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Abstract

We study a regularized interacting particle method for computing aggregation patterns
and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three
space dimensions, then further develop DeepParticle (DP) method to learn and generate
solutions under variations of physical parameters. The KS solutions are approximated as
empirical measures of particles which self-adapt to the high gradient part of solutions.
We utilize the expressiveness of deep neural networks (DNNs) to represent the transform
of samples from a given initial (source) distribution to a target distribution at finite
time T prior to blowup without assuming invertibility of the transforms. In the training
stage, we update the network weights by minimizing a discrete 2-Wasserstein distance
between the input and target empirical measures. To reduce computational cost, we
develop an iterative divide-and-conquer algorithm to find the optimal transition matrix
in the Wasserstein distance. We present numerical results of DP framework for successful
learning and generation of KS dynamics in the presence of laminar and chaotic flows.
The physical parameter in this work is either the small diffusivity of chemo-attractant or
the reciprocal of the flow amplitude in the advection-dominated regime.

AMS subject classification: 35K57, 37M25, 49Q22, 65C35, 68T07.

Keywords: Keller-Segel system, stochastic interacting particle approximation, optimal
transportation, deep neural networks.

1. Introduction

Chemotaxis partial differential equations (PDEs) were introduced by Keller and Segel
(KS [17]) to describe the aggregation of the slime mold amoeba Dictyostelium discoideum
due to an attractive chemical substance. Related random walk model by Patlak was
known earlier [28], see [27] for an analysis of basic taxis behaviors (aggregation, blowup
and collapse) based on reinforced random walks. Recall a common form of KS model
[10]:

ρt = ∇ · (µ∇ρ− χρ∇c), ϵ ct = ∆ c− k2 c+ ρ, (1)
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where χ, µ (ϵ, k) are positive (non-negative) constants. The model is called elliptic if
ϵ = 0 (when c evolves rapidly to a local equilibrium), and parabolic if ϵ > 0. The ρ is
the density of active particles (bacteria), and c is the concentration of chemo-attractant.
The bacteria diffuse with mobility µ and drift in the direction of ∇c with velocity χ∇c
where χ is called chemo-sensitivity.

In the simplest regime (ϵ, k) = 0, the concentration equation becomes the Poisson
equation −∆c = ρ. Subject to a suitable boundary condition of c, the classical integral
representation c = −K ∗ ρ holds, where K is the Green’s function of the Laplacian,
and ∗ denotes convolution. The KS system then reduces to a scalar non-local nonlinear
advection-diffusion PDE governing the evolution of the density function ρ:

ρt = µ∆ ρ+ χ∇ ·
(
ρ∇(K ∗ ρ)

)
. (2)

For modeling chemotaxis in a fluid environment such as ocean, [19, 20, 18, 15, 12]
studied equation (2) with the advective Lie derivative ρ on the left hand:

ρt +∇ · (ρv) = µ∆ ρ+ χ∇ ·
(
ρ∇(K ∗ ρ)

)
. (3)

The mixing mechanism of the flow field v is known to slow down or smooth out blowup
or aggregation in (2), see analysis in [19, 20, 15, 12] and references therein, and re-
lated convection induced smoothing in fluids [14, 13]. Eq. (3) is the macroscopic limit
(McKean-Vlasov equation) of the interacting particle system below as J ↑ ∞:

dXj = − χM

J
∇Xj

∑
i=1:J, i̸=j

K(|Xj −X i|) dt+ v(Xj)dt+
√

2µ dW j, j = 1, · · · , J, (4)

where M is the conserved total mass (integral of ρ), W j’s are independent Brownian
motions in Rd.

