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Abstract

We propose a mesh-free method to solve nonconvex energy minimization problems for marten-

sitic phase transitions and twinning in crystals, using the deep learning approach. These

problems pose multiple challenges to both analysis and computation, as they involve mul-

tiwell gradient energies with large numbers of local minima, each involving a topologically

complex microstructure of free boundaries with gradient jumps. We use the Deep Ritz

method, whereby candidates for minimizers are represented by parameter-dependent deep

neural networks, and the energy is minimized with respect to network parameters. The

new essential ingredient is a novel activation function proposed here, which is a smoothened

rectified linear unit we call SmReLU; this captures the structure of minimizers where usual

activation functions fail. The method is mesh-free and thus can approximate free boundaries

essential to this problem without any special treatment, and is extremely simple to imple-

ment. We show the results of many numerical computations demonstrating the success of

our method.

AMS subject classification: 35R05, 65N30, 68T99, 74A50, 74G65.

Keywords: Deep learning method; variational problems; mesh-free method; phase

transition problems; nonconvex energy minimization;

1. Introduction

Physics-informed deep learning methods [19, 33, 13, 14, 22, 36, 37] have recently achieved

great success in solving nonlinear PDE problems that arise in different fields of STEM. This

entails using deep neural networks to approximate the solution of PDEs, often in many

dimensions, leading to a mesh-free numerical method in place of more established schemes,

such as finite elements or finite differences.
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In this approach [25, 36], the loss function to be minimized is the mean square of the

PDE residual. This method is rigorously known to converge for linear elliptic and parabolic

problems [39], and is successful with a number of nonlinear partial differential equations

[7, 31]. It is not clear how it would perform in situations where there are weak solutions of

the PDE that suffer from reduced smoothness. Examples are hyperbolic conservation laws,

as in nonlinear elastodynamics, and solid-solid phase transitions described by nonconvex

strain energy functions in nonlinear elastostatics [1, 3]. In the latter case, the associated

Euler-Lagrange equations change type and lose ellipticity at some ranges of the gradient

of the unknown function [1]. In these situations, there are weak solutions that are not

continuously differentiable, and the solution gradient may suffer jump discontinuities across

interfaces that are not known a priori but are part of the solution; they are known as phase

boundaries or twin boundaries [15, 1, 3].

Another type of interface problem involves inhomogeneous media whose properties are

a priori described as multiscale functions with high-contrast or discontinuous features, as

in heterogeneous porous media. Sometimes the model involves a PDE with discontinuous

coefficients jumping across a fixed interface. Solutions suffer the loss of smoothness across

this interface.

A number of sophisticated finite element and finite difference methods for interface prob-

lems have been developed [2, 29, 17, 8, 9, 35, 27]. These methods are quite accurate, but

they often require special treatment of the interface and jump conditions across it in creating

the finite element mesh and/or associated basis functions for elements that intersect it.

Recently [41] the deep learning approach was used to solve interface problems involving

linear elliptic PDE systems with discontinuous or high-contrast coefficients and/or discon-

tinuous forcing. Some of these problems are motivated by phase-transition models from

(piecewise) linear elastostatics applied to biomechanics [42]. The problems studied in [41]

can be solved by energy minimization. The energy functional is strictly convex, and weak

solutions of the PDE (Euler-Lagrange equation) are its minimizers. The Deep Ritz method

[14] used in [41] approximates solutions by a deep neural network and minimizes the energy

expressed as a function of the neural network parameters, known as weights and biases. The

deep neural network used to approximate the unknown function does not require any special

structure to deal with the interface inside the domain, and is able to capture its location

spontaneously and accurately, moreover, the method is mesh-free.

In the problems considered in [41], the interface is fixed, for example as the location of

the jump in the coefficients of the PDE. Also, the original energy is strictly convex and has a

unique minimizer (although the energy as a function of the network parameters is typically

nonconvex.)

In many phase transition problems, there is an interface separating parts of the body

in different phases (solid and liquid, or austenite and martensite) whose spatial position

or shape is not known a priori; it is essentially a free boundary. The shape and position

of such an interface are part of the solution and can evolve in time-dependent problems.

Phase boundaries (domain walls, twin boundaries, etc. in different physical settings) are
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characterized by a jump discontinuity or narrow transition layer of the unknown scalar or

vector field (e.g., order parameter, temperature, deformation, polarization) or some of its

spatial derivatives. In order to identify the unknown phase boundary, special augmented

models have been developed, notably the phase field and level set methods. These introduce

additional variables to describe interface evolution. The prototypical phase field models

are described by the Allen-Cahn and Cahn-Hilliard equations. A ubiquitous ingredient of

most continuum models of phase transitions is a nonconvex, often multiwell energy density

function. In the nonlinear elastic model of martensitic transformations and twinning, this

energy is a multi-well function of the displacement gradient (or strain), or of the order

parameter in phase-field models.

The deep learning approach has been used to solve free boundary problems of the Stefan

type [40] and to describe phase boundaries that occur near equilibria of the Allen-Cahn and

Cahn-Hilliard equations [32, 36]. The method uses standard neural networks without any

modification to identify the phase boundaries that arise spontaneously for large times. These

interfaces are rapid transition layers of the solution from one minimum to another of the

double-well potential in the free energy density typical of these models.

Thermoelastic phase transitions [15, 3, 1] are often modeled using a free energy density

that is a nonconvex, multi-well potential depending on the gradient of the unknown defor-

mation field. In fact, the martensitic phase itself involves two or more symmetry-related

variants, known as twins, that correspond to different energy wells. The fact that the energy

(a) (b)

Figure 3: Primary bifurcating solution branch Σκ8
.

