PROPER HOLOMORPHIC MAPS BETWEEN BOUNDED SYMMETRIC DOMAINS WITH SMALL RANK DIFFERENCES

SUNG-YEON KIM, NGAIMING MOK, AERYEONG SEO

Abstract

In this paper we study the rigidity of proper holomorphic maps $f: \Omega \rightarrow \Omega^{\prime}$ between irreducible bounded symmetric domains Ω and Ω^{\prime} with small rank differences: $2 \leq \operatorname{rank}\left(\Omega^{\prime}\right)<$ $2 \operatorname{rank}(\Omega)-1$. More precisely, if either Ω and Ω^{\prime} have the same type or Ω is of type III and Ω^{\prime} is of type I , then up to automorphisms, f is of the form $f=\imath \circ F$, where $F=F_{1} \times F_{2}: \Omega \rightarrow \Omega_{1}^{\prime} \times \Omega_{2}^{\prime}$. Here $\Omega_{1}^{\prime}, \Omega_{2}^{\prime}$ are bounded symmetric domains, the map $F_{1}: \Omega \rightarrow \Omega_{1}^{\prime}$ is a standard embedding, $F_{2}: \Omega \rightarrow \Omega_{2}^{\prime}$, and $\imath: \Omega_{1}^{\prime} \times \Omega_{2}^{\prime} \rightarrow \Omega^{\prime}$ is a totally geodesic holomorphic isometric embedding. Moreover we show that, under the rank condition above, there exists no proper holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ if Ω is of type I and Ω^{\prime} is of type III, or Ω is of type II and Ω^{\prime} is either of type I or III. By considering boundary values of proper holomorphic maps on maximal boundary components of Ω, we construct rational maps between moduli spaces of subgrassmannians of compact duals of Ω and Ω^{\prime}, and induced CR-maps between CR-hypersurfaces of mixed signature, thereby forcing the moduli map to satisfy strong local differential-geometric constraints (or that such moduli maps do not exist), and complete the proofs from rigidity results on geometric substructures modeled on certain admissible pairs of rational homogeneous spaces of Picard number 1.

1. Introduction

In this paper, we are concerned with the rigidity of proper holomorphic maps between irreducible bounded symmetric domains when differences between the ranks of the domains are small.

A map between topological spaces is said to be proper if the pre-images of compact subsets are compact. If the spaces are bounded domains in Euclidean spaces and the map extends continuously to the boundary, the properness of the map is equivalent to the boundary being mapped to the boundary. Hence if the domains have special boundary structures, the map is expected to have a certain rigidity. In the case of bounded symmetric domains in their standard realizations, which are one of the most studied geometric objects since Cartan introduced them in his celebrated dissertation, the structure of their boundaries was extensively studied by Wolf ([W69, W72]).

The study of rigidity of proper holomorphic maps between bounded symmetric domains started with Poincaré ($\mathrm{P} 07 \mathrm{]}$), who discovered that any biholomorphic map between two connected open pieces of the the unit sphere in \mathbb{C}^{2} is a restriction of (the extension to $\overline{\mathbb{B}^{2}}$ of) an automorphism of the 2-dimensional unit ball \mathbb{B}^{2}. Later, Alexander [A74] and Henkin-Tumanov [TuK82] generalized his result to higher dimensional unit balls and higher rank bounded symmetric domains respectively. For unit balls of different dimensions, proper holomorphic maps have been studied thoroughly by many mathematicians: Cima-Suffridge [CS90], Faran [F86], Forstneric [F86, F89], Globevnik [G87, Huang Hu99, Hu03], Huang-Ji HuJ01], Huang-Ji-Xu HuJX06], Stensønes

[^0]St96, D'Angelo D88a, D88b, D91, D03, D'Angelo-Kos-Riehl (DKR03]) and D'Angelo-Lebl [DL09, DL16].

In the case of bounded symmetric domains, Tsai [Ts93] showed that if $f: \Omega \rightarrow \Omega^{\prime}$ is a proper holomorphic map between bounded symmetric domains Ω and Ω^{\prime} such that Ω is irreducible and $\operatorname{rank}(\Omega) \geq \operatorname{rank}\left(\Omega^{\prime}\right) \geq 2$, then $\operatorname{rank}(\Omega)=\operatorname{rank}\left(\Omega^{\prime}\right)$ and f is a totally geodesic isometric embedding, resolving in the affirmative a conjecture of Mok [M89, end of Chapter 6]. The proofs in Tsai ([Ts93] are based on the method of Mok-Tsai MT92 on taking radial limits on $\Delta \times \Omega^{\prime}$, where Ω^{\prime} is a maximal characteristic subdomain of Ω, in the disk factor Δ to yield boundary maps defined on maximal boundary faces, and on the idea of Hermitian metric rigidity of (M87] [M89]. For proper holomorphic maps with $\operatorname{rank}(\Omega)<\operatorname{rank}\left(\Omega^{\prime}\right)$ we refer the readers to Chan [C20, C21, Faran [F86, Henkin-Novikov [HN84, Kim-Zaitsev [KZ13, KZ15], Mok [M08c], Mok-Ng-Tu [MNT10], Ng [N13, N15a, N15b], Seo [S15, S16, S18] and Tu [Tu02a, Tu02b. In particular, in [KZ15], Kim-Zaitsev showed that under the assumption that $p \geq q \geq 2, p^{\prime}<2 p-1, q^{\prime}<p$, any proper holomorphic map $f: D_{p, q}^{I} \rightarrow D_{p^{\prime}, q^{\prime}}^{I}$ which extends smoothly to a neighborhood of a smooth boundary point must necessarily be of the form

$$
z \mapsto\left(\begin{array}{cc}
z & 0 \tag{1.1}\\
0 & h(z)
\end{array}\right)
$$

where $h(z)$ is an arbitrary holomorphic matrix-valued function satisfying

$$
I_{q^{\prime}-q}-h(z)^{*} h(z)>0 \text { for any } z \in D_{p, q}^{I}
$$

Here, $D_{p, q}^{I}$ denotes a bounded symmetric domain of type I (see 2.6). Recently Chan C21 generalized their result to type I domains by removing the smoothness assumption on the map. Our first goal is to generalize the results of Kim-Zaitsev and Chan to cases in which Ω and Ω^{\prime} are of the same type or Ω is of type III and Ω^{\prime} is of type I without requiring the existence of a smooth extension to the boundary.

Definition 1.1. Let X and X^{\prime} be Hermitian symmetric spaces of the compact type. A holomorphic map $f: X \rightarrow X^{\prime}$ is called a standard embedding if there exists a characteristic subspace $X^{\prime \prime} \subset X^{\prime}$ with $\operatorname{rank}\left(X^{\prime \prime}\right)=\operatorname{rank}(X)$ such that $f(X) \subset X^{\prime \prime}$ and $f: X \rightarrow X^{\prime \prime}$ is a totally geodesic isometric embedding with respect to (any choice of) the canonical Kähler-Einstein metric. For a nonempty connected open set $U \subset X$, a holomorphic map $f: U \rightarrow X^{\prime}$ is called a standard embedding if f extends to X as a standard embedding.

Theorem 1.2. Let Ω and Ω^{\prime} be irreducible bounded symmetric domains with rank q and q^{\prime}, respectively. Suppose

$$
2 \leq q^{\prime}<2 q-1
$$

Suppose further that either (1) Ω and Ω^{\prime} are of the same type or (2) Ω is of type III and Ω^{\prime} is of type I. Then, up to automorphisms of Ω and Ω^{\prime}, every proper holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ is of the form $f=\imath \circ F$, where

$$
F=F_{1} \times F_{2}: \Omega \rightarrow \Omega_{1}^{\prime} \times \Omega_{2}^{\prime}
$$

Ω_{1}^{\prime} and Ω_{2}^{\prime} are bounded symmetric domains, $F_{1}: \Omega \rightarrow \Omega_{1}^{\prime}$ is a standard embedding, and $\imath: \Omega_{1}^{\prime} \times$ $\Omega_{2}^{\prime} \hookrightarrow \Omega^{\prime}$ is a holomorphic totally geodesic embedding of a reducible bounded symmetric domain $\Omega_{1}^{\prime} \times \Omega_{2}^{\prime}$ into Ω^{\prime} with respect to canonical invariant Kähler metrics. As a consequence, every proper holomorphic map $f: \Omega \rightarrow \Omega^{\prime}, f=\imath \circ F$, is a holomorphic totally geodesic isometric embedding with respect to Kobayashi metrics.

We remark that in the case of type I domains, our result (which supersedes [21) is optimal. In fact, when $q^{\prime}=2 q-1$ there exists by Seo [S15] a proper holomorphic map called a generalized Whitney map from $D_{p, q}^{I}$ to $D_{2 p-1,2 q-1}^{I}$ which is not equivalent to (1.1). Note also that for Ω and Ω^{\prime} of type IV, both bounded symmetric domains are of rank 2 and rigidity follows from Ts 93 . In the case of exceptional domains D^{V} and $D^{V I}$ the theorem concerns only proper holomorphic self-maps which are again necessarily automorphisms by [Ts93] (or already from the method of [TuK82]).

Theorem 1.3. There exists no proper holomorphic map from Ω to Ω^{\prime}, if one of the following holds:
(1) $\Omega=D_{p, q}^{I}, \Omega^{\prime}=D_{q^{\prime}}^{I I I}$ and $q^{\prime}<2 q-1$.
(2) $\Omega=D_{n}^{I I}$, $\Omega^{\prime}=D_{p^{\prime}, q^{\prime}}^{I}$ or $D_{q^{\prime}}^{I I I}$ and $2 \leq q^{\prime}<2[n / 2]-1$.

The basic strategy for the proofs of Theorem 1.2 and Theorem 1.3 is to generalize a strategy used in the works of Mok-Tsai MT92] and Tsai Ts93] which consists of two main steps. In the first step, it was shown that any proper holomorphic map between bounded symmetric domains maps boundary components into boundary components. This result was then used in the second step under the assumption that the rank of the target domain is smaller than or equal to that of the source domain. Under the latter assumption, a moduli map was constructed from the moduli space of maximal characteristic symmetric subdomains to that of characteristic symmetric subdomains of a fixed rank in the target domain, and the moduli map was proven to admit a rational extension between moduli spaces of characteristic symmetric subspaces.