In this work, v is a prescribed divergence free vector field. We shall approximate ρ

of equation (3) numerically based on the associated interacting particle system in two
and three spatial dimensions (d = 2, 3), and carry out a systematic deep learning study
(a.k.a. DeepParticle [37]) on the (µ,v) dependency of solutions. As we are interested in
studying near singular KS solutions, the main challenge for training data collection is to
approximate the fields ρ(x) and c(x) reliably as they intensify. Due to singular behavior
of Green’s function as particles come close to each other, our approach is to regularize K
in (4) for approximating ρ(x) as particles aggregate, in similar spirit to the vortex blob
method for fluids ([22] and references therein) and [9].

Deep learning tools have been applied broadly for scientific computing in recent years,
such as solving PDEs and their inverse problems, see [2, 37] and references therein.
DeepParticle [37] is based on a particle method for solving a time-dependent physically
parameterized PDE, whose solution is approximated by the particle empirical measure
(distribution). A deep neural network (DNN) with physical parameter dependence learns
the mapping from the initial particle distribution to the particle distribution at time T

with training data over sampled physical parameters provided by the particle method.
The trained DNN then generates approximate solutions at time T for new physical pa-
rameters unseen in training. DeepParticle has been successfully designed and trained
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for learning and generating invariant measures of stochastic interacting particle systems
(at T = ∞) arising in reaction-diffusion front speeds in three dimensional chaotic flows
[37]. In this paper, we further develop DeepParticle to learn and generate KS solutions
exhibiting aggregation behavior at a finite time T before blow-up for a range of diffusivity
µ and advection amplitude values.

The rest of the paper is organized as follows. In Section 2, we briefly review the
blow up behavior in the KS model and the regularized particle methods to solve the KS
model. In Section 3, we present our DeepParticle method to learn the transport map
from an input distribution to a target distribution. Moreover, we will discuss details of
implementation of our method and how to learn the distributions in particle simulation of
the KS model. In Section 4, we show numerical results to demonstrate the performance
of our method. Concluding remarks are made in section 5.

2. Regularized interacting particle method of KS equation

2.1. Blow up behavior in KS model
We start from the simplest KS model without advection, namely (2) with µ = χ = 1.

This system has been extensively studied by many authors, see survey article [29]. The
conservation of mass holds:

d

dt

∫
R2

ρ(x, t)dx = 0, (5)

which is also true for Eq. (3) when the advection field v is divergence free. If we set the
total mass M :=

∫
R2 ρ(x, 0)dx, the second moment has fixed time derivative, i.e.,

d

dt

∫
R2

|x|2ρ(x, t)x =
M

2π
(8π −M), (6)

where 8π is called critical mass of the system. Accordingly, it is well-known that: 1) if
M > 8π, the system has no global smooth solutions; 2) if M = 8π, the system has a
global smooth solution, which blow up as t→∞; 3) if M < 8π, the system has a global
smooth solution.

In [18], an extra advection term is introduced to the KS equation, which reflects the
organism movement in some prescribed fluid flows. Then the second moment identity in
Eq.(6) and the subsequent blowup vs. global evolution results are no long valid. By com-
parison principle, [18] shows that if the total mass is smaller than critical mass, the system
has global smooth solution with smooth initial data. In the cases with supercritical mass,
there are only numerical experiments suggesting that the advection, if sufficiently large,
prevents the solutions from blowing up. Later, [12] shows that when the flow exerts a
‘stretching’ effect, the advection field v indeed suppresses the growth or the concentra-
tion of chemo-attractant and hence the solution has global regularity and exists for all
time. Examples of stretching flows include hyperbolic flows where v(x) =

(
x1,− 1

d−1
x−
)

and laminar flows where v(x) = (v (x−) ,0−), with x− = (x2, . . . , xd) and v is periodic.
However the case of chaotic flows or when the amplitude of advection v is not sufficiently
large, remains open.
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2.2. Regularized interacting particle methods
The singular behavior of the governing PDE and the associated Green’s function that

