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Abstract

Given a bounded symmetric domain Ω we consider the geometry of its
totally geodesic complex submanifolds S ⊂ Ω. In terms of the Harish-
Chandra realization Ω ⋐ Cn and taking S to pass through the origin
0 ∈ Ω, so that S = E ∩ Ω for some complex vector subspace of Cn,
we show that the orthogonal projection ρ : Ω → E maps Ω onto S,
and deduce that S ⊂ Ω is a holomorphic isometry with respect to the
Carathéodory metric. Our first theorem gives a new derivation of a
result of Yeung’s deduced from the classification theory by Satake and
Ihara in the special case of totally geodesic complex submanifolds of
rank 1 and of complex dimension ≥ 2 in the Siegel upper half plane
Hg, a result which was crucial for proving the nonexistence of totally
geodesic complex suborbifolds of dimension ≥ 2 on the open Torelli
locus of the Siegel modular variety Ag by the same author. Our proof
relies on the characterization of totally geodesic submanifolds of Rie-
mannian symmetric spaces in terms of Lie triple systems and a variant
of the Hermann Convexity Theorem giving a new characterization of
the Harish-Chandra realization in terms of bisectional curvatures.

1 Introduction

Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-Chandra re-
alization (cf. Theorem 2.3). Write G0 := Aut0(Ω) and denote by ds2Ω the
G0-invariant Kähler metric on Ω such that minimal disks on each irreducible
factor of Ω are of constant Gaussian curvature −2. When Ω is irreducible,
ds2Ω is a complete Kähler-Einstein metric. In general, the choice of an G0-
invariant Kähler metric on Ω depends on normalizing scalar constants, one
for each irreducible factor.

In this article we consider complex linear slices S of Ω which are totally
geodesic with respect to ds2Ω and prove the following theorem yielding a
holomorphic retraction of Ω onto S.

Theorem 1.1. Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-
Chandra realization, and identify T0(Ω) with the background Euclidean space
Cn. Let E ⊂ Cn be a complex vector subspace such that S := E ∩ Ω ⊂ Ω is
a totally geodesic complex submanifold with respect to ds2Ω. Let ρ : Cn → E
be the orthogonal projection with respect to the Euclidean metric ds2Ω(0) on
T0(Ω) ∼= Cn. Then, ρ(Ω) = S.

We observe that any totally geodesic complex submanifold of (Ω, ds2Ω)
passing through the origin 0 ∈ Ω is necessarily of the form S = E ∩ Ω
for a complex vector subspace E ⊂ Cn satisfying additional conditions (cf.
Proposition 2.4), hence Theorem 1.1 yields a holomorphic retraction of Ω
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onto any given totally geodesic complex submanifold of Ω with respect to
one and hence all G0-invariant Kähler metrics.

Theorem 1.1 in the special case where Ω is the type-III domain DIII
g :=

{Z ∈ M(g, g;C) : Zt = Z and I − ZZ > 0}, g ≥ 2, and S is biholomor-
phic to the complex unit ball Bm of dimension m ≥ 2, where M(a, b;C)
stands for the complex vector space of a-by-b matrices with complex coeffi-
cients and Zt denotes the transposed matrix of Z, was established in Yeung
[Ye21, Theorem 1] by explicitly checking according to the classification of
such embeddings due to Satake [Sat65] and Ihara [Iha67]. Theorem 1.1 in
these special cases are crucial for the establishment of the following theo-
rem in [Ye21] concerning the open Torelli locus. For the understanding of
the statement note first of all that the type-III domain DIII

g is biholomor-

phic via the inverse Cayley transform τ = λ(Z) := −ı (Z + ıIg) (Z − ıIg)
−1,

where Ig stands for the g-by-g identity matrix, to the Siegel upper half
plane Hg := {τ : Im(τ) : τ t = τ, Im(τ) > 0} defined by the Riemann bilin-
ear relations, so that Ag := Hg/PSp(g;Z) is the Siegel modular variety, the
classification space for principally polarized abelian varieties.

The Torelli map tg : Mg → Ag, where Mg is the Teichmüller modular
variety, i.e., the moduli space of compact Riemann surfaces C of genus g ≥ 2,
is the holomorphic map defined for a compact Riemann surface C of genus
g ≥ 2 by tg([C]) = [Jac(C)], where Jac(C) stands for the Jacobian variety
of C in its natural principal polarization, and [· · · ] is here and henceforth
a notation for the class of an object in some moduli space. Denote by
Mg ⊂ Mg the Deligne-Mumford compactification, and by Ag ⊂ Ag the
Satake-Baily-Borel compactification, then it is known that tg : Mg → Ag

extends holomorphically to τg : Mg → Ag. Denoting by Hg ⊂ Mg the locus
of hyperelliptic curves, thenHg ⊂ Mg is Zariski closed. It is well-known that
the Torelli map tg : Mg → Ag is injective and that tg|Mg−Hg : Mg −Hg →
Ag is immersive. The set T 0

g := tg(Mg) is called the open Torelli locus,

which is a Zariski open subset of the Zariski closed subset τg(Mg) ⊂ Ag.
The principal result of [Ye21] is the following theorem.

Theorem 1.2. (Yeung [Ye21, Theorem 2]) The set T 0
g − tg(Hg) ⊂ Ag

for g > 2 does not contain any complex hyperbolic complex ball quotient,
compact or non-compact with finite volume, of complex dimension at least 2
as a totally geodesic complex suborbifold of Ag.

The above result of Yeung, in conjunction with known rigidity results
in the higher rank case and existence results of Shimura curves on the open
Torelli locus, yielded Yeung [Ye21, Theorem 3], related to Oort’s Conjecture,
which described all Shimura varieties (necessarily of dimension 1) contained
in the open Torelli locus T 0

g − tg(Hg). (For the statement of [Ye21, Theorem
3] and related background and references cf. [Ye21, §1].)

We give in this article a proof of Theorem 1.1 in the general situa-
tion, where the target bounded symmetric domain Ω may contain direct
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factors which are exceptional domains, and where the complex submanifold
S = E ∩ Ω is of arbitrary rank as a Hermitian symmetric space of the non-
compact type. Our proof is free from classification theory. It exploits the
Harish-Chandra realization and a variant of the Hermann Convexity Theo-
rem defining Ω in terms of inequalities involving bisectional curvatures. In
§2 we collect basic materials on Riemannian symmetric spaces and bounded
symmetric domains. In §3 we give in Theorem 3.5 a new description of inde-
pendent interest of the Harish-Chandra realization of a bounded symmetric
domain in terms of bisectional curvatures. In §4 we give the proof of Theo-
rem 1.1 together with the immediate implication (Theorem 4.3) that totally
geodesic complex submanifolds of Ω are holomorphic deformation retracts of
Ω. In §5 we give in Theorem 5.1 an application of Theorem 1.1 to the geom-
etry of the complex submanifold S ⊂ Ω in terms of the Carathéodory metric
and equivalently the Kobayashi metric, which are equal on weakly convex
bounded domains according to the celebrated work of Lempert [Lem81] and
a theorem of Royden-Wong (cf. §5 for remarks and references). In the Ap-
pendix we give a self-contained proof that the (infinitesimal) Carathéodory
metric and the (infinitesimal) Kobayashi metrics agree with each other on
a bounded symmetric domain Ω by means of Theorem 1.1. The article has
been written in a somewhat expository style, supplied sometimes with more
details than is absolutely necessary, in order to make it more accessible to
non-experts.

2 Background materials

2.1 Basic materials on Riemannian symmetric spaces

On a Riemannian symmetric space (M,ds2M ) denote by G the identity com-
ponent of the isometry group of (M,ds2M ), and by e ∈ G its identity element.
We have Te(G) := g. Here and in what follows, for real Lie groups in Ro-
man letters we denote by the corresponding Gothic letters their associated
Lie algebras, and vice versa. Let K ⊂ G be the isotropy subgroup at a
reference point 0 ∈ M , so that M = G/K as a homogeneous space, and
0 = eK. Let s be the involution of (M,ds2M ) as a Riemannian symmetric
space at 0, s = s−1, and σ : G → G be defined by σ(g) = sgs = s−1gs,
so that dσ(e) : g → g, and we have the Cartan decomposition g = k ⊕ m
where k (resp. m) is the eigenspace of dσ(e) associated to the eigenvalue +1
(resp. −1), from which we have an identification T0(M) ∼= m. We have the
following characterization of totally geodesic submanifolds of Riemannian
symmetric spaces (cf. Helgason [Hel78, Chapter IV, Theorem 7.2]).

