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Abstract

We propose a deterministic-statistical method for an inverse source prob-
lem using multiple frequency limited aperture far field data. The direct sam-
pling method is used to obtain a disc such that it contains the compact support
of the source. The Dirichlet eigenfunctions of the disc are used to expand the
source function. Then the inverse problem is recast as a statistical inference
problem for the expansion coefficients and the Bayesian inversion is employed
to reconstruct the coefficients. The stability of the statistical inverse problem
with respect to the measured data is justified in the sense of Hellinger distance.
A preconditioned Crank-Nicolson (pCN) Metropolis-Hastings (MH) algorithm
is implemented to explore the posterior density function of the unknowns. Nu-
merical examples show that the proposed method is effective for both smooth
and non-smooth sources given limited-aperture data.

Key words: inverse source problem, direct sampling method, Bayesian inver-
sion, eigenfunction expansion, limited-aperture data.

1 Introduction
In recent years, the inverse problem of determining an unknown source function has
attracted significant attention due to its practical importance in many applications
such as the biomedical imaging and the identification of pollution sources [19, 11,
12, 9, 15, 14]. The construction of the acoustic source using single frequency data
is challenging. Inverse source problems at a fixed frequency do not process a unique
solution due to the existence of non-radiating sources [2, 1]. For multiple-frequency
data, the uniqueness of the inverse source problem is derived in [14] for a chosen
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unbounded set of the Dirichlet eigenvalues of the Laplacian using near field data
(see also [21] for the uniqueness with the measurements taken on a bounded band of
frequency). The use of multiple frequency data improves the stability of the inverse
source problem [7]. Accordingly, many researchers consider the reconstruction of an
extended acoustic source problem using multiple frequency data. Various methods
have been proposed in the last decade including the continuation methods [8, 5],
eigenfunction expansion methods [14, 13], and sampling type methods [9, 3, 16, 4].

Bayesian statistics is a classical approach for inverse problems [18]. Due to the
increase of the computational power, Bayesian inversion has been becoming more
popular [27, 28, 6, 32, 33]. Recently, focusing on partial data, we combined the
deterministic methods and Bayesian inversion to successfully treat several inverse
problems including an inverse scattering problem, an inverse source problem, and
the reconstruction of moving point sources using limited-aperture data [23, 22, 24].
In particular, we use certain deterministic method to obtain qualitative information
of the unknowns. Such information is built into the priors for the Bayesian inversion,
which is then used to compute more details of the unknowns. Both the deterministic
method and the Bayesian inversion use the same measured data. Numerical results
show that such a combination can provide better reconstructions.

In this paper, we propose a deterministic-statistical approach for an inverse
source problem using multiple frequency limited aperture data. The direct sam-
pling method is used to find the support of the source. A disc is identified such that
the support of the source is contained in the disc. Using the Dirichlet eigenfunctions
of the disc (Bessel’s functions) as the basis, we expand the source function. These
coefficients are the unknowns for the Bayesian inverse problem, whose posterior
density function is explored using an M-H (Metropolis-Hastings) MCMC (Markov
chain Monte Carlo) algorithm. The conditional mean (CM) is used to represent
the solution. Numerical examples show that the proposed approach is effective for
limited-aperture data.

The rest of the paper is organized as follows. In Section 2, we introduce the
inverse acoustic source problem of interest. Section 3 presents the direct sampling
method to reconstruct a disc that contains the support of the source. In Section 4,
we first expand the unknown source using the Dirichlet eigenfunctions of the disc
and propose a Bayesian approach to reconstruct the expansion coefficients. The
proposed method is validated by various numerical examples in Section 5. Finally,
we discuss the method and make some conclusions in Section 6.

