑢𝑓𝑓���𝑯𝑯𝑯𝑯𝒌𝒌𝑇𝑇 +

2
𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
𝜎𝜎𝑢𝑢𝑓𝑓𝒄𝒄𝑯𝑯

𝑇𝑇𝑯𝑯𝑯𝑯𝒌𝒌𝑇𝑇 + 2
𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗

𝑢𝑢𝑓𝑓���𝒌𝒌𝑨𝑨𝑇𝑇𝑯𝑯𝑇𝑇𝑯𝑯𝑯𝑯 𝜕𝜕𝒌𝒌𝑇𝑇

𝜕𝜕𝜕𝜕
+

2
𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗

𝜎𝜎𝑢𝑢𝑓𝑓𝒄𝒄𝑯𝑯
𝑇𝑇𝒌𝒌𝑨𝑨𝑇𝑇𝑯𝑯𝑇𝑇𝑯𝑯𝑯𝑯 𝜕𝜕𝒌𝒌𝑇𝑇

𝜕𝜕𝜕𝜕
.                 (28) 

Then, the following terms 𝐸𝐸�ℒ𝑘𝑘��,𝐸𝐸�ℒ̃𝑘𝑘�𝑯𝑯�𝑨𝑨 =
 𝐸𝐸�(ℒ𝑘𝑘� − 𝐸𝐸[ℒ𝑘𝑘�])𝑯𝑯�𝑨𝑨,𝐸𝐸�𝑯𝑯𝑇𝑇ℒ̃𝑘𝑘�� can be calculated using the 
properties 𝐸𝐸[𝑯𝑯𝑇𝑇𝑯𝑯] = 𝑰𝑰, 𝑨𝑨𝑇𝑇𝑨𝑨 = 𝑰𝑰, and 𝐸𝐸[𝑯𝑯] = 𝟎𝟎. 

Based on the representation of Hermite polynomials, the 
DyBO formulation of the SLWR model can be expressed as  

𝜕𝜕𝑘𝑘�

𝜕𝜕𝜕𝜕
= 𝐸𝐸�ℒ𝑘𝑘��,                   (29) 

 𝜕𝜕𝒌𝒌
𝜕𝜕𝜕𝜕

= −𝒌𝒌𝑫𝑫𝑇𝑇 + 𝐸𝐸�ℒ̃𝑘𝑘�𝑯𝑯�𝑨𝑨,                  (30) 

 𝑑𝑑𝑨𝑨
𝑑𝑑𝑑𝑑

= −𝑨𝑨𝑪𝑪𝑇𝑇 + 〈𝐸𝐸�𝑯𝑯𝑇𝑇ℒ̃𝑘𝑘��,𝒌𝒌〉𝚲𝚲𝒌𝒌−1,                  (31) 

which gives the deterministic PDE of Equations (29) and (30) 
and ODE of Equation (31). 

3.2 Weighted essentially non-oscillatory scheme 
This study used the fifth-order WENO5 scheme. This method 
has high resolution and is non-oscillatory even in the 
presence of shocks and other discontinuities in the solution 
(Xiong et al., 2011). More details can be found in Shu (2006) 
and Shu (2020). The procedure of the WENO scheme is 
summarized below. Consider Equation (29) as an example. 

First, spatial discretization is discussed. The space domain 
is discretized into a uniform mesh of J grid points: 

𝑥𝑥𝑗𝑗 = 𝑗𝑗∆𝑥𝑥, 𝑗𝑗 = 1,2,⋯ , 𝐽𝐽,                (32) 

where ∆𝑥𝑥 is the uniform grid mesh. Then, the approximation 
of density 𝑘𝑘�𝑗𝑗(𝑡𝑡) ≈ 𝑘𝑘�(𝑥𝑥𝑗𝑗 , 𝑡𝑡) satisfies the following equation: 

𝑑𝑑𝑘𝑘�𝑗𝑗(𝑡𝑡)