Theorem 2.1. On the Riemannian symmetric space (M,ds2M ) and in the
notation above, let m1 ⊂ m ∼= T0(M) be a vector subspace. Then, denoting
by Exp0 : T0(M) → M the exponential map in the sense of Riemannian
geometry, S := Exp0(m1) ⊂M is a totally geodesic submanifold if and only
if m1 ⊂ g is a Lie triple system, i.e., if and only if [m1, [m1,m1]] ⊂ m1
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for the Lie bracket [·, ·] on g. Moreover, in the notation above, writing
k1 = [m1,m1] ⊂ [m,m] ⊂ k and defining g1 := m1 ⊕ k1 ⊂ m⊕ k = g, g1 ⊂ g is
a Lie subalgebra, and, denoting by G1 ⊂ G the Lie subgroup corresponding
to the Lie subalgebra g1 ⊂ g, K1 ⊂ K the Lie subgroup corresponding to
the Lie subalgebra k1 ⊂ k,

(
S, ds2M |S

)
is a Riemannian symmetric space on

which G1 acts transitively, and S = G1/K1 as a homogeneous space.

For a Cartesian product of Riemannian manifolds
(
N1, ds

2
N1

)
× · · · ×(

Np, ds
2
Np

)
=:

(
N, ds2N

)
, the Riemannian connection ∇ is unchanged if the

background metric ds2Nk
of each Cartesian factor is replaced by λkds

2
Nk

for
some λk > 0. Since a smooth submanifold Z ⊂ N is totally geodesic if and
only if its tangent bundle T (Z) is parallel, which depends only on ∇, the
latter occurs if and only if Z is totally geodesic with respect to any of the
Riemannian metric h thus obtained by scaling. It is therefore not surprising
that the necessary and sufficient condition in Theorem 2.1 in terms of Lie
triple systems is a purely Lie-theoretic condition unaffected by a rescaling
of ds2M , noting also that the subset S = Exp0(m1), which is the union of
geodesics emanating from 0, also remains unchanged by introducing the
scaling constants.

2.2 Basic materials on bounded symmetric domains

Consider now the case where (M,ds2M ) = (X0, g) is a Hermitian symmetric
space of the noncompact type, so that X0 is biholomorphic to a bounded
symmetric domain. (X0, g) is of nonpositive bisectional curvature, negative
holomorphic sectional curvature and negative Ricci curvature.

Write G0 for the identity component of the isometry group of X0,
which is equivalently the identity component of the group Aut(X0) of bi-
holomorphic automorphisms of X0. Write K ⊂ G0 for the isotropy sub-
group at 0 ∈ X0, 0 = eK. Denote by Xc := Gc/K the Hermitian sym-
metric space of the compact type dual to X0. Denote by GC the iden-
tity component of Aut(Xc) and by P ⊂ GC the isotropy (parabolic) sub-
group at 0, so that Xc = GC/P as a complex homogeneous space. Write
X0 = G0/K ↪→ GC/P = Xc for the Borel embedding identifying X0 as
an open subset of its compact dual Xc. Whenever appropriate, we write
V C = V ⊗R C for the complexification of a real vector space V . Write
g0 = k + m for the Cartan decomposition of g0 with respect to the invo-
lution at 0. Then, gc = k +

√
−1m stands for the corresponding Cartan

decomposition of gc.

For u, v ∈ gc we write ad(u)(w) := [u,w], for ad(u) ∈ End(gc), etc. and
denote by B(u, v) := Tr ad(u)ad(v) the Killing form B(·, ·) on gc. Since gc is
a compact real form of a semisimple complex Lie algebra, B(·, ·) is negative
definite. Extend B(·, ·) to the complexification gC of gc by complex bilinear-
ity so that B(·, ·) is a nondegenerate complex bilinear form on gC. Denote by
(·, ·) the Hermitian bilinear pairing defined by (u, v) = B(u,−τc(v)) where
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τc stands for the conjugation on gC with respect to the real form gc ⊂ gC,
and write ∥u∥ =

√
(u, u). The isotropy subgroup K ⊂ Gc is reductive,

and the complex structure on Xc is induced by the adjoint action of some
element z belonging to the center z of k. We have the Harish-Chandra de-
composition gC = m+⊕ kC⊕m− which is the eigenspace decomposition with
respect to ad(z) ∈ End(gC) corresponding to the eigenvalues

√
−1, 0 and

−
√
−1 respectively. By considering the action of ad(z) it follows readily that

[m+,m+] = [m−,m−] = 0, [kC, kC] ⊂ kC, [kC,m+] ⊂ m+, [kC,m−] ⊂ m− and
[m+,m−] ⊂ kC. In particular, the complex vector subspaces m+,m− ⊂ gC

are abelian subalgebras. We have m+ ⊕ m− = mC, and m+ = m−. Here
and in what follows, for u ∈ gC, u will be taken with respect to the conju-
gation τ0 on the noncompact real form g0 ⊂ gC. We have τ0|kC = τc|kC and
τ0|mC = −τc|mC .

The Hermitian symmetric space X0 of the noncompact type can be
identified as a bounded symmetric domain by means of the Harish-Chandra
embedding, as follows (cf. Wolf [Wo72]). For its formulation, given the
Harish-Chandra decomposition gC = m+⊕kC⊕m−, we have correspondingly
the abelian subgroups M+,M− ⊂ GC, and the reductive subgroup KC ⊂
GC.

Theorem 2.2. (Harish-Chandra Embedding Theorem) The holomor-
phic map F :M+×KC×M− → GC defined by F (m+, k,m−) = m+km− is
a biholomorphism ofM+×KC×M− onto a dense open subset of the complex
Lie group GC containing G0. In particular, the map η : m+ → GC/P = Xc

defined by η(m+) = exp(m+)P is a biholomorphism onto a dense open sub-
set of Xc containing G0/K = X0. Furthermore, η−1(X0) =: Ω is a bounded
domain on m+ ∼= Cn, n = dimCX0.

The bounded symmetric domain Ω ⋐ Cn in its Harish-Chandra real-
ization can be precisely described in Lie-theoretic terms as the unit ball in
m+ ∼= Cn with respect to a Banach norm, implying in particular its convex-
ity, by the Hermann Convexity Theorem (cf. Wolf [Wo72]), as follows.

Theorem 2.3. (Hermann Convexity Theorem) Identify Cn with the
holomorphic tangent space T0(Ω). Then, Ω ⋐ Cn is the unit ball in Cn
corresponding to the Banach norm ∥ · ∥H on T0(Ω) defined by

∥∥ξ∥H :=
sup

{
∥ad(Reξ)(v)∥ : v ∈ gC, (v, v) = 1

}
for ξ ∈ T0(Ω).

Remark 1. Note that in the statement of the Hermann Convexity Theorem,
the operator norm of ad(Reξ) ∈ End(gC) is unchanged when the Hermitian
inner product (·, ·) is rescaled, i.e., when the Hermitian inner product on
each of the simple factors of gC is replaced by a scalar multiple.
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2.3 Characterization of totally geodesic complex submani-
folds of bounded symmetric domains in Harish-Chandra
coordinates

In this subsection, we give a characterization of totally geodesic complex
submanifolds S ⊂ Ω of bounded symmetric domains Ω ⋐ Cn in terms of
Harish-Chandra coordinates. From the homogeneity of Ω underG0 it suffices
to characterize those S ⊂ Ω passing through 0.