cause trouble for particle methods is a well-known problem. The vortex blob method
[8] provides a regularization approach to extend vortex sheet motion past the singularity
formation time into the physically important roll-up regime, in which the points repre-
senting the vortex sheet are replaced by vortices of prescribed and fixed shape. Numerical
calculations show regular motion for the centers of the blobs even after the time when a
curvature singularity on a vortex sheet is formed. Later, a special form of the vortex blob
method [21] is used to calculate the roll-up of a periodic vortex sheet resulting from the
classical Kelvin-Helmholtz instability. The singular solutions are closely related to the
ill-posedness of vortex sheet motion [3] . Nonetheless, as the regularization parameter
approaches zero, the regularized vortex sheet solution converges to a weak solution of the
Euler equation [23]. As in vortex blob methods, we formulate a regularized interacting
particle method (denoted as IPM from here on) to solve KS chemotaxis systems.

Let us represent the density function (solution of Eq.(3)) with empirical distribu-
tions of particle positions. In SDE (4) on particle positions, the chemo-attractant term
χM
J
∇Xj

∑
i=1:J, i̸=j K(|Xj −X i|) dt causes numerical instabilities when particles tend to

concentrate. To overcome this difficulty, we replace the singular kernel in (4) by a
smoothed approximation Kδ, such that Kδ(z) → K(z) as δ → 0, where δ > 0 is a
regularization parameter. For example, we define

Kδ(z) = K(z)
|z|2

|z|2 + δ2
. (7)

Equipped with kernel Kδ, we obtain a system of regularized SDEs for the particles as
follows:

dXj = − χM

J
∇Xj

∑
i=1:J, i̸=j

Kδ(|Xj −X i|) dt+ v(Xj)dt+
√
2µ dW j, j = 1, 2, · · · , J,

(8)

where J is the number of particles, Xj ∈ Rd is the position of the j-th particle, where
dW j are mutually independent d−dimensional Brownian motions. The convergence of
a random particle blob method, similar to (8) yet for KS without advection field v, is
analyzed in [24]. For a stochastic particle method using heuristic collision and splitting
rules to bypass the singular behavior of Green’s function, see [11].

Representing PDE solutions by particles belongs to the Lagrangian framework. The
Lagrangian methods have several advantages: (1) easy to implement; (2) spatially mesh-
free and self-adaptive; and (3) computational costs scale linearly with the dimension of
spatial variables in the underlying stochastic dynamical systems. If we discretize KS sys-
tem (3) on mesh grids with e.g. finite element [5] and spectral [31] methods, the number
of mesh grids depends exponentially on the spatial dimension. The key benefit of the
Lagrangian framework in computing KS models is its natural capability to follow the
KS solution when a singular behavior is emerging. As we shall see, the stochastic parti-
cle method based on (8) reproduces the well-known aggregation behavior and captures
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the KS dynamics during the potential blow-up stage of evolution. This is another step
forward in our program of computing high gradient solutions in the Lagrangian frame-
work, which has shown encouraging results for a range of multi-dimensional singularly-
perturbed advection-diffusion PDEs. We refer interested readers to our recent progress
in developing Lagrangian methods to compute effective diffusivites in chaotic or random
flows [34, 25, 35, 36] and KPP front speeds in chaotic flows [26]. There are also deter-
ministic particle methods ([4, 9] and references therein) for a class of KS and degenerate
diffusion equations that fall in our DeepParticle framework (section 3).

Though the IPM in our study here is mesh-free and self-adaptive for solving multi-
dimensional KS chemotaxis systems, the computational costs remain high if we want to
study the systems under a variation of parameters (evolution time T and amplitude of ad-
vection A). Also, the numbers of particles J cannot be too large as the chemo-attractant
term has O(J2) complexity in each step. On the other hand, our numerical simulation of
Eq.(8) shows that the distribution at finite time T , starting from the same initial distribu-
tion, may have continuous dependence on the physical parameters. Therefore in the next
section, we will introduce a machine learning algorithm to learn the feature of continuous
dependency on parameters and generate approximate samples with O(J) complexity.