𝑑𝑑𝑑𝑑
+ 1

∆𝑥𝑥
�𝑞𝑞�𝑗𝑗+12

− 𝑞𝑞�𝑗𝑗−12
� = 0,                 (33) 

where 𝑞𝑞�𝑗𝑗+12
 and 𝑞𝑞�𝑗𝑗−12

 are the numerical fluxes at points j+1/2 

and j-1/2 of the right-hand side of Equation (28), 
respectively. According to the fifth-order WENO scheme, the 
numerical flux 𝑞𝑞�𝑗𝑗+12

 is defined as follows: 
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𝑞𝑞�𝑗𝑗+12
= 𝜃𝜃1𝑞𝑞�𝑗𝑗+1/2

(1) + 𝜃𝜃2𝑞𝑞�𝑗𝑗+1/2
(2) + 𝜃𝜃3𝑞𝑞�𝑗𝑗+1/2

(3) ,                  (34) 

where 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 are three nonlinear weights and 𝑞𝑞�𝑗𝑗+1/2
(1) , 

𝑞𝑞�𝑗𝑗+1/2
(2) , and 𝑞𝑞�𝑗𝑗+1/2

(3)  are three third-order numerical fluxes on 
three stencils. The third-order fluxes are given by 

𝑞𝑞�𝑗𝑗+1/2
(1) = 1

3
𝑞𝑞𝑗𝑗−2 −

7
6
𝑞𝑞𝑗𝑗−1 + 11

6
𝑞𝑞𝑗𝑗 ,                  (35) 

𝑞𝑞�𝑗𝑗+1/2
(2) = −1

6
𝑞𝑞𝑗𝑗−1 + 5

6
𝑞𝑞𝑗𝑗 + 1

3
𝑞𝑞𝑗𝑗+1,                 (36) 

𝑞𝑞�𝑗𝑗+1/2
(3) = 1

3
𝑞𝑞𝑗𝑗 + 5

6
𝑞𝑞𝑗𝑗+1 −

1
6
𝑞𝑞𝑗𝑗+2,                  (37) 

where 𝑞𝑞𝑗𝑗  is an abbreviated notation for 𝑞𝑞(𝑥𝑥𝑗𝑗 , 𝑡𝑡) . The 
nonlinear weights are given by 

𝜃𝜃𝑝𝑝 = 𝜃𝜃�𝑝𝑝
∑ 𝜃𝜃�𝑙𝑙3
𝑙𝑙=1

, 𝑝𝑝 = 1,2,3,                 (38) 

𝜃𝜃�𝑙𝑙 = 𝛾𝛾𝑙𝑙
(𝜀𝜀+𝛽𝛽𝑙𝑙)2

, 𝑙𝑙 = 1,2,3,                 (39) 

where 𝜀𝜀 is a parameter to prevent the denominator of 𝜃𝜃�𝑙𝑙 from 
being zero and is fixed at 10−6 in this paper, 𝛾𝛾𝑙𝑙 is the linear 
weights, and 𝛽𝛽𝑙𝑙  is the smoothness indicators. The linear 
weights are given by 

𝛾𝛾1 = 1
10

, 𝛾𝛾2 = 3
5

, 𝛾𝛾3 = 3
10

,                 (40) 

and the smoothness indicators are given by 

𝛽𝛽1 = 13
12

(𝑞𝑞𝑗𝑗−2 − 2𝑞𝑞𝑗𝑗−1 + 𝑞𝑞𝑗𝑗)2 + 1
4

(𝑞𝑞𝑗𝑗−2 − 4𝑞𝑞𝑗𝑗−1 + 3𝑞𝑞𝑗𝑗)2, 
               (41) 

𝛽𝛽2 = 13
12

(𝑞𝑞𝑗𝑗−1 − 2𝑞𝑞𝑗𝑗 + 𝑞𝑞𝑗𝑗+1)2 + 1
4

(𝑞𝑞𝑗𝑗−1 − 𝑞𝑞𝑗𝑗+1)2,       (42) 

𝛽𝛽3 = 13
12

(𝑞𝑞𝑗𝑗 − 2𝑞𝑞𝑗𝑗+1 + 𝑞𝑞𝑗𝑗+2)2 + 1
4

(3𝑞𝑞𝑗𝑗 − 4𝑞𝑞𝑗𝑗+1 + 𝑞𝑞𝑗𝑗+2)2.
               (43) 

Above is described the fifth-order WENO scheme for the 
positive wind direction. If the wind direction is negative, the 
procedure for computing the numerical flux 𝑞𝑞�𝑗𝑗+12

 is a mirror 

image with respect to the point 𝑥𝑥𝑗𝑗+1/2 , which is described 
above. The stencil can then be biased to the right. For the 
case where the wind direction may change, the Lax-
Friedrichs splitting method is used. 