Since the focus is now on complex manifolds, here and henceforth we
adopt a convention common in complex geometry on the notation for tangent
spaces. Given an n-dimensional complex manifold Z and a point x ∈ Z,
we denote by TR

x (Z) the real (2n)-dimensional tangent space at x of the
real (2n)-dimensional smooth manifold underlying Z, while the notation
Tx(Z) is reserved for the complex n-dimensional holomorphic tangent space
at x, as opposed to the meaning of the same notation in (2.1). Writing
TC
x (Z) = TR

x (Z)⊗RC and decomposing the (2n)-dimensional complex vector
space TC

x (Z) = T 1,0
x (Z) ⊕ T 0,1

x (Z) as a direct sum of eigenspaces of the
J-operator underlying the integrable almost complex structure of Z, the
holomorphic tangent space Tx(Z) is canonically identified with the complex
vector subspace T 1,0

x (Z) ⊂ TC
x (Z) of complexified tangent vectors of type

(1,0). We have

Proposition 2.4. Let Ω ⋐ Cn be a bounded symmetric domain in its
Harish-Chandra realization, Ω = G0/K as a homogeneous space in the nota-
tion above, and S ⊂ Ω be a complex submanifold passing through the origin
0 ∈ Ω. Then, identifying T0(S) ⊂ T0(Ω) ∼= m+ as a complex vector subspace

m+
1 ⊂ m+ ⊂ gC, m−

1 := m+
1 . S ⊂ Ω is totally geodesic with respect to a given

invariant Kähler metric g on Ω if and only if [m+
1 , [m

+
1 ,m

−
1 ]] ⊂ m+

1 . Fur-
thermore, S = E ∩Ω for the complex vector subspace E ⊂ Cn corresponding
to m+

1 ⊂ m+ whenever S ⊂ Ω is totally geodesic.

Proof. Let S ⊂ Ω be a totally geodesic complex submanifold passing through
0 ∈ Ω. Under the identification T0(Ω) ∼= m+, T0(S) is identified with a
complex vector subspace m+

1 ⊂ m+. The real tangent space TR
0 (S) is given

by Re(m+
1 ) =: m1 ⊂ m = TR

0 (Ω). By Theorem 2.1, m1 ⊂ g0 is a Lie triple
system, i.e., (†) [m1, [m1,m1]] ⊂ m1 holds. We claim that (†) is equivalent
to (††) [m+

1 , [m
+
1 ,m

−
1 ]] ⊂ m+

1 .

Starting with (†) and complexifying, we have [mC
1 , [m

C
1 ,m

C
1 ]] ⊂ mC

1 .

Since mC
1 = m+

1 ⊕ m−
1 , where m−

1 = m+
1 , and [m+

1 ,m
+
1 ] = [m−

1 ,m
−
1 ] =

0, (†) is equivalent to (♯) [m+
1 , [m

+,m−
1 ]] + [m−

1 , [m
−
1 ,m

+
1 ]] ⊂ m+

1 ⊕ m−
1 .

Noting that [m−
1 , [m

−
1 ,m

+
1 ]] = [m+

1 , [m
+
1 ,m

−
1 ]] and that [m+

1 , [m
+
1 ,m

−
1 ]] ⊂

[m+, [m+,m−]] ⊂ [m+, kC] ⊂ m+, we conclude from (♯) that (†) is equiva-
lent to (††) [m+

1 , [m
+
1 ,m

−
1 ]] ⊂ m+

1 , as claimed.

We have deduced from Theorem 2.1 that S = Exp0(m
+
1 ) ⊂ Ω is a

totally geodesic complex submanifold if and only if (††) holds. To complete
the proof of Proposition 2.4 it remains to show that S ⊂ Ω must be given
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by S = E ∩ Ω for the complex vector subspace E ⊂ Cn corresponding to
m+

1 ⊂ m, whenever the complex submanifold S ⊂ Ω is totally geodesic with
respect to (Ω.g) and it passes through the origin 0 ∈ Ω.

For θ ∈ R define µθ ∈ GL(n;C) by µθ(z) = eiθz. Consider now the cir-
cle group S1 = {µθ : θ ∈ R} ⊂ K, which acts on Ω by scalar multiplication,
so that Ω is a circular domain. Write Sθ := µθ(S). We have 0 ∈ Sθ and
T0(Sθ) = eiθ · S = S. Since there is exactly one totally geodesic submani-
fold (Z, g|Z) of (Ω, g) passing through 0 such that TR

0 (Z) = TR
0 (S), we have

Sθ = S. Thus, for any point x ∈ S, eiθx ∈ S for any θ ∈ R, hence for x ̸= 0,
the complex analytic subset Cx∩S of the open disk Cx∩Ω must be the whole
disk as it contains the real analytic curve S1 · x, so that S ⊂ Ω is a union
of open disks centered at 0 on complex lines ℓ passing through 0. Thus,
writing λ : Cn−{0} → Pn−1 for the canonical projection, there is a complex
analytic subvariety A ⊂ Pn−1 such that S = (λ−1(A) ∪ {0}) ∩ Ω. Finally,
since S ⊂ Ω is smooth at 0, as is well-known the subvariety A ⊂ Pn−1 must
necessarily be a projective linear subspace, i.e., S must be of the form E∩Ω
for some complex linear subspace E ⊂ Ω (noting that E ∩Ω is connected as
Ω is convex). Clearly E ⊂ Cn corresponds to m+

1 , as desired. The proof of
Proposition 2.4 is complete.

3 Characterization of Harish-Chandra realizations
of bounded symmetric domains in terms of bi-
sectional curvatures

Recall that the G0-invariant Kähler metric ds2Ω on the bounded symmetric
domain Ω has been chosen so that the minimal disks of each irreducible
Cartesian factor Ω are of constant Gaussian curvature −2. For an irreducible
bounded symmetric domain Ω = G0/K we give a brief description of the
root space decomposition of the complex simple Lie group gC relevant to the
study of bisectional curvatures, and refer the reader to [Wo72], [Mo89] and
references therein for details. Here and in what follows we use the notation
of the second paragraphs in (2.2).

Writing ks = [k, k] for the semisimple part of k, we have k = ks⊕ z where
z ⊂ k is the 1-dimensional center, containing an element z such that ad(z)
defines the underlying integrable almost complex structure on Ω. Writing
hs ⊂ ks for a Cartan subalgebra and defining h := hs ⊕ z, hC ⊂ gC is a
Cartan subalgebra. Denoting by Φ the space of hC-roots of gC we have
Φ ⊂ ıh∗, where h∗ := Hom(h,R). Recall the Harish-Chandra decomposition
gC = m+⊕kC⊕m−. For the (complex 1-dimensional) root space gφ associated
to φ ∈ Φ, gφ is also an eigenspace of ad(z), and it follows that gφ ⊂ m+, kC

or m−. We denote by Φc ⊂ Φ the set of compact roots φ, i.e., those for
which gφ ⊂ kC, and the set Φ0 of noncompact roots, i.e., those for which
gφ ⊂ mC = m+⊕m−. With respect to a choice of the positive Weyl chamber
in ıh∗ determined by ad(z), we decompose Φ into the disjoint union of the
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set Φ+ of positive roots and the set Φ− of negative roots, so that, writing
Φ+
0 = Φ0 ∩ Φ+ for the set of positive noncompact roots, we have m+ =

SpanC{gφ : φ ∈ Φ+
0 }, and, Φ

−
0 = Φ0∩Φ− for the set of negative noncompact

roots, Φ−
0 = −Φ+

0 , we have m
− = SpanC{g−φ : φ ∈ Φ+

0 }. We have the direct
sum decomposition

gC = m+ ⊕ kC ⊕m− =
⊕
φ∈Φ+

0

gφ ⊕

hC ⊕
⊕
ρ∈Φc

gρ

 ⊕
⊕
φ∈Φ+

0

g−φ

In what follows we will fix a lexicographic ordering of the roots compatible
with the choice of positive Weyl chamber so that there is a unique highest
root µ of g, and µ ∈ Φ+

0 is always a long root. When gC is of type A, D or
E, all roots in Φ are of equal length.

From now on for Ω irreducible, we will replace the Killing form B(·, ·) on
gC in the definition of the Hermitian inner product (·; ·) and the Hermitian
norm ∥ · ∥ by B′(·, ·) = cB(·, ·) for some constant c = cg > 0 such that
the induced Hermitian inner product (u; v) := B′(u,−τc(v)) is the standard
Euclidean Hermitian inner product for u, v ∈ T0(Ω), i.e., for the G0-invariant
Kähler metric g we have gij(0) = δij , and g is precisely our choice of ds2Ω
when Ω is irreducible. The restriction B′|ıh is positive definite, and it defines
a real linear isomorphism from h∗R := ıh∗ to ıh =: hR, and we identify φ ∈ Φ
in this way with an element Hφ ∈ hR.

