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Abstract. In this paper, we develop a novel multilevel Monte Carlo (MLMC) method to

reduce the well-known computational cost in the MLMC method with a better convergence

rate. Our main innovative idea is to optimize the initial mesh size h0 with the total number of

levels L fixed, in contrast to tuning the integer parameter L in the classical MLMC method.

The refined result from our method outperforms the scaling of the total computational cost

in the classical MLMC construction and further quantitatively demonstrates the powerful

improvement. To show the efficiency of the proposed method, we apply our multilevel

construction of mesh sizes and sample sizes to elliptic partial differential equations with

random coefficients. By testing exponential and Gaussian covariance kernels in both one

dimension and two dimensions, we observe that the improved MLMC method can save

several times or even an order of magnitude of computation cost than the existing MLMC

methods at certain regimes.

1. Introduction5

Many physical and engineering applications involving uncertainty quantification (UQ) can6

be described by stochastic partial differential equations (SPDEs, i.e., PDEs driven by Brow-7

nian motion) or partial differential equations with random coefficients (RPDEs). In recent8
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years, there has been an increased interest in the simulation of systems with uncertainties,9

and many numerical methods have been developed in the literature to solve SPDEs and10

RPDEs; see e.g. [17, 18, 19, 20, 21, 25] and reference therein. These methods can be ef-11

fective when the dimension of stochastic input variables is low or moderate. However, their12

performance deteriorates when the dimension of stochastic input variables is high because13

of the curse of dimensionality.14

There are some attempts in developing problem-dependent or data-driven basis functions15

to attack these challenging problems. Most of them take advantage of the fact that even16

though the stochastic input has high dimension, the solution actually lives in a relatively17

low dimensional space. Therefore, one can develop certain efficient numberical methods to18

solve SPDEs and RPDEs. In [22], Hou et al. explored the Karhunen-Loève expansion of the19

stochastic solution, and constructed problem-dependent stochastic basis functions to solve20

these SPDEs and RPDEs. In [23], the compressive sensing technique is employed to identify21

a sparse representation of the solution in the stochastic direction. In [24], Schwab et al.22

studied the sparse tensor discretization of elliptic RPDEs. By exploring the low-dimensional23

structures in the solution space, these methods can alleviate the curse of dimensionality to24

a certain extent. For general UQ problems with high-dimensional inputs, however, these25

methods are still very expensive.26

The standard Monte Carlo (MC) method is a very general method for computing the27

expected value of a solution to a UQ problem and it has the advantage that its performance28

does not depend on the dimension of the random input. However, its computational cost29

will be very expensive because random fields have low spatial regularity, making solving such30

problems computationally inefficient. In addition, we know that the standard MC method31
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has a slow convergence rate, which means that a large number of simulations are required32

to obtain accurate results. Therefore, the standard MC method is more suitable for low-33

precision simulation, and high-precision simulation is less used due to the large computational34

cost. The computational cost of solving the elliptic partial differential equation (PDE) with35

random coefficients is thus a major challenge in quantifying uncertainty in groundwater flow36

studies and composite material simulations.37

To address the limitations of the standard MC method, Giles proposed the multilevel38

Monte Carlo method (MLMC) method in [1], which is inspired by the multilevel grid method,39

based on the expected linear properties, through a geometric step sequence h`−1

h`
= s ∈40

N/{1}, ∀` = 1, . . . , L to iteratively solve the system of linear equations produced by the41

discretization of elliptic PDEs [2, 3]. Multilevel grids are corrected by using all grid calcula-42

tions, solving equations on the finest grid, i.e. maintaining the accuracy associated with the43

smallest step size, but using larger step size calculations to reduce variance, thus minimizing44

the overall computational complexity. In short, the MLMC method assumes a fixed initial45

grid h0 and implements the optimal policy by testing different layers L.46

In this paper, we propose an improved MLMC method, which aims to further improve the47

computational efficiency of the MLMC method. We assume that the number of grid layers L48

is fixed, and the optimal policy is achieved by adjusting the initial grid h0. The idea is to omit49

computations on particularly coarse grids to achieve faster convergence, while taking into50

account the advantages of standard MLMC methods that balance computation and accuracy.51

We explain how these computational costs are reduced through theoretical demonstration,52

and demonstrate the effectiveness of the improved method through numerical results of53

multiple sets of random coefficient elliptic differential equations in both one-dimensional and54
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two-dimensional cases. The improved MLMC can indeed save several times or even an order55

of magnitude of computation compared to the classical MLMC method under the accuracy56

requirement.57

The outline of this article is as follows. In Section 2, we review the MLMC method and58

show its computational complexity, which estimates the cost of an method under certain,59

problem-related assumptions. In Section 3, we propose an improved MLMC method and60

prove the computational complexity of the improved MLMC method. In Section 4, we61

present the equations for the groundwater flow modeling problem to describe our stochastic62

model, and show numerical results for one-dimensional and two-dimensional problems to63