If we assume that the difference between the rank of the target domain q^{\prime} to that of the source domain q is positive, then for each rank $1 \leq r<q$ we need to construct a moduli map $f_{r}^{b}: D_{r}(\Omega) \rightarrow$ $F_{i_{r}}\left(\Omega^{\prime}\right)$ between the moduli spaces of subgrassmannians and show that this map also preserves the subgrassmannians Z_{τ}^{r} and Q_{μ}^{r} (Lemma 6.5. Lemma 6.6). It is worth pointing out that there exists a one-to-one correspondence $r \mapsto i_{r}$ between the indices of the moduli spaces of the source and target domains (Lemma 6.8), so that there exists r such that $i_{r}=i_{r-1}+1$ in the case of type-I and type-III Grassmannians, and $i_{r}=i_{r-1}+2$ in the case of type-II Grassmannians, and our rank condition is necessary to guarantee that r exists. The existence of r is crucial to establish the fact that some moduli map associated with the proper holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ is a trivial embedding, from which the form of f as described in Theorem 1.2 can be recovered.

After implementing the aforementioned strategy, for the completion of our proofs we will make use of rigidity phenomena for CR-embeddings (as in [K21]) in an essential way applied to certain CR-hypersurfaces in moduli spaces of subgrassmannians, and rigidity results concerning geometric structures and substructures. Our lines of argumentation concord with the perspective put forth in Mok [M16] of applying the theory of geometric structures and substructures modeled on varieties of minimal rational tangents to the study of proper holomorphic maps between bounded symmetric domains, and, in the special case of proper holomorphic maps from type III domains to type I domains, a novel element in our proof is the establishment of rigidity phenomena for admissible pairs of rational homogeneous manifolds not of the sub-diagram type as initiated in [M19]. In the latter case our proof relies on the solution of the Recognition Problem for symplectic Grassmannians of Hwang-Li HwL21.

Our main technical result is presented in Section 4 and it deals with the rigidity of holomorphic maps which respect subgrassmannians.

Definition 1.4. Let $U \subset D_{r}(X)$ be a nonempty connected open subset. A holomorphic map $H: U \rightarrow D_{r^{\prime}}\left(X^{\prime}\right)$ is said to respect subgrassmannians if for each $\tau \in D_{r}(X)$ and each connected component U_{τ}^{α} of $U \cap Z_{\tau}, \alpha \in A$, there exists $\tau^{\prime}(\alpha) \in D_{r^{\prime}}\left(X^{\prime}\right)$ such that
(1) $H\left(U_{\tau}^{\alpha}\right) \subset Z_{\tau^{\prime}(\alpha)}$ and
(2) $\left.H\right|_{U_{\tau}^{\alpha}}$ extends to a standard embedding from Z_{τ} to $Z_{\tau^{\prime}(\alpha)}$.

Under the assumptions of Theorem 1.2 and the additional condition that H maps a CR submanifold $\Sigma_{r}(\Omega)$ to $\Sigma_{i_{r}}\left(\Omega^{\prime}\right)$, Proposition 5.3 says that the map is a trivial embedding. Here $\Sigma_{r}(\Omega)$ and $\Sigma_{i_{r}}\left(\Omega^{\prime}\right)$ are canonically defined CR submanifolds in $D_{r}(X)$ and $D_{i_{r}}\left(X^{\prime}\right)$ respectively. This generalizes a result of the first author [K21] (cf. [N12]) on the rigidity of CR embeddings between $S U(\ell, m)$-orbits in the Grassmannian of q-planes in \mathbb{C}^{p+q} where $m=p+q-\ell$.

The proof of Proposition 5.3 will be given in several steps. First, we will show that the 1 -jet of H coincides with a that of trivial embedding and that H maps projective lines to projective lines (Lemma 5.5). We remark that if X is of type I or type II, then for any projective line $L \subset D_{r}(X)$, there exists a subgrassmannian Z_{τ} such that $L \subset Z_{\tau}$. Since H respects subgrassmannians, H sends (open subsets of) projective lines into projective lines. Type III domains require special attention (Lemma 5.4). If the map is defined between domains of the same type, in view of Theorem 1.1 and Proposition 3.4 of HoM10] and Lemma 5.6, the proof is complete. Theorem 1.2 of [HoM10] is a generalization of Cartan-Fubini type extension results obtained by Hwang-Mok in [HwM01], to the situation of non-equidimensional holomorphic mappings modeled on pairs (X_{0}, X) of the subdiagram type. We refer readers to [KoO81, HwM01, HwM04, M08a, HoM10, HoN21] for developments in this direction.

On the other hand, if the source domain is of type III and the target domain is of type I, then we need to make use of [M19, Section 6]. In (M19], the second author gave sufficient conditions for the rigidity of an admissible pair $\left(X_{0}, X\right)$ which is not of the subdiagram type. As a consequence, he used this result to prove that the admissible pair $\left(S G r\left(n, \mathbb{C}^{2 n}\right), \operatorname{Gr}\left(n, \mathbb{C}^{2 n}\right)\right)$ is rigid. We generalize the latter result to the admissible pair $\left(\operatorname{SGr}\left(q, \mathbb{C}^{2 n}\right), \operatorname{Gr}\left(q, \mathbb{C}^{2 n}\right)\right), 2 \leq q \leq n$. For the notion of admissible pairs and the rigidity of the admissible pairs of the subdiagram type, see [MZ19].

It is worth pointing out that the analogous of Theorem 1.2 and Theorem 1.3 involving Ω of type I or type III and Ω^{\prime} of type II are not covered in the current article and would be a natural continuation to our work.

The organization of the current article is as follows. In Section 2, we describe the moduli spaces $\mathcal{D}_{r}(X)$ and $D_{r}(X)$ of characteristic subspaces in X. In Section 3, we present the subgrassmannians of $\mathcal{D}_{r}(X)$ and $D_{r}(X)$. Then we explain the CR structure of the unique closed orbit $\Sigma_{r}(X)$ in $D_{r}(X)$. In Section 5, we investigate the rigidity of subgrassmannian respecting holomorphic maps between $D_{r}(X)$ and $D_{r^{\prime}}\left(X^{\prime}\right)$. For the treatment of this topic the cases where X and X^{\prime} are of the same type I, II or III leads us eventually to the rigidity phenomenon for admissible pairs of the subdiagram type of irreducible compact Hermitian symmetric spaces, which was already established in HoM10 (in the more general context of rational homogeneous spaces), whereas the case where X is a Lagrangian Grassmannian $L G r_{n}$ (i.e., X is of type III) leads to a rigidity problem for admissible pairs of non-subdiagram type. In order to proceed with Section 5 in a way that incorporate all pairs (X, X^{\prime}) being considered in the article, we first consider in Section 4 the rigidity phenomenon for the pair $\left(S G r\left(q, \mathbb{C}^{2 n}\right), \operatorname{Gr}\left(q, \mathbb{C}^{2 n}\right)\right)$. Section 5 then consists of several
lemmas to prove Proposition5.3, which is the main technical result in this paper. In Section 6, we define moduli maps f_{r}^{\sharp} (resp. f_{r}^{b}) between $\mathcal{D}_{r}(X)$ (resp. $\left.D_{r}(X)\right)$ and $\mathcal{D}_{r^{\prime}}\left(X^{\prime}\right)$ (resp. $D_{r^{\prime}}\left(X^{\prime}\right)$) which are induced by a proper holomorphic map between Ω and Ω^{\prime}. In Section 7 , we show that f_{r}^{b} is a subgrassmannian respecting holomorphic map and extends to a standard holomorphic embedding for some r. Finally in Section 8, we prove Theorem 1.2 and 1.3. In the Appendix we prove some results from the method of moving frames that have been used in the article.

Acknowledgement The first author was supported by the Institute for Basic Science (IBS-R032-D1-2021-a00). The second author was supported by the GRF-grant 17303814 of the HKRGC (Hong Kong Research Grants Council). The third author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1F1A1063038).

2. PRELIMINARIES

2.1. Hermitian symmetric spaces. Let $\left(X_{0}, g_{0}\right)$ be a Hermitian symmetric space of the noncompact type and denote by G_{0} the identity component of its automorphism group of biholomorphic self-maps which are isometries with respect to g_{0}. Let $K \subset G_{0}$ be a maximal compact subgroup, so that $X_{0}=G_{0} / K$ as a homogeneous space and $K \subset G_{0}$ is the isotropy subgroup at $0:=e K, e \in G_{0}$ being the identity element. Here and in what follows for a Lie group denoted by a Roman letter we denote the associated Lie algebra by the corresponding Gothic letter, and vice versa. Write $\mathfrak{g}_{0}=\mathfrak{k} \oplus \mathfrak{m}$ for the Cartan decomposition at 0 which is the eigenspace decomposition of $d \sigma(0)$ for the involution σ of $\left(X_{0}, g_{0}\right)$ at 0 , corresponding to the eigenvalues 1 and -1 respectively. There is an element z in the center \mathfrak{z} of \mathfrak{k} such that $\left.\operatorname{ad}(z)\right|_{\mathfrak{m}}$ is the almost complex structure at 0 . We write \mathfrak{g} for the complexification of \mathfrak{g}_{0}, and G for the complexification of G_{0} so that $G_{0} \hookrightarrow G$ canonically. We have the Harish-Chandra decomposition $\mathfrak{g}=\mathfrak{m}^{+} \oplus \mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{m}^{-}, \mathfrak{k}^{\mathbb{C}}:=\mathfrak{k} \otimes_{\mathbb{R}} \mathbb{C}$, which is the eigenspace decomposition for $\operatorname{ad}(z)$, extended by complex linearity as an element of $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$, corresponding to the eigenvalues $\sqrt{-1}, 0$ and $-\sqrt{-1}$ respectively. Writing $\mathfrak{p}:=\mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{m}^{-} \subset \mathfrak{g}, \mathfrak{p} \subset \mathfrak{g}$ is a parabolic subalgebra, and G / P is the presentation as a complex homogeneous space of a Hermitian symmetric space X of the compact type dual to X_{0}. The canonical embedding $G_{0} \hookrightarrow G$ induces a holomorphic map $X_{0}=G_{0} / K \hookrightarrow G / P=X$, which is the Borel embedding realizing X_{0} as an open subset of X. We also have the Harish-Chandra realization of X_{0} as a bounded symmetric domain $\Omega \Subset \mathfrak{m}^{+} \cong \mathbb{C}^{n}, n=\operatorname{dim}_{\mathbb{C}} X_{0}$ (cf. W72]).
2.2. Moduli spaces of Hermitian symmetric subspaces and characteristic subspaces. In this subsection we describe moduli spaces of certain Hermitian symmetric subspaces of subdiagram type and characteristic subspaces in the irreducible Hermitian symmetric space of type I, II, III. We refer the reader to [W69, W72] for more details.
(1) Let X be the complex Grassmannian $G r(q, p)$ consisting of q-planes passing through the origin in \mathbb{C}^{p+q}. Then $G=S L(p+q, \mathbb{C}) / \mu_{p+q} I_{p+q}$, where μ_{m} stands for the group of m-th roots of unity, and I_{m} stands for the m-by- m identity matrix, and for any $A \in S L(p+q, \mathbb{C})$, A acts on $\Lambda^{q}\left(\mathbb{C}^{p+q}\right)$ by