In the general case for gC = gC1 ⊕ · · · ⊕ gCs we rescale the Killing form
on each simple direct factor gCi , 1 ≤ i ≤ s, accordingly. Observe that the
operator Banach norm ∥ad(u)∥H such as that appearing in the statement of
the Hermann Convexity Theorem for u ∈ gC remains unchanged by such a
replacement of B by B′ (cf. Remark 1 of (2.2)).

For a positive noncompact root φ we write g[φ] := gφ⊕g−φ⊕ [gφ, g−φ],
where [gφ, g−φ] = CHφ. Writing eφ ∈ gφ for a unit root vector, e−φ = eφ ∈
g−φ, we have [Hφ, eφ] = 2eφ, [Hφ, e−φ] = −2e−φ and [eφ, e−φ] = Hφ, so that
g[φ] ∼= sl(2,C).

The orbit of 0 ∈ Ω under the Lie group G[φ] ⊂ GC corresponding to
g[φ] ⊂ gC is a rational curve ℓφ := G[φ]·0 on the compact dual Xc of X0

∼= Ω
which is totally geodesic with respect to the Gc-invariant Kähler metric gc
on Ω dual to ds2Ω, Ω ⊂ Xc being the Borel embedding. When φ ∈ Φ+

0 is a
long root, ℓφ ⊂ Xc is a minimal rational curve. Defining g0[φ] := g[φ] ∩ g0,
we have g0[φ] ∼= su(1, 1). The orbit of 0 ∈ Ω under the corresponding Lie
subgroup G0[φ] ⊂ G0 is a totally geodesic holomorphic disk Dφ := G0[φ] · 0
on Ω. When φ ∈ Φ+

0 is a long root, Dα = ℓφ ∩ Ω is a minimal disk on Ω.

We say that two roots φ1, φ2 ∈ Φ are strongly orthogonal if and only
if neither φ1 + φ2 nor φ1 − φ2 is a root. Let Ψ = {ψ1, · · · , ψs} ⊂ Φ+

0 be
a maximal strongly orthogonal subset, i.e., a subset of maximal cardinality
of mutually strongly orthogonal positive noncompact roots. Then, s = r :=
rank(Ω). Note that ψ1, ψ2 ∈ Φ+

0 are strongly orthogonal to each other if
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and only if ψ1 − ψ2 /∈ Φ, since ψ1 + ψ2 is never a root, observing that
[m+,m+] = 0.

For a strongly orthogonal set of positive noncompact roots Θ ⊂ Φ+
0 we

write
g[Θ] :=

⊕
θ∈Θ

(
gθ ⊕ g−θ ⊕ [gθ, g−θ]

)
=

⊕
θ∈Θ

g[θ].

Then, g[Θ] is a semisimple complex Lie algebra, g[Θ] ∼= sl(2,C)|Θ|. Writing
g0[Θ] = g[Θ] ∩ g0, then g0[Θ] ⊂ g[Θ] is a semisimple Lie algebra which is a
noncompact real form of g[Θ] without compact factors, g0[Θ] ∼= su(1, 1)|Θ|,
and the G0[Θ]-orbit of 0 ∈ Ω is a Euclidean polydisk.

To extract a maximal strongly orthogonal subset Ψ ⊂ Φ+
0 we may start

with choosing ψ1 = µ ∈ Φ+
0 being the highest root and consider the sub-

set Σ ⊂ Φ+
0 consisting of roots φ strongly orthogonal to ψ1. Then there

exists a simple Lie subalgebra g′0 ⊂ g0 such that, putting k′ = k ∩ g′0,
G′

0/K
′
0 ⊂ G0/K = X0

∼= Ω is an irreducible Hermitian symmetric space
of the noncompact type embedded as a totally geodesic complex submani-
fold of Ω′ ⊂ Ω, and such that T0(Ω

′) is spanned by
{
gσ : σ ∈ Σ}. Writing

h′ := h ∩ k′, h′C ⊂ g′C is a Cartan subalgebra, and the restriction σ′ := σ|h′
for all σ ∈ Σ gives the set of positive noncompact roots of g′. We have a
totally geodesic complex submanifold ∆ × Ω′ ↪→ Ω such that T0(∆) = Cgµ
and T0(Ω

′) = SpanC
{
g′σ′ : σ ∈ Σ

}
, g′σ′ = gσ. Repeating the same procedure

with Ω′ in place of Ω we obtain inductively a maximal strongly orthogonal
subset Ψ ⊂ Φ+

0 of positive noncompact roots, Ψ = {ψ1, · · · , ψr}.

Since all roots ψ ∈ Ψ are long roots, each direct factor Dψ := G0[ψ] ·
0 is the unit disk on Ceφ ∼= T0(DΨ), and Π0 = G0[Ψ] · 0 is a maximal
polydisk of polyradii (1, · · · , 1), i.e., Π0 = ∆r ×{0} ⊂ Ω in terms of Harish-
Chandra coordinates corresponding to an orthonormal basis consisting of
unit root vectors eφ arranged in a suitable order. In fact, there is more
symmetry among the disks Dψ : ψ ∈ Ψ. From the Restricted Root Theorem
one can deduce that the full automorphism group Aut(Π0) (generated by
Aut0(Π0) ∼= Aut(∆)r, and the permutation group on the r Cartesian factors)
embeds into G0 := Aut0(Ω) (cf. [Wo82]), so that for each pair (ψ1, ψ2) of
distinct elements of Ψ there exists k ∈ K such that Dψ2 = k(Dψ), and k
stabilizes Π0. The polydisk Π0 := G0[Ψ] · 0 ⊂ Ω is a maximal polydisk on
Ω passing through 0, where by a maximal polydisk in Ω we mean a totally
geodesic complex submanifold of (Ω, ds2Ω) biholomorphic to ∆r. All maximal
polydisks in Ω passing through 0 are equivalent to each other (hence to Π0)
under conjugation by K. By the Polydisk Theorem (cf. [Wo72]) we have
Ω =

⋃
k∈K k(Π0), i.e., every ν ∈ T0(Ω) is tangent to some maximal polydisk

Π := k(Π0).

Given any ξ ∈ T0(Ω), there exists k ∈ K such that η := k(ξ) is tangent
to the reference maximal polydisk Π0 ⊂ Ω. Since Aut(Π0) embeds into G0,
composing with the action of (S1)r for the circle group S1, acting according
to (eiθ1 , · · · , eiθr) · (z1, · · · , zr) 7→

(
eiθ1z1, · · · , eiθrzr

)
and with permutations
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of the r Cartesian factors, we obtain some element k′ ∈ K such that k′(ξ) =
(a1, · · · , ar; 0, · · · , 0) and all ai, 1 ≤ i ≤ r are real, and such that a1 ≥
· · · ar ≥ 0. We call (a1, · · · , ar; 0, · · · , 0), or simply (a1, · · · , ar) the normal
form of ξ under the action of K.

Lemma 3.1. For any irreducible bounded symmetric domain Ω0 ⋐ Cn0,
there exists an irreducible bounded symmetric domain Ω ⋐ Cn such that
Ω0 ⊂ Ω as a totally geodesic complex submanifold passing through 0, and
such that, writing Ω = G0/K, gC is of type A, D or E. Hence, writing Φ
for the set of all roots of gC with respect to a Cartan subalgebra hC ⊂ gC, all
roots φ ∈ Φ are of equal length.

Proof. Up to biholomorphisms the only irreducible bounded symmetric do-
mains Ω not of these types are those of types B or C. These include type II
domains DII

n where n ≥ 5 is odd, type III domains DIII
n of rank n, n ≥ 3,

and type IV domains of odd dimension n ≥ 3. For Ω0 = DII
2m+1, m ≥ 2,

it suffices to take Ω = DII
2m+2. For Ω0 = DIII

n , it suffices to take Ω = DI
n,n.

For Ω0 = DIV
2m+1,m ≥ 1, it suffices to take Ω = DIV

2m+2. All notations for
bounded symmetric domains are standard ones and the embeddings Ω0 ⊂ Ω
are also standard embeddings.

We will need the following lemma on the combinatorics relating the
space of positive noncompact roots Φ+

0 with a maximal strongly orthogonal
set Ψ of positive noncompact roots.