3. Deep particle method

In this section we introduce a DeepParticle algorithm to learn the features of the
transport map from a trivial (input) distribution to a target (output) distribution. The
mapping error is measured by the 2-Wasserstein distance.

3.1. Discrete Wasserstein distance
Given distributions µ and ν defined on metric spaces X and Y , let us construct a transport
map f 0 : X → Y such that f 0

∗ (µ) = ν, where star denotes the push forward of the map.
For any function f : X → Y , the 2-Wasserstein distance between f∗(µ) and ν is defined
by:

W2(f∗(µ), ν) :=

(
inf

γ∈Γ(f∗(µ),ν)

∫
Y×Y

dist(y′, y)2 dγ(y′, y)

)1/2

, (9)

where Γ(f∗(µ), ν) denotes the collection of all measures on Y × Y with marginals f∗(µ)

and ν on the first and second factors respectively and dist denotes the metric (distance)
on Y . A straightforward derivation yields:

W2(f∗(µ), ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×Y

dist(f(x), y)2 dγ(x, y)

)1/2

, (10)

where Γ(µ, ν) denotes the collection of all measures on X × Y with marginals µ and ν

on the first and second factors respectively and still dist denotes the metric (distance)
on Y . We approximate µ and ν by empirical distribution functions: µ = 1

N

∑N
i=1 δxi

,
ν = 1

N

∑N
j=1 δyj , where N is the number of samples of distribution. Under the setting of

learning distribution from interacting particle methods, we take N < J sub-samples from
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terminal time position of system (4) to represent the distribution. We will re-sample them
every 1000 steps of training. The preceding technique is usually referred as mini-batch in
the machine learning literature.

Any joint distribution in Γ(µ, ν) can be represented by an N × N doubly stochastic
matrix [32], denoted as transition matrix, γ = (γij)i,j satisfying:

γij ≥ 0; ∀j,
N∑
i=1

γij = 1; ∀i,
N∑
j=1

γij = 1. (11)

Then (10) becomes

Ŵ (f) :=

(
inf

γ∈ΓN

N∑
i,j=1

dist(f(xi), yj)
2γij

)1/2

. (12)

Ŵ (f) in (12) has a simple intuitive interpretation: given a γ ∈ Γ(µ, ν) and any pair of
locations (x, y), the value of γ(x, y) tells us what proportion of f∗(µ) mass at f(x) should
be transferred to y, in order to reconfigure f∗(µ) into ν. Computing the effort of moving
a unit of mass from y′ to y by dist(f(x), y)2 yields the interpretation of Ŵ as the minimal
effort (optimal transportation [33]) to reconfigure f∗(µ) mass distribution into that of ν.

3.2. Training data and network configuration
Note that given any fixed set of {xi}Ni=1 ⊂ Rd and {yj}Nj=1 ⊂ Rd (training data),

we have derived Eq.(12) to be minimized by gradient descent. In addition, we aim to
find a network that can represent the change of target distribution over some physical
parameters. In such scenario, more than one set of data ({xi} and {yj} consists one set of
data) should be assimilated. More precisely, let the total number of data set be denoted
as Ndict. Then we have Ndict pairs of i.i.d. samples of input and output distribution,
denoted as {xi,r} and {yj,r} for r = 1 · · ·Ndict. Associated with the r-th data set ({xi,r}
and {yj,r}), we assume that there is a physical parameter ηr ∈ Rp. To represent this
in the network, we encode ηr to each data in the set, i.e., the input of the network is
{(xi,r, ηr)}i ⊂ Rd+p. This procedure is also called padding in the literature. The output of
network is then denoted as fθ(x; η) where θ’s are all trainable parameters of the network.