$$
\begin{equation*}
A\left(w_{1} \wedge \cdots \wedge w_{q}\right)=A w_{1} \wedge \cdots \wedge A w_{q} \tag{2.1}
\end{equation*}
$$

where $w_{1}, \ldots, w_{q} \in \mathbb{C}^{p+q}$. Taking w_{1}, \ldots, w_{q} to be linearly independent and identifying $\operatorname{Gr}(q, p)$ with its image in $\mathbb{P}\left(\Lambda^{q}\left(\mathbb{C}^{p+q}\right)\right)$ under the Plücker embedding, we have the induced
action of $A \in S L(p+q, \mathbb{C})$ on $G r(q, p)$. A subgrassmannian in $G r(q, p)$ is the set of all elements $x \in G r(q, p)$ such that

$$
\begin{equation*}
V_{1} \subset x \subset V_{2} \tag{2.2}
\end{equation*}
$$

for given complex vector subspaces $V_{1}, V_{2} \subset \mathbb{C}^{p+q}$. Hence, for fixed positive integers $a \leq b$, the moduli space of subgrassmannians with $\operatorname{dim} V_{1}=a, \operatorname{dim} V_{2}=b$ is the flag variety

$$
\mathcal{F}\left(a, b ; \mathbb{C}^{p+q}\right)=\left\{\left(V_{1}, V_{2}\right):\{0\} \subset V_{1} \subset V_{2} \subset \mathbb{C}^{p+q}, \operatorname{dim} V_{1}=a, \operatorname{dim} V_{2}=b\right\}
$$

Since $\operatorname{Gr}(p, q)$ is biholomorphic to $\operatorname{Gr}(q, p)$, without loss of generality we will assume from now on $q \leq p$, so that $G r(q, p)$ is of rank q. For $\left(V_{1}, V_{2}\right) \in \mathcal{F}\left(a, b ; \mathbb{C}^{p+q}\right)$ we denote the corresponding subgrassmannian by $X_{\left(V_{1}, V_{2}\right)}$. We denote the moduli space of subgrassmannians where $\operatorname{dim} V_{1}=q-r, \operatorname{dim} V_{2}=p+r$ for $r=1, \ldots, q-1$ by $\mathcal{D}_{r}(X)$, i.e.,

$$
\begin{equation*}
\mathcal{D}_{r}(X)=\left\{\left(V_{1}, V_{2}\right):\{0\} \subset V_{1} \subset V_{2} \subset \mathbb{C}^{p+q}, \operatorname{dim} V_{1}=q-r, \operatorname{dim} V_{2}=p+r\right\} \tag{2.3}
\end{equation*}
$$

(2) Let X be the orthogonal Grassmannian $O G r_{n}$ consisting of n-planes passing through the origin in $\mathbb{C}^{2 n}$ isotropic with respect to a nondegenerate symmetric bilinear form $S_{n}=\left(\begin{array}{cc}0 & I_{n} \\ I_{n} & 0\end{array}\right)$ on $\mathbb{C}^{2 n}$. Note that $q:=$ rank of $O G r_{n}=\left[\frac{n}{2}\right]$. In this case $G=$ $S O(2 n, \mathbb{C}) /\left\{ \pm I_{2 n}\right\}$ and it acts on $O G r_{n}$ by (2.1). Consider a subgrassmannian in $O G r_{n}$ which is the set of all elements $x \in O G r_{n}$ such that

$$
\begin{equation*}
V \subset x \subset V^{\perp} \tag{2.4}
\end{equation*}
$$

for a given isotropic complex vector subspace $V \subset \mathbb{C}^{2 n}$ with respect to S_{n}, where V^{\perp} denotes the annihilator of V with respect to S_{n}. Let $\mathcal{D}_{r}(X)$ and $\mathcal{D}_{r, \frac{1}{2}}(X)$ denote the moduli spaces of such subgrassmannians in $O G r_{n}$, i.e., for $r=1, \ldots, q-1$

$$
\begin{aligned}
\mathcal{D}_{r}(X) & =\left\{\left(V, V^{\perp}\right) \in \mathcal{F}\left(2(q-r), 2 n-2(q-r) ; \mathbb{C}^{2 n}\right): S_{n}(V, V)=0\right\} \\
\mathcal{D}_{r, \frac{1}{2}}(X) & =\left\{\left(V, V^{\perp}\right) \in \mathcal{F}\left(2(q-r)+1,2 n-2(q-r)-1 ; \mathbb{C}^{2 n}\right): S_{n}(V, V)=0\right\}
\end{aligned}
$$

For $\left(V, V^{\perp}\right) \in \mathcal{D}_{r}(X)$ or $\mathcal{D}_{r, \frac{1}{2}}(X)$ we will denote the corresponding subgrassmannian by X_{V}.
(3) Let X be the Lagrangian Grassmannian $L G r_{n}$ consisting of n-planes passing through the origin in $\mathbb{C}^{2 n}$ which is isotropic to the nondegenerate antisymmetric bilinear form $J_{n}=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ on $\mathbb{C}^{2 n}$. In this case $G=S p(n, \mathbb{C}) /\left\{ \pm I_{2 n}\right\}$ and it acts on $L G r_{n}$ by (2.1). Consider a subgrassmannian in $L G r_{n}$ which is the set of all elements $x \in L G r_{n}$ such that

$$
\begin{equation*}
V \subset x \subset V^{\perp} \tag{2.5}
\end{equation*}
$$

for a given isotropic complex vector subspace $V \subset \mathbb{C}^{2 n}$ with $\operatorname{dim} V=n-r$, where V^{\perp} denotes the annihilator with respect to J_{n}. Let $\mathcal{D}_{r}(X)$ denote the moduli space of such subgrassmannians in $X=L G r_{n}$, i.e., for $r=1, \ldots, n-1$

$$
\mathcal{D}_{r}(X)=\left\{\left(V, V^{\perp}\right) \in \mathcal{F}\left(n-r, n+r ; \mathbb{C}^{2 n}\right): J_{n}(V, V)=0\right\}
$$

For $\left(V, V^{\perp}\right) \in \mathcal{D}_{r}(X)$ we will denote the corresponding subgrassmannian by X_{V}

The topological boundary $\partial \Omega$ of Ω decomposes into a disjoint union $\bigcup_{r} S_{r}$ of G_{0}-orbits $S_{r}, r=$ $0, \ldots, q-1$. Each S_{r} is foliated by maximal complex manifolds called boundary components of Ω. For each boundary component $\Omega_{0} \subset S_{r}$, there exists a polydisc Δ^{q-r} such that $\Delta^{q-r} \times \Omega_{0}$ can be embedded into Ω as a totally geodesic complex submanifold and Ω_{0} is the image of $\{t\} \times \Omega_{0}$ for some $t \in(\partial \Delta)^{q-r}$ by this embedding. For each $z \in \Delta^{q-r}$, the image of $\{z\} \times \Omega_{0}$ in Ω is called a characteristic subdomain of Ω. Each characteristic subdomain is a bounded symmetric domain, which is an open subset of a projective submanifold of X called a characteristic subspace of X.
(1) Characteristic subspaces of rank r in $G r(q, p)$ are the subgrassmannians $X_{\left(V_{1}, V_{2}\right)}$ with $\operatorname{dim} V_{1}=q-r$ and $\operatorname{dim} V_{2}=p+r$ in (2.2) and hence the moduli space of them is $\mathcal{D}_{r}(X)$ given by (2.3).

The bounded symmetric domain $D_{p, q}^{I}$ corresponding to $\operatorname{Gr}(q, p)$ is the set of q-planes in \mathbb{C}^{p+q} on which the nondegenerate Hermitian form $I_{p, q}=\left(\begin{array}{cc}I_{q} & 0 \\ 0 & -I_{p}\end{array}\right)$ is positive definite. Write $M^{\mathbb{C}}(p, q)$ for the set of $p \times q$ matrices with coefficients in \mathbb{C}, and denote by $\left\{e_{1}, \ldots, e_{p+q}\right\}$ the standard basis of \mathbb{C}^{p+q}. For $Z \in M^{\mathbb{C}}(p, q)$, denoting by $v_{k}, 1 \leq k \leq q$, the k-th column vector of Z as a vector in $\mathbb{C}^{p}=\operatorname{Span}_{\mathbb{C}}\left\{e_{1+q}, \ldots, e_{p+q}\right\}$ we identify Z with the q-plane in \mathbb{C}^{p+q} spanned by $\left\{e_{k}+v_{k}: 1 \leq k \leq q\right\}$. Then we have

$$
\begin{equation*}
D_{p, q}^{I}=\left\{Z \in M^{\mathbb{C}}(p, q): I_{q}-Z^{*} Z>0\right\} \tag{2.6}
\end{equation*}
$$

where Z^{*} denotes the conjugate transpose of Z. The characteristic subdomains of rank r of $D_{p, q}^{I}$ are of the form $X_{\left(V_{1}, V_{2}\right)} \cap D_{p, q}^{I}$ with $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{r}(X)$.
(2) Characteristic subspaces of $O G r_{n}$ of rank r are the subgrassmannians of the form (2.4) with $\operatorname{dim} V=2\left[\frac{n}{2}\right]-2 r$. Hence the moduli space of these subgrassmannians is $\mathcal{D}_{r}(X)$.