Lemma 3.2. Let Ω ⋐ Cn be an irreducible bounded symmetric domain of
type A, D or E. Let Ψ = {ψ1, · · · , ψr} be a maximal strongly orthogonal set
of positive noncompact roots and pick φ ∈ Φ+

0 −Ψ. Then either

(a) there exist exactly two distinct roots ψi1 , ψi2 ∈ Ψ such that φ−ψj ∈ Φ
if and only if j = i1 or j = i2; or

(b) there is exactly one root ψ ∈ Ψ such that φ− ψ ∈ Φ.

Proof. We use standard notation for irreducible bounded symmetric do-
mains. For Ω = DI

p,q, 1 ≤ p ≤ q, and for DII
2m, m ≥ 2, the lemma is

obvious by using the standard representation of T0(Ω) as a complex vector
space of matrices and the root vectors of φ ∈ Φ+

0 as a standard basis of
such a vector space. For example, take in the case of a type I domain DI

p,q,

1 ≤ p ≤ q the standard choice of the Cartan subalgebra hC ⊂ gC so that each
of the 1-dimensional root spaces gφ, φ ∈ Φ+

0 , is spanned by an elementary
matrix Eij , with (i, j)-entry being 1, and all other entries being 0, where
1 ≤ i ≤ p, 1 ≤ j ≤ q, and choose the reference maximal polydisk Π0 to be
such that T0(Π0) = SpanC {Ekk : 1 ≤ k ≤ p}. Then, case (a) occurs if and
only if gφ = CEij , 1 ≤ i ≤ p, 1 ≤ j ≤ p, and case (b) occurs if and only if
gφ = CEij , 1 ≤ i ≤ p, p + 1 ≤ j ≤ q. The case of type II domains DII

2m is
very similar to the case of type I domains, except that only case (a) occurs.
Since type-IV domains DIV

2m, m ≥ 2 are of rank 2, the lemma is vacuous in
that case. The same is true for DV, which is also of rank 2.
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It remains to check the case of Ω = DVI, which is of type E7 and of
rank 3, dimC(D

V I) = 27. By Zhong [Zh82] and in terms of the labeling
of roots therein, a maximal set of strongly orthogonal positive noncompact
roots Ψ ⊂ Φ+

0 is given by Ψ = {ψ1, ψ2, ψ3} where ψ1 = x1 − x2, ψ2 =
x1 + x2 + x3, ψ3 = d − x3, d := x1 + · · · + x7. For each ν ∈ Φ+

0 we define
Hν := {φ ∈ Φ+

0 : ν − φ ∈ Φ}. To complete the proof of the lemma it
suffices to show that Hψ1 ∩Hψ2 ∩Hψ3 = ∅. Any root ν ∈ Φ+

0 is a long root,
so that [eν ] ∈ C0(Xc), the VMRT on the irreducible Hermitian symmetric
space Xc of the compact type dual to DV I , and |Hν | = dimC(C0(Xc)). Here
C0(Xc) is the irreducible compact Hermitian symmetric space of type E6,
dimC(C0(Xc)) = 16, hence |Hν | = 16. Now Hψi

⊂ Φ+
0 − Ψ, |Φ+

0 − Ψ| = 24
and the minimal possible cardinality of Hψ1 ∩Hψ2 is 16 + 16− 24 = 8. By
direct checking we have Hψ1 ∩Hψ2 = {x1−x4, x1−x5, x1−x6, x1−x7, x1+
x3+x4, x1+x3+x5, x1+x3+x6, x1+x3+x7}. Finally, ψ3 = d−x3, and none
of the 8 elements of the set ψ3−(Hψ1 ∩Hψ2) = {x2+2x4+x5+x6+x7, x2+
x4+2x5+x6+x7, x2+x4+x5+2x6+x7, x2+x4+x5+x6+2x7, x2−x3+x5+
x6+x7, x2−x3+x4+x6+x7, x2−x3+x4+x5+x7, x2−x3+x4+x5+x6} ⊂ h∗R
is a root, hence Hψ1 ∩Hψ2 ∩Hψ3 = ∅, as desired. The proof of Lemma 3.2
is complete.

The given proof of Lemma 3.2 relies on some direct checking on roots.
While that has the advantage of being straightforward, it is desirable also to
give a more conceptual proof of the lemma. We give here such a proof which
relies on some knowledge of the VMRT C0(Xc) of an irreducible Hermitian
symmetric space Xc of the compact type, and on a curvature formula for
C0(Xc) ⊂ PT0(Ω) as a Kähler submanifold, PT0(Ω) being endowed with
the Fubini-Study metric induced by ds2Ω(0) on T0(Ω). Let gc be the Gc-
invariant Kähler metric on Xc such that gc agrees with ds2Ω at 0. (Xc, gc)
is of nonnegative bisectional curvature, and, denoting by R0 resp. Rc the
curvature tensor of (Ω, ds2Ω) resp. (Xc, gc) we have Rc

αβγδ
(0) = −R0

αβγδ
(0)

for α, β, γ, δ ∈ T0(Ω). For convenience we write Θαβγδ := Rc
αβγδ

(0). We

recall the following result from [Mo89, Appendix (III.2)]. Here we will write
(X, g) for (Xc, gc).

Proposition 3.3. Let (X, g) be an irreducible Hermitian symmetric space
of the compact type, and denote by h the Fubini-Study metric on PT0(Ω)
induced by g. Then

(
C0(X), h|C0(X)

)
↪→ (PT0(Ω, h) is a Hermitian symmet-

ric space of the compact type of rank ≤ 2. Moreover, denoting by S the
curvature tensor of

(
C0(X), h|C0(X)

)
, and identifying, at each [α] ∈ C0(X),

T[α](PT0(Ω)) with the orthogonal complement of Cα with respect to ds2Ω(0)
for a unit characteristic vector α, S is the restriction of the curvature tensor
Θ of (X, g) at 0 to T[α](C0(X)), which corresponds under the aforementioned
identification with Hα, the eigenspace belonging to the eigenvalue 1 of the
Hermitian bilinear form Hα(u, v) = Θααuv. In particular, for bisectional
curvatures we have

Sξξηη = Θξξηη

11



for all ξ, η ∈ Hα.

Using Proposition 3.3 we prove the following statement, without re-
quiring gC to be of type A, D, or E, which implies Lemma 3.2.

Proposition 3.4. Let X be an irreducible Hermitian symmetric space of
the compact type, h ⊂ k be a Cartan subalgebra of k ⊂ g0, and Φ be the set of
all hC-roots of gC. Let Ψ = {ψ1, · · · , ψr} ⊂ Φ+

0 be a maximal set of strongly
orthogonal positive noncompact roots, and ρ ∈ Φ+

0 be a long root. Then,
there are at most two distinct elements ψ of Ψ such that ρ− ψ ∈ Φ.

Proof. Since ρ ∈ Φ+
0 is a long root, the unit root vector α := eρ is a min-

imal rational tangent, i.e., [α] ∈ C0(X). Suppose there exist distinct pos-
itive integers i, j and k such that ρ − ψi, ρ − ψj and ρ − ψk are roots.
ξψ := eψ mod Cα ∈ T0(X)/Cα are unit tangent vectors of type (1, 0)
at [α] for ψ = ψi, ψj , ψk. For brevity write also ξℓ for ξψℓ

, 1 ≤ ℓ ≤ r.
By the definition of Ψ we have Θξiξiξjξj

= Θξjξjξkξk
= Θξkξkξiξi

= 0. By

Proposition 3.3, for the curvature tensor of C0(X) ⊂ PT0(X)) we have
Sξiξiξjξj = Sξjξjξkξk = Sξkξkξiξi = 0. It follows that SpanR{Reξi,Reξj ,Reξk}
is a real 3-dimensional abelian subalgebra in TR

0 (C0(X)). Exponentiating,
we get a real 3-dimensional totally geodesic flat submanifold Σ ⊂ C0(X),
so that the latter must be of rank ≥ 3 as a Riemannian symmetric space,
which contradicts with the fact that rank(C0(X)) ≤ 2 as given in [Mo89,
Appendix III.2], proving the proposition.

On a complex affine line Λ ⊂ Cn and x ∈ Λ, Tx(Λ) = Cα, where α is a
unit vector, for r > 0 we denote by ∆α(x; r) the open disk on Λ centered at
x of radius r, i.e., ∆α(x; r) := Bn(x; r) ∩ Λ.