Figure 4: Hard-loading branch Λ30,000

λ+
8

.

is needed for the computation. After that it loses stability at a subcritical
pitchfork bifurcation at around κ = 54, 000. Along that stable part from the
maximum in ∥u2∥ to the bifurcation point, the solutions exhibit phase-tip
splitting at the top and bottom boundaries of the domain, as illustrated in
Figure 3.

Next we fix κo = 30, 000 and compute Λ30,000

λ+
8

via continuation from the

stable equilibrium on Σκ8 (at κo = 30, 000) for λ ≥ 0.5. We illustrate our
results in Figure 4 below. Observe that phase-tip splitting is most profound

12

(c)

Figure 1: Twinned Microstructures: (a) Experimental in CuAlNi single crystal [10](reproduced here

with permission of the authors). (b), (c): Comparison of results of different numerical methods for a

simplified 2D model: (b) Finite Difference solution [20] (reproduced here with permission of the authors)

and (c) our DNN solution of the 2D regularized problem (10).

depends on the gradient of the unknown function (deformation) has crucial consequences.

Typical weak solutions of the Euler-Lagrange equations, or local minimizers of the energy,

involve phase boundaries or twin boundaries, separating parts of the body in different phases.

Across these interfaces, the deformation field remains continuous, but its gradient jumps.

Continuity of the deformation field poses restrictions on the jump of its gradient in two

or more directions, known as the Hadamard compatibility conditions [1]. In many crys-
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talline alloys, the austenite and martensite energy wells violate these conditions, which are

nonetheless satisfied between the martensitic twin variants. As a result, in some problems,

there is no absolute energy minimum achievable [3]. Instead, the energy can be effectively

minimized to the limit, by a sequence of deformations that involve a laminated microstruc-

ture, consisting of parallel twin interfaces between domains with gradients in alternating

martensitic wells. Such a minimizing sequence involves a larger and larger number of twin

boundaries, in effect converging to a mixture of phases, which in the limit becomes com-

patible with austenite. This explains observed interfaces, with austenite on one side, and a

finely twinned, nearly periodic laminate with multiple (martensitic) twins on the other side,

Fig. 1(a). This microstructure is called finely twinned martensite, and it can also occur be-

cause of incompatibility between twins of different orientations and/or rigid (null Dirichlet)

boundary conditions, Fig. 1.

Microstructures observed in experiments exhibit limited fineness, with a small but nonzero

distance between twin interfaces in the bulk. One of the reasons for this is that interfaces

carry interfacial energy proportional to their length, which would increase with increasing

fineness. So the finite spatial oscillation frequency is governed by a competition of elastic

and interfacial energy. Near an incompatible boundary, the twin layers typically taper into

needles, and often an individual layer is observed splitting into two or more needles in exper-

iments, Fig. 1(a) [10, 5]. This is known as twin branching and has been studied analytically

[24, 11, 20, 38] and numerically [28, 21, 20, 12] as a mechanism that allows attainment of

an energy minimum in the presence of surface energy and geometric incompatibility at an

interface or boundary.

Finely twinned microstructures attain considerable complexity, which poses a challenge

to finite element computation [28] and analysis [24, 11, 38]. In order to study their behaviour

qualitatively, it is possible to consider some lower-dimensional problems, of various degrees

of sophistication, whose solutions retain increasing features of the structure of the original.

Many of these problems have an energy of the form∫
Ω

W (∇u(x))dx, (1)

where Ω ⊂ Rn, u : Ω → Rm and n = 2 or 3, while m = n or m = 1 for the vector and

scalar case, respectively. In all cases, W : Rm×n → R is a nonconvex function with multiple

wells. There are two approaches: one entails solving the equilibrium equations, which are the

Euler-Lagrange equations corresponding to (1). The other approach is to find the minimizer

of (1).

Letting the derivative of W be S : Rm×n → Rm×n, the Euler-Lagrange (equilibrium)

equation of (1) are

divS(∇u) = 0 in Ω. (2)

Because of nonconvexity, more specifically, loss of rank one convexity [3, 1], for values of

∇u between wells, the PDE system loses ellipticity for solutions that involve such values.

Also because of ellipticity loss, (2) has weak solutions with phase boundaries, across which
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∇u jumps discontinuously from phase to phase, and second derivatives fail to exist. This

prohibits the use of the physics-informed neural-network method (PINN), which requires the

strong form of (2) to be valid [36]. There does not seem to be a “weak physics-informed”

neural network approach that we are aware of. An added problem is the extensive loss

of uniqueness of weak solutions [15], many of which are energetically unstable (not even

local energy minima). Instead, it is possible to employ minimization of the energy (1)

[3, 24, 12, 38, 11]. The reincarnation of energy minimization in terms of deep neural networks

is the Deep Ritz method [13], which we utilize here. An additional advantage is that piecewise

smooth local minimizers of (1) are also weak solutions of (2) that are at least metastable,

thus physically more acceptable than the possibly unstable weak solutions of (2).

Here we probe the ability of the Deep Ritz method to spontaneously capture complex

microstructure geometries, such as the finely twinned one, with its associated multitude of

gradient discontinuities across interfaces and splitting/tapering topological transitions near

boundaries [20, 24, 11, 12, 38, 21].

