
A variational neural network approach for glacier modelling with

nonlinear rheology

Tiangang Cuia, Zhongjian Wangb,∗, Zhiwen Zhangc,∗

aSchool of Mathematics, Monash University, Victoria, Australia.
bDepartment of Statistics and CCAM, The University of Chicago, Chicago, IL 60637, USA.

cDepartment of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Abstract

We propose a mesh-free method to solve the full Stokes equation for modeling the glacier

dynamics with nonlinear rheology. Inspired by the Deep-Ritz method proposed in [1], we

first formulate the solution to the non-Newtonian Stokes equation as the minimizer of a

variational problem with boundary constraints. Then, we approximate its solution space by

a deep neural network. The loss function for training the neural network is a relaxed version

of the variational form, in which penalty terms are used to present soft constraints due to

mixed boundary conditions. Instead of introducing mesh grids or basis functions to evaluate

the loss function, our method only requires uniform sampling from the physical domain and

boundaries. Furthermore, we introduce a re-normalization technique in the neural network to

address the significant variation in the scaling of real-world problems. Finally, we illustrate

the performance of our method by several numerical experiments, including a 2D model

with the analytical solution, the Arolla glacier model with realistic scaling and a 3D model

with periodic boundary conditions. Numerical results show that our proposed method is

efficient in solving the non-Newtonian mechanics arising from glacier modeling with nonlinear

rheology.

AMS subject classification: 35A15, 65J15, 68T99, 70K25, 76A05.

Keywords: Deep learning method; variational problems; mesh-free method;

non-Newtonian mechanics; nonlinear rheology; glacier modelling.

1. Introduction

In recent years, deep neural networks (DNNs) have achieved unprecedented levels of success

in a broad range of areas such as computer vision, speech recognition, natural language

processing, and health sciences, producing results comparable or superior to human experts

∗Corresponding author
Email addresses: tiangang.cui@monash.edu (Tiangang Cui), zhongjian@statistics.uchicago.edu

(Zhongjian Wang), zhangzw@hku.hk (Zhiwen Zhang)

[30, 17]. The impacts have reached physical sciences where traditional first-principle based

modeling and computational methodologies have been the norm. Thanks in part to the user-

friendly open-source computing platforms from industry (e.g. TensorFlow and PyTorch),

there have been vibrant activities in applying deep learning tools for scientific computing,

such as approximating multivariate functions, solving ordinary/partial differential equations

(ODEs/PDEs) and inverse problems using DNNs; see, e.g. [50, 13, 19, 27, 2, 64, 59] and

references therein. There are many classical works on the approximation power of neural

networks; see e.g. [11, 22, 14, 46]. For recent works on the expressive (approximation)

power of DNNs; see, e.g. [10, 53, 62, 40, 35, 54]. In [19], the authors showed that DNNs

with rectified linear unit (ReLU) activation function and enough width/depth contain the

continuous piece-wise linear finite element space. Thus, one can represent a solution of PDE

using the ReLU-DNN.

Solving ODEs or PDEs by a neural network (NN) approximation is known in the litera-

ture dating back at least to the 1990’s; see e.g. [31, 39, 29]. The main idea in these works is

to train NNs to approximate the solution by minimizing the residual of the ODEs or PDEs,

along with the associated initial and boundary conditions. These early works estimate neural

network solutions on a fixed mesh. Recently DNN methods are developed for Poisson and

eigenvalue problems with a variational principle characterization (deep Ritz, [13]), for a class

of high-dimensional parabolic PDEs with stochastic representations [18], for advancing finite

element methods [20, 8, 7], for nonconvex energy minimization in simulating martensitic

phase transitions [9], and for learning and generating invariant measures of stochastic dy-

namical systems with parameters [58]. The physics-informed neural network (PINN) method

[48] and a deep Galerkin method (DGM) [55] compute PDE solutions based on their physical

properties. For parametric PDEs, a deep operator network (DeepONet) learns operators ac-

curately and efficiently from a relatively small dataset based on the universal approximation

theorem of operators [36]; a Fourier neural operator method [32] directly learns the mapping

from functional parametric dependence to the solutions of a family of PDEs. In [63, 1], weak

adversarial network methods are studied for weak solutions and inverse problems, see also

related studies on PDE recovery from data via DNN [34, 33, 47, 60] among others. In the

context of surrogate modeling and uncertainty quantification (UQ), DNN methods include

Bayesian deep convolutional encoder-decoder networks [64], deep multi-scale model learning

[57], physics-constrained deep learning method [65], see also [27, 53, 26, 61] and references

therein.

In this work, we present a deep learning method for solving problems in non-Newtonian

mechanics that obey certain variational principles. In particular, we focus on nonlinear

Stokes problems in which the viscosity nonlinearly depends on the strain rate. This type

of problems plays a fundamental role in modelling geodynamic processes, for instance, the

dynamics of glaciers [23, 45] and mantle convection [51, 38]. The solutions of these problems

2

typically face a combination of challenges, such as the presence of local features emerging

from the nonlinear rheology, saddle point problems due to the incompressibility condition,

complex problem domain with high aspect ratios, and high contrast boundary conditions.

There has been a lot of effort in developing efficient numerical methods to address these

challenges. For example, the work of [5, 15, 21, 24, 52, 56] designed and analyzed efficient and

accurate high-order finite element discretization schemes. Delicated adaptation strategies,

see [24, 49] and references therein, are developed to ensure that these high-order methods

can successfully resolve local features of the flow field and a wide range of length scales.

The resulting discretized nonlinear systems have to be solved using either Picard fixed-

point iterations or Newton’s method. Most of the recent high-performance solvers adopt

modified Newton’s iterations together with high-performance iterative linear solvers, see,

e.g., [6, 16, 24, 37], to obtain a superlinear convergence rate.