𝑞𝑞�𝑘𝑘�� = 𝑞𝑞+�𝑘𝑘�� + 𝑞𝑞−�𝑘𝑘��,                 (44) 

𝑞𝑞±�𝑘𝑘�� = 1
2
�𝑞𝑞�𝑘𝑘�� ± 𝛼𝛼𝑘𝑘��,                  (45) 

𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘�𝜕𝜕𝜕𝜕(𝑘𝑘�) 𝜕𝜕𝑘𝑘�⁄ �,                 (46) 

where 𝑞𝑞+�𝑘𝑘�� and 𝑞𝑞−(𝑘𝑘�) are the splitting flux for the positive 
and negative wind directions, respectively. 

Second, the time domain is discretized into a mesh of N 
grid points.  

𝑡𝑡[𝑛𝑛] = 𝑡𝑡[𝑛𝑛−1] + ∆𝑡𝑡,𝑛𝑛 = 1,2,⋯ ,𝑁𝑁,                 (47) 

where ∆𝑡𝑡 is the uniform mesh size on the time axis. Then, the 
third-order total variation diminishing (TVD) Runge-Kutta 
method is used. 

𝑘𝑘� (1) = 𝑘𝑘� [𝑛𝑛] + ∆𝑡𝑡𝑡𝑡�𝑘𝑘� [𝑛𝑛], 𝑡𝑡[𝑛𝑛]�,                (48) 

𝑘𝑘� (2) = 3
4
𝑘𝑘� [𝑛𝑛] + 1

4
𝑘𝑘� (1) + 1

4
∆𝑡𝑡𝑡𝑡�𝑘𝑘� (1), 𝑡𝑡[𝑛𝑛] + ∆𝑡𝑡�,             (49) 

𝑘𝑘� [𝑛𝑛+1] = 1
3
𝑘𝑘� [𝑛𝑛] + 2

3
𝑘𝑘� (2) + 2

3
∆𝑡𝑡𝑡𝑡 �𝑘𝑘� (2), 𝑡𝑡[𝑛𝑛] + 1

2
∆𝑡𝑡�,      (50) 

where L is the approximation to the spatial derivatives, 

𝐿𝐿(𝑘𝑘, 𝑡𝑡) = − 1
∆𝑥𝑥
�𝑞𝑞�𝑗𝑗+12

− 𝑞𝑞�𝑗𝑗−12
�.                 (51) 

4 NUMERICAL EXAMPLE 
A simulation experiment was conducted to show the 
effectiveness of the SLWR model. The DyBO method was 
validated in comparison to the MC method. Different samples 
of the MC method were calculated to select a benchmark 
result, and different numbers of spatial terms and Hermite 
polynomials were tested in the sensitivity analysis.  

4.1 Example settings 
A 2-km homogeneous road section without any intermediate 
ramps was considered in the numerical experiment. The free-
flow speed was assumed to be a stochastic variable following 
a normal distribution with a mean of 70 and a standard 
deviation of 10, i.e., 𝑢𝑢𝑓𝑓~𝑁𝑁(70,100)  and 𝑘𝑘𝑗𝑗𝑗𝑗𝑗𝑗 =
100 𝑣𝑣𝑣𝑣ℎ/𝑘𝑘𝑘𝑘 . The initial condition assumed that traffic 
density was empty along the section, and the boundary 
condition assumed that traffic flow at the entrance was 
subjected to a trapezoid of changes, as shown in Figure 2. 

It was assumed that an incident can happen at the 
downstream exit of the road section, blocking the exit from t 
= 0.75 h to t = 0.77 h. As no vehicles could leave the road 
section, a queue emerged and propagated upstream. After t = 
0.77 h, the incident was cleared, and the queue was able to 
discharge. For the WENO5 scheme, the spatial and time grid 
sizes were set to 0.01 km and 1×10-4 h, respectively. 