Between the input (l0) and output (l6), there are 5 latent layers where each layer is
30 in width. The adjacent layers li and li+1 are fully connected, i.e.,

li+1 = tanh(Wi(li) + bi) i = 0, · · · 4, (13)

where Wi is (weight) matrix width of li+1 and li; bi is the (bias) vector with same dimension
as li; tanh is the activation function. For the output layer, the formula is similar except we
do not apply the activation function. In case of d = 2 and p = 1 (e.g. the first numerical
example in computing blowup behaviour of KS without advection, see Sec.4.1), there are
in total 4966 parameters (weight and bias) to update by gradient descent. In 3D cases,
we find that the network performs well even without altering the width of latent layers.
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Remark 3.0.1. Comparing with par-net approach of [37], we found that padding achieves
similar performance when learning distribution in particle simulation of KS model.

In our computation, by equipping Rd with Euclidean metric, the training loss function
is

Ŵ 2(fθ) :=

nη∑
r=1

(
inf

γr∈ΓN

N∑
i,j=1

|fθ(xi,r; ηr)− yj,r|2γij,r

)
. (14)

The goal of deep particle algorithm is then to find (θ, {γr}) to minimize

P (θ, {γr}) :=
nη∑
r=1

(
|fθ(xi,r; ηr)− yj,r|2γij,r

)
. (15)

3.3. Iterative method in finding transition matrix γ

Notice that, with fixed θ, finding the transition matrix γ to calculate discrete Wasser-
stein distance in (14) is linear programming with degree of freedom N2. When the
number of particles (N) becomes large, it is expensive to go by a conventional algorithm,
e.g. interior point algorithm or simplex algorithm. We now present a mini-batch linear
programming algorithm to find the best γ for each inner sum of (14), while suppressing
kr dependence in fθ.

The problem (14) is a linear program on the bounded convex set ΓN of vector space
of real N × N matrices. By Choquet’s theorem, this problem admits solutions that are
extremal points of ΓN . The set of all doubly stochastic matrix ΓN is viewed as Birkhoff
polytope. The Birkhoff–von Neumann theorem [30] states that such polytope is the
convex hull of all permutation matrices, i.e., those matrices such that γij = δj,π(i) for
some permutation π of {1, ..., N}, where δjk is the Kronecker symbol.

Our algorithm is defined iteratively. We start from a permutation matrix, e.g.,
γij = δij. In each iteration, we randomly select columns and corresponding rows such
that the submatrix is a permutation matrix. Then the entries of submatrix consist of a
linear programming problem under the constraint that maintains column-wise and row-
wise sums equal to one. To be precise, we randomly choose {ik}Mk=1, (M ≪ N) from
{1, 2, · · · , N} without replacement. Then jk is selected such that γik,jk = 1. The cost
function of the sub-problem is

C(γ∗) :=
M∑

k,l=1

|fθ(xik)− yjl |2γ∗
ikjl

(16)

subject to 
∑M

k=1 γ
∗
ik,jl

= 1 ∀l = 1, · · · ,M∑M
l=1 γ

∗
ik,jl

= 1 ∀ k = 1, · · · ,M
γ∗
ikjl
≥ 0 ∀ k, l = 1, · · · ,M.

(17)

Then γ∗ is again a permutation matrix. The linear programming sub-problem of much
smaller size is solved by the interior point method [38]. In addition, as the goal is to
find a permutation matrix, we set the tolerance of interior point to be relatively large
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and project the resulting approximation to a permutation matrix. In our approach, we
terminate the iteration of sub-problem until mink(maxl γ

∗
ik,jl

) > 0.5. This is to ensure
that there is a unique large-value entry in each column. As a projection, we update γ by,

γij =

{
1 if j = argmaxl γ

∗
il,

0 otherwise.
(18)

We observe that the global minimum of γ in (14) is also the solution of sub-problems
(16) with arbitrarily selected rows and columns, subject to the row and column partial
sum values of the global minimum. The selection of rows can be one’s own choice. In
our approach, in each step after gradient descent, we randomly select rows to solve the
optimization problem iteratively.

Comparing with Wasserstein GAN proposed in [1], (15) is a Min-Min optimization.
Both Adam gradient descent of θ and mimi-batch optimization of γ are iteratively defined.
We then alternatively update θ and γ to seek a global minimum of (15).