Our work is inspired by the deep Ritz method proposed in [13] and our recent progress in

developing deep learning method to solve interface problem [59]. We first formulate the PDEs

into a variational problem, which leads to the objective function used by the neural network

training. The second part consists of penalty terms arising from the boundary constraint

of the governing PDE. In real world models, e.g. glacier sliding, the scale of the problem

domain and the scale of physical parameters vary significantly. To address these challenges,

we introduce a normalizing layer following the input of neural networks and design a strategy

to balance penalty factors due to different boundary conditions. Using this combination of

strategies, our proposed deep learning method is capable to solve nonlinear Stokes problems

with different geometric scales, different parameter scales and boundary conditions using a

universal configuration of network parameters.

The rest of the paper is organized as follows. In Section 2, we introduce the back-

ground of the Non-Newtonian ice flow model. In Section 3, we review the basic idea of deep

neural network and formulate the variational neural network approach for solving the Non-

Newtonian ice flow model. In addition, we also discuss some details of the implementation

of our method. In Section 4, we present numerical results to demonstrate the accuracy of

our method. Section 5 offers some concluding remarks.

2. Background

Since glaciers form one of the natural low-pass filters of atmospheric variability, modelling

the mechanics of glaciers is instrumental in revealing slow changes in the climate system that

might otherwise be obscured by short-term noise. We consider a canonical glacier model that

treats the flow of ice as non-Newtonian, viscous, incompressible, and isothermal fluid in the

steady-state [12]. In this section, we first present the strong form of the ice flow model, and

then discuss its variational formulation that naturally yields the weak form of the ice flow

model.

3

2.1. Non-Newtonian ice flow model

For an open, bounded domain Ω ⊂ Rd, we denote the velocity field (measured in me-

ters per calendar year, i.e., m a−1) and the stress tensor (measured in Pa) of ice flow by

u = (u1, ..., ud)
⊤ : Ω 7→ Rd and σu : Ω 7→ Rd×d , respectively. The conservation laws of

momentum and mass state that

−∇ · σu = ρg, (1)

∇ · u = 0, (2)

where ρ is the ice density (910 kgm−3) and g is gravitational acceleration (9.81m s−2, where

s represents a second). The stress tensor is split into a deviatoric part and an isotropic

pressure p, i.e., σu = τu − pI. Denoting the strain rate tensor of the velocity field by

ϵ̇u =
1

2
(∇u+∇u⊤), (3)

the Glen’s law of rheology [41] links the deviatoric stress to the strain rate via the constitutive

equation

τu = 2η(u)ϵ̇u with η(u) =
1

2
A− 1

n

(
1

2
ϵ̇u : ϵ̇u

) 1−n
2n

, (4)

where η(u) is the effective viscosity nonlinearly depending on the strain rate and the double-

dot product is the Frobenius inner product defined as

σ1 : σ2 = trace(σ⊤
1 σ2) =

∑
i,j

(σ1)ij(σ2)ij,

for two second order tensors σ1 and σ2. Here A = 10−16(Pa−na−1) is the flow parameter

and we often set n = 3. Using the nonlinear constitutive equation (4), the conservation of

momentum (1) becomes

−∇ · τu +∇p = ρg. (5)

Without loss of generality, we assume the domain Ω is bounded by two disjoint surfaces,

Γb the bottom boundary and Γt = ∂Ω\Γb the top boundary. Let n denote the unit outward

normal vector at any point on the boundary ∂Ω. On the top boundary we impose the

traction-free boundary condition

τun− p0n = 0 on Γt, (6)

where p0 is the atmospheric pressure. Since the atmospheric pressure is often assumed to

be negligible [43], so that we adopt p0 = 0 here. On the bottom boundary we impose a

no-penetration condition along the outward normal direction, i.e.,

u · n = 0 on Γb, (7)

4

and a sliding boundary condition along the tangential direction. Given the map to the

tangential direction T = I− n⊗ n, the sliding boundary condition is given as

T
(
τun− pn

)
+ βTu = 0 on Γb,

for some basal drag coefficient β > 0. Note that the basal drag coefficient β is a function of

location in general. Since Tn = 0, the sliding boundary condition does not depend on the

pressure, which can be reduced to

T
(
τun

)
+ βTu = 0 on Γb. (8)

Along the tangential direction, there is a special case that β → ∞, where the sliding bound-

ary condition becomes a non-sliding Dirichlet boundary condition, i.e., Tu = 0. In later

numerical examples, our algorithm can be adapted to both cases.

To summarize, the ice flow with nonlinear rheology can be modelled by a system of

equations

−∇ · τu +∇p = f on Ω (9)

∇ · u = 0 on Ω (10)

τun− p0n = 0 on Γt (11)

u · n = 0 on Γb (12)

T
(
τun

)
+ βTu = 0 on Γb, (13)

where β > 0, f = ρg, T = I−n⊗n, and τu given in (4). With β → ∞, the mixed boundary

conditions in (12) and (13) simply become u = 0 on Γb.

2.2. Variational formulation

The momentum equation (9) and the divergence-free mass equation (10) have the vari-

ational form: finding a vector function u ∈ H1(Ω) satisfying boundary conditions (11) and

(12) and a scalar function p ∈ L2(Ω) satisfying p = p0 on Γt such that∫
Ω

(
−∇ · τu +∇p− f

)
· vdV = 0 (14)

−
∫
Ω

q∇ · udV = 0, (15)

for all vector functions v ∈ H1(Ω) satisfying v · n = 0 on Γb and τ vn− p0n = 0 on Γt and

all scalar function q ∈ L2(Ω) satisfying q = p0 on Γt. Applying the divergence theorem for

vectors and tensors, the momentum equation (14) can also be expressed as∫
Ω

(τu : ϵ̇v − p∇ · v − f · v) dV −
∮
∂Ω

(
τun− pn

)
· vdS = 0. (16)

5

The solutions (u, p) satisfying the above variational form can be expressed as the minimizer

of some energy functional subject to the divergence-free constraint (15) and some boundary

conditions (11)-(13). This provides a starting point for applying deep neural network approx-

imation to model the glacier flow. We present the energy functional and the corresponding

optimization problem for the sliding and the the non-sliding boundary conditions as follows.