4.2 Numerical results 
To validate the DyBO method, a benchmark solution was 
calculated using the MC method. According to the central 
limit theorem, as the sample sizes increased, the results of the 
MC method became closer to the exact values. Samples sizes 
of 100, 200, 400, 800, 1,600, 3,200, and 12,800 were 
calculated, and 12,800 samples were computed to 
approximate the exact solution as a benchmark result. The 
relative root-mean-squared error (RRMSE) is defined as 
follows to measure accuracy against the benchmark results. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌 =
�1
𝑁𝑁∑ �𝜌𝜌𝑖𝑖𝑖𝑖

(𝑘𝑘)−𝜌𝜌𝑖𝑖𝑖𝑖
∗ �

2
𝑖𝑖𝑖𝑖
1
𝑁𝑁∑ 𝜌𝜌𝑖𝑖𝑖𝑖

∗
𝑖𝑖𝑖𝑖

× 100%,                           (52) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜎𝜎 =
�1
𝑁𝑁∑ �𝜎𝜎𝑖𝑖𝑖𝑖

(𝑘𝑘)−𝜎𝜎𝑖𝑖𝑖𝑖
∗ �

2
𝑖𝑖𝑖𝑖
1
𝑁𝑁∑ 𝜎𝜎𝑖𝑖𝑖𝑖

∗
𝑖𝑖𝑖𝑖

× 100%,                (53) 
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where 𝜌𝜌𝑖𝑖𝑖𝑖
(𝑘𝑘)  and 𝜎𝜎𝑖𝑖𝑖𝑖

(𝑘𝑘)  are the mean (MEAN) and standard 
deviation (SDEV) of the density of the 𝑘𝑘𝑘𝑘ℎ case for grid point 
(𝑖𝑖, 𝑡𝑡), respectively; 𝜌𝜌𝑖𝑖𝑖𝑖∗  and 𝜎𝜎𝑖𝑖𝑖𝑖∗  are the converged MEAN and 
SDEV of the density from the MC scheme, respectively; and 
𝑁𝑁 is the total number of grid points (space and time). 

Figure 3 shows the RRMSE of the MEAN and SDEV of 
the density. The MEAN’s RRMSE converged faster than that 
of SDEV. When the sample size was larger than 1600, the 
MEAN’s RRMSE dropped below 0.5%, while the SDEV’s 
RRMSE was approximately 3%.  

Although the MC method can obtain robust solutions, its 
efficiency may be undesirable. As shown in Figure 4, the 
computation time of the MC method increased linearly, and 
the case of 12,800 samples requires approximately 12,325 
min of computing time.  

The DyBO method was then applied to reach an 
acceptable level of accuracy in a much more efficient way. 
As a blockage incident was considered in the simulation 
experiment, the results are elaborated in three scenarios: (1) 
before the blockage, (2) during the blockage, and (3) after the 
blockage. This can help to clarify the traffic flow 
propagation. As mentioned, the derivation of DyBO 
equations involved truncated terms. Therefore, the number of 
spatial terms or Hermite polynomials can affect the accuracy 
of the solutions. Different numbers of spatial terms (i.e., 𝑚𝑚 =
3, 5, 7, 9, 11, 13, 15 ) and Hermite polynomials (i.e., 𝑁𝑁𝑝𝑝 =
2, 4, 6) were tested to examine the sensitivity of accuracy and 
efficiency. 

Before the blockage, traffic entered at the left boundary 
and exited at the right boundary without any disturbance, and 
a relatively smooth density pattern was observed. Figure 5 
shows the density patterns at t = 0.3 h. Slight staircase-shaped 
fluctuations were observed, as vehicles with different free-
flow speeds entered stochastically, and faster vehicles 
traveled farther than slower ones, causing the density to 
accumulate at different spots. The greater the speed 
differences, the greater the fluctuations, in line with the 
findings of Zhang et al. (2003). Furthermore, with increasing 
spatial terms and Hermite polynomials, the MEAN and 
SDEV became closer to the results of the MC method.  