2 The inverse source problem
Let Ω be a bounded domain in R2 with a Lipschitz boundary ∂Ω. We assume that
R2\Ω is connected. Let u be the outgoing solution to the inhomogeneous Helmholtz
equation in R2:

∆u(x, k) + k2u(x, k) = f(x), x = (x1, x2) ∈ R2,

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x|,

(2.1)

where k ∈ K, K = [ka, kb], 0 < ka < kb, is the wavenumber and f(x) ∈ L2(Ω) with
suppf ⊂ Ω. Note that k is proportional to the frequency.
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There exists a unique solution u to (2.1) given by (see [17])

u(x, k) =

∫
Ω

Φk(x, y)f(y)dy, (2.2)

where Φk(x, y) = − i
4
H

(1)
0 (k|x − y|) is the fundamental solution to the Helmholtz

equation and H
(1)
0 denotes the zeroth-order Hankel function of the first kind. Fur-

thermore, u(x, k) has the asymptotic behavior [17]

u(x, k) =
ei

π
4

√
8kπ

eikr√
r

{
u∞(x̂, k) +O

(
1

r

)}
as r →∞,

where x̂ = x/|x| ∈ S, S := {|x̂| = 1 : x̂ ∈ R2}. The far field pattern u∞(x̂, k) of
u(x, k) is given by

u∞(x̂, k) =

∫
Ω

Φ∞
k (x̂, y)f(y)dy, (2.3)

where
Φ∞

k (x̂, y) = exp (−ikx̂ · y) (2.4)

is the far field pattern of the fundamental solution Φk(x, y).
We are interested in the inverse source problem of determining the unknown

source f(x) from the partial measurement of the far field pattern u∞(x̂, k) prescribed
on the unit circle S for multiple k’s, i.e. reconstruct f(x) from U := {u∞(x̂, k)|x̂ ∈
Γ, k ∈ K}, where Γ ⊂ S. In practice, the measurement data are usually discrete
u∞(x̂i, kj) for x̂i ∈ Γ, i = 1, 2, . . . , I and kj ∈ K, j = 1, 2, . . . , J .

We propose a deterministic-statistical approach to reconstruct the source func-
tion in two steps. Firstly, the direct sampling method (DSM) is applied to obtain a
disc B̂ which contains the compact support of the source function f(x). Secondly, we
expand f(x) in terms of the Dirichlet eigenfunctions of B̂ and employ the Bayesian
statistics to recover the expansion coefficients. Note that, ideally, the disc B̂ should
be such that suppf ⊂ B̂ and B̂ \ suppf is not too large.

3 Direct Sampling Method
The direct sampling method was proposed in [20] to reconstruct small scattering
objects. It is simple and effective to reconstruct the support of the unknown target
(obstacle, inhomogeneous medium, source) and can process limited aperture data.
Following [23, 16], for multiple frequency far field pattern, we employ the direct
sampling method to determine a disc such that it contains the compact support of
the source. It turns out that the DSM is effective to obtain a disc, which is important
for the success of the Bayesian inversion.

Assume that a domain D is known such that Ω ⊂ D, i.e., the source function
f(x) lies inside D. Usually, D is the region of interest and is quite large. Let D be
covered by a set of uniformly distributed sampling points S. For each point xp ∈ S,
we define an indicator function

I(xp) =
|
∑

kj
⟨u∞(x̂, kj),Φ

∞
kj
(x̂, xp)⟩L2(Γ)|∑

kj
∥u∞(x̂, kj)∥L2(Γ)∥Φ∞

kj
(x̂, xp)∥L2(Γ)

, (3.1)
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where the inner product ⟨·, ·⟩L2(Γ) is defined as

⟨u∞(x̂, kj),Φ
∞
kj
(x̂, xp)⟩L2(Γ) =

∫
L2(Γ)

u∞(x̂, kj)Φ̄
∞
kj
(x̂, xp)ds(x̂)

and Φ̄∞
kj
(x̂, xp) is the conjugate of Φ∞

kj
(x̂, xp). In the case of discrete data u∞(x̂i, kj), i =

1, . . . , I, j = 1, . . . , J , the indicator function becomes

I(xp) =

∑J
j=1 |

∑I
i=1 u

∞(x̂i, kj) · Φ∞
kj
(x̂i, xp)|∑J

j=1

√∑I
i=1 |u∞(x̂i, kj)|2

√∑I
i=1 |Φ∞

kj
(x̂i, xp)|2

. (3.2)

The DSM uses the indicator function to obtain the support of f(x) approxi-
mately. It is clear that I(xp) ∈ [0, 1]. If I(xp) is small (close to 0), then the point xp

is likely to lie outside the source. On the other hand, if I(xp) is large (close to 1),
xp is likely to lie inside the source. We refer to [4] for some theoretical justification
of the indicator function.