Theorem 3.5. Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-
Chandra realization. Then, Ω is the union of open disks ∆α(0; rα) ⊂ Λα on
the complex lines Λα := Cα, as α ranges over unit vectors on Cn, where

2

r2α
:= sup {Θαανν : ν ∈ T0(Ω), ∥ν∥ = 1} .

In other words, identifying T0(Ω) with the background Euclidean space Cn
we have ξ ∈ Ω if and only if Θξξνν < 2 for any unit vector ν ∈ T0(Ω).

Proof. By Lemma 3.1 without loss of generality we may assume that writing
Ω = G0/K, each irreducible factor of the semisimple complex Lie algebra gC

is of type A, D or E. Let α ∈ T0(Ω) be a unit vector. For simplicity in the
ensuing arguments we will assume also that Ω is irreducible. The theorem
for the general case where Ω = Ω1 × · · · ×Ωs and each irreducible factor Ω,
1 ≤ k ≤ s is of A, D or E type follows readily from the arguments in the
special case where Ω is irreducible.

Writing Ψ = {ψ1, · · · , ψr} ⊂ Φ+
0 for a maximal set of strongly orthogo-

nal positive noncompact roots, and writing eφ for a unit root vector associ-
ated to a root φ ∈ Ψ, there is a reference maximal polydisk Π0 ⊂ Ω passing
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through 0, such that T0(Π0) = Ceψ1⊕· · ·⊕Ceψr , and, for any α ∈ T0(Ω) there
exists k ∈ K such that k(α) ∈ T0(Π0). An element c1eψ1 + · · · + creψr will
be denoted as (c1, · · · , cr). Choosing k properly we may take k(α) to be the
normal form (a1, · · · , ar) such that each ai is real, a1 ≥ · · · ≥ ar−1 ≥ ar ≥ 0.
For the proof of Theorem 3.5 without loss of generality we consider α to be
the normal form (a1, · · · , ar) itself.

For the tangent space T0(Ω) write

T0(Ω) ∼= m+ =
⊕{

gφ : φ ∈ Φ+
0

}
=

(⊕
ψ∈Ψ

Ceψ
)
⊕
( ⊕
ρ∈Φ+

0 −Ψ

Ceρ
)
.

Let now ν ∈ T0(Ω) be a unit vector and write

ν =
∑
φ∈Φ+

0

cφeφ =
r∑
i=1

cieψi
+

∑
ρ∈Φ+

0 −Ψ

cρeρ,

where for Ψ = {ψ1, · · · , ψr} we write ci for cψi
, 1 ≤ i ≤ r. We have

Θαανν =
r∑
i=1

a2i |ci|2Θiiii +
r∑
i=1

∑
ρ∈Φ+

0 −Ψ

a2i |cρ|2Θiieρeρ
,

where for brevity here and in what follows Θiieρeρ
stands for Θ(eψi

, eψi
; eρ, eρ),

etc. Here we have made use of the fact that Θijuv = 0 for i ̸= j, 1 ≤ i, j ≤ r,
and for u, v ∈ T0(Ω), which follows from [eψ1 , eψj

] = 0 as ψi − ψj /∈ Φ. Now
we rewrite the curvature expression of Θαανν in the above as

Θαανν =
r∑
i=1

a2i |ci|2Θiiii +
∑

ρ∈Φ+
0 −Ψ

|cρ|2
( ∑
ρ−ψi∈Φ

a2iΘiieρeρ

)

= 2
r∑
i=1

a2i |ci|2 +
∑

ρ∈Φ+
0 −Ψ

|cρ|2
(∑{

a2i : ρ− ψi ∈ Φ
})

,

noting that for 1 ≤ i ≤ r we have Θiiii = 2, and that for ρ ∈ Φ+
0 satisfying

ρ− ψi ∈ Φ we have eψi
∈ Heρ , so that Θiieρeρ

= 1.

By Lemma 3.2, given ρ ∈ Φ+
0 −Ψ, there exist at most 2 elements in Ψ

such that ρ−ψ ∈ Φ. Together with the ordering a1 ≥ · · · ≥ ar ≥ 0, we have
the curvature estimate

0 ≤ Θαανν ≤ 2a21
(
|c1|2 + · · ·+ |cr|2

)
+ 2a21

( ∑
ρ∈Φ+

0 −Ψ

|cρ|2
)

= 2a21

( ∑
φ∈Φ+

0

|cφ|2
)

= 2a21,

where the last equation holds since ν =
∑{

cφeφ : φ ∈ Φ+
0

}
is a unit vector.
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To determine rα in another way note that Π0 ∩ CΛα consists of all
u = t(a1, · · · , ar) such that t ∈ C and |tai| < 1 for 1 ≤ i ≤ r, and it follows
that u ∈ Π0 if and only if |t| < 1

a1
, i.e. rα = 1

a1
. Combining with the

curvature estimate in the above, we have

2a21 =
2

r2α
:= sup {Θαανν : ν ∈ T0(Ω), ∥ν∥ = 1} ,

as desired. Finally, for ξ nonzero, ξ ∈ Ω if and only if ∥ξ∥ < rα, α = ξ
∥ξ∥

being a unit vector. Thus, ξ ∈ Ω if and only if Θξξνν < 2 for any unit vector
ν ∈ T0(Ω). The proof of Theorem 3.5 is complete.

Corollary 3.6. The bounded domain Ω ⋐ Cn in its Harish-Chandra real-
ization is a convex domain.

Proof. Suppose α, β ∈ Ω and write γ = tα + (1 − t)β, 0 ≤ t ≤ 1. To prove
the convexity of Ω it suffices to show that γ ∈ Ω, i.e, Θγγνν < 2 for any
vector ν ∈ T0(Ω). Now the Hermitian form Hν given by Hα(u, v) = Θuvνν is
positive semidefinite, thus defining ∥u∥Hν :=

√
Hν(u, u) for u ∈ T0(Ω) ∼= Cn,

∥·∥Hν being a semi-norm. We have ∥α∥Hν , ∥β∥Hν <
√
2 and by the triangular

inequality

Θγγνν = Hν(tα+ (1− t)β, tα+ (1− t)β) = ∥tα+ (1− t)β∥2Hν

≤
(
t∥α∥Hν + (1− t)∥β∥)Hν

)2
<

√
2
2
= 2,

as desired.

Remark 2. (a) The identification of each C0(X) ⊂ PT0(Ω) as a Hermi-
tian symmetric space of the compact type and of rank ≤ 2 can be read
off from the Dynkin diagram D(g), g = gC. If the Hermitian sym-
metric space (X, ds2X) is of type (g, αk) in standard notation, and Σ
is the set of simple positive roots adjacent to αk, then each connected
component of D(g) − {αk}, with a marking at σ ∈ Σ, corresponds to
an irreducible factor of the Hermitian symmetric space C0(X).

(b) Theorem 3.5 can be reformulated by stating that ξ ∈ Ω if and only if
∥ad(ξ)(ν)∥ <

√
2 for any unit vector ν ∈ m+, from which the convexity

of Ω follows immediately. As such, Theorem 3.5 may be regarded as
a variant of the Hermann Convexity Theorem. Here we prefer to for-
mulate Theorem 3.5 as a statement concerning bisectional curvatures
Θξξνν , with an essentially geometric and self-contained proof.

(c) One can prove Theorem 3.5 by geometric means free from classifica-
tion results. As given here, Theorem 3.5 is deduced from the Polydisk
Theorem and the combinatorial Lemma 3.2. The main feature of the
Polydisk Theorem relevant to us is that each Cartesian factor is of
radius 1, which can be derived without using any classification theory.
The alternative proof of Lemma 3.2 given here relies on identifying
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the VMRT of X as a Hermitian symmetric space (C0(X), s) of rank
≤ 2, which follows from the pinching condition 1 ≤ Sηηηη ≤ 2 on
holomorphic sectional curvatures for unit vectors η ∈ T[α](C0(X)) es-
tablished in [Mo89, Appendix III.2] by elementary means, and which
by Ros [Ros82] implies the parallelism of the second fundamental form
of C0(X) ⊂ PT0(Ω) and hence the Hermitian symmetry of (C0(X), s),
as its curvature tensor S must then necessarily be parallel. By consid-
ering maximal polyspheres, the fact that (C0(X), s) must be of rank
≤ 2 follows by observing that the Segre embedding of (P1)3 into P7

does not have parallel second fundamental form.