confirm the effectiveness of the improved method. Finally, conclusions and discussions are64

drawn in Section 5.65

2. Review of Multilevel Monte Carlo method66

this section is revised and looks fine. To illustrate the MLMC method, we consider67

the following stochastic PDE as an example68

Lu(x, ω) = f(x, ω), x ∈ D,ω ∈ Ω, (2.1) eqn:de

where L is a generic linear operator, D ⊂ Rd is the domain of spatial variables, and Ω is69

the domain of the random variable. Some boundary conditions should be imposed for the70

well-posedness.71

We first briefly review the MLMC method for solving the stochastic PDE (2.1). Suppose72

the quantity of interest is the expected value of a functional Q(ω) = Q(u(·, ω)) of the solution73

u(x, ω) to the stochastic PDE (2.1). In general, u cannot be solved exactly. Therefore, Q is74
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often approximated by Qh := Q(uh) with uh a finite dimensional approximation to u, such75

as the finite difference or finite element solution on a fine spatial grid Th.76

To estimate E[Q], we compute a statistical estimator Q̂h to E[Qh] first, and the error of77

the approximation to E[Q] is quantified by the root mean square error (RMSE)78

e(Q̂h) ,
(
E
[
(Q̂h − E[Q])2

])1/2

.

The computational cost C(Q̂h) of the estimator is quantified by the number of floating point79

operations that are needed to achieve a RMSE of e(Q̂h) 6 δ with δ the given tolerance.80

The classical Monte Carlo estimator for E[Qh] is81

Q̂MC
h,N =

1

N

N∑
i=1

Qh(ω
(i)), (2.2) eqn:mc

where Q(ω(i)) is the i-th sample of Qh.82

There are two sources of error in the estimator (2.2): the approximation error of Q by Qh,83

which depends on the spatial discretization, and the sampling error due to the replacement84

of the expected value by the finite sample average. Since E[Q̂MC
h,N ] = E[Qh] and V[Q̂MC

h,N ] =85

N−1V[Qh], we have the decomposition of the error as the contribution from the variance and86

the bias as follows87

e(Q̂MC
h,N)2 = N−1V[Qh] + (E[Qh −Q])2. (2.3) eqn:mcerror

To control these two terms of errors, in general we require both terms are less than δ2/2 so88

that we can achieve a RMSE of δ. Therefore, the sample size is set as N = O(δ−2) for the89

first term and the variance can be further reduced by importance sampling for rare-event90

type of Q [?]. cite my own work For the second term of bias error, one needs to choose a91

sufficiently fine grid size such that E[Qh −Q] = O(δ). The total computational complexity92

can be obtained easily.93
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The MLMC method was proposed to reduce the computational complexity of the classical94

MC method in computing E[Q]. The main idea of the MLMC estimator is as follows.95

Instead of sampling the same number of realizations on one mesh, MLMC computes E[Qh]96

on a sequence of nested meshes and by the linearity of the expectation, it is obvious that97

E[Qh] = E[Qh0 ] +
L∑
`=1

E[Qh` −Qh`−1
], (2.4) eqn:meanML

where {h`}L`=0 are mesh sizes of a sequence of increasingly refined meshes with h = hL the

finest mesh size and h = h0 the coarsest one. We set

h`−1/h` ≡ s > 1

so that hL = h0s
−L.98

Define Qh−1 = 0 and define the MLMC estimator99

Q̂ML
h,{N`} ,

L∑
`=0

1

N `

N∑̀
i=1

(
Qh`(ω

(`,i))−Qh`−1
(ω(`,i))

)
. (2.5) eqn:mlmc

where the subindex“h” means a sequence of (h`). Then, the MLMC error is100

e(Q̂ML
h,{N`})

2 = E
[
(Q̂ML

h,{N`} − E[Q])2
]

=
L∑
`=0

N−1
` V[Qh` −Qh`−1

] + (E[QhL −Q])2. (2.6) eqn:mlmcerror

Let C` denote the cost of obtaining one sample of Qh` . Then the following result for the101

MLMC estimator (e.g., [1, 3, 4, 5, 7]) is classic.102

thm:mlmc Proposition 2.1 ([3], Theorem 2.3). Suppose there exist positive constants α, β, γ, c1, c2, c3103

such that α ≥ 1
2

min(β, γ) and104

A1. |E[Qh −Q]| ≤ c1h
α
` ,105

A2. V[Qh` −Qh`−1
] 6 c2h

β
` ,106

A3. C` ≤ c3h
−γ
` .107
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where c1, c2, c3 is independent of hl. Then, for a fixed initial meshsize h0 > 0 and a fixed108

mesh refinement ratio s > 1, there exists a positive constant c4 depending on c1, c2, c3, h0 and109

s, such that for any δ < e−1 there exist a positive integer L > 0 and a sequence of positive110

integers N`, 0 ≤ ` ≤ L, for which the multilevel estimator satisfies the error e(Q̂ML
h,{N`}) < δ111

and the total cost is112

C =



c4δ
−2, β > γ,

c4δ
−2(log δ)2, β = γ,

c4δ
−2−(γ−β)/α, β < γ.