Based on the value of the indicator function, we are able to find a subdomain
B̂ ⊂ D containing the support of the source such that I(xp) is larger than a cutoff
value γ for xp ∈ B̂. In particular, we will take B̂ as a disc with radius R. The radius
R is given by

R =

(
max

xp∈D,I(xp)≥γ
x1
p − min

xp∈D,I(xp)≥γ
x1
p

)
/2, (3.3)

where x1
p is the first component of xp. The motivation to use a disc B̂ is two folds.

Firstly, a disc can easily cover the compact support of the source. Secondly, the
Dirichlet eigenfunctions for a disc are known. Note that a square/rectangle domain
also works.

The algorithm for multiple frequency limited aperture inverse source problems
(MFLAISP) is as follows.

DSM for MFLAISP

1. Collect the data u∞(x̂i, kj), i = 1, . . . , I, j = 1, . . . , J for xi ∈ Γ and kj ∈ K.

2. Generate sampling points set S for D.

3. For each xp ∈ S, compute I(xp) using (3.2).

4. Identify a disc B̂ using I(xp) with radius R given by (3.3).

We remark that other deterministic methods such as the orthogonality sampling
method and extended sampling method [30, 31] can also be used as long as such
a method can provide a good prediction of a disc (or a square) that contains the
compact support of the source.

4 Bayesian Inversion

We expand the source using the Dirichlet eigenfunctions of B̂ obtained by the DSM,
and use Bayesian inversion to explore the posterior density function of the expansion
coefficients. In particular, we shall construct an approximation fBE for the source
f in a finite-dimensional subspace spanned by the Dirichlet eigenfunctions of B̂.
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Let ∥ · ∥ be the usual L2-norm. The Dirichlet eigenvalue problem (see, e.g., [25])
is to find λ and nontrivial w such that

−∆w = λw in B̂,

w = 0 on ∂B̂.
(4.1)

We call λ the Dirichlet eigenvalue and w the eigenfunction corresponding to λ. All
the eigenvalues are positive and have no finite point of accumulation. Since the
Dirichlet eigenfunctions are associated to an elliptic self-adjoint compact operator
on L2(B̂), {wn}∞n=1 forms a complete orthonormal set [14]. Consequently, one can
expand f as

f(x) =
∞∑
n=1

Anwn, (4.2)

where the Fourier coefficients are given by

An =

∫
B̂

f(x)wn(x) dx.

Using polar coordinate x = (r cos(θ), r sin(θ)), the Dirichlet eigenfunctions of a
disc B̂ centered at the origin with radius R are given by [14]

Q1
mn(x) =

1√
πRJn+1(qmn)

Jn

(qmnr

R

)
cos (nθ), m = 1, 2, 3, · · · , n = 0, 1, 2, · · · ,

Q2
mn(x) =

1√
πRJn+1(qmn)

Jn

(qmnr

R

)
sin (nθ), m = 1, 2, 3, · · · , n = 1, 2, · · · ,

where Jn is the Bessel function of order n and qmn is the mth zero of Jn. These
eigenfunctions satisfy

∆Qj
mn + k2

mnQ
j
mn = 0, j = 1, 2,

with wavenumber kmn = qmn/R.
An approximation fBE of f on the disc B̂ is given by

fBE(x) =
M∑

m=1

(
N∑

n=0

A1
mnQ

1
mn(x) +

N∑
n=1

A2
mnQ

2
mn(x)

)
, (4.3)

where
A1

mn =

∫
B̂

f(x)Q1
mn(x)dx, A2

mn =

∫
B̂

f(x)Q1
mn(x)dx.

Denote Hs(B̂) the Sobolev space of order s > 0 equipped with the standard
norm ∥ · ∥s. Moreover, Hs

0(B̂) is defined as the closure of C∞
0 (B̂) with respect to the

norm in Hs(B̂). The property of the Dirichlet eigenfunction expansion is stated in
the following lemma [14].