The cost of finding optimal γ increases as N increases, however the network itself
is independent of γ. After training, our network acts as a sampler from some target
distribution ν without assumption of closed-form distribution of ν. At this stage, the
input data is no longer limited by training data, an arbitrarily large amount of samples
approximately obeying ν can be generated through µ (uniform distribution).

3.4. Full Training Algorithm
The full training process is outlined in Alg. 1, and carried out on a quad-core CPU

desktop with an RTX2070 8GB GPU at UC Irvine. The training data is collected from the
first order explicit IPM which solves the regularized SDE system (8) by Euler’s method
in time. IPM is also the reference solver for evaluating DeepParticle output.

4. Numerical Examples

4.1. 2D KS Simulation and Generation in the Absence of Advection
First we consider the KS model without advection, namely (2) with µ = χ = 1.

A straightforward derivation shows if the initial mass M > 8π and has finite second
moment, the system will blow up in finite time.

As the first numerical example, we consider learning the change of distribution de-
pending on evolution time T starting from the initial distribution. The initial distribution
is assumed to be a uniform distribution on a ball with radius 1 centered at the origin.
Assuming the total mass is 16π, we have then the initial second moment as 8π, same
as in [18]. By Eq.(6), the system will blow-up when t > 0.125. For training data, we
applied IPM with regularization δ2 = 1e − 3 for T = 0.1 with J = 10000 particles. We
keep the snapshots of the empirical distribution every 0.05 interval. During training, we
consider a mini-batch of size 8 × 2000, which means, we take Ndict = 8 sets of training
data at various time t and in each set (mini-batch) we have N = 2000 subsamples from
J = 10000 samples from IPM. Adams gradient descent is applied to learn the parameters
(weight and bias) in the network. We renew the mini-batch every 1000 steps and renew
γ every 200 steps.
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Algorithm 1: DeepParticle Learning
Randomly initialize weight parameters θ in network fθ : Rd → Rd;
repeat

for physical parameter set r ← 0 to nη do
randomly select {xi,r}, {yj,r}, i, j = 1 : N from i.i.d. samples of input and
target distribution (generated by IPM) with respect to physical
parameter ηr;
γij,r = δi,j, i.e., initialize as permutation matrix;

end
if not the first training mini-batch then

for physical parameter set r ← 0 to nη do
δPr = +∞
while |δPr|fro < tol do

Pr =
∑N

i,j=1 |fθ(xi,r, ηr)− yj,r|2γij,r;
randomly choose {ik,r}Mk=1, from {1, 2, · · · , N} without
replacement;

find {jk,r}Mk=1, such that γik,rjk,r,r = 1

solve the linear programming sub-problem (16)-(17) to get γ∗
r

another permutation matrix;
update {γik,rjl,r}Mk,l=1 with {γ∗

ik,rjl,r
}Mk,l=1.

δPr =
∑N

i,j=1 |fθ(xi,r, ηr)− yj,r|2γ∗
ij,r − Pr

end
end

end
repeat

P =
∑Nr

r=1

∑N
i,j=1 |fθ(xi,r, ηr)− yj,r|2γij,r;

θ ← θ − δ1∇θP , δ1 is the learning step size;
repeat

for physical parameter set r ← 0 to nη do
Pr =

∑N
i,j=1 |fθ(xi,r, ηr)− yj,r|2γij,r;

randomly choose {ik,r}Mk=1, from {1, 2, · · · , N} without
replacement;

find {jk,r}Mk=1, such that γik,rjk,r,r = 1

solve the linear programming sub-problem (16)-(17) to get γ∗
r

another permutation matrix;
update {γik,rjl,r}Mk,l=1 with {γ∗

ik,rjl,r
}Mk,l=1.