The bounded symmetric domain corresponding to $O G r_{n}$ is the set of n-planes in X on which $I_{n, n}$ is positive definite. It is given by

$$
D_{n}^{I I}=\left\{Z \in M^{\mathbb{C}}(n, n): I_{n}-Z^{*} Z>0, Z=-Z^{t}\right\}
$$

The characteristic subdomains of $D_{n}^{I I}$ are of the form $X_{V} \cap D_{n}^{I I}$ with $\left(V, V^{\perp}\right) \in \mathcal{D}_{r}(X)$.
(3) Characteristic subspaces of $L G r_{n}$ of rank r are of the form 2.5 with $\operatorname{dim} W=n-r$. Hence the moduli space of of these subgrassmannians is $\mathcal{D}_{r}(X)$.

The bounded symmetric domain corresponding to $L G r_{n}$ is the set of n-planes in $L G r_{n}$ on which $I_{n, n}$ is positive definite. It is given by

$$
D_{n}^{I I I}=\left\{Z \in M^{\mathbb{C}}(n, n): I_{n}-Z^{*} Z>0, Z=Z^{t}\right\}
$$

The characteristic subdomains of $D_{n}^{I I I}$ are of the form $X_{V} \cap D_{n}^{I I I}$ with $\left(V, V^{\perp}\right) \in \mathcal{D}_{r}(X)$.
Define

$$
\mathcal{D}_{r}(\Omega):=\left\{\sigma \in \mathcal{D}_{r}(X): \Omega_{\sigma}:=X_{\sigma} \cap \Omega \neq \emptyset\right\}
$$

where X_{σ} is the subgrassmannian of X corresponding to $\sigma \in \mathcal{D}_{r}(X)$. We may consider $\mathcal{D}_{r}(\Omega)$ as the moduli space of the characteristic subdomains of rank r. For each boundary orbit S_{k} with $k \geq r$, define

$$
\mathcal{D}_{r}\left(S_{k}\right):=\left\{\sigma \in \mathcal{D}_{r}(X): \Omega_{\sigma}:=X_{\sigma} \cap S_{k} \text { is a nonempty open set in } X_{\sigma}\right\}
$$

Similarly we define $\mathcal{D}_{r, \frac{1}{2}}(\Omega)$ and $\mathcal{D}_{r, \frac{1}{2}}\left(S_{k}\right)$ for the type II domains. Then $\mathcal{D}_{r}(\Omega), \mathcal{D}_{r}\left(S_{k}\right)$ and $\mathcal{D}_{r, \frac{1}{2}}(\Omega), \mathcal{D}_{r, \frac{1}{2}}\left(S_{k}\right)$ are G_{0}-orbits in $\mathcal{D}_{r}(X)$ and $\mathcal{D}_{r, \frac{1}{2}}(X)$ such that $\mathcal{D}_{r}\left(S_{k}\right) \subset \partial \mathcal{D}_{r}(\Omega)$ and $\mathcal{D}_{r, \frac{1}{2}}\left(S_{k}\right) \subset$
$\partial \mathcal{D}_{r, \frac{1}{2}}(\Omega)$, respectively. For notational consistency, we define

$$
\mathcal{D}_{0}(X)=X, \mathcal{D}_{0}(\Omega)=\Omega, \mathcal{D}_{0}\left(S_{k}\right)=S_{k} .
$$

Whenever necessary, we will denote by $S_{r}(X)$ the boundary orbits of $\Omega \subset X$ for a specific X.
By Section 10 of [W72, we obtain the following lemma.
Lemma 2.1. Let $X=G r(q, p)$. Then, $\mathcal{D}_{r}\left(S_{r}\right)$ is parametrized by $(q-r)$-dimensional subspaces of \mathbb{C}^{p+q} isotropic with respect to $I_{p, q}$. More precisely, any $\sigma \in \mathcal{D}_{r}\left(S_{r}\right)$ is of the form $\sigma=\left(V_{1}, V_{2}\right)$, where V_{1} is a $(q-r)$-dimensional isotropic subspace of $I_{p, q}, V_{2}$ is the annihilator of V_{1} with respect to $I_{p, q}$ and vice versa.

Since one can embed $O G r_{n}$ and $L G r_{n}$ into $G r(n, n)$ as totally geodesic complex submanifolds, by Lemma 2.1, we conclude that $\mathcal{D}_{r}\left(S_{r}\right)$ is parametrized by $(2[n / 2]-2 r)$-dimensional isotropic spaces with respect to $I_{n, n}$ for $X=O G r_{n}$ and $(n-r)$-dimensional isotropic spaces with respect to $I_{n, n}$ for $X=L G r_{n}$.
2.3. Associated characteristic bundles. We refer the reader to [M89] as a general reference for this subsection. For each $\sigma \in \mathcal{D}_{r}(\Omega)$, there exists a polydisc Δ^{q-r} such that $\Delta^{q-r} \times \Omega_{\sigma}$ is a totally geodesic submanifold of Ω. Define $\mathscr{C}^{q-r}(\Omega) \subset G r(q-r, T \Omega)$ to be the set of tangent spaces of such Δ^{q-r} 's. Define the r-th associated characteristic bundle $\mathcal{N} \mathcal{S}_{r}(X) \subset G r\left(n_{r}, T X\right)$ (resp. $\left.\mathcal{N} \mathcal{S}_{r}(\Omega) \subset G r\left(n_{r}, T \Omega\right)\right)$ to be the collection of all the holomorphic tangent spaces to X_{σ} with $\sigma \in \mathcal{D}_{r}(X)$ (resp. X_{σ} with $\sigma \in \mathcal{D}_{r}(\Omega)$), which is a holomorphic fiber bundle over X, where $n_{r}=\operatorname{dim}\left(X_{\sigma}\right)$ for $\sigma \in \mathcal{D}_{r}(X)$. By [MT92], we obtain $\mathcal{N} \mathcal{S}_{r}(\Omega)=\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0} \times \Omega$. From M89, p.249ff.], $\left.\mathcal{N} \mathcal{S}_{q-1}(\Omega)\right|_{0}$ is a Hermitian symmetric space of the compact type. More generally we have following statement.

Here in the proof for clarity we denote by $[\cdots]$ the point in a classifying space corresponding to the object inside the square bracket.