(d) The result of [Ro82] was accompanied by a complete listing of Kähler
submanifolds satisfying the aforementioned pinching condition of the
projective space (Pm, ds2FS) equipped with the Fubini-Study metric of
constant holomorphic sectional curvature +2, according to Nakagawa-
Takagi [NM76, Theorem 7.4], which corresponds exactly to the listing
of VMRTs of (X, gc) for irreducible Hermitian symmetric spaces of the
compact type (cf. [Mo89]).

4 Proof of Theorem 1.1

We will continue to adopt notation with the meaning of symbols as defined in
§3. For the proof of Theorem 1.1 using results of §4 we will need furthermore
a couple of preliminary results, as follows.

Proposition 4.1. Let S ⊂ Ω be a totally geodesic complex submanifold
passing through 0 ∈ Ω, so that S = E ∩ Ω for E ⊂ Ω corresponding to
T0(S) ⊂ T0(Ω). Then, for any unit vector α ∈ T0(Ω) we have

2

r2α
:= sup {Θαανν : ν ∈ T0(S), ∥ν∥ = 1} .

Proof. By Theorem 3.5 we have

2

r2α
:= sup {Θαανν : ν ∈ T0(Ω), ∥ν∥ = 1} ,

hence the key point of Proposition 4.1 is that we can compute rα by re-
stricting to unit vectors ν ∈ T0(S), for an arbitrary totally geodesic complex
submanifold S ⊂ Ω passing through 0 such that α ∈ T0(S). Noting that
the the set of totally geodesic complex submanifolds passing through 0 such
that α ∈ T0(S) is closed under intersection (of an arbitrary family of such
manifolds), there is a unique minimal totally geodesic complex submanifold
S0 passing through 0 such that T0(S0). For a unit vector α ∈ T0(Ω) with
normal form (a1, · · · , ar), a1 ≥ · · · ≥ ar ≥ 0, we say that α is a general
tangent vector if and only if all ai, 1 ≤ i ≤ r, are distinct and positive.
Replacing without loss of generality α by (a1, · · · , ar) ∈ T0(Π0), the small-
est totally geodesic complex submanifold S passing through 0 such that
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α ∈ T0(S) is precisely given by S = Π0, the reference maximal polydisk as
defined in §3. Thus, to prove the proposition for the case of a general unit
vector α ∈ T0(Ω) it suffices to show the validity of the formula for rα for
the special case where α ∈ T0(Π0), S = Π0. But this already follows from
the proof of Theorem 3.5, in which we showed that, writing ηk := eψk

for
1 ≤ k ≤ r, for any unit vector ν ∈ T0(Ω) we have Θαανν ≤ Θααη1η1 = 2a21, so
that rα = 1

a1
. Since η1 ∈ T0(Π0), Proposition 4.1 for the case of a general

unit tangent vector α follows.

Consider now the case where the normal form (a1, · · · , ar) of the unit
vector α ∈ T0(Ω is arbitrary. Writing

a1 = · · · = am1 > am1+1 = · · · = am1+m2 > · · · > · · ·
> am1+···+mℓ

= · · · = am1+···+mℓ
≥ 0,

where m1 + · · · + mℓ = r. Then, the smallest totally geodesic complex
submanifold S passing through 0 such that α ∈ T0(S) is an ℓ-dimensional
polydisk given by S = diag(∆m1)×· · ·×diag(∆mℓ) ⊂ ∆r =: S0, where ∆

r ⊂
Cr is identified with Π0 by the isomorphism (z1, . . . , zr) 7→ z1eψ1 + · · · zreψr ,
T0(Ω) being equated with Cn. In this case, take ν0 =

1√
m1

(eψ1 + · · ·+eψm1
),

we have ν0 ∈ T0(S0) and

Θααν0ν0 =
1

m1
a21

(
Rη1η1η1η1 + · · ·+Rηm1ηm1ηm1ηm1

)
=

1

m1
(2m1a

2
1) = 2a21 = sup {Θαανν : ν ∈ T0(Ω), ∥ν∥ = 1} ,

where the last equation follows from rα = 1
a1

as given in the proof of
Theorem 3.5. Thus, Proposition 4.1 holds for any totally geodesic complex
submanifold S ⊂ Ω passing through 0, and for any unit vector α ∈ T0(S),
as desired.

Lemma 4.2. Let Ω ⋐ Cn be a bounded symmetric domain in its Harish-
Chandra realization, and S ⊂ Ω be a totally geodesic complex submanifold
with respect to ds2Ω passing through the origin 0 ∈ Ω, so that S is an open
subset of a complex vector subspace E ⊂ Cn corresponding to m+

1 ⊂ m+,
S = E ∩ Ω. Let µ ∈ T0(S) ∼= m+

1 . Then, for any ξ1 ∈ m+
1 and η ∈ m+ ∼=

T0(Ω) orthogonal to m+
1 with respect to the Euclidean metric ds2Ω(0), we have

Θξ1ηµµ = 0.

Proof. Recall that

Θξ1ηµµ = Θµµξ1η = ([[µ, µ]; ξ1]; η),

where (·; ·) stands for the Hermitian inner product corresponding to ds2Ω(0).
By Proposition 2.4, S = E ∩ Ω is a totally geodesic complex submanifold if
and only if [[m+

1 ,m
−
1 ],m

+
1 ] ⊂ m+

1 . It follows readily that [[µ, µ], ξ1] =: γ ∈
m+

1 . Since η ⊥ m+
1 , we have

Θξ1ηµµ = ([[µ, µ]; ξ1], η) = (γ; η) = 0,

as desired.
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We are now ready to give a proof of the main result Theorem 1.1

Proof. Recall that S ⊂ Ω ⋐ Cn is a totally geodesic complex submanifold
passing through 0, S = E ∩ Ω, where E ⊂ Cn is a complex vector subspace
identified with T0(S) ⊂ T0(Ω) ∼= Cn, and that ρ : Ω → E is the orthogonal
projection with respect to the Euclidean metric ds20(0) on T0(Ω)

∼= Cn. Let
ξ ∈ Ω. Write ξ = ξ1 + η, where ξ1 ∈ T0(S) and η ∈ T0(S)

⊥, A⊥ for a
complex vector subspace A ⊂ T0(Ω) being its orthogonal complement with
respect to ds2Ω(0). By Theorem 3.5, we have Θξξνν < 2 for any unit vector
ν ∈ T0(Ω). For µ ∈ T0(S) by Lemma 4.2 we have Θξ1ηµµ = 0. Together
with the orthogonal decomposition ξ = ξ1 + η we deduce that for µ ∈ T0(S)
we have

2 > Θξξµµ = Θξ1ξ1µµ
+Θηηµµ ≥ Θξ1ξ1µµ

,

where the last inequality follows from the nonnegativity of bisectional cur-
vatures of (Xc, gc). On the other hand, by Proposition 4.1 we know that for
any unit vector ν ∈ T0(Ω) we have

Θξ1ξ1νν
≤ sup

{
Θξ1ξ1µµ

: µ ∈ T0(S), ∥µ∥ = 1
}
,

so that
Θξ1ξ1νν

< 2

for any unit vector ν ∈ T0(Ω), hence ξ1 ∈ Ω by Theorem 3.5. In other words,
ρ(ξ) = ξ1 ∈ Ω∩E = S, so that ρ(Ω) = S, as desired. The proof of Theorem
1.1 is complete.

Remark 3. With an aim towards a specific application, the special case of
Theorem 1.1 where the bounded symmetric domain Ω ⋐ Cn is irreducible
and S ⊂ Ω is a minimal (totally geodesic) disk was proven in Mok-Ng
[MN12]. The proof there relied on the Hermann Convexity Theorem.

It follows readily from Theorem 1.1 that we have

Theorem 4.3. Let (X, g) be a Hermitian symmetric space of the noncom-
pact type, and (Y, g|Y ) ↪→ (X, g) be a totally geodesic complex submanifold.
Then, Y ⊂ X is a holomorphic retract of X, i.e., there exists a holomorphic
mapping r : X → Y such that r|Y = idY . Moreover the identity map idX on
X is homotopic through a continuous family {Ft : t ∈ [0, 1]} of holomorphic
maps Ft : X → X such that F0(x) = x and F1 = r is a holomorphic retract
of X on Y and such that the continuous map F : X × [0, 1] → X defined by
F (x, t) := Ft(x) is real analytic on X × (0, 1).