The plan of the paper is as follows: In Section 2 we outline the Deep Ritz method

for energy minimization in the context of nonlinear elasticity, and describe how to apply

it to a number of problems of increasing complexity in one and two dimensions. All of

these problems involve nonconvex potentials of the deformation gradient. A crucial role is

played by the activation function. Our choice is guided by the fact that in the simplest one-

dimensional scalar problem, an exact solution is provided by the ReLU activation function,

which is piecewise linear. We then consider regularization of the problem, by including

the second derivative of the deformation in the energy. Minimizers are smooth [6], with

transition layers replacing derivative jumps. This motivates the introduction of a smoothened

version of the ReLU activation function, which we call SmReLU, whose usefulness we test

extensively in two-dimensional problems as well. In the latter, the goal is to capture spatially

complex microstructures with fine twinning and multiple interfaces caused by geometric

incompatibility between low energy gradients and the boundary conditions. The boundary

conditions are chosen to mimic the presence of austenite. Section 3 reports on extensive

numerical computations. A discussion of our results, their significance, and comparison to

previous work is in Section 4.

2. Methods

2.1. The Minimization Problem

The problem we study in this paper concerns the attempt to minimize a nonconvex functional

that is a low-dimensional model for an austenite-martensite phase transition. The problem

involves finding

minE{u}, E{u} =

∫
Ω

W (∇u(x))dx (3)
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over suitable functions u : Ω → R, where the function W : R2 → R is a two-well potential.

Here we choose [24, 11]

W (∇u) =
1

2
[u2
x(ux − 1)2 + u2

y]

with ∇u = (ux, uy). The wells (minima) of W are at (0, 0) and (1, 0). The domain Ω =

[0, L]× [0, 1] ⊂ R2. Here u is subject to the Dirichlet boundary conditions

u(x, y) = γx ∀ (x, y) ∈ ∂Ω. (4)

Of particular interest is the case γ = 1/2 as the linear function u(x, y) = x/2 for all (x, y) ∈ Ω

satisfying the boundary conditions has ∇u = (1/2, 0) which is a saddle point of W . The

zero-energy minima u ≡ 0 and u = x on Ω are incompatible with the boundary conditions,

whereas there are sequences of functions approaching zero energy, namely problem (3) does

not have a minimizer but only minimizing sequences, namely, one can construct sequences

of functions un with E{un} → 0 as n→∞. This occurs due to geometric incompatibility of

the energy-minimal states u = const and u = x+ const on Ω with the boundary conditions

(4).

On the other hand the mixed boundary conditions

u(0, y) = 0, u(1, y) = γ, 0 < y < 1 (5)

at the vertical sides x = 0, L with the horizontal sides y = 0, 1 free, are compatible with the

ansatz

u(x, y) = u(x), 0 < y < 1

(using u for both functions by notation abuse) which reduces (3) to the following one-

dimensional problem. Let Ω = [0, 1], define:

W (z) = z2(1− z)2, z ∈ R

so that W is a double well potential with minima at 0,1. Suppose u : [0, 1] → R satisfies

u(0) = 0 and u(1) = γ for a given constant γ ∈ R. Then minimize

min

∫ 1

0

W (u′(x))dx, (6)

with u′ the derivative of u. Letting

f(x) =
x+ |x|

2
, x ∈ R (7)

a solution of the one-dimensional problem (6) (with zero energy) is

u(x) = f (x− 1 + γ) . (8)

This is piecewise smooth with a derivative discontinuity at x = 1− γ.
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Remark 2.1. Any partition of [0, 1] into intervals where the slope of u alternates between

0 and 1 (while u remains continuous) is a minimizer (with zero energy). This shows the

massive loss of uniqueness of minimizers of the 1D problem (6), but also the 2D problem

with boundary conditions (5).

Remark 2.2. In order to make problem (6) well posed, it is common [6] to add a higher

gradient regularization, also known as capillarity, to the energy which becomes

minEε{u}, Eε{u} =

∫ 1

0

[
W (u′(x))dx+

ε2

2
[u′′(x)]2

]
dx (9)

where ε > 0 is the higher-gradient coefficient, a small parameter. It is known [6] that (9)

has an essentially unique solution, where the gradient discontinuity of (8) is replaced by a

single, smooth transition layer between values 0 and 1 of the derivative u′. For small ε the

thickness of this layer is of order ε and the gradient term contributes an interfacial or surface

energy to the interface, also of order ε.

The analogous 2D regularized energy is

Eε{u} =

∫
Ω

[
W (∇u(x, y)) +

ε2

2

[
uxx(x, y)

]2
]
dxdy (10)

2.2. Definition of deep neural networks

We briefly recall the definition and properties of a deep neural network (DNN). There are two

ingredients in defining a DNN. The first one is a (vector) linear function of the form T : Rn →
Rm, defined as T (x) = Ax+b, where A = (aij) ∈ Rm×n, x ∈ Rn and b ∈ Rm. The second one

is a nonlinear activation function σ : R → R. A frequently used activation function in the

artificial neural network literature, the sigmoid function, is defined as σ(x) = (1 + e−x)−1.

Here, for reasons that will become clear below, we will use another activation function,

known as the rectified linear unit (ReLU), defined by σ(x) = max(0, x) [26]. Observe that

σ(x) = f(x) defined in (7), which provides a solution (8) of the one-dimensional minimization

problem (6). By applying the activation function to each component xj (j = 1, . . . n) of the

vector x ∈ Rn, one can define a vector activation function σ : Rn → Rn with components

σ(xj), j = 1, . . . n.

Equipped with those definitions, we are able to construct a continuous function F (x)

as an alternating composition of linear transformations and (vector) activation functions as

follows:

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x). (11)

Here T i(x) = Wix+ bi is an affine transformation, with the weights Wi as of yet unspecified

matrices and the biases bi unspecified vectors. Also σ(·) is the component-wise defined

activation function. Dimensions of Wi and bi are chosen to make (11) meaningful. The

parametrization (11) is called a (k + 1)-layer deep neural network (DNN), which has k

hidden layers. Denoting all the undetermined coefficients (namely Wi and bi) in (11) as
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θ ∈ Θ, where θ is a high-dimensional vector and Θ is the space of θ. The DNN representation

of a continuous function can be viewed as

F = F (x; θ). (12)

Let F = {F (·, θ)|θ ∈ Θ} denote the set of all functions expressible by DNNs parametrized

by θ ∈ Θ as in (11). Then F provides an efficient way to represent unknown continuous

functions [19], compared to a linear solution space used in classic numerical methods, e.g., a

trial space spaced by linear nodal basis functions in the FEM.