Sliding bottom boundary. Subject to the traction free boundary condition (11) on the top

boundary, the boundary integral at the top boundary is eliminated, i.e.,∮
Γt

(
τun− pn

)
· vdS =

∮
Γt

(
τun− p0n

)
· v dS = 0. (17)

where p0 is the atmospheric pressure at the top boundary. At the bottom boundary, applying

the condition v · n = 0 on Γb and the sliding boundary condition (13) we have∮
Γb

(
τun− pn

)
· vdS =

∮
Γb

(
τun

)
· v dS

=

∮
Γb

(
T
(
τun

))
·
(
Tv
)
dS +

∮
Γb

(
(I−T)

(
τun

))
·
(
(I−T)v

)
dS

= −
∮
Γb

β
(
Tu
)
·
(
Tv
)
dS, (18)

as range(T) and range(I − T) are mutually orthogonal and (I − T)v = 0. Therefore, the

boundary integral in (16) can be simplified as

−
∮
∂Ω

(
τun− pn

)
· vdS =

∮
Γb

β
(
Tu
)
·
(
Tv
)
dS.

As shown in [12], the solutions (u, p) satisfying the variational form (16) can be considered

as the minimizer of the the energy functional

Es(u) =
∫
Ω

(
2n

1 + n
A− 1

n

(
1

2
ϵ̇u : ϵ̇u

) 1+n
2n

− ρg · u

)
dV +

1

2

∮
Γb

β
(
Tu
)
·
(
Tu
)
dS, (19)

subject to the divergence-free condition (10). Formulating this constrained optimization

problem using the method of Lagrange multiplier, we have the Lagrangian functional

Ls(u, p) = Es(u)−
∫
Ω

p∇ · udV, (20)

in which the pressure function p plays the role of the Lagrange multiplier. Since the direc-

tional derivative of f(u) := 1
2
ϵ̇u : ϵ̇u along a function v is f ′(u)[v] = ϵ̇u : ϵ̇v, the variation of

L(u, p) along functions (v,q) takes the form

L′
s(u, p)[v, q] =

∫
Ω

(τu : ϵ̇v − p∇ · v − ρg · v) dV −
∫
Ω

q∇ · udV +

∮
Γb

β
(
Tu
)
·
(
Tv
)
dS.

6

The solution to the Lagrange multiplier, (u, p) such that L′
s(u, p)[v, q] = 0 for all (v, q)

is equivalent to the solution to the variational form defined in (14) and (15). Thus, the

velocity field u of the ice flow model can be obtained by minimizing the energy functional

Es(u) subject to the divergence-free constraint, the traction-free boundary condition (11),

and the Dirichlet boundary conditions (12) and (13).

Non-sliding bottom boundary. With non-sliding boundary condition at the bottom, i.e., u =

0 on Γb, we do not need to impose the boundary condition (13) using the boundary integral

as the sliding boundary case in (19). Following a similar derivation as above, the velocity

field u of the ice flow model with non-sliding boundary can be obtained by minimizing the

energy functional

Ens(u) =
∫
Ω

(
2n

1 + n
A− 1

n

(
1

2
ϵ̇u : ϵ̇u

) 1+n
2n

− ρg · u

)
dV, (21)

subject to the divergence-free constraint, the traction-free boundary condition (11), and

the Dirichlet boundary conditions u = 0 on Γb. The corresponding Lagrangian functional

becomes

Lns(u, p) = Ens(u)−
∫
Ω

p∇ · udV. (22)

2.3. Divergence-free solutions spaces

Instead of searching for the saddle point solution of the Lagrangian functionals, we can

construct divergence-free solution spaces for the velocity field u to reduce the constrained

optimization problems to unconstrained optimization problems. In the two dimensional case,

i.e., (x, y) ∈ Ω ⊂ R2, we can define a potential function ϕ : Ω 7→ R, which leads to a vector

function

u =

[
∂ϕ

∂y
,−∂ϕ

∂x

]⊤
,

that satisfies the divergence-free condition by construction. In the three dimensional case,

i.e., (x, y, z) ∈ Ω ⊂ R3, we can define a vector function ϕ : Ω 7→ R3, so that

u = ∇× ϕ

satisfies the divergence-free condition. Using the divergence-free construction of the velocity

field, we can directly minimize the energy functional Es(u) and Ens(u) subject to appropriate

boundary conditions without using the Lagrangian formulation.

3. Formulation of the DNN method

We first discuss the background of DNNs and then develop the DNN-based methods for

solving the Non-Newtonian ice flow problems.

7

3.1. DNNs and its approximation property

There are two ingredients in defining a DNN. The first one is a linear map of the form

T : Rn → Rm, defined as T (x) = Ax + b, where A = (aij) ∈ Rm×n, x ∈ Rn and b ∈ Rm.

The second one is a nonlinear activation function σ : R → R. Common examples of the

activation function include the rectified linear unit (ReLU), σ(x) = max(0, x), the soft-plus

function, σ(x) = log(ex+1), the sigmoid function, σ(x) = (1+ e−x)−1, etc. The definition of

activation function can be trivially extended to a nonlinear map σ : Rn → Rn by applying

the scalar-valued activation function element-wise to each of its inputs.

Using above definitions, we are able to define a continuous function F (x) by a composition

of linear transforms and activation maps, i.e.,

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x), (23)

where T i(x) = Aix + bi with Ai and bi are unknown matrices and vectors to be estimated.