end
until given linear programming steps, NLP ;

until given steps for each training mini-batch;
until given number of training mini-batches, Ndict;
Return
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Before applying the deep learning algorithm, we first investigate the error of regular-
ized method. In Fig.1(a), we show the second moment of IPM simulation with various
regularization factors. We see that except for the value δ2 = 10−2, the smaller regular-
ization factor δ does not affect the accuracy of the IPM simulation when t ∈ [0, 0.1]. In
Fig.1(b), we show the training loss computed by Eq.(14). Since we do not renew γ at
every steps of gradient descent of parameters, the training loss is not uniformly decreas-
ing. However, the loss is on a decreasing trend overall, which shows that the network
successively learns the feature of the distribution as training progresses. In Fig.1(c), we
plot the second moment of the particles by IPM solver (denoted as reference) and by
our DP (denoted as network) prediction. We see that the slope of second moment by
reference IPM solver deviates from the network generated line after t = 0.075. This is
due to regularization δ > 0 in IPM. For training data, we rely on IPM solver most of the
time when it has good accuracy prior to the time when δ effect kicks in. In Fig.2, we plot

(a) Second moment from IPM with
various regularization factors

(b) Training loss (c) Second moment comparison

Figure 1: Performance of IPM (reference) and DeepParticle (network) algorithms.

the histogram of the output (1M particles) and reference distribution (10K particles) at
different time t. We see that the network learns the feature of particle concentration and
even has more concentrated output than the reference solver near the blowup time.

4.2. KS Simulation and Generation in the Presence of 2D Laminar Flows
Next we consider v ̸= 0, so in addition to chemotaxis gradient, the movement of

organism is also driven by some given environmental fluid velocity field. In [18], blow-up
behavior of KS model given various strength of environment velocity is investigated. Now
we let

v(x, y) = A

(
exp(−y2)

0

)
, (19)

which represents a laminar flow of amplitude A traveling along x direction with y-
dependent speed. There are two parameters to learn in the model: the advection ampli-
tude A and the evolution time T .

Learning dependence on A. We start from learning amplitude dependence while fixing
the evolution time. In this example, we used IPM to generate J = 10000 samples of
solution after T = 0.02 with A = 10[0:0.2:2]. The initial distribution of IPM for each A is
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(a) t = 0.01 (b) t = 0.04

(c) t = 0.1 (largest t in training data) (d) t = 0.12 (near blowup time)

Figure 2: Comparison of particle distributions from DeepParticle (prediction) and IPM (reference) solver
at different times and A = 0.

a uniform distribution on the unit ball. In Fig.3 we see that the distribution turns to a
V shape as A increases. This can be attributed to the stretching effect by the laminar
flow (19). Our network is shown to learn this feature. In addition, our network can also
predict distribution when A is slightly outside the range of training set, see the case when
A = 150 in Fig.3(d). More precisely, Fig.3(c) shows that most of outputs in the training
set (1 ≤ A ≤ 100) satisfy x < 3 while at A = 150, a reasonable proportion of particles is
on the right side of x = 3 and our network indeed predicts it.

(a) A = 10 (b) A = 80 (interpolation)

(c) A = 100 (largest A in training set) (d) A = 150 (prediction)

Figure 3: Learning particle aggregation at different A values with t = 0.02 fixed.

Learning dependence on T . We turn to study the dependence on the evolution time at
fixed A = 100. To generate training data, we run IPM with t ∈ [0, 0.1] and J = 10000

particles, and take snapshots of the empirical distribution at t = 0, 0.01, 0.02, · · · , 0.1.
In Fig.4, we compare our network prediction with IPM generated reference solution at
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various evolution times. We see that both IPM and DP methods reproduce the near
blow-up behaviors consistent with [18].

(a) t = 0.02 (b) t = 0.04

(c) t = 0.1 (largest t in training set) (d) t = 0.14 (prediction)

Figure 4: Learning particle aggregation at different times with fixed flow amplitude A = 100.