(2.7) eqn:mlmccomplexity

remark:mc Remark 2.1. By (2.3), the total computational complexity of the MC method with Assump-113

tions A1 and A3 is114

C(Q̂MC
h,N) 6 cδ−2−γ/α. (2.8) eqn:complexitymc

where c depends on the variance V[Qh]. It is easy to see that the MLMC method is superior115

to the MC method, as far as the scaling of δ is concerned.116

Remark 2.2. There are many works trying to eliminate the bias term in (2.6) completely117

in Markov chain setting or diffusion setting, like exact simulation and exact simulation [?]118

[?]. cite both These works could be viewed as a randomized version of MLMC.119

3. An improved Multilevel Monte Carlo method120

In this section, we propose an improved MLMC method that achieves the same or less121

computational complexity than in (2.7). Our proof is also constructive as before. But our122

analysis is based on the investigation of the initial mesh size h0, while the number of mesh123

levels L is fixed. Our result is the following theorem.124
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thm:improved Theorem 3.1. Suppose that there exist positive constants α, β, γ, c1, c2, c3 such that α ≥ β/2125

and assume A1, A2, A3 as in Proposition 2.1. Then, for a fixed total number of mesh levels126

L ≥ 1 and a fixed mesh refinement ratio s > 1, there exists a positive constant c4 depending127

on c1, c2, c3, L, and s such that, for any δ < 1, there are a sequence of {N`} for which the128

multilevel estimator has the error bound e(Q̂ML
h,{N`}) < δ and the total cost129

C = c4δ
−2+(β−γ)/α =



c4δ
−2+(β−γ)/α, β > γ,

c4δ
−2, β = γ,

c4δ
−2−(γ−β)/α, β < γ.

(3.1) eqn:mlmccomplexityimproved

Remark 3.2. Compared with the complexity (2.7) of the classical MLMC method in Propo-130

sition 2.1, the improved complexity estimate (3.1) reduces the cost by a factor of δβ/α when131

β > γ and by a factor of (log δ)2 when β = γ.132

Proof. From Assumption A3 , the (upper bound of) total complexity reads as133

C =
L∑
`=0

c3h
−γ
` N`. (3.2) eqn:optmlmc

In the sequel, we assume that the total number of mesh levels L and the mesh refinement134

ratio s are both fixed. Using h` = h0s
−`, (3.2) becomes135

C = c3h
−γ
0

L∑
`=0

N`s
γ`. (3.3) eqn:complexitymlmc

To achieve a RMSE of δ, from (2.6) and Assumptions A1, A2 , we need136

L∑
`=0

c2h
β
`N
−1
` + c2

1h
2α
L 6 δ2. (3.4) eqn:errormlmc
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We require that each term in (3.4) is less than δ2/2, i.e.,

c2h
β
0

L∑
`=0

N−1
` s−β` 6

δ2

2
, (3.5) eqn:error1mlmc

c2
1h

2α
0 s−2αL 6

δ2

2
. (3.6) eqn:error2mlmc

A upper bound of the free parameter h0 is derived from (3.6) that137

0 < h0 6

(
δ√
2c1

)1/α

sL, (3.7) eqn:h0boundmlmc

which will be used later. With the upper bound of h0 and the constraint (3.5) for both h0138

and N`, we aim to reduce (3.3).139

Let dze be the unique integer satisfying the inequalities z 6 dze < z+ 1. We now proceed140

with different possible values for β and γ.141

(a) Firstly we consider the case when β = γ. We set N` := d2δ−2(L + 1)c2h
β
0s
−β`e and142

hence143

2δ−2(L+ 1)c2h
β
0s
−β` ≤ N` < 2δ−2(L+ 1)c2h

β
0s
−β` + 1. (3.8) eqn:Nboundmlmc1

It is easy to verify that144

c2h
β
0

L∑
`=0

N−1
` s−β` ≤ c2h

β
0

L∑
`=0

1

2δ−2(L+ 1)c2h
β
0s
−β`

s−β` =
δ2

2
,

i.e., (3.5) holds true. Substituting (3.8) into (3.3) and using the fact that β = γ, we

can obtain the upper bound for the complexity as below

C = c3h
−γ
0

L∑
`=0

N`s
γ` < c3h

−γ
0

(
2δ−2(L+ 1)2c2h

β
0 +

L∑
`=0

sγ`

)

= 2c2c3δ
−2 (L+ 1)2 + c3h

−γ
0

1− sγ(L+1)

1− sγ
.
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Since α ≥ γ/2, we take h0 exactly as the upper bound in (3.7) and get145

C 6 2c2c3δ
−2 (L+ 1)2 + c3

(√
2c1

)γ/α
δ−γ/α

1− sγ(L+1)

1− sγ
s−γL ≤ c4δ

−2

with

c4 , 2c2c3 (L+ 1)2 + c3

(√
2c1

)γ/α 1− sγ(L+1)