Dimensions of Ai and bi are chosen to make (23) meaningful. Such a DNN is called a (k+1)-

layer DNN, which has k hidden layers. Collecting all the unknown coefficients (e.g., Ai and

bi) in (23) as θ ∈ Θ, where θ is a high-dimensional vector and Θ is the space of θ. The DNN

representation of a continuous function can be viewed as

F = F (x; θ). (24)

We use F = {F (·, θ)|θ ∈ Θ} to denote the set of all expressible functions by the DNN

parameterized by θ ∈ Θ. Then F provides an efficient way to represent unknown continuous

functions, comparing with a linear solution space used in classic numerical methods, e.g., a

trial space spaced by linear nodal basis functions in the FEM. In the sequel, we shall discuss

the approximation property of the DNN, which is relevant to the study of the expressive

power of a DNN model [10, 53].

Early investigations of the approximation property of neural networks can be found in

[11, 22], where the authors analyzed the approximation property for the function class given

by a feed-forward neural network with a single hidden layer. Later, many authors analyzed

the error estimates of such neural networks in terms of the number of neurons, the number

of network layers, and the choice of activation function; see [14, 46] for a throughout review

of relevant works.

In recent years, DNNs have shown successful applications in a broad range of problems,

including classification of complex systems and construction of response surfaces for high-

dimensional models. Significant efforts have been devoted to investigate the dependence

of the expressive power of DNNs on the network configuration. For example, in [10], the

authors proved that convolutional DNNs were able to express multivariate functions given

in so-called hierarchical tensor formats. In [62], the author studied the expressive power of

shallow and deep neural networks with piece-wise linear activation functions and established

8

new rigorous upper and lower bounds for the network complexity in approximating Sobolev

spaces. In [19], the authors proved that the continuous piece-wise bilinear finite element

space is embedded in the space of DNNs constructed from the ReLU activation function, a

sufficient width and a sufficient depth. Thus, we can uses DNNs to approximate the solution

space spanned by the FEM basis.

3.2. Formulation of the variational neural network approach

The model problem of the ice flow with nonlinear rheology (13) can be solved by using

numerical methods such as FEMs and FDMs. However, the nonlinearity in the problem

bring essential difficulty in solving (13) by the traditional numerical methods. Inspired by

the recent development of deep learning based numerical method for solving variational

problems [13, 59], we will develop a variational DNN method to solve the glacier model

problem defined in (13).

According to the divergence free property, i.e. ∇ · u = 0, we can represent the velocity

field u as follows:

[
∂ϕ0

∂y
,−∂ϕ0

∂x

]⊤
in 2D and ∇×

ϕ1

ϕ2

ϕ3

 in 3D, (25)

where ϕi is a scalar-valued function approximated by F i(x, θ). Here, F i(x, θ) is a DNN

representation with x ∈ Rd as its input and scalar output defined in (23). Moreover, θ

denotes all the parameters that will be determined during the training stage. Denoting the

DNN representation of the velocity field by ũ, the numerical solution of (13) can be obtained

by finding θ ∈ Θ that minimizes the energy functional Es(ũ) subject to various boundary

conditions.

Ideally, we want to define ũ using θ ∈ Θb ⊂ Θ, where Θb is the maximal parameter subset

such that the resulting ũ satisfies the traction-free boundary condition (11), and the Dirichlet

boundary conditions (12) and sliding bottom boundary condition (13). After parameterizing

the expressible function space by θ ∈ Θb, we equivalently define the variational problem (19)

as

min
θ∈Θb

J(θ) = Es(ũ) =
∫
Ω

(
2n

1 + n
A− 1

n

(
1

2
ϵ̇ũ : ϵ̇ũ

) 1+n
2n

− ρg · ũ

)
dV +

1

2

∮
Γb

β
(
Tũ
)
·
(
Tũ
)
dS.

(26)

Note that the divergence-free condition in (15) is automatically satisfied by the representation

(25), and thus no additional treatment is needed.

The variational problems (26) is not convex in general and the integrals in (26) do not

have a closed-form expression. Thus we numerically approximate the integrals by the Monte

Carlo method and use the stochastic gradient descent (SGD) method [4] to minimize the

9

objective function after Monte Carlo approximation. Denoting θk the kth component of the

high-dimensional vector θ, the derivative of J(θ) with respect to θk can be approximated as

∂J
(
θ
)

∂θk
≈vol(Ω)

N

N∑
i=1

∂θk

(
2n

1 + n
A− 1

n

(
1

2
ϵ̇ũ : ϵ̇ũ

) 1+n
2n

(xi)− ρg · ũ(xi)

)

+
area(Γb)

Nb

Nb∑
j=1

∂θk

(1
2
β
(
Tũ
)
·
(
Tũ
)
(yj)

)
, (27)

where random samples xi
i.i.d.∼ Unif(Ω) are uniformed drawn from the physical domain Ω,

random samples yj
i.i.d.∼ Unif(Γb) are uniformed drawn from the bottom boundary Γb, vol(Ω)

is the volume of the domain and area(Γb) is the area of bottom boundary. In the context

of deep learning method, N and Nb are called batch numbers, which mean the number of

training examples utilized in one iteration.

After approximating the gradient of J(θ), we can update each component of θ as follows:

θn+1
k = θnk − η

∂J(θ)

∂θk
|θk=θnk

, (28)

where η is the learning rate. To accelerate the training of the neural network, we use the

Adam version of the SGD method [28].