During the blockage, traffic continuously entered at the 
left boundary but did not leave at the right boundary. A 
backward shock wave was observed. Figure 6 shows the 
density patterns at t = 0.78 h. The maximum MEAN was 100 
veh/h, which is consistent with the jam density of the 
proposed Greenshield’s model. The MEAN dropped to 
approximately 50 veh/h after the peak, indicating the 
saturated discharging flow, which is consistent with the 
optimal density of the Greenshield’s model. In light traffic, 
the SDEV was smaller and stable; in congested traffic, the 
SDEV was larger and unstable; from congested to 
discharging traffic, the SDEV was smaller and more stable. 
The queue lengths (i.e., stop-and-go condition) of different 
groups of drivers can vary greatly, but the middle parts of the 
queues (i.e., completely stopped condition) are nearly at the 
same place. According to the fundamental diagram, 

shockwave speeds decrease as densities increase in the free 
flow condition, whereas shockwave speeds increase as 
densities increase in the oversaturated condition. Therefore, 
with more heterogeneous drivers, the SDEV becomes larger. 
Even with the shock wave, the DyBO method showed good 
convergence to the MC results, and the accuracy can be 
increased by adding more spatial terms and Hermite 
polynomials. 

After the blockage, the queue was discharged at the right 
boundary, and similar density patterns to those observed 
before the blockage were observed. Figure 7 shows the 
density patterns at t = 1.2 h. The MEAN and SDEV were 
relatively stable alongside the road section, with slight 
fluctuations because of heterogeneous driving behavior, and 
were generally larger than those at t = 0.3 h because of the 
increased traffic flow at the left boundary. This implies that 
the SLWR model and DyBO method can adapt well to 
different boundary conditions.  

To quantify the convergence of the DyBO method, the 
RRMSE of MEAN and SDEV were calculated, with different 
numbers of spatial terms ( 𝑚𝑚 = 3, 5, 7, 9, 11, 13, 15 ) and 
Hermite polynomials ( 𝑁𝑁𝑝𝑝 = 2, 4, 6 ) with respect to the 
benchmark solutions obtained by the MC method with 12,800 
samples, as shown in Table 1. As the number of spatial terms 
or Hermite polynomials increased, the RRMSE of MEAN 
and SDEV decreased, indicating convergence to the 
benchmark results. With 𝑚𝑚 = 15 , the RRMSE of both 
MEAN and SDEV were below 1%, which was acceptable in 
comparison to the MC results. Furthermore, the computation 
time of the DyBO method ranged from 1.7 min to 2.1 min, 
which considerably reduced the computational costs.  

5 DISCUSSION 
One major contribution of this paper is the development of an 
efficient method to solve the SLWR model. The simulation 
experiment results showed that the DyBO method was much 
more efficient than the MC method and had desirable 
accuracy. The speedup performance of the DyBO method 
was also calculated. It is well known that the convergence of 
the MC method satisfies the relationship 𝐸𝐸 = 𝑂𝑂�1 √𝐾𝐾⁄ � =
𝐶𝐶 √𝐾𝐾⁄ , where 𝐸𝐸 is the error, 𝐾𝐾 is the number of MC samples, 
and 𝐶𝐶  is a constant. Taking the logarithm on both sides, a 
linear relationship is expected, 𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙 − 1/2 𝑙𝑙𝑙𝑙𝑙𝑙. Thus, 
if a graph of 𝑙𝑙𝑙𝑙𝑙𝑙 against 𝑙𝑙𝑙𝑙𝑙𝑙 is plotted, the slope of the best-
fitted line can be approximately −0.5 . According to the 
RRMSE and sample size of the MC method in Figure 3, two 
best-fitted lines were plotted, as shown in Figure 8, from 
which the number of samples that achieve the same accuracy 
as the DyBO method can be estimated, and then the speedup 
can be calculated. 