1− sγ
s−γL. (3.9) eqn:c41mlmc

(b) Secondly we consider the case when β > γ. We set146

N` := d2δ−2c2h
β
0

1− s−
(β−γ)

2
(L+1)

1− s−β−γ2
s−(β+γ)`/2e (3.10) eqn:Nboundmlmc2

to guarantee the inequality (3.5). Substituting (3.10) into (3.3), we have

C = c3h
−γ
0

L∑
`=0

N`s
γ` < c3h

−γ
0

2δ−2c2h
β
0

(
1− s−

(β−γ)
2

(L+1)

1− s−β−γ2

)2

+
L∑
`=0

sγ`


= 2c2c3h

β−γ
0 δ−2

(
1− s−

(β−γ)
2

(L+1)

1− s−β−γ2

)2

+ c3h
−γ
0

1− sγ(L+1)

1− sγ
. (3.11) eqn:complexitycase2

Since α ≥ β/2, we again choose h0 exactly as the upper bound in (3.7) and obtain

C ≤ 2c2c3

(
√

2c1)
β−γ
α

s(β−γ)L

(
1− s−

(β−γ)
2

(L+1)

1− s−β−γ2

)2

δ−2+β−γ
α

+ c3(
√

2c1)
γ
α s−γL

1− sγ(L+1)

1− sγ
δ−

γ
α

6 c4δ
−2+β−γ

α

with147

c4 ,
2c2c3

(
√

2c1)
β−γ
α

s(β−γ)L

(
1− s−

(β−γ)
2

(L+1)

1− s−β−γ2

)2

+ c3(
√

2c1)
γ
α s−γL

1− sγ(L+1)

1− sγ
. (3.12) defofc4
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(c) Finally we consider the case when β < γ. By choosing N` as defined in (3.10), the

inequality (3.5) is satisfied. Moreover, the estimate of the total complexity in (3.11)

is still valid while the upper bound in (3.11) is an decreasing function of h0. It follows

from (3.7) and α ≥ β/2 that

C ≤ 2c2c3

(
√

2c1)
β−γ
α

s−(γ−β)L

(
1− s

(γ−β)
2

(L+1)

1− s γ−β2

)2

δ−2+β−γ
α

+ c3(
√

2c1)
γ
α s−γL

1− sγ(L+1)

1− sγ
δ−

γ
α

6 c4δ
−2+β−γ

α

with c4 defined in (3.12).148

�149

Remark 3.3. When β > γ, the optimal upper bound in (3.11) can be achieved when150

h0 =
1

(2c2)1/β

1− sγ(L+1)

1− sγ

[
1− s−

(β−γ)
2

(L+1)

1− s−β−γ2

]−2
1/β

δ2/β. (3.13) eqn:h0optimal

However, we did not use the optimal choice of h0 since it may not satisfy (3.7) for the given151

parameters.152

4. Numerical results153

In this section, we will conduct numerical experiments to investigate the performance of154

the improved MLMC method. To be specific, we consider the following elliptic PDE with155

random coefficients156 
−∇ · (a(x, ω)∇u(x, ω)) = f(x, ω) x ∈ D,

u(x, ω) = 0 x ∈ ∂D

(4.1) eqn:PDE
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for almost all ω ∈ Ω.157

Following [5], we consider a log-normal field where a(x, ω) = exp (g(x, ω)) and g : D̄×Ω→158

R is a Gaussian field with zero mean and Lipschitz continuous covariance kernel159

C(x, y) = E [(g(x, ω)− E[g(x, ω)]) (g(y, ω)− E[g(y, ω)])] = k(‖x− y‖)

for some Lipschitz continuous function k ∈ C0,1(R+) and for some norm ‖ · ‖ in Rd.160

Two types of covariance functions will be taken into account: one is the Gaussian function161

162

k(r) = σ2 exp (−r2/λ2) (4.2) eqn:Gauss

which is smooth, and the other is the exponential function163

k(r) = σ2 exp (−r/λ) (4.3) eqn:exp

which is only Lipschitz continuous. In both covariance functions, λ is the correlation length164

and σ2 is the variance.165

From Proposition 4.2 and Proposition 4.3 in [5], we can derive the parameters in Theorem166

3.1. For a log-normal field with Gaussian covariance function (4.2), the constants α = 1, β =167

2 when the quantity of interest Q(u) = |u|H1(D) and α = 2, β = 4 when Q(u) = ‖u‖L2(D),168

respectively. For a log-normal field with exponential covariance function (4.3), α = 1/2, β =169

1 when Q(u) = |u|H1(D) and α = 1, β = 2 when Q(u) = ‖u‖L2(D), respectively. In all170

the cases, α = β/2 which implies the validity of the assumption α ≥ β/2 in Theorem 3.1.171

Moreover, we have γ = d if a solver with linear computational complexity is employed, such172

as multigrid solver; see [7, 5] for more details.173
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Table 1 lists the theoretical upper bounds for δ-costs of the MC method, the classical174