In the objective function (26), it is rather challenging to restrict the neural network

parameter θ to the subset Θb that satisfies the boundary conditions, because the boundary

of the subset may have complicated geometry. To address this issue, we adopt a relaxation

approach by imposing boundary conditions as penalty terms. For each of the boundary

conditions in (11)-(13), we define a linear map Bj that maps the solution ũ to the residual

of the boundary constraint, which defines a boundary integral

Bj(θ) =

∫
∂Dj

∥∥Bjũ(x, θ)
∥∥2dx

for the boundary ∂Dj. Then, the boundary conditions can be imposed as soft constraints

via penalty terms to the objective functional J(·) in (26). This leads to a new objective

functional

ũε = argmin
θ∈Θ

(
J(θ) +

b∑
j=1

1

εj
Bj(θ)

)
, (29)

where b is the number of boundary conditions needs to be imposed. Note that when a

penalty term ε−1
j Bj(θ) approaches zero as εj → 0, the corresponding boundary condition is

satisfied in the weak sense.

3.3. Implementation details

In addition to the conventional DNN formulation for solving PDE, we also made some

modification that are shown to be essential in resolving the scale of the problem domain and

the scale of physical parameters in real world problems.

10

Normalizing Layer. In some glacier model problems, periodic boundary conditions are used.

For example, periodic boundary conditions are imposed in the two horizontal directions in

the in the 2D model presented in Example C of the benchmarks [43]. To this end, we add an

extra layer between input and first dense layer of our network. That maps (x, y) to terms like(
cos(2πx/T), sin(2πx/T), cos(2πy/T), sin(2πy/T)

)
, where T is the period in the horizontal

dimensions.

In most of the glacier modelling problems, the vertical scaling can be two or three orders

of magnitude smaller than the horizontal scaling. To resolve this scaling, we also introduce

a reparametrization: x 7→ x/L, where L is the diameter of the domain in corresponding

dimension, to the normalization layer from input. Resolving this scaling is essential to

ensure the expressibility of neural networks for the problems we are targeting here, because

nonlinearity can be represented by a neural network may only exist in a bounded input

domain. Taking a scalar single layer perception with the Sigmoid activation function σ(z) =

(1 + e−z)−1 as an example, we have

f(x) = W2σ(W1x+ b1) + b2.

When W1x+ b1 is sufficiently large (e.g., W1x+ b1 ≫ 5), f(x) becomes a constant approxi-

mately. Thus, to sufficiently express nonlinear functions, scale of W1 has to be O(L−1) with-

out any reparametrization. However, most of existing implementations of machine learning

toolboxes only support single-precision float-point numbers. This leads to inaccurate repre-

sentation of W1 and the gradient of the objective function, as the length scale of most of the

real-world problems can be O(104)−O(106). The reparametrization is critical to ensure the

expressibility of neural networks and the numerical stability in these real-world problems.

Balancing penalty parameters of boundary conditions. Except for periodic boundary con-

ditions, as shown in (29), the other boundary conditions are enforced by penalty terms.

However, there is no general framework to choose the penalty weight εj in the context of

DNN. It may not be suitable to use the same penalty parameter εj for different boundary

conditions, as the magnitude of the boundary maps Bj(θ) can vary significantly. For exam-

ple, in the 3D model presented in Section 4.3, the term Bj(θ) is O(10−4) for the traction-free

condition at the top boundary and O(106) for the basal friction condition at the bottom

boundary. Thus, finding the correct penalty parameter εj for each of the boundary condi-

tions is critical in balancing the soft constraints due to various boundary conditions. We

propose to first estimate the scaling relations between each of the boundary integrals Bj(·)
with the objective functional J(·) at the initialization stage of the network training. Denoting

the initial parameter by θ0, we can then assign εj as

εj =
1

ε0

Bj(θ0)

J(θ0)
,

11

so that the objective functional J(·) and each of the boundary integrals Bj(·) can be approx-

imately balanced during the training. Here the common factor ε0 is chosen to be 50, which

is an empirical constant shown to be sufficient in previous research [25] and in our numerical

experiments on simpler nonlinear models.

Network Hyperparameters. In the numerical experiments of this work, we will apply the same

network to represent ϕ in both two and three dimensions. After the normalizing layer, it

has six latent dense layers with width 10. Between these dense layers we apply the Sigmoid

activation function to guarantee the smoothness of our representation. There is no activation

function between the second last layer and the output layer. We illustrate the structure of

our network in Fig. 1.

Input

x

Normalizing input

Layer 1,w = 10

Layer 2,w = 10

Layer 3,w = 10

Layer 4,w = 10

Layer 5,w = 10

Layer 6,w = 10

Output

ϕ(x)

Normalized, x → x/L or x → sin(2πx/L), cos(2πx/L)

Linear+Activation

Linear+Activation

Linear+Activation

Linear

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

LinearLinear

Figure 1: The network Layout of ϕ.

4. Numerical Results

In this section, we shall present numerical results in solving non-Newtonian Stokes equa-

tions to demonstrate the performance of the propose method. First we consider a two

dimensional synthetic model with an analytical solution to demonstrate the efficiency and

accuracy of our method. Then we apply the developed method on realistic benchmark prob-

12

lems [43] to demonstrate its generality. This includes a two dimensional model of the Arolla

glacier and a three dimensional box model.

4.1. A 2D Model on irregular domain

We start with a two dimensional model defined on a domain that is enclosed by

y = 0 and y =
1

2
x (1− x) with x ∈ [0, 1].

To setup the benchmark, we start with a ground truth potential function

ϕ = exp(x)(x− 2)2y(y − 1)2,

which leads to an analytical expression of the velocity field{
u = exp(x)(x− 2)2(1− 4y + 3y3)

v = − exp(x)(x− 2)2y(y − 1)2
.

The above velocity field satisfies the conservation of mass condition in Eq. (10) and the

no-penetration boundary condition in Eq. (12) at the bottom boundary Γb. Then, by sub-

stituting this velocity field into Eq. (9), we obtain an explicit expression of the forcing term f

in Eq. (9), a function p0 for the traction-free boundary condition Eq. (11) at the top bound-

ary Γt, and a function β for the sliding boundary condition Eq. (13) at the bottom boundary

Γb.