For example, with 𝑚𝑚 = 15  and 𝑁𝑁𝑝𝑝 = 6 , the RRMSE 
values of MEAN and SDEV were 0.2% and 0.9%, 
respectively. Based on the best-fitted lines in Figure 8, 
estimated sample sizes (10,999 and 11,429) can be 
calculated. To ensure that the accuracy of the DyBO method 
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was not worse than the MC method in terms of both MEAN 
and SDEV, the smaller sample size of 10,586 was selected, 
which took approximately 10,586 min using the MC method. 
The speedup was then calculated as 10586/2.08 ≈ 5089. As 
calculated, the DyBO method can achieve approximately 5 to 
6000 times speedup over the MC method. As shown in 
Figure 9, the logarithm of speedup against RRMSE was 
presented and it was found that the speedup increased as the 
RRMSE decreased. With respect to the same RRMSE, the 
speedup of SDEV was greater than that of MEAN, and with 
respect to the same speedup, the RRMSE of MEAN was less 
than that of SDEV. For practical use in engineering problems, 
the balance between efficiency and accuracy can be assessed. 
If MEAN is more important and a large error can be 
tolerated, the MC method will remain popular because of its 
simplicity; however, if SDEV is of interest and sufficiently 
small errors are desired, then the DyBO method will be 
preferable.  

6 CONCLUSION 
This paper developed an SLWR model by introducing a 
random variable of free-flow speed to account for 
uncertainties in driving behavior. During the numerical 
experiments, stochastic variabilities were observed across the 
roadway section over time, and the MEAN and SDEV of 
traffic dynamics were then calculated. Compared to the 
classic LWR model, the proposed model can help to explore 
the stochastic paradigm, which may be useful in traffic 
planning, design, and real-time management. For example, if 
the stochastic speed paradigm is known, it will be feasible to 
use variable speed limit signs to actively manage real-time 
traffic operations. Furthermore, a DyBO method was applied 
to improve the efficiency of solving such stochastic 
problems, and a sensitivity analysis of the DyBO method was 
conducted under various settings. In comparison to the MC 
method, the DyBO method can significantly decrease 
computation time while maintaining desirable accuracy, 
thereby increasing its applicability in engineering practice. 
For example, when addressing road network design 
problems, the evaluation model must be updated every time 
network conditions change. It would be very computationally 
expensive to consider stochasticity in the evaluation model. 
In such case, the DyBO method can substantially decrease 
computational burdens. In practice, there are many sources of 
stochasticity. Future research could consider various vehicle 
types and traffic stream models.  
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TABLE 1. RRMSE of statistical quantities computed by the DyBO and MC methods. 

No. of spatial 
basis 

No. of Hermite polynomials: 

𝑁𝑁𝑝𝑝 = 2 

No. of Hermite polynomials: 

𝑁𝑁𝑝𝑝 = 4 

No. of Hermite polynomials: 

𝑁𝑁𝑝𝑝 = 6 

MEAN SDEV Time 
(min) MEAN SDEV Time 

(min) MEAN SDEV Time 
(min) 

m = 3 5.1% 24.5% 1.74 4.2% 23.6% 1.77 3.8% 23.0% 1.82 

m = 5 2.2% 13.6% 1.79 2.0% 12.7% 1.81 2.0% 12.2% 1.85 

m = 7 1.2% 8.0% 1.82 1.1% 7.3% 1.83 1.0% 6.7% 1.89 

m = 9 0.7% 4.4% 1.85 0.6% 3.9% 1.85 0.5% 3.5% 1.93 

m = 11 0.5% 3.1% 1.87 0.3% 2.4% 1.90 0.3% 2.0% 1.99 

m = 13 0.4% 2.4% 1.89 0.2% 1.4% 1.94 0.2% 1.2% 2.03 

m = 15 0.2% 1.7% 1.93 0.2% 1.0% 1.96 0.2% 0.9% 2.08 
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FIGURE 1. Conceptual diagram of the SLWR model.
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FIGURE 2. Traffic flow at the left boundary. 
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FIGURE 3. RRMSE of different numbers of samples: (a) MEAN and (b) SDEV. 
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FIGURE 4. Computation time of the MC method. 
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FIGURE 5. Density patterns at t = 0.3 h. 
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FIGURE 6. Density patterns at t = 0.78 h. 
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FIGURE 7. Density patterns at t = 1.2 h. 
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FIGURE 8. Relationship between the number of samples and errors of the MC method: (a) MEAN and (b) SDEV.  
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FIGURE 9. Relationship between speedup and RRMSE. 
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