Lemma 4.1. Let f ∈ Hs
0(B̂) with s > 1. Furthermore, let {wn}∞n=1 be the set of

normalized Dirichlet eigenfunctions of B̂. There exists a constant C depending only
on B̂ such that

∥f − fBE∥ ≤ C∥f∥sN (1−s)/2. (4.4)
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Remark 4.1. Here we choose a disc B̂ since the Dirichlet eigenfunctions are known
analytically. One can also use rectangular domains containing the support of the
source. If a general domain, e.g., a polygon, is used, the Dirichlet eigenfunctions
can be computed using numerical methods such as the finite element methods (see,
e.g., [25]).

Let A be the vector {A1
m0, A

1
mn, A

2
mn}

N,M
n=1,m=1 and X be the vector space R(2N+1)M .

The inverse problem of the reconstruction of the source function becomes the deter-
mination of the coefficients A ∈ X given the measurement U .

Based on the eigenfunction expansion (4.3), we employ the Bayesian inversion
to reconstruct A for the source f(x) from the measurement data [27, 28]. The
statistical model of the inverse source problem can be written as

U = F(A) + η, (4.5)

where F(A) =
∫
B̂
Φ∞

k (x̂, y)fBE(y)dy and η ∼ N (0, σ2I) is the Gaussian noise.
Using Bayes’ formula [27, 28], the posterior density of the random variable A

satisfies
π(A|U) ∝ π(U |A)π(A), (4.6)

where ∝ means “proportional to”, π(A) represents the prior density of the unknown
A, the conditional distribution π(U |A) = N (U − F(A), σ2I) is the likelihood func-
tion, and the posterior distribution π(A|U) is solution to the Bayesian inverse prob-
lem. To represent the statistical information of the unknown A, point estimators
are often used, e.g., the conditional mean (CM)

ACM = E(π(A|U)).

We now analyze the stability of the Bayesian inverse problem. Define

G(A;U) =
1

2σ2
∥U −F(A)∥2L2(Γ).

The relationship (4.6) in terms of measures µU and µ0 corresponding to posterior
and prior densities can be written as

dµU

dµ0

(A) =
1

L(U)
exp (−G(A;U)) , (4.7)

where L(U) =
∫
X
exp (−G(A;U)) dµ0(A) is the normalization constant.

Lemma 4.2. For integer values of n, the Bessel function of the first kind Jn(y) can
be defined by the Hansen-Bessel Formula [29]

Jn(y) =
1

π

∫ π

0

cos(y sin t− nt)dt. (4.8)

We prove a property of the operator F following [28].

Lemma 4.3. There exists a constant C such that, for all A ∈ X,

∥F(A)∥L2(Γ) ⩽ C∥A∥1.
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Proof. From the Fourier-Bessel expansion (4.3) and the definition of F(A), we have

|F(A)| =

∣∣∣∣∣
∫
B̂

Φ∞
k (x̂, y)

∑
n,m

AnmQnm(y) dy

∣∣∣∣∣
≤
∑
n,m

|Anm|
∣∣∣∣∫

B̂

exp(−ikx̂ · y)Qnm(y) dy

∣∣∣∣ .
(4.9)

For simplicity, we consider B̂ = B(0, R), the disc centered at the origin with radius
R for the proof. The case for a general B̂ is similar. It is clear that

|F(A)| ≤
∑
n,m

πR2|Anm||Qnm(y)|. (4.10)

According to (4.8), for y ∈ B(0, R), we have that

|Jn(y)| =
∣∣∣∣ 1π
∫ π

0

cos(y sin t− nt)dt

∣∣∣∣ ≤ 1, (4.11)

which implies that

|Qnm(y)| ≤
1√

πRJn+1(qmn)
. (4.12)

Combining (4.10) and (4.12), we obtain

|F(A)| ≤
√
πR

Jn+1(qmn)

∑
n,m

|Anm|. (4.13)

Consequently, we have that

∥F(A)∥L2(Γ) ≤
√
2πR

Jn+1(qmn)

∑
n,m

|Anm| = C∥A∥1, (4.14)

where C =
√
2πR

Jn+1(qmn)
.