Since the shape of the domain is a semicircle in this example, it is not necessary to

use normalization layers or balance regularization factors. We use a constant regularization

factor 1
ε
= 50 for all boundary conditions. During training, in every step of stochastic

gradient descent, we use 5000 random samples uniformly distributed in the domain Ω to

evaluate Eq. (27) and 1000 uniform random samples on the boundary Γ to construct the

soft constraints in Eq. (11)–Eq. (13). The learning rate, which is the step length of SGD, is

set to be 10−3. We renew the training data every 200 steps of learning. The configuration

of the neural network is illustrated in Fig. 1.

In Fig. 2, we compare the results of our proposed method with the ground truth. Since

the velocity field is invariant to the potential function ϕ up to a constant shift, we shift the

output of ϕ learned by neural networks to ensure it has the same average as the ground

truth in the comparison. For both of the velocity field and the potential function, the neural

network offers comparable results with the ground truth.

In Fig. 3 we compare the relative L2 error of the velocity field with the energy functional

Es(u) in Eq. (19). We observe that Es(u) follows a similar trend to the relative L2 error.

The relative L2 error drops to 0.005 after 10000 steps of training.

13

(a) u (b) v (c) ϕ rescaled

(d) ref: u (e) ref v (f) ref ϕ

Figure 2: Solution of synthetic model

10
2

10
3

10
4

-3

-2.9

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

J
(u

)

0

0.02

0.04

0.06

0.08

0.1

0.12

L
2
 r

e
l.
 e

rr
.

Figure 3: Training loss (Lagrangian) and validation error (L2 relative error) with respect to training steps

14

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

sol

ref

(a) Surface Velocity along surface direc-

tion
(b) u (c) v

Figure 4: Arolla

0 1000 2000 3000 4000 5000

0

100

200

300

400

500

600

(a) Surface Velocity along surface direc-

tion
(b) u (c) v

Figure 5: Noemi’s paper

4.2. The Arolla model

The two-dimensional model of the Arolla glacier is a diagnostic experiment along the

central flow-line of a temperate glacier in the European Alps (Haut Glacier d’Arolla, Switzer-

land), based on earlier experiments by [3, 42]. The domain of this model is enclosed by the

longitudinal surface and bedrock profiles of Haut Glacier d’Arolla (as shown in Fig. 4 (b)

and (c)). This model has been used as a benchmark example in various investigations of the

forward modelling and the inverse modelling of glaciers, see [44] for some notable examples.

We consider two experiments in this example. The first experiment follows the setup of

[43, Section 3.5], in which a no-sliding bottom boundary with β = ∞ is considered. In the

second experiment, we use a sliding bottom boundary with the function

exp(β) =

1000 + 1000 sin(2πx

5000
) 0 ≤ x < 3750

1000(16− x
250

) 3750 ≤ x < 4000

1000 4000 ≤ x < 5000

which is the same as the work of [44, Section 4.2].

15

(a) Illustration of coordinate change (b) Value of Basal Coefficients β

Figure 6: Setting of box Model

4.3. A 3D box model

We also consider the three dimensional box model presented in [43, Section 3]. In this

model, a slab of ice sliding down a sloping bed with a constant incline angle α = 0.1 degree

is considered. The ice slab is enclosed in a box-shaped domain [0, L]× [0, L]× [0, H], where

L = 20×103 metres, and H = 103 meters. After a change of coordinate that align the x-axis

with the sliding surface (see 6(a)), the vector ρg is given as

ρg = 910× 9.81× [sin θ, 0,− cos θ] Pa,

where θ = π/1800. In this example, periodic boundary conditions are applied to boundaries

in the horizontal directions, the traction-free boundary conditions in Eq. (11) is applied to

the top boundary, and the sliding boundary condition in Eq. (12) and Eq. (13) is prescribed

at the bottom boundary. The basal sliding coefficient is defined as

β(x, y) = 1000 + 1000 sin
(2πx

L

)
sin
(2πy

L

)
.

In Fig.6(b) we plot the value of basal friction coefficient β. Empirically speaking, the surface

speed becomes larger when β is small. The ground truth solution is unknown. In Fig.7 we

plot the surface velocity against y direction at the slice x = L
4
. In addition we compare our

prediction with various result in [43] (experiment C, L = 20km).

5. Conclusions

In this paper, we investigate deep-learning methods to simulate non-Newtonian ice flow

models. By formulating the model problem into a variational form and constructing a

16

0 0.5 1 1.5 2

10
4

14

15

16

17

18

19

20

21

Figure 7: Surface velocity, Benchmark paper, experiment C, 20km. Solid line: Our prediction; Dashed lines:

various prediction in Benchmark paper

divergence-free solution space using DNN, we convert the solution of the nonlinear PDE

into the solution of an optimization problem. Despite the rather high-dimensionality of the

parameter space of the DNN, the solution can still be efficiently obtained by the SGDmethod.

In this framework, once we are able to sample from the problem domain and its boundary, no

special treatment is needed to handle irregular boundaries of the problem domain. Therefore,

the proposed method is easy to implement and mesh-free. To address the application in real-

world computation, we introduce normalizing layers and adaptive boundary penalties in the

configuration of our network. Finally, we present numerical experiments to demonstrate the

performance of the proposed method. Specifically, we use the DNN method to solve ice flow

model for the 2D Arrola Glacier and a 3D box model with real-world scaling. Our numerical

experiments demonstrate that the DNN method provides satisfactory simulation results for

glacier flows. We expect this method can be applied to a more general class of problems in

non-Newtonian mechanics that satisfies certain variational principles.

Acknowledgements

The research of T. Cui is supported by the Australian Research Council under the grant

DP21010309. The research of Z. Zhang is supported by Hong Kong RGC grant (Projects

17300318 and 17307921), National Natural Science Foundation of China (Project 12171406),

Seed Funding Programme for Basic Research (HKU) and Seed Funding for Strategic Inter-

disciplinary Research Scheme 2021/22 (HKU).