MLMC method, and the improved MLMC (iMIMC for short) method in the case of a log-175

normal field with Gaussian covariance function and with exponential covariance function,176

respectively. For simplicity we keep the δ terms while drop the logarithmic factors. We can177

see that the theoretical upper bounds for δ-cost of the improve MLMC method is the least178

among the three methods which is highlighted in red.179

Gaussian covariance function Exponential covariance function

Q(u) = |u|H1(D) Q(u) = ‖u‖L2(D) Q(u) = |u|H1(D) Q(u) = ‖u‖L2(D)

d MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC

1 δ−3 δ−2 δ−1 δ−5/2 δ−2 δ−1/2 δ−4 δ−2 δ−2 δ−3 δ−2 δ−1

2 δ−4 δ−2 δ−2 δ−3 δ−2 δ−1 δ−6 δ−4 δ−4 δ−4 δ−2 δ−2

3 δ−5 δ−3 δ−3 δ−7/2 δ−2 δ−3/2 δ−8 δ−6 δ−6 δ−5 δ−3 δ−3

Table 1. Theoretical upper bounds of δ-costs for three different methods in the case of a log-normal

field with two covariance functions.tab:theocomp

4.1. 1D problems. Let us start by solving the 1D problem of (4.1) in D = (0,1) and180

f ≡ 1 with boundary conditions u(0) = u(1) = 0. The quantity of interest Q(u) is chosen as181

||u||L2(D) and |u|H1(D), respectively. We first numerically verify the assumptions in Theorem182

3.1, and estimate the values of the parameters α and β to ensure the decay of the variance183

of Qh` −Qh`−1
for each level. Then we study the efficiency of the improved MLMC method184

in terms of the accuracy and the computational cost. For brevity, we denote Q` := Qh` in185

the following.186

4.1.1. Gaussian covariance function. There exist several techniques to produce samples of187

the coefficient a(x, ω), including the circulant embedding [6, 8, 9] and the truncated KL-188

expansion. Here we employ the circulant embedding technique. Given a log-normal field189
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with Gaussian covariance function (4.2), for λ = 0.3, σ2 = 1, Figure 1 shows the behaviour190

of the variance and the expected value of Q` and Q` − Q`−1 when Q(u) = ||u||L2(D) and191

α ≈ 1.9998, β ≈ 3.6100.192

Figure 1. 1D problem. Plots of the variance (left) and the expected value (right) for Q` and Q`−Q`−1

in the case of a log-normal field with Gaussian covariance function when Q(u) = ||u||L2(D). tab:Variance_Gaussian_L2
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Figure 2. 1D problem. Left: Number of samples N` on each level in the improved MLMC method for

different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field for Gaussian

covariance function with λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D). tab:Gaussian_L2
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Numerical experiments are performed with the setting of the above parameters. We in-193

vestigate the improved MLMC method with the fixed total number of mesh levels L = 4 and194

the fixed mesh refinement ratio s = 2. To achieve a RMSE of δ, after traversing to find the195
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optimal strategy, the sampling numbers N` used on each level are shown in the left plot of196

Figure 2. The right plot gives a comparison of the costs among the MC method, the classical197

MLMC method and the improved MLMC method, which exhibits a significant advantage of198

the improved MLMC method. Note that the finest mesh size in our experiment is h = 1/212
199

and hence E[||uh||L2(D)] ≈ 0.1177. The cost on the vertical axis of the plot is calculated200

as N0 +
∑L

`=1 N`
T`+T`−1

T0
, where T` is CPU time of computing numerical solutions when the201

mesh size is h`.202

In Table 2, we record the computational costs for δ-accuracy of the MC method, the203

classical MLMC method and the improved MLMC method in the case of a log-normal field204

with Gaussian covariance function with λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D). It is easy205

to see that the computational cost of the improved MLMC method is almost half of that of206

the classical MLMC method without sacrifice of the accuracy.207

Table 2. 1D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with Gaussian covariance function for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D).tab:Cost_L2

δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC

0.02 0.2391 0.0330 0.0093 1.90e-2 4.60e-3 9.30e-3

0.01 0.3227 0.0310 0.0118 9.50e-3 5.90e-3 4.10e-3

0.005 0.3275 0.0318 0.0140 5.00e-3 1.40e-3 2.55e-4

0.002 0.3979 0.0383 0.0181 2.00e-3 1.70e-3 3.55e-4

0.001 0.4947 0.0328 0.0166 1.00e-3 3.25e-4 4.00e-4

4.1.2. Exponential covariance function. Now let us take a look at the case of a log-normal208

field with exponential covariance function (4.3) for λ = 0.3, σ2 = 1. In Figure 3, we can find209

the behaviour of the variance and the expected value of Q` and Q` − Q`−1 when Q(u) =210
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||u||L2(D) and α ≈ 1.0068, β ≈ 1.9981. Note that the finest mesh size is still chosen as211

h = 1/212, which gives E[||uh||L2(D)] ≈ 0.1254. From Figure 4 and Table 3, we can come to212

the same conclusion that the improved MLMC method outperforms over the MC method213

and the classical MLMC method.214

Figure 3. 1D problem. Plots of the variance (left) and the expected value (right) for Q` and Q`−Q`−1

in the case of a log-normal field with exponential covariance function when Q(u) = ||u||L2(D). tab:Variance_exp_L2