Corollary 4.1. For all A1, A2 ∈ X, there exists a constant C, such that

∥F(A1)−F(A2)∥L2(Γ) ⩽ C∥A1 − A2∥1.

Definition 4.1. The Hellinger distance between two probability measures µ1 and µ2

with common reference measure ν is defined as

dHell(µ1, µ2) =

(∫ (√
dµ1/dν −

√
dµ2/dν

)2
dν

)1/2

.

The following theorem states the well-posedness of the Bayesian inverse problem
under investigation.

Theorem 4.2. Let µ0 be a Gaussian measure such that µ0(X) = 1 and µU ≪ µ0.
For U1 and U2 with max{∥U1∥L2(Γ), ∥U2∥L2(Γ)} ≤ r, there exists M = M(r) > 0 such
that

dHell(µU1 , µU2) ≤M∥U1 − U2∥L2(Γ).
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Proof. From

L(U) =

∫
X

exp

(
− 1

2σ2
∥U −F(A)∥2L2(Γ)

)
dµ0(A),

we have that
0 ≤ L(U) ≤ 1. (4.15)

Using Lemma 4.3, we obtain that

L(U) ≥
∫
X

exp

(
− 1

2σ2
∥U∥2L2(Γ) −

1

2σ2
∥F(A)∥2L2(Γ)

)
dµ0(A)

≥
∫
∥A∥1≤1

exp(− 1

2σ2
∥U∥2L2(Γ) −

C

2σ2
∥A∥1)dµ0(A)

= exp(−M)µ0{∥A∥1 ≤ 1}
> 0

(4.16)

since µ0 is a Gaussian measure.
Using the mean value theorem and Lemma 4.3, for µ0, it holds that

|L(U1)− L(U2)|

≤
∫
X

|exp (−G(A;U1))− exp (−G(A;U2))| dµ0(A)

≤
∫
X

|−G(A;U1)− (−G(A;U2))| dµ0(A)

=

∫
X

∣∣∣∣− 1

2σ2
∥U1 −F(A)∥2L2(Γ) +

1

2σ2
∥U2 −F(A)∥2L2(Γ))

∣∣∣∣ dµ0(A)

≤
∫
X

1

2σ2

(∣∣∣∥U1∥2L2(Γ) − ∥U2∥2L2(Γ)

∣∣∣+ 2∥F(A)∥L2(Γ) ∥U1 − U2∥L2(Γ)

)
dµ0(A)

≤
∫
X

1

2σ2

(
∥U1∥L2(Γ) + ∥U2∥L2(Γ) + 2C||A||1

)
dµ0(A)∥U1 − U2∥L2(Γ)

≤M∥U1 − U2∥L2(Γ).

(4.17)

From the definition of the Hellinger distance, we have that

d2Hell(µU1 , µU2)

=
1

2

∫
X

{(
exp(−G(A;U1))

L(U1)

)1/2

−
(
exp(−G(A;U2))

L(U2)

)1/2
}2

dµ0(A)

=
1

2

∫
X

{(
exp(−G(A;U1))

L(U1)

)1/2

−
(
exp(−G(A;U2))

L(U1)

)1/2

+

(
exp(−G(A;U2))

L(U1)

)1/2

−
(
exp(−G(A;U2))

L(U2)

)1/2
}2

dµ0(A)

≤L(U1)
−1

∫
X

{
exp

(
−1

2
G(A;U1)

)
− exp

(
−1

2
G(A;U2)

)}2

dµ0(A)

+
∣∣L(U1)

−1/2 − L(U2)
−1/2

∣∣2 ∫
X

exp(−G(A;U2))dµ0(A).

(4.18)
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With the mean value theorem and Lemma 4.3, it holds that∫
X

{
exp

(
− 1

2
G(A;U1)

)
− exp

(
− 1

2
G(A;U2

)}2

dµ0(A)

⩽
∫
X

∣∣∣1
2
G(A;U1)−

1

2
G(A;U2)

∣∣∣2dµ0(A)

⩽
1

16σ4

∫
X

∣∣∣∥U1 −F(A)∥2L2(Γ) − ∥U2 −F(A)∥2L2(Γ)

∣∣∣2dµ0(A)

⩽M∥U1 − U2∥2L2(Γ).