17

References

[1] G. Bao, X. Ye, Y. Zang, and H. Zhou, Numerical solution of inverse problems by

weak adversarial networks, Inverse Problems, 36(11) (2020), p. 115003.

[2] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. Brenner, Learning data-driven

discretizations of PDEs, Bulletin of the American Physical Society, 63 (2018).

[3] H. Blatter, G. K. Clarke, and J. Colinge, Stress and velocity fields in glaciers:

Part ii. sliding and basal stress distribution, Journal of Glaciology, 44 (1998), pp. 457–

466.

[4] L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceed-

ings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[5] J. Brown, Efficient nonlinear solvers for nodal high-order finite elements in 3d, Journal

of Scientific Computing, 45 (2010), pp. 48–63.

[6] J. Brown, B. Smith, and A. Ahmadia, Achieving textbook multigrid efficiency for

hydrostatic ice sheet flow, SIAM Journal on Scientific Computing, 35 (2013), pp. B359–

B375.

[7] Z. Cai, J. Chen, and M. Liu, Least-squares ReLU neural network (LSNN) method for

linear advection-reaction equation, Journal of Computational Physics, (2021), p. 110514.

[8] Z. Cai, J. Chen, M. Liu, and X. Liu, Deep least-squares methods: An unsupervised

learning-based numerical method for solving elliptic PDEs, Journal of Computational

Physics, 420 (2020), p. 109707.

[9] X. Chen, P. Rosakis, Z. Wu, and Z. Zhang, A deep learning approach to

nonconvex energy minimization for martensitic phase transitions, arXiv:2206.13937,

(2022).

[10] N. Cohen, O. Sharir, and A. Shashua, On the expressive power of deep learning:

A tensor analysis, in Conference on Learning Theory, 2016, pp. 698–728.

[11] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics

of control, signals and systems, 2 (1989), pp. 303–314.

[12] J. K. Dukowicz, S. F. Price, and W. H. Lipscomb, Consistent approximations

and boundary conditions for ice-sheet dynamics from a principle of least action, Journal

of Glaciology, 56 (2010), pp. 480–496.

18

[13] W. E and B. Yu, The deep Ritz method: A deep learning-based numerical algorithm

for solving variational problems, Communications in Mathematics and Statistics, 6

(2018), pp. 1–12.

[14] S. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numerica, 3

(1994), pp. 145–202.

[15] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast

iterative solvers: with applications in incompressible fluid dynamics, Numerical Math-

ematics and Scie, 2014.

[16] M. R. Fraters, W. Bangerth, C. Thieulot, A. Glerum, and W. Spak-

man, Efficient and practical newton solvers for non-linear stokes systems in geodynamic

problems, Geophysical Journal International, 218 (2019), pp. 873–894.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1,

MIT press Cambridge, 2016.

[18] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential

equations using deep learning, Proceedings of the National Academy of Sciences, 115

(2018), pp. 8505–8510.

[19] J. He, L. Li, J. Xu, and C. Zheng, Relu deep neural networks and linear finite

elements, Journal of Computational Mathematics, 38 (2020), pp. 502–527.

[20] J. He and J. Xu, Mgnet: A unified framework of multigrid and convolutional neural

network, Science China Mathematics, 62 (2019), pp. 1331–1354.

[21] V. Heuveline and F. Schieweck, On the inf-sup condition for higher order mixed

fem on meshes with hanging nodes, ESAIM: Mathematical Modelling and Numerical

Analysis, 41 (2007), pp. 1–20.

[22] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are

universal approximators, Neural networks, 2 (1989), pp. 359–366.

[23] K. Hutter, Theoretical glaciology: material science of ice and the mechanics of glaciers

and ice sheets, vol. 1, Springer, 2017.

[24] T. Isaac, G. Stadler, and O. Ghattas, Solution of nonlinear stokes equations

discretized by high-order finite elements on nonconforming and anisotropic meshes, with

application to ice sheet dynamics, SIAM Journal on Scientific Computing, 37 (2015),

pp. B804–B833.

19

[25] Jingrun, Chen, , 8405, , J. Chen, Rui, Du, , 8406, , R. Du, Keke, Wu, , 8407,

, and K. Wu, A comparison study of deep galerkin method and deep ritz method for

elliptic problems with different boundary conditions, Communications in Mathematical

Research, 36 (2020), pp. 354–376.

[26] S. Karumuri, R. Tripathy, I. Bilionis, and J. Panchal, Simulator-free solution

of high-dimensional stochastic elliptic partial differential equations using deep neural

networks, Journal of Computational Physics, 404 (2020), p. 109120.

[27] Y. Khoo, J. Lu, and L. Ying, Solving parametric PDE problems with artificial

neural networks, European Journal of Applied Mathematics, Special Issue 3: Connec-

tions between Deep Learning and Partial Differential Equations, 32 (2021), pp. 421–435.

[28] D. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980,

(2014).

[29] I. Lagaris, A. Likas, and D. Fotiadis, Artificial neural networks for solving

ordinary and partial differential equations, IEEE Trans. Neural Netw., 9 (1998), pp. 987–

1000.

[30] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), p. 436.

[31] H. Lee and I. S. Kang, Neural algorithm for solving differential equations, Journal

of Computational Physics, 91 (1990), pp. 110–131.

[32] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stu-

art, and A. Anandkumar, Fourier neural operator for parametric partial differential

equations, arXiv preprint arXiv:2010.08895, (2020).

[33] Z. Long, Y. Lu, and B. Dong, PDE-Net 2.0: Learning PDEs from data with a

numeric-symbolic hybrid deep network, Journal of Computational Physics, 399 (2019),

p. 108925.

[34] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from data,

International Conference on Machine Learning, (2018), pp. 3208–3216.