2.3. The DNN representation of the nonconvex energy minimization

Given the energy functional E{u} from (3), we can derive a DNN-based numberical method

to solve the minimization problem in order to compute the solution u, in the spirit of [13].

Here we seek the solution of the energy minimization problem

u = arg min
v∈H1(Ω)

E{v}, (13)

subject to the specified boundary condition u(x) = g(x) on ∂Ω.

From the perspective of scientific computing, the energy minimization problem (13) can

be solved using numerical methods, such as FDMs or FEMs. From the perspective of machine

learning however, the numerical solution of u(x) is interpreted as a function with x ∈ R2 as

its input and R1 as its output, that can can be approximated by a DNN F (x) defined in

(11). As a result, problem (13) is replaced by the problem

ũ = arg min
F∈Fb

E{F}, (14)

Here ũ denotes the DNN solution of the problem of minimizing the energy over the DNNs

(11) in F. Let

J(θ) = E{F (·, θ)} =

∫
Ω

W (∇F (x, θ))dx, θ ∈ Θ, (15)

where F ∈ F is as in (11), (12). Then the minimization problem (14) reduces to the (finite-

dimensional) optimization problem

θ̃ = arg min
θ∈Θ

J(θ), ũ(x) = F (x, θ̃). (16)

this yields ũ, the DNN representation of the solution of (14).

Notice that the original energy minimization problem (13) is non-convex. The variational

problem (16) is non-convex as well. Clearly, the issue of local minima and saddle points is

nontrivial, which brings essential challenges to many existing optimization methods. Since

the parameter space Θ is typically very large, one often uses the Stochastic Gradient Descent

(SGD) method [4] to solve (16). There are plenty of optimization methods to search among

the large parameter space. Here we use the Adam optimizer, a version SGD method [23]. Our
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results indicate that the SGD method is very effective in solving this non-convex optimization

problem.

How to impose boundary conditions in the DNN method is an important issue [25]. For

the Dirichlet boundary condition, we use the equivalent of the Nitsche method in FEM for

DNN, known as the Deep Nitsche Method [30]. We add a boundary penalty term in the

energy function to address this issue. Specifically, one adds a soft constraint (a boundary

integral term) to the energy J(·) defined in (15) and obtains

ũτ = arg min
θ∈Θ

[
J(θ) + τ

∫
∂Ω

(
F (x, θ)− g(x)

)2
dx
]
, (17)

where τ > 0 is the penalty parameter to scale and balance the losses from the energy part

and the boundary part. The idea is that the term
∫
∂Ω

(
F (x, θ) − g(x)

)2
dx will approach

zero when we increase the parameter τ in the calculation, whereas the Dirichlet boundary

condition u = g on ∂Ω will be satisfied in a weak L2 sense, and one hopes that ũτ → ũ in F
as τ →∞.

It has been recently pointed out that the penalty parameter τ should not be chosen

arbitrarily but adaptively in a rational way stemming from the specific problem [16]. Here

we also point out that the τ can be given physical meaning as the stiffness of the austenite

phase that exists beyond the boundary y = 1, whereas the martensite phase occupies Ω.

The exact satisfaction of boundary conditions such as (4) would correspond to infinitely

rigid austenite.

2.4. Implementation of the Deep Ritz DNN method

Since the number dim Θ of degrees of freedom in the optimization problem (16) is quite large,

we apply the SGD method on the parameter space Θ to solve it. Notice that θ is a high-

dimensional vector and let θk be any component of θ. We approximate the corresponding

component ∂J(θ)/∂θk of the gradient of J(θ) as follows:

∂J(θ)

∂θk
=

∫
Ω

∂
(
W (∇F (x, θ))

)
∂θk

dx+

∫
∂Ω

∂
(
F (x, θ)− g(x)

)2

∂θk
ds

≈ vol(Ω)

N

N∑
i=i

∂
(
W (∇F (xi, θ))

)
∂θk

+
S(∂Ω)

Nb

∂
(
(F (yj, θ)− g(yj))

2
)

∂θk
, (18)

where the collocation points xi
i.i.d.∼ Unif(Ω) are uniform random points that are sampled

from the physical domain Ω, yj
i.i.d.∼ Unif(∂Ω) are uniform random points that are sampled

from the boundary ∂Ω, vol(Ω) is the volume of the domain, and S(∂Ω) is the perimeter of

the domain. In the context of the deep learning method, N and Nb are called batch numbers,

which means the number of training samples utilized in one iteration.

After we compute the approximation of the gradient with respect to θk, we can update

each component of θ as

θn+1
k = θnk − η

∂J(F (·, θ))
∂θk

|θk=θnk
, (19)
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where η is the learning rate. Here we use the Adam optimizer [23], a highly successful version

of the SGD method.

Remark 2.3. From the derivation of the DNN formulation, one can see that the proposed

method automatically deals with the phase boundary (or discontinuity in the gradient of the

solution) without knowing the locations of the discontinuity a priori.

Figure 2: Schematic of a Deep Neural Network (DNN).

Fig. 2 shows a possible network layout for approximating u with input (x, y). For the

output u, we can use automatic differentiation techniques to compute derivatives of u that

appear in the energy in the minimization problem.