Lemma 2.2. $\left.\mathcal{N} \mathcal{S}_{r}(X)\right|_{0}$ is a Hermitian symmetric space of the compact type.
Proof. (1) $\operatorname{Gr}(q, p)$: For a point $[V] \in X=\operatorname{Gr}(q, p)=G r\left(q, \mathbb{C}^{p+q}\right)$ we have $T_{[V]}(G r(q, p))=$ $V^{*} \otimes \mathbb{C}^{p+q} / V$. Fix the base point $0=\left[V_{0}\right] \in G r(q, p)$ and identify $T_{0} X$ with $M^{\mathbb{C}}(p, q)$. Denote by $K^{\mathbb{C}}$ the image of $G L(q, \mathbb{C}) \times G L(p, \mathbb{C})$ in $G L\left(V_{0}^{*} \otimes \mathbb{C}^{p+q} / V_{0}\right.$ where $(A, B) \in$ $G L(q, \mathbb{C}) \times G L(p, \mathbb{C})$ acts on $Z \in M^{\mathbb{C}}(p, q)$ by $(A, B)(Z)=B Z A^{-1}$, which descends to the isotropy action of $K^{\mathbb{C}}$ on $T_{0} X$. By definition $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0} \subset G r\left(n_{r}, T_{0}(\Omega)\right), n_{r}=r(p-q+r)$. The isotropy action of $K^{\mathbb{C}}$ on $T_{0} X$ induces a $K^{\mathbb{C}}$-action on $\operatorname{Gr}\left(r(p-q+r), T_{0}(\Omega)\right)$, and $K^{\mathbb{C}}$ acts transitively on $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0}$. When $\sigma \in \mathcal{D}_{r}(X)$ corresponds to $X_{\sigma} \subset G r(q, p)$ and X_{σ} passes through 0 , we have $\left[T_{0}\left(X_{\sigma}\right]:=\left[E_{r} \otimes F_{p-q+r}\right] \in \operatorname{Gr}\left(n_{r}, T_{0}(\Omega)\right.\right.$, where E_{r} (resp. F_{p-q+r}) is a vector subspace in $V_{0}^{*} \cong \mathbb{C}^{q}$ (resp. in $\mathbb{C}^{p+q} / V_{0} \cong \mathbb{C}^{p}$) of dimension r (resp. $p-q+r)$. The action of $K^{\mathbb{C}}$ on $\operatorname{Gr}\left(r(p-q+r), T_{0}(\Omega)\right)$ descends from $(A, B)\left[E_{r} \otimes F_{p-q+r}\right]=$ $\left[\left(A E_{r}\right) \otimes\left(B F_{p-q+r}\right)\right]$. As a $K^{\mathbb{C}}$-orbit, $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0} \cong G r(r, q-r) \times G r(p-q+r, q-r)$.
(2) $O G r_{n}$: Recall that $X=O G r_{n}$ consists of isotropic n-planes in $\left(\mathbb{C}^{2 n}, S\right), S$ being a nondegenerate symmetric bilinear form. For $[V] \in O G r_{n} \subset G r(n, n)$ we have $T_{[V]}(G r(n, n))=$ $V^{*} \otimes \mathbb{C}^{2 n} / V$. Under the isomorphism $\mathbb{C}^{2 n} / V \cong V^{*}$ induced by S, we have $\mathbb{C}^{2 n} / V \cong$ V^{*}, so that $T_{[V]}(G r(n, n)) \cong V^{*} \otimes V^{*}$, and $T_{[V]}\left(O G r_{n}\right)=\Lambda^{2} V^{*}$. At the base point $0=\left[V_{0}\right] \in O G r_{n}$ identify $T_{0} X$ with $\Lambda^{2} V_{0}^{*} \cong \Lambda^{2}\left(\mathbb{C}^{n}\right) \cong M_{a}^{\mathbb{C}}(n, n)$. Take \mathbb{C}^{n} to consist of column vectors w, on which $G L(n, \mathbb{C})$ acts by $A(w)=A w$. Let $K^{\mathbb{C}}$ be the image of
$G L(n, \mathbb{C})$ in $G L\left(\Lambda^{2} \mathbb{C}^{n}\right)$ by the action $A(Z)=A Z A^{t}$ for $Z \in M_{a}^{\mathbb{C}}(n, n)$. By definition $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0} \subset G r\left(n_{r}, T_{0}(\Omega)\right), n_{r}:=r(2 r-1)$. When $\sigma \in \mathcal{D}_{r}(X)$ corresponds to $X_{\sigma} \subset O G r_{n}$, and X_{σ} passes through 0 , we have $\left[T_{0}\left(X_{\sigma}\right)\right]:=\left[\Lambda^{2}\left(E_{2 r}\right)\right] \in G r\left(r(2 r-1), T_{0}(\Omega)\right), E_{2 r} \subset \mathbb{C}^{n}$ being a (2r)-plane. The action of $K^{\mathbb{C}}$ on $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0}$ descends from $A\left(\Lambda^{2}\left(E_{2 r}\right)\right)=\Lambda^{2}\left(A\left(E_{2 r}\right)\right)$ for $A \in G L(n, \mathbb{C})$ and $\left[E_{2 r}\right] \in G r(2 r, n-2 r)$. As a $K^{\mathbb{C}}$-orbit, $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0}$ is the image of $G r(2 r, n-2 r)$ in $G r\left(r(2 r-1), T_{0}(\Omega)\right)$ under the holomorphic embedding $\lambda: G r(2 r, n-$ $2 r) \rightarrow G r\left(r(2 r-1), \Lambda^{2}\left(\mathbb{C}^{n}\right)\right)$ defined by $\lambda\left(\left[E_{2 r}\right]\right)=\left[\Lambda^{2}\left(E_{2 r}\right)\right]$ for any $(2 r)$-plane $E_{2 r} \subset \mathbb{C}^{n}$.
(3) $L G r_{n}$: Recall that $X=L G r_{n}$ consists of isotropic n-planes in $\left(\mathbb{C}^{2 n}, J_{n}\right)$, J_{n} being a symplectic form. For $[V] \in L G r_{n} \subset G r(n, n)$ we have $T_{[V]}(G r(n, n))=V^{*} \otimes \mathbb{C}^{2 n} / V \cong$ $V^{*} \otimes V^{*}$ induced by J_{n}, and $T_{[V]}\left(L G r_{n}\right)=S^{2} V^{*}$. At the base point $0=\left[V_{0}\right] \in O G r_{n}$ identify $T_{0} X$ with $S^{2} V_{0}^{*} \cong S^{2}\left(\mathbb{C}^{n}\right) \cong M_{a}^{\mathbb{C}}(n, n)$. Let $K^{\mathbb{C}}$ be the image of $G L(n, \mathbb{C})$ in $G L\left(S^{2} \mathbb{C}^{n}\right)$ by the action $A(Z)=A Z A^{t}$ for $Z \in M_{s}^{\mathbb{C}}(n, n)$. By definition $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0} \subset G r\left(n_{r}, T_{0}(\Omega)\right)$, $n_{r}:=\frac{r(r+1)}{2}$. When $\sigma \in \mathcal{D}_{r}(X)$ corresponds to $X_{\sigma} \subset L G r_{n}$, and X_{σ} passes through 0 , we have $\left[T_{0}\left(X_{\sigma}\right)\right]:=\left[S^{2}\left(E_{r}\right)\right] \in G r\left(\frac{r(r+1)}{2}, T_{0}(\Omega)\right), E_{r} \subset \mathbb{C}^{n}$ being an r-plane. The action of $K^{\mathbb{C}}$ on $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0}$ descends from $A\left(S^{2}\left(E_{r}\right)\right)=S^{2}\left(A\left(E_{r}\right)\right)$ for $A \in G L(n, \mathbb{C})$ and $\left[E_{r}\right] \in$ $G r(r, n-r)$. As a $K^{\mathbb{C}}$-orbit, $\left.\mathcal{N} \mathcal{S}_{r}(\Omega)\right|_{0}$ is the image of $G r(r, n-r)$ in $G r\left(\frac{r(r+1)}{2}, T_{0}(\Omega)\right)$ under the holomorphic embedding $\nu: G r(r, n-r) \rightarrow G r\left(\frac{r(r+1)}{2}, S^{2}\left(\mathbb{C}^{n}\right)\right)$ defined by $\nu\left(\left[E_{r}\right]\right)=\left[S^{2}\left(E_{r}\right)\right], E_{r} \subset \mathbb{C}^{n}$ being an r-plane.

3. Subgrassmannians in the moduli spaces

Definition 3.1. (1) For $\tau \in \mathcal{D}_{s}(X)$ or $\tau \in \mathcal{D}_{s, \frac{1}{2}}$ with $s<r$, define

$$
\mathcal{Z}_{\tau}^{r}:=\left\{\sigma \in \mathcal{D}_{r}(X): X_{\tau} \subset X_{\sigma}\right\}
$$

and

$$
\mathcal{Z}_{\tau}^{r, \frac{1}{2}}:=\left\{\sigma \in \mathcal{D}_{r, \frac{1}{2}}(X): X_{\tau} \subset X_{\sigma}\right\}
$$

(2) For $\mu \in \mathcal{D}_{s}(X)$ or $\mu \in \mathcal{D}_{s, \frac{1}{2}}(X)$ with $s>r$, define

$$
\mathcal{Q}_{\mu}^{r}:=\left\{\sigma \in \mathcal{D}_{r}(X): X_{\sigma} \subset X_{\mu}\right\}
$$

and

$$
\mathcal{Q}_{\mu}^{r, \frac{1}{2}}:=\left\{\sigma \in \mathcal{D}_{r, \frac{1}{2}}(X): X_{\sigma} \subset X_{\mu}\right\}
$$

From the definitions, we obtain the following for $X_{\tau}=X_{\left(V_{1}, V_{2}\right)}$ or $X_{\mu}=X_{\left(V_{1}, V_{2}\right)}$

$$
\mathcal{Z}_{\tau}^{r}=\left\{\left(W_{1}, W_{2}\right) \in \mathcal{D}_{r}(X): W_{1} \subset V_{1}, V_{2} \subset W_{2}\right\}
$$

and

$$
\mathcal{Q}_{\mu}^{r}=\left\{\left(W_{1}, W_{2}\right) \in \mathcal{D}_{r}(X): V_{1} \subset W_{1}, W_{2} \subset V_{2}\right\}
$$

For a given r, we will omit superscript r if there is no confusion.
Let pr: $\mathcal{F}\left(a, b ; V_{X}\right) \rightarrow G r\left(a, V_{X}\right)$ be the projection defined by

$$
\operatorname{pr}\left(V_{1}, V_{2}\right)=V_{1},
$$

where $V_{X}=\mathbb{C}^{p+q}$, if $X=G r(q, p)$ and $\mathbb{C}^{2 n}$, if $X=O G r_{n}$ or $L G r_{n}$.

Definition 3.2. For a given r, define

$$
D_{r}(X):=\operatorname{pr}\left(\mathcal{D}_{r}(X)\right), \quad Z_{\tau}:=\operatorname{pr}\left(\mathcal{Z}_{\tau}\right), \quad Q_{\mu}:=\operatorname{pr}\left(\mathcal{Q}_{\mu}\right)
$$

and

$$
D_{r, \frac{1}{2}}(X):=\operatorname{pr}\left(\mathcal{D}_{r, \frac{1}{2}}(X)\right), \quad Z_{\tau}^{\frac{1}{2}}:=\operatorname{pr}\left(\mathcal{Z}_{\tau}^{\frac{1}{2}}\right), \quad Q_{\mu}^{\frac{1}{2}}:=\operatorname{pr}\left(\mathcal{Q}_{\mu}^{\frac{1}{2}}\right)
$$

$D_{r}(X)$ is a submanifold of $\operatorname{Gr}\left(a, V_{X}\right)$, where $a=q-r$ if X is of type I or III and $a=2(q-r)$ if X is of type II and Z_{τ}, Q_{μ} are subgrassmannians of $D_{r}(X)$.

In the case $X=G r(q, p), Q_{\mu}$ is the image of the holomorphic embedding $\imath: G r\left(1, V_{2} / V_{1}\right) \rightarrow$ $\operatorname{Gr}\left(a+1, V_{2}\right), a:=\operatorname{dim}\left(V_{1}\right)$, defined by setting, for any 1-dimensional complex vector subspace $\ell \subset V_{2} / V_{1}, \imath(\ell)=W_{2, \ell}$ where $W_{2, \ell} \subset V_{2}$ is the unique ($a+1$)-dimensional complex vector subspace in V_{2} such that $W_{2, \ell} \supset V_{1}$ and such that $W_{2, \ell} / V_{1}=\ell$. The description of Q_{μ} for $X=O G r_{n}$ and $X=L G r_{n}$ are similar. More precisely, for r fixed and for $\tau \in \mathcal{D}_{s}(X), s<r$ and for $\mu \in \mathcal{D}_{s}(X), s>$ r, we have Table 1.