(4.19)

Using the bounds on L(U1) and L(U2), we have that∣∣L(U1)
−1/2 − L(U2)

−1/2
∣∣2 ⩽ M max

(
L(U1)

−3, L(U2)
−3
)
|L(U1)− L(U2)|2

⩽ M∥U1 − U2∥2L2(Γ).
(4.20)

Combining (4.15)-(4.20), we conclude that

dHell(µU1 , µU2) ⩽ M∥U1 − U2∥L2(Γ).

To explore the posterior probability distribution of the unknown A, we employ
the preconditioned Crank-Nicolson (pCN) Metropolis-Hastings (MH) algorithm for
the Markov chain Monte Carlo (MCMC) method [10].

pCN-MH:

1. Set j ← 0 and choose an initial value A(0).

2. Propose a move according to

Ã(j) =
(
1− β2

)1/2
A(j) + βWn, Wn ∼ N (0, I).

3. Compute

α(A(j), Ã(j)) = min
{
1, exp

(
−G(Ã(j);U) +G(A(j);U)

)}
.

4. Draw α̃ ∼ U(0, 1). If α(A(j), Ã(j)) ≥ α̃, set A(j+1) = Ã(j). Else, A(j+1) = A(j).

5. When j = MaxIt, the maximum sample size, stop. Otherwise, set j ← j + 1
and go to Step 2.

5 Numerical Examples
In this section, we present some numerical experiments to demonstrate the effec-
tiveness of the proposed deterministic-statistical method.

In all examples, the synthetic far field data is generated by decomposing Ω into
a triangular mesh T and approximating (2.3) by

u∞(x̂, k) ≈
∑
T∈T

Φ∞
k (x̂, yT )f(yT )|T |, x̂ = (cos θ, sin θ), (5.1)
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where T ∈ T is a triangle, yT is the center of T , and |T | denotes the area of T . The
observation directions θ’s are chosen from the following three apertures:

Γ1 = 0 :
π

26
: 2π − π

26
, Γ2 = 0 :

π

26
: π − π

26
, Γ3 = 0 :

π

26
:
π

2
− π

26
,

i.e. Γ1 is the full aperture, Γ2 is a half of the full aperture and Γ3 is a quarter of the
full aperture. To ensure the accuracy of the far field data, we use fine meshes with
the mesh size h ≈ 0.01. The perturbed far field measurement is given by

um(x̂, k) := u∞(x̂, k) + 0.03(max
x̂
ℜ(u∞(x̂, k)) + imax

x̂
ℑ(u∞(x̂, k))),

where ℜ and ℑ represent the real and imaginary part, respectively.
For the DSM, the measurement data are the far field pattern correspond to

wavenumbers K1 = 1 : 1 : 3. The domain D is the square [−4, 4]2, which is uniformly
covered by 81× 81 sampling points. The cutoff values for the indicator function of
three scenarios Γ1, Γ2 and Γ3 are γ = 0.41, 0.64 and 0.70, correspondingly. These
γ’s are obtained by trial and error. In the contour plots of the indicator Ixp over the
sampling domain D, the red dashed line represents the exact boundary of source
f(x) and the estimation of the support is the black circle. In fact, we will see that
the DSM uses a smaller set of the far field data than the Bayesian inversion does. In
general, a satisfactory reconstruction of the disc B̂ can be obtained using the data
for a few smaller k’s.

Once we obtain the approximate disc B̂, we choose N = 2,M = 5 in (4.3) for the
approximation fBE (25 terms in total). The measurement for the Bayesian method
is corresponding to the wavenumbers K = 1 : 1 : 20. In the MCMC we take π(A) =
N (0, 0.01) and σ = 0.04 in the likelihood. To compute the posterior distribution of
A, we apply pCN-MH with β = 0.001. A Markov chain of sample size 120, 000
are drawn in the Bayesian inversion, of which the first 20, 000 are discarded. The
CM is then used as a point estimate for A. To evaluate the performance of the
reconstruction, we compute both the absolute error (AE) ∥f−fBE∥2 and the relative
error (RE) ∥fBE−f∥2

∥f∥2 .