[35] J. Lu, Z. Shen, H. Yang, and S. Zhang, Deep network approximation for smooth

functions, SIAM Journal on Mathematical Analysis, 53 (2021), pp. 5465–5506.

[36] L. Lu, P. Jin, and G. Karniadakis, Deeponet: Learning nonlinear operators

for identifying differential equations based on the universal approximation theorem of

operators, arXiv:1910.03193, (2019).

20

[37] D. A. May, J. Brown, and L. Le Pourhiet, A scalable, matrix-free multigrid

preconditioner for finite element discretizations of heterogeneous stokes flow, Computer

methods in applied mechanics and engineering, 290 (2015), pp. 496–523.

[38] D. McKenzie, The generation and compaction of partially molten rock, Journal of

petrology, 25 (1984), pp. 713–765.

[39] A. Meade and A. Fernandez, The numerical solution of linear ordinary differential

equations by feedforward neural networks, Math. Comput. Model., 19 (1994), pp. 1–25.

[40] H. Montanelli and Q. Du, New error bounds for deep ReLU networks using sparse

grids, SIAM Journal on Mathematics of Data Science, 1 (2019), pp. 78–92.

[41] W. S. B. Paterson, Physics of glaciers, Butterworth-Heinemann, 1994.

[42] F. Pattyn, Transient glacier response with a higher-order numerical ice-flow model,

Journal of Glaciology, 48 (2002), pp. 467–477.

[43] F. Pattyn, L. Perichon, A. Aschwanden, B. Breuer, B. De Smedt,

O. Gagliardini, G. H. Gudmundsson, R. C. Hindmarsh, A. Hubbard, J. V.

Johnson, et al., Benchmark experiments for higher-order and full-stokes ice sheet

models (ismip–hom), The Cryosphere, 2 (2008), pp. 95–108.

[44] N. Petra, J. Martin, G. Stadler, and O. Ghattas, A computational framework

for infinite-dimensional bayesian inverse problems, part ii: Stochastic newton mcmc with

application to ice sheet flow inverse problems, SIAM Journal on Scientific Computing,

36 (2014), pp. A1525–A1555.

[45] N. Petra, H. Zhu, G. Stadler, T. J. Hughes, and O. Ghattas, An inexact

gauss-newton method for inversion of basal sliding and rheology parameters in a

nonlinear stokes ice sheet model, Journal of Glaciology, 58 (2012), pp. 889–903.

[46] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta numer-

ica, 8 (1999), pp. 143–195.

[47] T. Qin, K. Wu, and D. Xiu, Data driven governing equations approximation using

deep neural networks, Journal of Computational Physics, 395 (2019), pp. 620–635.

[48] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, Journal of Computational Physics, 378 (2019),

pp. 686–707.

21

[49] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. Staar,

Y. Ineichen, C. Bekas, A. Curioni, and O. Ghattas, An extreme-scale implicit

solver for complex pdes: highly heterogeneous flow in earth’s mantle, in Proceedings of

the international conference for high performance computing, networking, storage and

analysis, 2015, pp. 1–12.

[50] S. Rudy, J. Kutz, and S. Brunton, Deep learning of dynamics and signal-noise

decomposition with time-stepping constraints, Journal of Computational Physics, 396

(2019), pp. 483–506.

[51] G. Schubert, D. L. Turcotte, and P. Olson, Mantle convection in the Earth

and planets, Cambridge University Press, 2001.

[52] C. Schwab and M. Suri, Mixed hp finite element methods for stokes and

non-newtonian flow, Computer methods in applied mechanics and engineering, 175

(1999), pp. 217–241.

[53] C. Schwab and J. Zech, Deep Learning in High Dimension, Research Report, vol.

2017 (2017).

[54] Z. Shen, H. Yang, and S. Zhang, Deep network with approximation error being

reciprocal of width to power of square root of depth, Neural Computation, 33 (2021),

pp. 1005–1036.

[55] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving

partial differential equations, Journal of Computational Physics, 375 (2018), pp. 1339–

1364.

[56] R. Stenberg and M. Suri, Mixed hp finite element methods for problems in elasticity

and stokes flow, Numerische Mathematik, 72 (1996), pp. 367–389.

[57] Y. Wang, S. Cheung, E. Chung, Y. Efendiev, and M. Wang, Deep multiscale

model learning, Journal of Computational Physics, 406 (2020), p. 109071.

[58] Z. Wang, J. Xin, and Z. Zhang, DeepParticle: learning invariant measure by a deep

neural network minimizing wasserstein distance on data generated from an interacting

particle method, Journal of Computational Physics, (2022), p. 111309.

[59] Z. Wang and Z. Zhang, A mesh-free method for interface problems using the deep

learning approach, Journal of Computational Physics, 400 (2020), p. 108963.

[60] K. Wu and D. Xiu, Data-driven deep learning of partial differential equations in

modal space, Journal of Computational Physics, (2020), p. 109307.

22

[61] L. Yang, X. Meng, and G. Karniadakis, B-PINNS: Bayesian physics-informed

neural networks for forward and inverse PDE problems with noisy data, J. Comp.

Physics, 425 (2021), p. 109913.

[62] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural

Networks, 94 (2017), pp. 103–114.

[63] Y. Zang, G. Bao, X. Ye, and H. Zhou, Weak adversarial networks for

high-dimensional partial differential equations, Journal of Computational Physics, 411

(2020), p. 109409.

[64] Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder-decoder networks for

surrogate modeling and uncertainty quantification, Journal of Computational Physics,

366 (2018), pp. 415–447.

[65] Y. Zhu, N. Zabaras, P. Koutsourelakis, and P. Perdikaris,

Physics-constrained deep learning for high-dimensional surrogate modeling and

uncertainty quantification without labeled data, Journal of Computational Physics,

394 (2019), pp. 56–81.

23