0 1 2 3 4 5
−35

−30

−25

−20

−15

−10

−5

level l

lo
g 2va

ria
nc

e

 

 

Q
l

Q
l
 − Q

l−1

Polyfit

0 1 2 3 4 5
−18

−16

−14

−12

−10

−8

−6

−4

−2

level l

lo
g 2|m

ea
n|

 

 

Q
l

Q
l
 − Q

l−1

Polyfit

Figure 4. 1D problem. Left: Number of samples N` on each level in the improved MLMC method

for different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field with

exponential covariance function for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D). tab:exp_L2
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Furthermore, we consider the case when the quantity of interest Q(u) = |u|H1(D). Given215

a log-normal field with Gaussian covariance function and exponential covariance function216
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Table 3. 1D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with exponential covariance function for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D).tab:Cost_exp_L2

δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC

0.02 0.3090 0.0544 0.0119 1.98e-02 9.20e-3 1.07e-2

0.01 0.3528 0.0560 0.0166 9.70e-3 8.10e-3 5.00e-4

0.005 0.4648 0.0656 0.0201 4.90e-3 2.00e-3 1.00e-4

0.002 0.5825 0.0757 0.0235 2.00e-3 1.10e-3 2.64e-4

0.001 0.5861 0.0881 0.0282 1.00e-3 7.05e-4 4.11e-4

Figure 5. 1D problem. Left: Number of samples N` on each level in the improved MLMC method

for different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field with two

covariance functions for λ = 0.3, σ2 = 1 when Q(u) = |u|H1(D). all_1D_H1
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(a) Gaussian covaraince function
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(b) Exponential covaraince function

for λ = 0.3, σ2 = 1, the corresponding numerical results are shown in Figure 5 and Table217

4. For the same accuracy, the improved MLMC method reduces more than half of the218

computational cost compared with the classical MLMC method.219

Finally we change the value of λ from 0.3 into 0.03. In this case, the random field is220

rougher, while the improved MLMC method still plays a very good role in improving the221

computatioanl efficiency. For the detailed results, please refer to Figure 6 and Table 5 -222

Table 6.223
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Table 4. 1D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with two covariance functions for λ = 0.3, σ2 = 1 when Q(u) = |u|H1(D).all_1D_H1_1

Gaussian covaraince function Exponential covariance function

δ2-Cost Actual Error δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC

0.02 2.1133 0.5364 0.1943 1.99e-2 4.50e-3 6.00e-4 3.5125 1.0412 0.2992 1.97e-2 9.60e-3 1.80e-3

0.01 2.2568 0.5269 0.2698 1.00e-2 6.00e-3 1.20e-3 3.6207 1.0258 0.3278 9.70e-3 7.30e-3 6.30e-3

0.005 2.9076 0.5429 0.2730 5.00e-3 1.70e-3 3.21e-4 3.5763 1.2408 0.3322 5.00e-3 3.30e-3 1.80e-3

0.002 2.3364 0.5247 0.2888 2.00e-3 1.70e-3 4.45e-4 5.1800 1.5892 0.3761 2.00e-3 1.30e-3 9.43e-4

0.001 2.5563 0.5101 0.3312 1.00e-3 4.42e-4 3.01e-4 6.1520 1.6653 0.4729 1.00e-3 5.42e-4 4.67e-4

Figure 6. 1D problem. Left: Number of samples N` on each level in the improved MLMC method

for different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field with two

covariance functions for λ = 0.03, σ2 = 1 when Q(u) = ||u||L2(D) and Q(u) = |u|H1(D), respectively. all_1D_03
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(a) Gaussian function when Q(u) = ||u||L2(D)
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(b) Gaussian function when Q(u) = |u|H1(D)
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(c) Exponential function when Q(u) = ||u||L2(D)
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(d) Exponential function when Q(u) = |u|H1(D)
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Table 5. 1D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with covariance functions for λ = 0.03, σ2 = 1 when Q(u) = ||u||L2(D).tab:all_1D_03

Gaussian covaraince function Exponential covariance function

δ2-Cost Actual Error δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC

0.02 0.1148 0.0266 0.0079 1.64e-2 1.81e-2 3.40e-3 0.1030 0.0239 0.0059 1.66e-2 1.09e-2 1.45e-2

0.01 0.1100 0.0326 0.0090 9.20e-3 9.70e-3 4.70e-3 0.1442 0.0483 0.0060 9.80e-3 4.70e-4 2.60e-3