Example 1: Let
f(x) = 3Q11(x), x ∈ B(0, 0.9), (5.2)

i.e., the source function is a constant multiple of an eigenfunction Q11 for B(0, 0.9).
We first show the performance of the Bayesian inversion when the compact support
of f(x) is known exactly, namely, B̂ = B(0, 0.9). Due to (5.2), we expect that
the CM of the coefficient for Q11 is 3 and the CM’s of the other coefficients are
zeros in (4.3). Using the Bayesian method for three apertures, Γ1, Γ2 and Γ3, the
reconstructions fBE are shown in Fig. 1. It can be seen that the samples for the
coefficient of Q11(x) accumulate around 3 and the rest accumulate around 0 for all
three apertures.

Next we use the proposed deterministic-statistical method to reconstruct f(x)
without the knowledge of its support. The DSM is first used to find a disc B̂
containing the support of f(x). For all three apertures Γ1, Γ2 and Γ3, the indicator
functions I(xp)’s and the discs B̂’s obtained are shown in the top row of Fig.2. The
associated approximate radii of B̂’s are 1.3601, 1.4213 and 1.0817 (see Table 1). All
B̂’s are close to the exact support, which indicates the effectiveness of the DSM.
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Figure 1: Example 1 (exact support known). Top row: the histograms of the coef-
ficients for fBE when the support is known exactly. Bottom row: the reconstructed
fBE and exact f . Left column: Γ1. Middle column: Γ2. Right column: Γ3.

In the Bayesian inversion stage, based on the reconstructed B̂, we explore the
statistical information of the coefficients for fBE using pCN-MH. The second row
of Fig. 2 shows the histograms of the coefficients, which tend to converge. Note that
the eigenfunctions of B̂ are used and the coefficients for fBE are not zero in general.
The exact source function f and the reconstructions fBE are shown in the third row
of Fig. 2. The absolute and the relative errors of the reconstructions using the CM’s
are listed in Table 2 (first four columns). It can be seen that all the approximate
source functions fBE’s are quite close to the exact sources. For all three apertures,
the absolute errors are small and the relative errors are less than 7%.

Example 2: Let

f(x) = 2(0.81− (x2
1 + x2

2))χx2
1+x2

2≤0.81,

where χ is the characteristic function. The exact support of f(x) is B(0, 0.9). The
contour plots of the indicator functions by the DSM are shown in the first row of
Fig. 3 for Γ1, Γ2 and Γ3. The radii of the discs B̂’s are 0.9055, 1.1180 and 1.0817,
which are listed in Table 1. The histograms of the coefficients are shown in the
second row of Fig. 3. The reconstructed fBE’s and the exact f are shown in the
third row of Fig. 3. The errors are listed in Table 2. It can be seen that as the
measurement aperture become less, the errors increase.

Table 1: Exact support of f(x) and the radii of the discs by the DSM.

Exact support Example 1 Example 2 Example 3 Example 4 Example 5
B(0,0.9) B(0,0.9) B(0,0.7471)∗ a, b = 0.9, 1.08 B(0,0.9)

Γ1 1.3601 0.9055 0.8246 1.7205 0.9849
Γ2 1.4213 1.1180 1.0198 1.5000 1.2166
Γ3 1.0817 1.0817 1.0630 1.2806 1.1705

11



Figure 2: Example 1 (reconstructed support). First row: contour plots of the indi-
cators for the DSM. Second row: the histograms of the coefficients for fBE. Third
row: the reconstructed fBE and exact f . Left column: Γ1. Middle column: Γ2.
Right column: Γ3.

Table 2: Absolute error (AE) ∥f − fBE∥2 and the relative error (RE) ∥fBE−f∥2
∥f∥2 .

Example 1 Example 2 Example 3 Example 4 Example 5
AEe REe AE RE AE RE AE RE AE RE AE RE

Γ1 0.1274 6.02% 0.1184 5.61% 0.0455 3.06% 0.0735 7.17% 0.3414 25.97% 0.2127 13.43%
Γ2 0.0833 3.94% 0.1309 6.20% 0.0606 4.07% 0.1691 16.62% 0.3406 25.81% 0.2697 17.13%
Γ3 0.0346 1.63% 0.1224 5.79% 0.0667 4.48% 0.2752 26.99% 0.4083 30.88% 0.3021 19.14%

Example 3: Let
f(x) = 5 exp(−45x2

1 − 30x2
2)).