3. Numerical Results

We use a fully connected neural network (Fig.2) to perform our computations. The weights

are initialized with truncated normal distributions with variances set as two over the sum

of input and output unit numbers. The biases are initialized as zero. We use the Adam

optimizer with a learning rate of 10−3. In the main text, the training takes 100, 000 iterations

for one-dimensional problems, while 300, 000 iterations for two-dimensional problems.

3.1. One-dimensional Case

We demonstrate how to use neural networks to minimize the energy in a one-dimensional

problem. We consider the following energy minimization problem:

min

∫ 1

0

W (u′(x))dx, (20)

where

W (z) = z2(1− z)2 ∀z ∈ R, u(0) = 0, u(1) = γ. (21)

The integrand W has two wells at 0 and 1 and we choose typically choose γ = 1/2. The

functions u are approximated by deep neural networks (see Methods)

uNN(x) = F (x; θ),
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where x is the input of the neural network and θ is the vector of weights wi and biases bi as

in (11), which are the trainable parameters in the neural network.

On the one hand, the parameters θ of the neural network uNN(x) should minimize the

energy in (20) (Deep Ritz Method [13]). We construct the corresponding loss function as

follows:

losse(θ) =
1

N

N∑
i=1

W

(
∂F

∂x
(xi, θ)

)
, (22)

where {xi}Ni=1 are the collocation points in Ω. The sun here approximates the integral in

(20). The derivative u′NN = ∂F/∂x is computed with automatic differentiation.

On the other hand, uNN(x) should satisfy the boundary conditions, which corresponds

to minimizing the loss function

lossb(θ) = (F (0, θ)− 0)2 + (F (1, θ))− γ)2. (23)

This corresponds to the Deep Nitsche method [30] Combining the two loss functions (22)

and (23), the total loss function to be minimized is

loss(θ) = losse(θ) + τ lossb(θ), (24)

where τ is the penalty parameter to scale and balance the losses from the energy part and the

boundary part. During training, the shared parameters (θ) are adjusted by back-propagating

the error obtained by minimizing a loss function (24) that is the weighted sum of the above

two constraints.

3.1.1. Activation function

In this problem, an important role is played by the activation function. As observed

in Methods, Section 2.1, an exact solution of (20) is provided by (8). We observe that in

(8), the function f(x) defined by (7) is identical with the well-known Rectified Linear Unit

activation function

ReLU: σ(x) = max{0, x} =
x+ |x|

2
, x ∈ R (25)

Thus by choosing one weight equal to 1 and one bias equal to γ − 1, the neural network

can provide the exact solution (8) to this simple one-dimensional problem. This strongly

suggests that we choose ReLU as the activation function until further notice. To test the

suitability of our choice, we explore how the activation function affects the learning results.

The results are shown in Fig. 3. It is clear that only ReLU captures an exact minimizer of the

problem (any piecewise smooth function with slope 0 or 1 almost everywhere that satisfies

the boundary conditions), whereas other choices including Tanh, Sigmoid, and even Leaky

ReLU perform poorly. It is remarkable here that the Deep Ritz method with ReLU captures

exact global minimizers in this simple problem, due to the piecewise smooth character of

this activation function. The other activation functions struggle and are indeed unable to

capture these weak solutions with derivative jumps. Later on we will propose a modification

of ReLU to treat more complex problems.
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Figure 3: Results of solving problem (20) with different activation function. Shown is the plot of

u(x).

3.1.2. Effect of learning rate for 1D problem

We investigate how the learning rate affects the results for 3 values of the parameter

γ = 0.25, 0.5, 0.75. We use the ReLU activation function. The results are shown in Fig. 4.

We can see if we use very large learning rate 10−1 to train the loss function, the solution

will go to a constant u(x) = γ
2
, which is a local minimum of the elastic energy, but does

not satisfy the boundary conditions. If we use very small learning rate, the solution will get

stuck in another local minimum u(x) = γx for the case γ = 0.25, which however is not a

global minimum, although it satisfies the boundary conditions. For intermediate values of

the learning rate, a global minimum is achieved. We therefore should exercise some care in

choosing the learning rate carefully.

(a1) (a2) (a3)

Figure 4: 1d results with ReLU activation function and different learning rates with iteration =

100, 000, NN: 3× 128. (a) γ = 0.25; (b) γ = 0.5; (c) γ = 0.75.

3.1.3. Effect of neural network size for 1D problem

Then we explore how the depth and width affect the results when γ = 0.25, 0.5, 0.75. We

use the ReLU activation function. The results are shown in Fig. 5. For small γ, we need to

use a larger neural network to approximate the solution u.

12



(a1) (a2) (a3)

Figure 5: 1d results with different size DNN. Here iteration = 100, 000 and learning rate η = 10−2.

(a) γ = 0.25; (b) γ = 0.5; (c) γ = 0.75.

3.1.4. Regularized 1D problem

In order to cure the massive loss of uniqueness of minimizers for problem (20) it is common

to add higher gradients to the energy; see Remarks 2.1 and 2.2, also [6] Thus we consider

the minimization problem

minEε{u}, Eε{u} =

∫ 1

0

[
W (u′(x))dx+

ε2

2
[u′′(x)]2

]
dx (26)

where ε > 0 is a small parameter, with boundary conditions u(0) = 0 and u(1) = γ.

It is well known that the higher gradients in the energy (26) smoothen derivative dis-

continuities, and replace them with a smooth transition whose width is of order ε, e.g. [6].

Thus we expect that the DNN with a ReLU activation function will not be able to capture

this accurately due to its lack of smoothness. This leads us to construct a new activation

function by smoothening ReLU. In (25), replace the absolute value |x| =
√
x2 by

√
x2 + ρ2,

where ρ is a small parameter. We call the result a Smoothened Rectified Linear Unit or

SmReLU: σ(x) =
x+

√
x2 + ρ2

2
, x ∈ R. (27)

SmReLU is a smooth function for ρ > 0; it reduces to ReLU for ρ = 0. We typically use

ρ = 0.1 in computations.