TAble 1. Subgrassmannians

X	$D_{r}(X)$	$Z_{\tau}\left(X_{\tau}=X_{\left(V_{1}, V_{2}\right)}\right)$	$Q_{\mu}\left(X_{\mu}=X_{\left(V_{1}, V_{2}\right)}\right)$
$G r(q, p)$	$G r\left(q-r, \mathbb{C}^{p+q}\right)$	$G r\left(q-r, V_{1}\right)$	$\left\{V \in G r\left(q-r, V_{2}\right): V_{1} \subset V\right\}$
$O G r_{n}$	$O G r\left(2[n / 2]-2 r, \mathbb{C}^{2 n}\right)$	$G r\left(2[n / 2]-2 r, V_{1}\right)$	$\left\{V \in O G r\left(2[n / 2]-2 r, V_{1}^{\perp}\right): V_{1} \subset V\right\}$
$L G r_{n}$	$S G r\left(n-r, \mathbb{C}^{2 n}\right)$	$G r\left(n-r, V_{1}\right)$	$\left\{V \in S G r\left(n-r, V_{1}^{\perp}\right): V_{1} \subset V\right\}$

In particular, if $\tau \in \mathcal{D}_{r-1}(X)$ and $\mu \in \mathcal{D}_{r+1}(X)$, we have Table 2 ;
Table 2. Subgrassmannians when the rank difference $|s-r|$ equals 1

X	$Z_{\tau}\left(X_{\tau}=X_{\left(V_{1}, V_{2}\right)}\right)$	$Q_{\mu}\left(X_{\mu}=X_{\left(V_{1}, V_{2}\right)}\right)$
$G r(q, p)$	$G r\left(q-r, V_{1}\right) \cong G r\left(1, V_{1}^{*}\right)$	$V_{1} \oplus G r\left(1, V_{2} / V_{1}\right)$
$O G r_{n}$	$G r\left(2[n / 2]-2 r, V_{1}\right) \cong G r\left(2, V_{1}^{*}\right)$	$V_{1} \oplus O G r\left(2, V_{1}^{\perp} / V_{1}\right)$
$L G r_{n}$	$G r\left(n-r, V_{1}\right) \cong G r\left(1, V_{1}^{*}\right)$	$V_{1} \oplus G r\left(1, V_{1}^{\perp} / V_{1}\right)$

Table 1 above gives in particular for comparison the pairs $\left(D_{r}(X), Z_{\tau}^{r}\right)$, where $\tau \in \mathcal{D}_{s}(X)$ and the pairs $\left(D_{r}(X), Q_{\mu}^{r}\right)$, where $\mu \in \mathcal{D}_{s}(X)$, and Table 2 gives the special cases where the gap $|s-r|$ is equal to 1 . In the case of type-II Grassmannians we need to consider in addition $D_{r, \frac{1}{2}}(X), Z_{\tau}^{r, \frac{1}{2}}$ where $\tau \in \mathcal{D}_{r}(X), Z_{\tau}^{r}$, where $\tau \in \mathcal{D}_{r-1, \frac{1}{2}}(X)$, and $Q_{\mu}^{r, \frac{1}{2}}$, where $\mu \in \mathcal{D}_{r}(X)$. If we label $D_{t}(X)$ as being of level $t, D_{t, \frac{1}{2}}(X)$ as being of level $t+\frac{1}{2}, Z_{\tau}^{r}$ for $\tau \in D_{t}(X)$ as being of level $t, Z_{\tau}^{r}, \tau \in \mathcal{D}_{t, \frac{1}{2}}(X)$ as being of level $t+\frac{1}{2}$, and $Q_{\mu}^{r, \frac{1}{2}}$, where $\mu \in \mathcal{D}_{t}(X)$, as being of level $t+\frac{1}{2}$, then we will need to consider for comparison the pairs $\left(D_{r, \frac{1}{2}}(X), Z_{\tau}^{r, \frac{1}{2}}\right)$, where $\tau \in D_{r}(X)$, the pairs $\left(D_{r}(X), Z_{\tau}^{r}\right)$, where $\tau \in \mathcal{D}_{r-1, \frac{1}{2}}(X)$, and the pairs $\left(D_{r, \frac{1}{2}}(X), Q_{\tau}^{r, \frac{1}{2}}\right)$, where $\left.\tau \in \mathcal{D}_{r}(X)\right)$. These are pairs (A, B), where the gap of the levels of A and B are equal to $\frac{1}{2}$. For this purpose we have the data given by following Table 3, noting that for type-II Grassmannians we have $\mathcal{D}_{r, \frac{1}{2}}(X)=G r\left(2\left[\frac{n}{2}\right]-2 r-1, \mathbb{C}^{2 n}\right)$. To be consistent with the other tables, we drop the reference to r in the table.

Table 3. Subgrassmannians when X is of type II and the gap is $\frac{1}{2}$

$$
\begin{array}{c|c|c|c}
X & Z_{\tau}^{\frac{1}{2}}\left(X_{\tau}=X_{\left(V_{1}, V_{2}\right)}, \tau \in D_{r}(X)\right) & Z_{\tau}\left(X_{\tau}=X_{\left(V_{1}, V_{2}\right)}, \tau \in D_{r-1, \frac{1}{2}}(X)\right) & Q_{\mu}^{\frac{1}{2}}\left(X_{\mu}=X_{\left(V_{1}, V_{2}\right)}\right) \\
\hline O G r_{n} & G r\left(2\left[\frac{n}{2}\right]-2 r-1, V_{1}\right) \cong G r\left(1, V_{1}^{*}\right) & G r\left(2\left[\frac{n}{2}\right]-2 r, V_{1}\right) \cong G r\left(1, V_{1}^{*}\right) & V_{1} \oplus O G r\left(1, V_{1}^{\perp} / V_{1}\right)
\end{array}
$$

Let $X=G / P$, where G is one of the complex simple Lie groups $S L(q+p, \mathbb{C}) / \mu_{p+q} I_{p+q}$, $S O(2 n, \mathbb{C}) /\left\{ \pm I_{2 n}\right\}$ or $S p(n, \mathbb{C}) /\left\{ \pm I_{2 n}\right\}$ according to the type of X and P is a maximal parabolic subgroup of G. Then $\mathcal{D}_{r}(X)$ and $D_{r}(X)$ are biholomorphic to $G / P^{\prime}, G / P^{\prime \prime}$ with parabolic subgroups $P^{\prime}, P^{\prime \prime}$ of G and their automorphism groups are exactly G if $r \neq 0$ (see Section 3.3 in A95]). In particular, $\mathcal{D}_{r}(X)$ and $D_{r}(X)$ are rational homogeneous spaces.

Lemma 3.3. $D_{r}(X)$ is connected by chains of Z_{τ} with $\tau \in \mathcal{D}_{r-1}(X)$ and chains of Q_{μ} with $\mu \in \mathcal{D}_{r+1}(X)$. If X is of type II, $D_{r, \frac{1}{2}}(X)$ is connected by chains of $Z_{\tau}^{\frac{1}{2}}$ with $\tau \in \mathcal{D}_{r}(X)$ and $D_{r}(X)$ is connected by chains of Z_{τ} with $\tau \in \mathcal{D}_{r-1, \frac{1}{2}}(X)$

Proof. We will prove the lemma when X is of the type I. The same argument can be applied to other cases. Let $X=G r(q, p)$. Then $\mathcal{D}_{r}(X)=\mathcal{F}\left(q-r, p+r ; \mathbb{C}^{p+q}\right)$ and $D_{r}(X)=G r\left(q-r, \mathbb{C}^{p+q}\right)$ by Table 1. For two distinct points $x_{0}, x_{1} \in D_{r}(X)$, choose a sequence $V_{0}, \ldots, V_{m} \in D_{r}(X)$ such that

$$
x_{0}=V_{0}, x_{1}=V_{m}, \operatorname{dim}\left(V_{i-1} \cap V_{i}\right)=q-r-1, i=1, \ldots m
$$

Define

$$
W_{i}=V_{i}+V_{i+1}, \quad i=0, \ldots, m-1
$$

Then x_{0} and x_{1} are connected by the chain of $Z_{\tau_{i}}=G r\left(q-r, W_{i}\right), 1 \leq i \leq m$, and by the chain of $Q_{\mu_{i}}=\left(V_{i} \cap V_{i+1}\right) \oplus G r\left(1, W_{i} /\left(V_{i} \cap V_{i+1}\right)\right), 0 \leq i \leq m-1$.

Define

$$
\Sigma_{r}:=\operatorname{pr}\left(\mathcal{D}_{r}\left(S_{r}\right)\right)
$$

By Lemma 2.1, we obtain

$$
\Sigma_{r}=D_{r}(X) \cap\left\{V \in G r\left(a, V_{X}\right):\left.I_{p, q}\right|_{V}=0\right\}
$$

for some suitable a and $I_{p, q}$.
Lemma 3.4. The closed submanifold $\Sigma_{r} \subset D_{r}(X)$ inherits from $D_{r}(X)$ the structure of a nondegenerate homogeneous $C R$ manifold with mixed Levi form such that pr : $\mathcal{D}_{r}\left(S_{r}\right) \rightarrow \Sigma_{r}$ is a $C R$ diffeomorphism.

Proof. We only need to show that $p r$ is one to one since it is smooth and regular. Let $\sigma \in \mathcal{D}_{r}\left(S_{r}\right)$. Then σ is expressed by the set of q-planes x satisfying

$$
\operatorname{Span}_{\mathbb{C}}\left\{e_{p+1} \wedge \cdots \wedge e_{p+q-r}\right\} \subset x \subset \operatorname{Span}_{\mathbb{C}}\left\{e_{q-r} \wedge \cdots \wedge e_{p+q}\right\}
$$

Therefore σ is determined uniquely by the $I_{p, q}$-isotropic space $\mathbb{C} e_{p+1} \wedge \cdots \wedge e_{p+q-r}$ by Lemma 2.1,

Lemma 3.5. Let $s<r$ and let $\tau \in \mathcal{D}_{s}(X)$. Then $\tau \in \mathcal{D}_{s}\left(S_{s}\right)$ if and only if $Z_{\tau} \subset \Sigma_{r}$.