In this case, f(x) ̸= 0 for all x ∈ R2. However, f(x) is very close to 0 when |x| is
large and the approximation (4.3) for f(x) is still valid approximately for B̂ large
enough. We consider a rough support of f(x): B∗ = {x ∈ R2||f(x)| ≤ 10−10}. We
have B∗ ≈ B(0, 0.7471). The contour plots of the indicator functions by the DSM
are shown in the first row of Fig. 4 for Γ1, Γ2 and Γ3. The reconstructed domains B̂
contains B∗ and are close to it for all three apertures. The radii of the reconstructed
discs B̂’s are 0.8246, 1.0198 and 1.0630, which are listed in Table 1. The histograms
of the coefficients are shown in the second row of Fig. 4. The reconstructed fBE’s
and the exact f are shown in the third row of Fig. 4. The errors are listed in Table 2.
Again the measurement aperture become less as the errors increase.
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Figure 3: Example 2. First row: contour plots of the indicators for the DSM. Second
row: the histograms of the coefficients for fBE. Third row: the reconstructed fBE

and exact f . Left column: Γ1. Middle column: Γ2. Right column: Γ3.

Example 4: Let

f(x) = 15x1x2(0.81− (x2
1 + (x2/1.2)

2))χ{(x2
1+(x2/1.2)2)<=0.81}.

The compact support of f(x) is an ellipse with the minor radius 0.9 and major
radius 1.08. The approximate discs by the DSM (first row of Fig. 5) provide reliable
estimates for the support f(x), which are given in Table 1. The histograms of the
coefficients are shown in the second row of Fig. 5. The reconstructed fBE’s and the
exact f are shown in the third row of Fig. 5. The errors are listed in Table 2. Again
the errors increase as the measurement aperture become less.

Example 5: The last example is a discontinuous source function. Let

f(x) = χ(x2
1+x2

2<=0.81).

The contour plots of the indicator functions by the DSM are shown in the first row
of Fig. 6 for Γ1, Γ2 and Γ3. The radii of the reconstructed discs B̂’s are 0.9849,
1.2166 and 1.1705 listed in Table 1. The histograms of the coefficients are shown
in the second row of Fig. 6. The reconstructed fBE’s and the exact f are shown
in the third row of Fig. 6. The errors are listed in Table 2. The main features of
the discontinuous source f(x) such as the value and discontinuity are reconstructed
well.
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Figure 4: Example 3. First row: contour plots of the indicators for the DSM. Second
row: the histograms of the coefficients for fBE. Third row: the reconstructed fBE

and exact f . Left column: Γ1. Middle column: Γ2. Right column: Γ3.

6 Conclusions
In this paper, we combine the DSM and Bayesian approach to reconstruct an ex-
tended source using the multiple frequency limited aperture far field data. In the
first step, the DSM is used to obtain an approximation of the compact support (a
disc) of the source. Using the eigenfunctions of the disc, we expand the source and
employ the Bayesian inverse to recover the expansion coefficients.

Numerical examples, including a discontinuous source function, show the ef-
fectiveness of the proposed method. It is observed that as the aperture becomes
smaller the reconstruction error increases. Nonetheless, the results are satisfactory
for limited aperture data.

The cutoff value for the indicator function of the DSM is chosen by trial and
error. We are investigating other methods to avoid choosing ad-hoc cutoff values.
Algorithms that can improve the acceptance rate of the samplings in the MCMC
method are also worth efforts to improve efficiency. Another interesting topic is the
case when the source function is also frequency dependent, i.e, f depends on k as
well.
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Figure 5: Example 4. First row: contour plots of the indicators for the DSM. Second
row: the histograms of the coefficients for fBE. Third row: the reconstructed fBE

and exact f . Left column: Γ1. Middle column: Γ2. Right column: Γ3.
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