0.005 0.1213 0.0548 0.0082 4.50e-3 4.90e-3 2.40e-3 0.1030 0.0642 0.0095 4.90e-3 2.76e-4 2.80e-3

0.002 0.1577 0.0598 0.0098 2.00e-3 1.90e-3 1.00e-4 0.1718 0.0836 0.0107 2.00e-3 5.65e-4 1.60e-3

0.001 0.2758 0.0637 0.0116 1.00e-3 5.23e-4 1.93e-5 0.2132 0.0902 0.0120 1.00e-3 8.00e-4 8.00e-4

Table 6. 1D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with two covariance functions for λ = 0.03, σ2 = 1 when Q(u) = |u|H1(D).tab:Cost_H1_03

Gaussian covariance function Exponential covariance function

δ2-Cost Actual Error δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC

0.02 1.4057 0.3435 0.0575 2.00e-2 1.79e-2 1.67e-2 1.8232 0.3824 0.0543 1.99e-2 1.65e-2 1.81e-2

0.01 1.7667 0.6427 0.0757 1.00e-2 4.30e-3 2.80e-3 1.5760 0.3692 0.0541 1.00e-2 5.10e-3 8.00e-3

0.005 1.6741 0.6793 0.0877 5.00e-3 3.30e-3 1.10e-3 1.9237 0.5279 0.0886 5.00e-3 4.00e-3 2.70e-3

0.002 2.2366 0.6781 0.0847 2.00e-3 1.90e-3 7.42e-4 2.3104 0.8550 0.1528 2.00e-3 1.20e-3 2.00e-3

0.001 1.7856 0.4068 0.0979 1.00e-3 1.00e-3 8.20e-5 2.8895 0.8494 0.1939 1.00e-3 4.17e-4 7.32e-4

4.2. 2D problems. In this subsection, we solve the 2D problem of (4.1) in D = (0, 1)2 with224

f ≡ 1. The coefficient a(x, ω) is chosen as a log-normal random field such that log(a) has225

Gaussian covariance function (4.2) or exponential covariance function (4.3) with ‖ · ‖ being226

the 2-norm (i.e., ‖x‖ := (xTx)1/2). Again, we use the circulant embedding technique to227

generate samples for the random coefficient a(x, ω). In addition, it is worthwhile to mention228
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that for one-dimensional problems we use the catch-up method to solve the linear systems229

of equations, while for the two-dimensional problems we directly use the sparse direct solver230

provided in Matlab through the standard backslash operation to solve the linear systems of231

equations for each sample.232

4.2.1. Gaussian covariance function. Given a log-normal field with Gaussian covariance233

function (4.2) with λ = 0.3, σ2 = 1, Figure 7 shows the behaviour of the variance and234

the expected value of Ql and Ql −Ql−1 when Q(u) = ||u||L2(D) and α ≈ 1.5700, β ≈ 2.9110.235

The left plot of Figure 8 is related to the implementation of the improved MLMC method.236

When the fixed total number of mesh levels L = 4, and the fixed mesh refinement ratio237

s = 2, to achieve a RMSE of δ, after traversing to find the optimal strategy, we get the238

sampling numbers used on each level with h0 = 1/2. The right plot of Figure 8 compares the239

cost among the MC method, the classical MLMC method and the improved MLMC method.240

Note that the finest grid in this experiment is h = 1/28, which gives E[||uh||L2(D)] ≈ 0.0459. It241

clearly shows that the improved MLMC method does much better than the classical MLMC242

method.243

In Table 7, we can see the δ2-Cost and actual error to achieve the accuracy δ of the MC244

method, the classical MLMC method and the improved MLMC method in the case of a log-245

normal field with Gaussian covariance function for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D).246

Numerical results show that the ratio of the costs between the classical MLMC method and247

the improved MLMC method with 5 levels is more than 2.248

4.2.2. Exponential covariance function. Finally, we study the performance of the three meth-249

ods in the case of a log-normal field with exponential covariance function (4.3) for λ =250
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Figure 7. 2D problem. Plots of the variance (left) and the expected value (right) of Q` and Q`−Q`−1

in the case of a log-normal field with Gaussian covariance function when Q(u) = ||u||L2(D). tab:Var2D_GaussianL2
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Figure 8. 2D problem. Left: Number of samples N` on each level in the improved MLMC method

for different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field with

Gaussian covariance functions for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D). tab:NNl2D_GaussianL2

1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

level l

N
l

 

 

10
−3

10
−3

10
−2

10
−1

10
0

10
1

accuracy δ

δ2 C
os

t

 

 

δ = 0.0002
δ = 0.0005
δ = 0.001
δ = 0.002
δ = 0.005

MC
MLMC
iMLMC

0.3, σ2 = 1. Plots of the variance and the expected value of Ql and Ql −Ql−1 are shown in251

Figure 9, when Q(u) = ||u||L2(D) and α ≈ 0.9500, β ≈ 1.9710.252

Note that the finest grid in our experiment is still h = 1/28, which gives E[||u||L2(D)] ≈253