Proof. We only consider the case where $X=\operatorname{Gr}(q, p)$. The same argument can be applied to $X=O G r_{n}$ or $X=L G r_{n}$. Let $\tau \in \mathcal{D}_{s}\left(S_{s}\right)$. We may express X_{τ} as $X_{\left(W_{1}, W_{2}\right)}$ with $I_{p, q}$-isotropic $(q-s)$-dimensional subspace W_{1} and $(p+s)$-dimensional subspace W_{2}. Then any element $X_{\left(V_{1}, V_{2}\right)}$ in \mathcal{Z}_{τ} satisfies $V_{1} \subset W_{1}$. Hence we obtain $Z_{\tau} \subset \Sigma_{r}$. Conversely, W_{1} is spanned by $\left\{V_{1}: V_{1} \subset W_{1}\right\}$ and if W_{1} is not a null space of $I_{p, q}$, then there exists $V_{1} \subset W_{1}$ of dimension $(q-r)$ such that $\left.I_{p, q}\right|_{V_{1}} \neq 0$, i.e., $\operatorname{pr}(\sigma) \notin \Sigma_{r}$ for $\operatorname{pr}(\sigma)=V_{1} \in Z_{\tau}$.
Lemma 3.6. Let $X=G r(q, p)$ or $L G r_{n}$. If $\mu \in \mathcal{D}_{r+1}\left(S_{r+1}\right)$, then $Q_{\mu} \cap \Sigma_{r}$ is a real hyperquadric in Q_{μ}.
Proof. If $X=G r(q, p)$, we may express X_{μ} as $X_{\left(W_{1}, W_{2}\right)}$ with $I_{p, q}$-isotropic $(q-r-1)$-dimensional subspace W_{1} and ($p+r+1$)-dimensional subspace W_{2}. Hence any element in $Q_{\mu} \cap \Sigma_{r}$ can be represented by a vector $w \in W_{2} / W_{1}$ satisfying $\left.I_{p, q}\right|_{W_{1} \wedge w}=0$. We can apply the same argument to the case where $X=L G r_{n}$.

Let r be fixed. Since a maximal integral manifold of the CR bundle $T^{1,0} \Sigma_{r}$ is a maximal complex submanifold of Σ_{r}, by Section 3 in [K21], we obtain that $Z_{\tau}, \tau \in \mathcal{D}_{0}\left(S_{0}\right)$, is a maximal complex manifold in Σ_{r} and vice versa.

Lemma 3.7. Let $X=G r(q, p)$. Then Σ_{r} is covered by Grassmannians of rank $\min (r, q-r)$.
Proof. Choose a point $x \in \Sigma_{r}$. Then there exists a $(q-r)$-dimensional $I_{p, q}$-isotropic vector space V_{x} representing x. Choose a q-dimensional $I_{p, q}$-isotropic space W_{x} that contains V_{x}. Then $\operatorname{Gr}\left(q-r, W_{x}\right)$ is a subgrassmannian of rank $\min (r, q-r)$ in Σ_{r} passing through x.
Lemma 3.8. The $C R$ structure of Σ_{r} is Levi-nondegenerate. Furthermore, the $C R$ structure of Σ_{r} is bracket generating in the sense that for any nonzero real tangent vector v, there exist two $(1,0)$ vectors w_{1}, w_{2} such that $\theta \wedge d \theta\left(v, w_{1}, \bar{w}_{2}\right) \neq 0$.
Proof. For the CR structure of Σ_{r} when X is of type I, see K21. In the proof, we only consider $X=L G r_{n}$. The same argument can be applied for $X=O G r_{n}$. Let $X=L G r_{n}$ and hence $D_{r}(X)=S G r\left(n-r, \mathbb{C}^{2 n}\right)$. We regard $D_{r}(X)$ as a submanifold in $G r\left(n-r, \mathbb{C}^{2 n}\right)$. Since everything is purely local, we can choose Harish-Chandra coordinates $(x ; y ; z) ; x, z \in M^{\mathbb{C}}(r, n-r), y \in$ $M^{\mathbb{C}}(n-r, n-r)$, on a big Schubert cell $\mathcal{W} \subset G r\left(n-r, \mathbb{C}^{2 n}\right)$, where \mathcal{W} is identified with $M^{\mathbb{C}}(n+$ $r, n-r)=M^{\mathbb{C}}(r, n-r) \oplus M^{\mathbb{C}}(n-r, n-r) \oplus M^{\mathbb{C}}(r, n-r)$; and $\mathcal{W} \cap S G r\left(n-r, \mathbb{C}^{2 n}\right)$ is defined by

$$
\begin{equation*}
y-y^{t}+x^{t} z-z^{t} x=0 \tag{3.1}
\end{equation*}
$$

since an $(n-r)$-plane in \mathcal{W} lies in $S G r\left(n-r, \mathbb{C}^{2 n}\right)$ if and only if it is isotropic with respect to the symplectic form J_{n} on $\mathbb{C}^{2 n}$, and $\mathcal{W} \cap \Sigma_{r}$ is defined by (3.1) and

$$
\begin{equation*}
I_{n-r}+x^{*} x-y^{*} y-z^{*} z=0, \tag{3.2}
\end{equation*}
$$

where $x^{*}=\bar{x}^{t}$ and so on, since $\mathcal{W} \cap \Sigma_{r} \subset \mathcal{W} \cap S G r\left(n-r, \mathbb{C}^{2 n}\right)$ and it consists precisely of $(n-r)$-planes therein isotropic with respect to the indefinite Hermitian bilinear form $I_{n, n}$ on $\mathbb{C}^{2 n}$. Fix $P=\left(0 ; I_{n-r} ; 0\right)$. Then,

$$
T_{P} D_{r}(X)=\left\{d y-d y^{t}=0\right\}
$$

and

$$
T_{P} \Sigma_{r}=\left\{d y-d y^{t}=d y+d y^{*}=0\right\}
$$

Therefore we obtain

$$
\begin{equation*}
T_{P} D_{r}(X)=T_{P} \Sigma_{r}+J\left(T_{P} \Sigma_{r}\right) \tag{3.3}
\end{equation*}
$$

where J is the complex structure of $D_{r}(X)$. Since Σ_{r} is homogeneous, (3.3) holds for any $P \in \Sigma_{r}$, i.e., Σ_{r} is a generic CR manifold in $D_{r}(X)$.

Now choose $\tau \in \mathcal{D}_{0}\left(S_{0}\right)$ such that $P \in Z_{\tau}$. By Lemma 3.5, we obtain $Z_{\tau} \subset \Sigma_{r}$ and hence

$$
T_{P} Z_{\tau} \subset T_{P}^{1,0} \Sigma_{r}=\{d y=0\}
$$

On the other hand, at $P=\left(0 ; I_{n-r} ; 0\right)$, subgrassmannians of the form $\left\{\left(x ; I_{n-r} ; A x\right): x \in M_{r, n-r}^{\mathbb{C}}\right\}$ or $\left\{\left(A z ; I_{n-r} ; z\right): z \in M_{r, n-r}^{\mathbb{C}}\right\}$ with $r \times r$ symmetric matrices A are contained in Σ_{r}, which implies

$$
\operatorname{Span}_{\mathbb{C}}\left\{\bigcup_{\tau} T_{P} Z_{\tau}\right\}=\{d y=0\}
$$

where the union is taken over all $\tau \in \mathcal{D}_{0}\left(S_{0}\right)$ such that $Z_{\tau} \ni P$.
Let

$$
\theta=x^{*} d x-y^{*} d y-z^{*} d z, \quad \text { and } \quad \tilde{\theta}:=d y+x^{t} d z-z^{t} d x
$$

Then, θ is a skew-Hermitian contact form on $\left\{I_{n-r}+x^{*} x-y^{*} y-z^{*} z=0\right\}$ and $\tilde{\theta}$ is a symmetric one form on $D_{r}(X)$ (by equation (3.1). Moreover, since $J_{n}=0$ on τ and $P \in Z_{\tau}$ if and only if $P \subset \tau$ as subspaces of V_{X}, by differentiating

$$
J_{n}(v, w)=0, \quad v \subset P, w \subset \tau
$$

we obtain

$$
T_{P} Z_{\tau} \subset\{\tilde{\theta}=0\}
$$

for all $Z_{\tau}, \tau \in \mathcal{D}_{0}(\Sigma)$ with $P \in Z_{\tau}$. Hence, by the same argument as above, we can show that θ and $\tilde{\theta}$ together define the CR structure on Σ_{r}. Notice that at $P=\left(0 ; I_{n-r} ; 0\right)$,

$$
\tilde{\theta} \wedge d \tilde{\theta}=d y \wedge\left(d x^{t} \wedge d z-d z^{t} \wedge d x\right)
$$

on $T_{P} D_{r}(X)$ and hence the proof is completed.

4. Rigidity of the pair $\left(S G r\left(q, \mathbb{C}^{2 n}\right), G r\left(q, \mathbb{C}^{2 n}\right)\right)$

We consider the question of rigidity for mappings for the pair $\left(X, X^{\prime}\right)$, where X is the symplectic Grassmannian $\operatorname{SGr}\left(q, \mathbb{C}^{2 n}\right), 2 \leq q \leq n, X^{\prime}$ is the Grassmannian $\operatorname{Gr}\left(q, \mathbb{C}^{2 n}\right)$, and X is identified with its image inside X^{\prime} by a standard embedding in the obvious way.

The main result of this section is Proposition 4.13 proving that for a VMRT-respecting holomorphic map $H: U \rightarrow X^{\prime}$ defined on a nonempty connected open subset $U \subset X$ modeled on the pair $\left(X, X^{\prime}\right)$ of rational homogeneous manifolds of Picard number 1 which is assumed to extend meromorphically to $H: X \rightarrow X^{\prime}$, the extended map is actually a standard holomorphic embedding $H: X \rightarrow Y$ of X onto some complex submanifold $Y \subset X^{\prime}$, i.e., it is the obvious embedding $\imath: S G r\left(q, \mathbb{C}^{2 n}\right) \rightarrow G r\left(q, \mathbb{C}^{2 n}\right)$ up to automorphisms of both the domain and the target manifolds.

The problem for the case of the pair $\left(S G r\left(n, \mathbb{C}^{2 n}\right), G r\left(q, \mathbb{C}^{2 n}\right)\right), n \geq 2, S G r\left(n, \mathbb{C}^{2 n}\right)=L G r_{n}$, the Lagrangian Grassmannian of rank n, has been settled in M19] in which it was proven that the admissible pair of compact Hermitian symmetric spaces $\left(L G r_{n}, G r(n, n)\right)$, which is of nonsubdiagram type, is rigid in the sense of the geometric theory of sub-VMRT structures. Here for the purpose of our application to Theorem 1.2, the map H arises from a proper holomorphic map $f: D_{n}^{\mathrm{III}} \rightarrow D_{n, n}^{I}$, and we will be able to establish that H extends to a holomorphic map from $L G r_{n}$ into X, and we deal in this section with the question whether $H: S G r\left(q, \mathbb{C}^{2 n}\right) \rightarrow G r\left(q, \mathbb{C}^{2 n}\right)$ is a standard embedding.