4.3. KS Simulation and Generation in the Presence of 3D flows
In this subsection, we turns to KS model in three dimension. There are two kinds of

flows under consideration, the first is 3D laminar flow which is a natural generalization
of 2D laminar flow. The second is Kolmogorov flow which is a well-known example of
chaotic flow [7, 16].

3D Laminar Flow. As the first 3D example, we consider advection field in the form:

v(x, y, z) = A

exp(−y2 − z2)

0

0

 . (20)

It describes the organism travelling along the x-direction while its speed depends on the
radial position of y and z variable. In Fig.5 we show the histogram of the prediction of our
deep learning algorithms with A = 10 and A = 100, which reproduces the distribution
of corresponding IPM simulation. The configuration of learning A dependence is the
same as one in 2D cases, except the input and output is now in 3-dimension. From
the numerical experiments (not shown), there is no need to increase the width of our
network. By comparing (a) and (b) in Fig.5, we see that the distribution becomes V
shape in xy projection and xz projection as the amplitude A increases. This is due to
the laminar setting of the flow. In yz projection, the distribution remains as radial. In
Fig.6, we show the xy projection of the distribution with various A. It confirms that in
addition to interpretation, our network is able to generalize the influence of amplitude
on the distribution when A is not far from the range in the training set.
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(a) A = 10

(b) A = 100

Figure 5: Generated outputs in three cross sections at different A values in a 3D laminar flow (20).

(a) A = 10 (b) A = 30

(c) A = 100 (d) A = 130

Figure 6: Generated vs. reference distributions projected to the xy plane in a 3D laminar flow (20).
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3D Kolmogorov Flow. In the last example, we investigate the case when the organism
travels and aggregates in chaotic streamlines given by Kolmogorov flow [7, 16]:

v(x, y, z) = A

sin(2πz)

sin(2πx)

sin(2πy)

 . (21)

In Fig.7, we compare the network generated and reference distributions when A =

Figure 7: Network output (N = 1M) vs. training data (N = 10K) in flow (21) at A = 100, t = 0.1.

(a) A = 10 (b) A = 30

(c) A = 100 (d) A = 110

Figure 8: Generated vs. reference distributions projected to the xy plane in a 3D chaotic flow (21).

100 and t = 0.1 and Fig.8 compares the distributions with various amplitude A when
projected to xy plane. The distributions are in general a radial distribution and the radius
of the distribution increases when A increases (see also the second moment plot in Fig.9).
The phenomenon differs from the one in laminar flow. This may result from the mixing
mechanism of the chaotic flow that spreads and acts against chemotaxis aggregation.
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Figure 9: The second moment of generated/reference distribution vs. A of 3D chaotic flow (21).

5. Conclusions and Future Works

We proposed a regularized interacting particle method (IPM) to compute aggregation
patterns and near singular solutions in multi-dimensional Keller Segel (KS) systems. We
then studied a DeepParticle (DP) method to learn and generate solutions for KS systems
with dependence on physical parameters (e.g. the small diffusivity of chemo-attractant
and the reciprocal of the flow amplitude in the advection-dominated regime) by minimiz-
ing the 2-Wasserstein distance between the source and target distributions. During the
training stage, we seek a mapping in the form of a deep neural network from source to
target distributions and update network parameters based on a discretized 2-Wasserstein
distance defined on finite distribution samples. Our method is general in the sense that
we do not require target distributions to be in closed form and the generation map to be
invertible. Our method is fully data-driven and applicable to the fast generation of distri-
butions for more general KS systems with physical parameter dependency. Our iterative
divide-and-conquer algorithm reduces considerably the computational cost of finding the
optimal transition matrix in the Wasserstein distance. We carried out numerical exper-
iments to demonstrate the performance of our method for KS aggregation learning and
generation without and with laminar and chaotic advections. In future work, we plan
to study DP method to learn and generate pattern forming solutions of parabolic type
KS systems (ϵ > 0 in (1)) among other KS like (e.g. chemotaxis-haptotaxis) systems for
modeling and predicting cancer cell evolution [6].
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