0.0462. We show the detailed data comparison of the computational cost of the three methods254

in Figure 10 and Table 8, from which we can see that the computational efficiency of the255

improved MLMC method is more than doubled compared to the classical MLMC method.256
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Table 7. 2D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with Gaussian covariance function for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D).tab:Cost_L2_2D

δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC

0.005 0.7712 0.0039 0.0014 4.90e-3 3.99e-4 8.76e-4

0.002 1.3631 0.0049 0.0014 2.00e-3 8.69e-4 1.00e-4

0.001 1.3646 0.0073 0.0033 1.00e-3 5.84e-4 5.04e-4

0.0005 1.2886 0.0062 0.0036 5.00e-4 3.43e-4 6.61e-5

0.0002 1.3910 0.0081 0.0039 2.00e-4 6.33e-5 1.74e-5

When the the quantity of interest Q(u) = |u|H1(D) see Figure 11 and Table 9. From the257

numerical results, we conclude that the computational efficiency has been at least doubled258

by the improved MLMC method.259

Figure 9. 2D problem. Plots of the variance (left) and the expected value (right) of Q` and Q`−Q`−1

in the case of a log-normal field with exponential covariance function when Q(u) = ||u||L2(D). tab:Var2D_expL2
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Figure 10. 2D problem. Left: Number of samples N` on each level in the improved MLMC method

for different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field with

exponential covariance functions for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D). tab:NNl2D_expL2
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Table 8. 2D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with exponential covariance function for λ = 0.3, σ2 = 1 when Q(u) = ||u||L2(D).tab:Cost_exp_L2_2D

δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC

0.005 0.4036 0.0051 0.0015 5.00e-3 3.20e-3 4.99e-4

0.002 0.4964 0.0050 0.0014 2.00e-3 1.50e-3 7.00e-4

0.001 0.6034 0.0056 0.0017 1.00e-3 9.20e-4 4.00e-4

0.0005 0.5993 0.0062 0.0020 5.00e-4 2.45e-4 1.90e-4

0.0002 0.5907 0.0114 0.0036 2.00e-4 1.33e-4 1.03e-4

5. Conclusions260

Solving elliptic PDEs with random coefficients is a challenging problem that arises in261

many applications physics and engineering sciences. In the literatures, the classical MLMC262

methods have been discussed to improve the computational efficiency of solving this type of263

problems by computing the correction through multilevel grids to reduce the variance. In264
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Figure 11. 2D problem. Left: Number of samples N` on each level in the improved MLMC method

for different RMSEs δ; Right: Cost scaled by δ2 of three methods in the case of a log-normal field with two

covariance functions for λ = 0.3, σ2 = 1 when Q(u) = |u|H1(D). all_2D_H1
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(a) Gaussian covaraince function
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(b) Exponential covaraince function

Table 9. 2D problem. δ2-Cost and actual error to achieve the accuracy δ for three methods in the

case of a log-normal field with two covariance functions for λ = 0.3, σ2 = 1 when Q(u) = |u|H1(D).tab:Cost_2D_H1

Gaussian covariance function Exponential covariance function

δ2-Cost Actual Error δ2-Cost Actual Error

δ MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC MC MLMC iMLMC

0.02 20.5640 0.1724 0.0438 2.00e-2 4.2e-3 3.00e-4 15.7402 0.1960 0.0437 1.90e-2 1.53e-2 5.30e-3

0.01 20.1233 0.1815 0.0531 1.00e-2 3.20e-3 3.50e-3 16.5474 0.2041 0.0512 1.00e-2 4.40e-3 4.50e-3

0.005 22.5470 0.1753 0.0404 5.00e-3 4.50e-3 4.00e-4 17.2536 0.1871 0.0506 5.00e-3 4.80e-3 4.50e-3

0.002 20.3584 0.1827 0.0454 2.00e-3 1.80e-3 1.80e-3 17.0074 0.3132 0.0507 2.00e-3 1.30e-3 1.10e-3

0.001 20.6859 0.2328 0.0904 1.00e-3 5.01e-4 4.40e-4 17.1396 0.3898 0.1007 9.82e-4 9.88e-4 7.00e-4

this paper, we proposed an improved MLMC method to further reduce the computational265

complexity of the classical MLMC method. Under mild conditions, we proves that our im-266

proved MLMC method is optimized on the basis of the classical MLMC method, which allows267

us to achieve the enhancements of computational efficiency. We also presented numerical268

examples for both 1D and 2D elliptic PDEs with random coefficients to demonstrate the269
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accuracy and efficiency of the proposed method. There are two directions we want to ex-270

plore in our future work. On one hand, we intend to apply the improved MLMC method to271

solve other stochastic PDEs arising from uncertainty quantification, such as the Helmholtz272

equation with random media and time-dependent stochastic PDEs. On the other hand, we273

will investigate some techniques, such as the sparse matrix method [11, 12, 13, 14] to further274

reduce the computational time in the implementation of the proposed method.275
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