Next, we consider how the initial condition, the value of the higher gradient coefficient

ε, and the activation function (ReLU vs SmReLU) affect our computations.

The results are shown in Fig. 6. We use a 3 × 128 neural network with ReLU and

SmReLU activation function to approximate the solution u. The learning rate is η = 10−2

and τ = 500.

If we use the ReLU activation function, the optimal u is not differentiable at some

points, moreover, more than one derivative jumps (kinks) occur when the initial condition

has oscillations; see Fig. 6. On the other hand, problem (26) has a unique smooth minimizer

(modulo reflection about x = 1/2) [6] with a single smoothened kink (transition layer between

slopes 0 and 1). This is well captured by the SmReLU DNN, which gives solutions with one

13



smooth kink. The only exception which has a local minimum with two kinks occurs in Fig. 6

(a4). For larger ε, the DNN learns a more smooth solution with a wider transition layer,

in agreement with theory [6]. If ε is larger enough, the regularization term dominates the

loss function. So to minimize the second derivative energy term, u is very close to a linear

function for this case. We conclude that the SmReLU activation function (27) we proposed

works well for this problem and captures the behavior expected from theory.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 6: 1d regularized problem results. Here iteration = 100, 000, η = 10−2 and NN: 3 × 128.

(a) γ = 0.25; (b) γ = 0.5; (c) γ = 0.75. First column: Random initial condition and ReLU activation

function; Second column: γx + 0.1 sin(4x) initial condition and ReLU activation function; Third column:

Random initial condition and SmReLU activation function; Last column: γx + 0.1 sin(4x) initial condition

and SmReLU activation function.
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3.2. Two-dimensional problem

Our main goal is to consider the following two dimensional nonconvex problem:

min

∫
Ω

W (∇u(x, y))dxdy, (28)

and its regularized counterpart (33). Here

W (∇u) =
1

2
[u2
x(1− ux)2 + u2

y] (29)

and Ω = [0, L]× [0, 1] with L = 1 or 2. We construct a fully connected neural network for u

with input (x, y). The loss function is defined as follows:

loss = losse + τ lossb, (30)

where

losse =
1

N

N∑
i=1

W (∇uNN(xi, yi)),

lossb =

Nb∑
j=1

1

Nb

(uNN(xbj, y
b
j)− utrue(xbj, ybj))2,

{(xi, yi)}Ni=1 are the collocation points in the domain Ω, {(xbj, ybj)}Nb
i=1 are the collocation

points at the parts of the boundary where Dirichlet boundary conditions are specified, while

τ is the weight to scale and balance the losses from the energy and the boundary conditions.

3.2.1. Mixed Boundary Conditions

Consider the mixed boundary conditions:

u(0, y) = 0, u(1, y) = γ, 0 < γ < 1, (31)

The other two sides are free. Functions u that are independent of y minimize the energy

provided they are solutions of the one-dimensional problem (20). We use both ReLU and

SmReLU activation function, and 3 × 128 neural networks to approximate u when γ =

0.25, 0.5, 0.75. The learned solutions are shown in Fig. 7. In the top row of Fig. 7, we show

results from the ReLU DNN. The bottom row of Fig. 7, shows the SmReLU DNN minimizers.

In the latter case solutions only have one gradient jump, whereas ReLU solutions typically

have two.

Our numerical results match the exact y-independent solutions of the one-dimensional

problem.
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(a) (b) (c)

Figure 7: 2d mixed boundary conditions. (a) γ = 0.25; (b) γ = 0.5; (c) γ = 0.75. Top: ReLU; down:

SmReLU activation function.

3.2.2. Dirichlet Boundary Conditions

In the following, we will explore Dirichlet boundary condition

u(x, y) = γx ∀(x, y) ∈ ∂Ω. (32)

A typical value of interest is γ = 1/2. In order to get a zero energy deformation ux should

take values 0 or 1 with uy = 0, which is what happens in Fig. 7, the mixed boundary condition

case considered in subsection 3.2.1. On the other hand, here the boundary conditions (32)

dictate that ux be close to 1/2 near the boundary so there is an incompatibility between

the energy wells and the boundary conditions. In fact it is possible to show that problem

(28) subject to (32) does not have a minimizer [3, 24]. Instead, the energy can be effectively

minimized in the limit by a sequence of deformations that involve a laminated microstructure,

consisting of vertical parallel interfaces between domains with gradients in alternating wells

(ux, uy) = (0, 0) and (1, 0). Such a minimizing sequence involves a larger and larger number

of twin boundaries (jumps in ∇u along lines x =const.), in effect converging to a mixture of

phases, where in the limit ux converges weakly to the average value 1/2, so that it becomes

compatible with the boundary conditions u = x/2 on ∂Ω.

We show results using the SmReLU activation function and γ = 0.5 in Fig. 8 and 9.

Laminated microstructures prevail with alternating bands having ux jumping between values

near 0 (blue) and 1 (yellow) to minimize the energy density W , except near horizontal

boundaries where these values are incompatible with boundary conditions (32) that require

ux = 1/2. This causes each band to split into two or more near the boundary as also

observed in experiments Fig. 1(a) [10]. In Fig. 8, we study the effect of neural network
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depth (number of layers) in capturing local minima with more and more bands. With one

layer only, the solution is stuck at an unstable state (saddle point of W ) with ux ≈ 0.5,

Fig. 8(a). The number of bands increases as we increase the number of layers (depth) of the

DNN, albeit with some oscillations. The energy also decreases and then appears to tend to

a constant. In Fig. 9, we fix the depth as 5 and increase the width of the neural networks.