Proof. Since the total geodesy of Y in X does not depend on the choice of
the Aut0(X)-invariant Kähler metric g on X, without loss of generality we
may take g to correspond to the Kähler metric ds2Ω on Ω ∼= X. Denoting

by η : X
∼=−→ Ω the Harish-Chandra realization, define S := η(Y ). Then,

writing r : X → Y to correspond to the orthogonal projection ρ : Ω → S, we
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have r : X → Y and r|Y = idY . Finally, for 0 ≤ t ≤ 1 define ft : Ω → Ω by
ft(x) = (1− t)x+ tρ(x), where ft(x) ∈ Ω as a consequence of the convexity
of Ω. As t ranges over [0, 1], for each point x ∈ Ω, ft(x) describes the
closed interval joining x to ρ(x) ∈ S ⊂ Ω. Hence, writing f(x, t) = ft(x) we
have defined a continuous map f : Ω× [0, 1] → Ω, which corresponds under

η−1 : Ω
∼=−→ X, the inverse of the Harish-Chandra realization η : X

∼=−→ Ω,
to a continuous map F : X×[0, 1] → Y yielding a deformation of the identity
map to the holomorphic retract r : X → Y , as desired.

5 Holomorphic totally geodesic isometric embed-
dings with respect to Carathéodory and Koba-
yashi metrics

For a bounded domain D in a complex Euclidean space CN we denote by
∥ · ∥CD

its infinitesimal Carathéodory metric and by ∥ · ∥KD
its infinitesimal

Kobayashi metric. On the unit disk ∆ we denote by ∥·∥∆ its Poincaré metric
of constant Gaussian curvature −2. By convention we have ∥·∥∆ = ∥·∥C∆

=
∥ · ∥K∆

. Concerning the Carathédory metric and the Kobayashi metric on
bounded symmetric domains and those of their totally geodesic complex
submanifolds (which are themselves biholomorphic to bounded symmetric
domains), we have

Theorem 5.1. Let (X, g) be a Hermitian symmetric space of the noncom-
pact type, and (Y, g|Y ) ↪→ (X, g) be a totally geodesic complex submanifold.
Then, the inclusion map ı : Y ↪→ X is a holomorphic isometric embedding
with respect to the Carathéodory (and equivalently the Kobayashi) metric.

Proof. In this proof for a complex manifold M we denote by ∥ · ∥M the
Carathéodory pseudonorm on M . Write n (resp. m) for the complex di-

mension of X (resp. Y ). Denote by η : X
∼=−→ Ω the Harish-Chandra

realization of X as a bounded domain Ω ⋐ Cn. Since (Y, g|Y ) ↪→ (X, g) is a
totally geodesic complex manifold, S := χ(Y ) = E∩Ω for an m-dimensional
complex vector subspace E ⊂ Cn. By a theorem of Wong-Royden based on
Lempert’s theorem on extremal holomorphic Kobayashi disks on strictly
convex bounded domains, we know that the infinitesimal Carathéodory and
Kobayashi metrics on Ω are identical. S = E ∩ Ω, being the intersection of
a bounded domain with a complex linear subspace, is itself a weakly convex
domain in the complex vector space E, thus the infinitesimal Carathéodory
and Kobayashi metrics agree on S. To prove the theorem it remains to show
that the inclusion ı : S ↪→ Ω is an isometric embedding with respect to the
Carathéodory metrics.

Given any point x ∈ S and any vector ξ of type (1,0) tangent to S at
x, among all holomorphic maps h : S → ∆ of S into the unit disk ∆ as a
consequence of Montel’s theorem and the homogeneity of ∆ that there exists
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f : S → ∆ such that ∥∂f(ξ)∥∆ realizes the supremum of all ∥∂h(ξ)∥∆. Let
now ρ : Ω → S be the holomorphic retract defined as in Theorem 1.1 as the
orthogonal projection with respect to the Euclidean metric on Cn. Defining
F := f ◦ ρ : Ω → ∆ and we have ∂F (ξ) = ∂f(ξ) since ρ|S = idS . From the
inclusion S ⊂ Ω we have

∥ξ∥CΩ
≤ ∥ξ∥CS

.

On the other hand, by the choice of f we have ∥ξ∥CS
= ∥∂f(ξ)∥∆, while the

extension F : Ω → ∆ yields

∥ξ∥CΩ
≥ ∥∂F (ξ)∥∆ = ∥∂f(ξ)∥∆ = ∥ξ∥CS

.

Combining the two inequalities we have ∥ξ∥CΩ
= ∥ξ∥CS

, as desired. The
proof of Theorem 3.1 is complete.

Remark 4. Regarding the Theorem of Royden-Wong referred to in the
second paragraph of the proof, the original unpublished manuscript was
elaborated and further developed posthumously leading to the published
work of Royden-Wong-Krantz [RWK13], and there was also a different proof
by Salinas [Sa91] using operator theory.

6 Appendix

In the proof of Theorem 5.1, in place of quoting the Theorem of Royden-
Wong, one can for the special case of a bounded symmetric domain in its
Harish-Chandra realization Ω ⋐ Cn), one can assert the equivalence of the
infinitesimal Carathéodory metric ∥ · ∥CΩ

and the infinitesimal Kobayashi
metric ∥ · ∥KΩ

by means of Theorem 1.1 itself, thus yielding a self-contained
proof of the equivalence of ∥ · ∥CΩ

and ∥ · ∥KΩ
independent of Lempert’s

theorem in [Lem81], as follows.

Proposition 6.1. For any ξ ∈ TΩ we have ∥ξ∥CΩ
= ∥ξ∥KΩ

.

Proof. Write r for the rank of Ω as a bounded symmetric domain. Let
Π ⊂ Ω be a maximal polydisk passing through 0 ∈ Ω, Π ∼= ∆r. Π ⊂ Ω is
totally geodesic with respect to ds2Ω, and we have Π = V ∩Ω, where V ⊂ Cn
is a complex vector subspace, dimC V = r. By the Polydisk Theorem, any
tangent vector ν ∈ TΩ is equivalent under the action of G0 to a vector
ξ ∈ T0(Π). Then, by Theorem 1.1, the image of the orthogonal projection
ρ : Ω → V is exactly Π. Note that on the unit disk we have ∥ · ∥C∆

= ∥ · ∥K∆

from the definitions. On Π ∼= ∆r, for any x ∈ Π and ξ ∈ Π written as
ξ = (ξ1, · · · , ξr) in terms of Euclidean coordinates, we have obviously

∥ξ∥CΠ
= max (∥ξ1∥C∆

, · · · , ∥ξr∥C∆
)

= max (∥ξ1∥K∆
, · · · , ∥ξr∥K∆

) = ∥ξ∥KΠ
.

The proof of Theorem 5.1, without quoting the theorem of Royden-Wong,
shows that Π ⊂ Ω is an isometric embedding with respect to the Carathéodory
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metric. Thus, ∥ξ∥CΩ
= ∥ξ∥CΠ

. On the other hand, for a complex manifold
M , x ∈M and ξ ∈ Tx(M), the Kobayashi pseudonorm ∥ξ∥KM

is defined by

∥ξ∥KM
= inf

{
1

R
: R > 0, ∃f : ∆

hol.−→ Ω : f(0) = x, df(0)

(
∂

∂z

)
= Rξ

}
.

from which it follows readily that any holomorphic map h : M → M ′ be-
tween two complex manifolds M and M ′ is distance decreasing with respect
to the Kobayashi pseudonorm, i.e., (♯) ∥ξ∥KM

≥ ∥df(x)(ξ)∥KM′ . Write
ı : Π ↪→ Ω for the inclusion map and consider the holomorphic maps
Π

ı−→ Ω
ρ−→ Π, ρ ◦ ı = idΠ. Since ρ|Π = idΠ, by (♯) we have

∥ξ∥KΠ
≥ ∥ξ∥KΩ

≥ ∥ξ∥KΠ
, hence ∥ξ∥KΠ

= ∥ξ∥KΩ
.

It follows that
∥ξ∥KΩ

= ∥ξ∥KΠ
= ∥ξ∥CΠ

= ∥ξ∥CΩ
,

proving ∥ · ∥CΩ
= ∥ · ∥KΩ

on Ω, as desired.
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