The energy will decrease for wider neural networks. If we use larger neural networks (deeper

or wider), we can get more refined microstructures in our results, but we recall that there is

no limit to the number and fineness of bands in this problem all the way to infinity [3, 24], as

there is no global minimum, but apparently a sequence of local minima with an increasing

number of bands, like the ones observed here, that approach the infimum of energy. In a

wider network, there will be more parameters (weights and biases) to be trained, rendering

optimization costlier.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: 2d Dirichlet boundary condition with SmReLU activation function. Here γ = 0.5,

iteration = 300, 000, η = 10−3.(a) NN: 1× 128; (b) NN: 3× 128; (c) NN: 5× 128; (d) NN: 7× 128; (e) NN:

9× 128; (f) NN: 11× 128; (g) NN: 13× 128; (h) NN: 15× 128.
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(a) (b) (c) (d)

Figure 9: 2d Dirichlet boundary condition with SmReLU activation function. Here γ = 0.5,

iteration = 300, 000, η = 10−3. Top: the energy with different (a) NN: 5 × 16; (b) NN: 5 × 32; (c) NN:

5× 64; (d) NN: 5× 256.
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3.2.3. Regularized Scalar Problem with Dirichlet Boundary Conditions

In orfer to study a problem that actually has a global minimum we use the common

approach af adding higher gradients and studying the regularized problem

min

∫
Ω

[
W (∇u(x, y)) +

ε2

2

[∂2u(x, y)

∂x2

]2]
dxdy, (33)

where W is given by (29), Ω = [0, 2]× [0, 1] and the boundary condition is the linear Dirichlet

one (32). The higher gradients render local minima smooth and gradient discontinuities

become smooth transition layers with width of order ε [6, 20, 24, 12, 11]. Also there is a

global minimizer, but a careful bifurcation analysis [20] has revealed multitudes of stable

local minima with multiple bands. A comparison of one of our solutions with one of the

equilibria found in [20] is shown in Fig. 1(b), (c).

We explore how the depth and width of the neural network affect the energy. The results

are shown in Fig. 10-12. where γ = 0.25, 0.5, 0.75 respectively. From the energy results,

if we use a larger neural network, the energy will be lower, since the greater number of

parameters allows capturing a local minimum with lower energy and eventually hopefully a

global minimum.

The energy decreases when the regularization parameter ε is smaller, while solutions for

smaller ε have a finer microstructure with more bands, e.g., Fig. 11, as also observed in [20].

3.2.4. Effect of the structure of the neural networks

Here, we fix the width of the neural network as 128 and ε = 1
160

. We explore how the

depth affects the results, which are shown in Fig. 13. Once again, one layer is insufficient

as it does not capture the banded microstructure. The energy decreases with the increasing

depth of the neural network after some oscillations.

The number of bands more or less increases with increasing depth, the maximum observed

being 7 yellow bands. This is probably because the global minimum is probably reached,

although this is difficult to prove. More bands would increase the interfacial energy of

transition layers, which is proportional to ε times the total length of transition layers between

the blue and yellow phases.

We also see a refinement mechanism in Fig. 13(b4) where a yellow band near the middle

is being split almost completely into two bands. The energy eventually plateaus out as the

depth increases.

In order to explore how the width affects the results, we fix the depth of the neural

network as 5 and ε = 1
160

. The results are shown in Fig. 14. We can see the energy and the

number of the yellow bars will decrease with increasing width of the neural network. For a

fixed depth of 5 layers of the DNN, increasing the width beyond 128 does not result in more

than 5 yellow bands in our solutions.

3.2.5. Collocation Point Placement

In computed minimizers we observe that the energy density near the boundaries is higher,

whereas we use a random choice of collocation points in the domain Ω. In order to minimize
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the energy contribution near the boundary more effectively, we select adaptively a higher

proportion of collocation points near the top and bottom parts of domain. We divide the

domain Ω into three parts, Ω1 = (0, 2) × (0, 0.15), Ω2 = (0, 2) × (0.15, 0.85) and Ω3 =

(0, 2) × (0.85, 1). And in each domain, we randomly choose N1, N2 and N3 points, so that

N1 = N2. For details see Fig. 15. In our computation, we set N1 = N2. When we increase

the number N1 = N2, keeping the sum of N1, N2 and N3 fixed, the energy decreases.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 10: 2d regularized problem with SmReLU activation function. Here γ = 0.25, iteration =

300, 000 and learning rate η = 10−3. (a) NN: 3 × 128; (b) NN: 5 × 128; (c) NN: 7 × 128. First column:

ε = 0.1
4 ; Second column: ε = 0.1

8 ; Third column: ε = 0.1
16 ; Last column: ε = 0.1

32 .
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 11: 2d regularized problem with SmReLU activation function. Here γ = 0.5, iteration =

300, 000 and learning rate η = 10−3.(a) NN: 3×128; (b) NN: 5×128; (c) NN: 7×128. First column: ε = 0.1
4 ;

Second column: ε = 0.1
8 ; Third column: ε = 0.1

16 ; Last column: ε = 0.1
32 .
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 12: 2d regularized problem with SmReLU activation function. Here γ = 0.75, iteration =

200, 000 and learning rate η = 10−3. (a) NN: 3 × 128; (b) NN: 5 × 128; (c) NN: 7 × 128. First column:

ε = 0.1
4 ; Second column: ε = 0.1

8 ; Third column: ε = 0.1
16 ; Last column: ε = 0.1

32 .

23



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 13: 2d regularized problem with SmReLU activation function. Here γ = 0.5, iteration =

300, 000, η = 10−3 and ε = 0.1
16 . (a) NN: 1× 128; (b) NN: 3× 128; (c) NN: 5× 128; (d) NN: 7× 128; (e) NN:

9× 128; (f) NN: 11× 128; (g) NN: 13× 128; (h) NN: 15× 128; (i) NN: 17× 128; (j) NN: 19× 128.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 14: 2d regularized problem with SmReLU activation function. Here γ = 0.5, iteration =

300, 000, η = 10−3 and ε = 0.1
16 . (a) NN: 5 × 8; (b) NN: 5 × 16; (c) NN: 5 × 32; (d) NN: 5 × 64; (e) NN:

5× 128; (f) NN: 5× 256; (f) NN: 5× 512.

(a) (b)

(c) (d) (e) (f)

Figure 15: Adapted collocation points 2d regularized problem with SmReLU activation function, γ = 0.5,

iteration = 300, 000, η = 10−3 and ε = 0.1
16 . Top: the position of collocation point; (a) N1 = N3 = 1500 and

N2 = 7000; (b) N1 = N3 = 2000 and N2 = 6000; (c) N1 = N3 = 3000 and N2 = 4000; (d) N1 = N3 = 3500

and N2 = 3000; (e) N1 = N3 = 4000 and N2 = 2000; (f) N1 = N3 = 4500 and N2 = 1000.
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3.3. Curved Inerfaces

We consider the following energy

W (∇u) =
1

2
[(cos(θ)ux + sin(θ)uy)

2(1− (cos(θ)ux + sin(θ)uy))
2 + (− sin(θ)ux + cos(θ)uy)

2].

with Dirichlet boundary condition

u(x, y) = γ(cos(θ)x+ sin(θ)y),∀(x, y) ∈ ∂Ω. (34)

This corresponds to rotating one of the minima of W from (0, 1) to (cos θ, sin θ), where

θ is a fixed parameter. Incompatibility with the boundary conditions now forces the twin

boundaries (interfaces to bend and curve, demonstrating the mesh-free nature of the method.

It is easy to see that previously we have considered the case with θ = 0.

The results are shown in Fig. 16.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 16: Rotated minimum 2d problem with SmReLU activation function. Here iteration =

300, 000, η = 10−3 and ε = 0.1
32 . (a) γ = 0.5 and θ = π

4 ; (b) γ = 0.5 and θ = π
8 . (left) ux; (middle) uy; (right)

cos(θ)ux + sin(θ)uy.
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(b) (a) (c)

Figure 17: Different activation functions in the 2d regularized problem. Here iteration = 300, 000,

η = 10−3 and ε = 0.1
32 . (a)Tanh activation function; (b) ReLU activation function; (c) SmReLU activation

function.
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4. Discussion

This work makes use of the Deep Ritz Method for the first time in order to solve a nonconvex

gradient-energy minimization problem from materials science. Such problems are challenging

in two ways. First, in general they do not possess a global minimum but only minimizing

sequences, as well as a complex large set of local minima. Second, minimizers, including

local ones, are characterized by complicated geometric microstructures, comprising multiple

layers separated by twin interfaces, which are in effect free boundaries in the form of gradient

discontinuities. These exhibit needle tapering and tip-splitting topological transitions near

boundaries of the domain [20, 24, 11, 12, 38, 21].

A DNN represents the minimizer-candidate, which allows representation of the energy as

a function of the weights and biases (the DNN parameters), and optimization with respect

to them.

Our results confirm the ability of the Deep Ritz method to spontaneously capture the

above microstructure complexities of local or global minimizers.

In contrast, the physics-informed neural network method does not work here because of

the presence of nonsmooth weak solutions of the Euler-Lagrange PDEs whose high derivatives

fail to exist at interfaces or even blow up.

A crucial new ingredient of our method is the activation function proposed here for

the first time. To begin with, we observe that the ReLU activation function captures exact

global minimizers in a simple unregularized 1D problem, due to its piecewise linear character.

Other activation functions, such as Tanh and Sigmoid, struggle and are indeed unable to

approximate these weak solutions with derivative jumps Fig. 3. For regularized problems, we

introduce a new smoothened version of ReLU which we term SmReLU; see (27). It is quite

successful in producing results that agree with careful FD computations [20] and captures

the correct microstructure Fig. 1 (b), (c), while it outperforms other traditional activation

functions, which fail at this task Fig. 17.

We find that it is essential for the DNN to have both sufficient width and depth to capture

local minimizers. In general, increasing the number of layers (depth) increases the number

of twin bands appearing in our solution until a point where further depth increases does not

improve the solution. In that sense, depth plays a role analogous to mesh size in FE. We

find that for fixed depth, it is not necessary to increase width past a certain point, so here

depth plays a more important role.

Equipped with our new SmReLU activation function, our method has no problem cap-

turing both sharp gradient discontinuities across twin boundaries and smoothened transition

layers. It also approximates curved interfaces successfully Fig. 16.

This is because our approach is mesh-free, which is a great advantage over FEM and

FD methods, especially in the presence of interfacial discontinuities carrying surface energy,

where problems can arise due to mesh misorientation compared to interfaces [34].

Another advantage of this method is its simplicity, ease of programming, and the ability

to naturally capture nonsmooth solutions with geometrically complex free interfaces in more
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than one dimension without special treatment such as discontinuous Galerkin FE for higher

gradients in nonconvex elasticity [18].

One usual complaint against the Deep Ritz Method is that the parametrization through

DNNs as opposed to FE or FD would destroy any original convexity of the energy, a desirable

property in optimization. Fortunately here the original energy is already nonconvex, so the

DNN approach does not come at a disadvantage in this respect.
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