For the purpose of showing that H is a standard embedding, we generalize certain argument in M19] for the pair $\left(L G r_{n}, G r(m, n)\right)$ to our situation. Here we will recall some basic notions from the theory of sub-VMRT structures in order to be able to apply the argument of parallel transport along minimal rational curves as in (M19]. As opposed to the Lagrangian Grassmannian, the problem for parallel transport on symplectic Grassmannian $X=S G r\left(q, \mathbb{C}^{2 n}\right)$ for $2 \leq q<n$ exhibit new difficulties.

First of all, X is marked at a short root, and the Recognition Problem for X is much harder than the long-root case. Fortunately, the Recognition Problem has recently been settled by HwL21], which, together with the Thickening Lemma, allows us to analytically continue H along certain minimal rational curves. Secondly, the moduli space of minimal rational curves on X is no longer homogeneous, and parallel transport for our purpose can only be carried out for general minimal rational curves, but we show that it is nonetheless sufficient to prove that the extended meromorphic map $H: X \rightarrow X^{\prime}$ has no indeterminacies and is in fact a holomorphic immersion.

Local calculations in terms of Harish-Chandra coordinates to be deferred to Section 5 allow us to show that $H: X \rightarrow X^{\prime}$ can be dilated via \mathbb{C}^{*}-action to a standard embedding, and the homotopy and cohomological arguments (involving volume forms) as in [M19 allows us to recover H as the obvious embedding up to automorphisms of the domain and target manifolds.

We now consider the pair $\left(X, X^{\prime}\right)=\left(S G r\left(q, \mathbb{C}^{2 n}\right), \operatorname{Gr}\left(q, \mathbb{C}^{2 n}\right)\right), 2 \leq q \leq n$ from the perspective of the geometric theory of sub-VMRT structures. The obvious inclusion map $\imath: X \hookrightarrow X^{\prime}$ sends minimal rational curves onto minimal rational curves, and we have $\imath_{*}: H_{2}(X, \mathbb{Z}) \xrightarrow{\cong} H_{2}\left(X^{\prime}, \mathbb{Z}\right)$. We identify X^{\prime} as a projective submanifold by means of the Plücker embedding $\nu: G r\left(q, \mathbb{C}^{2 n}\right) \hookrightarrow \mathbb{P}^{N}$, $N+1=\operatorname{dim}_{\mathbb{C}} \bigwedge^{q}\left(\mathbb{C}^{2 n}\right)=\frac{(2 n)!}{q!\cdot(2 n-q)!}$. To relate to the theory of sub-VMRT structures as given in [MZ19] and [M19] we have first of all
Lemma 4.1. In the notation above (X, X^{\prime}) is an admissible pair of rational homogeneous manifolds of Picard number 1 in the sense of [MZ19] which is of non-subdiagram type.
Proof. To prove that the pair $\left(X, X^{\prime}\right)$ is an admissible pair of rational homogeneous manifolds of Picard number 1 in the sense of MZ19], it suffices to show that X is a linear section of $X^{\prime} \subset \mathbb{P}^{N}$.

Denote by J_{n} the underlying symplectic form on $\mathbb{C}^{2 n}$. For $q \geq 2$ let $\lambda: \bigotimes^{q}\left(\mathbb{C}^{2 n}\right) \rightarrow \bigotimes^{q-2}\left(\mathbb{C}^{2 n}\right)$ be the linear map uniquely determined by $\lambda\left(u_{1} \otimes \cdots \otimes u_{q}\right)=J_{n}\left(u_{1}, u_{2}\right)\left(u_{3} \otimes \cdots \otimes u_{q}\right)$, and denote by $\mu: \bigwedge^{q}\left(\mathbb{C}^{2 n}\right) \rightarrow \bigotimes^{q-2}\left(\mathbb{C}^{2 n}\right)$ its skew-symmetrization. We have readily $\mu: \Lambda^{q}\left(\mathbb{C}^{2 n}\right) \rightarrow$ $\bigwedge^{q-2}\left(\mathbb{C}^{2 n}\right)$, where $\bigwedge^{0} \mathbb{C}^{2 n}:=\mathbb{C}$. Now, for $\Pi \in G r\left(q, \mathbb{C}^{2 n}\right)=X^{\prime}$ spanned by $u_{1}, \cdots, u_{q}, u_{\chi(1)} \wedge \cdots \wedge$ $u_{\chi(q-2)}$ are linearly independent as $\chi:\{1, \cdots, q-2\} \rightarrow\{1, \cdots, q\}$ ranges over all injective maps, hence $\mu\left(u_{1} \wedge \cdots \wedge u_{q}\right)=0$ if and only if $J_{n}\left(u_{s(1)}, u_{s(2)}\right)=0$ for any permutation s of $\{1, \cdots, q\}$. Thus $\mu\left(u_{1} \wedge \cdots \wedge u_{q}\right)=0$ if and only if Π is isotropic in $\left(\mathbb{C}^{2 n}, J_{n}\right)$. In other words, $X \subset X^{\prime}$ is the linear section defined by the vanishing of the vector-valued linear map μ on $\bigwedge^{q}\left(\mathbb{C}^{2 n}\right)$.

Since any rational homogeneous manifold determined by a subdiagram of the marked Dynkin diagram for a Grassmannian must itself necessarily be a Grassmannian, the admissible pair (X, X^{\prime}) is of non-subdiagram type.

Note that in the case where $q=n, X$ is the Lagrangian Grassmannian $L G r_{n}$, and the rigidity phenomenon for substructures for the admissible pair (X, X^{\prime}) has been demonstrated in [M19], which is stronger than the rigidity phenomenon for mappings for the same pair (X, X^{\prime}). Thus, in what follows our focus is in the case $2 \leq q<n$, although in the statement of results for the purpose of uniformity we will include the case where X is a Lagrangian Grassmannian as a special
case. We refer the reader to HwM05] and HwL21] for descriptions of the VMRT on a symplectic Grassmannian, and to [MZ19] for basics concerning sub-VMRT structures. For simplicity, we will consider sub-VMRT structures $\varpi: \mathscr{C}(S) \rightarrow S$ on some locally closed complex submanifolds modeled on the admissible pair (X, X^{\prime}) which are already known to extend to a projective subvariety $Y \subset X^{\prime}$, since for the application to complete the proof of the Theorem 1.2 in the case of proper holomorphic maps from type III to type I domains we will be led to a VMRT-respecting map $h: U \xrightarrow{\cong} S \subset X^{\prime}$ which is known to extend meromorphically to $H: X \rightarrow X^{\prime}$.

We summarize in what follows information about the VMRT of a symplectic Grassmannian taken from HwM05 which is of relevance for our further discussion on the meromorphic map H. With respect to the standard labeling of nodes in Dynkin diagrams as for instance found in Ya93, the symplectic Grassmannian $S G r\left(q, \mathbb{C}^{2 n}\right), 2 \leq q \leq n$ (denoted as $S_{q, n}$ in HwM05]) is of type $\left(\mathfrak{s p}_{n}, \alpha_{q}\right)$. Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{s p}_{n}$. For $2 \leq q<n$ the symplectic Grassmannian $X:=\operatorname{SGr}\left(q, \mathbb{C}^{2 n}\right)$ is a rational homogeneous space of Picard number 1 associated to a graded complex Lie algebra of depth $2, \mathfrak{s p}_{n}=: \mathfrak{g}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$, where for $k \neq 0$ the vector space \mathfrak{g}_{k} is spanned by root spaces \mathfrak{g}^{ρ} for roots ρ with coefficient equal to k in the simple root α_{q}, and $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{t}$, where \mathfrak{t} is spanned by root spaces \mathfrak{g}^{ρ} for roots ρ with vanishing coefficient in the simple root α_{q}. We have $\left[\mathfrak{g}_{k}, \mathfrak{g}_{\ell}\right] \subset \mathfrak{g}_{k+\ell}$, setting $\mathfrak{g}_{p}:=0$ whenever $p \neq\{-2,-1,0,1,2\}$. The parabolic subalgebra \mathfrak{p} is given by $\mathfrak{p}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}$. Writing $G=S p(n, \mathbb{C})$ and $P \subset G$ for the parabolic subgroup corresponding to the parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$, we have $X=G / P$ and the identification $T_{0}(G / P)=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$. The vector subspace $\mathfrak{g}_{0} \subset \mathfrak{g}$ is a reductive Lie algebra corresponding to a Levi factor $L:=G_{0} \subset P$, it has a one-dimensional center \mathfrak{z} and we have a direct sum decomposition of Lie algebras $\mathfrak{g}_{0}=\mathfrak{z} \oplus \mathfrak{s l}_{q} \oplus \mathfrak{s p}_{n-q}$ (the semisimple part corresponding to the Dynkin subdiagram obtained by removing α_{q}). L acts irreducibly on \mathfrak{g}_{1} and \mathfrak{g}_{2}. The isotropy action of P on \mathfrak{g}_{1} defines the minimal G-invariant holomorphic distribution $D \subset T_{X}$. We have $D \cong U^{*} \otimes Q$, where U is the universal rank- q holomorphic vector bundle inherited from the Grassmannian $X^{\prime}=G r\left(q, \mathbb{C}^{2 n}\right) \supset S G r\left(q, \mathbb{C}^{2 n}\right)=X$, and Q is a rank $2(n-q)$ holomorphic vector bundle. At $0 \in G / P$ the direct factor up to isogeny $S L(q, \mathbb{C})$ of L acts nontrivially on U_{0}^{*} while the direct factor up to isogeny $S p(n-q, \mathbb{C})$ acts nontrivially on Q_{0}. The isotropy action of P on \mathfrak{g}_{2} defines a holomorphic vector bundle R on X which is isomorphic to $T_{X} / D . R \cong S^{2} U^{*}$.

A point $x \in S G r\left(q, \mathbb{C}^{2 n}\right)$ corresponds to a q-dimensional complex vector subspace V in $\left(\mathbb{C}^{2 n}, J_{n}\right)$. Denoting by $V^{\perp} \subset \mathbb{C}^{2 n}$ the annihilator of V with respect to J_{n}, by hypothesis we have $V \subset V^{\perp}$. (We have $Q_{0}=V^{\perp} / V$ equipped with a symplectic form induced from J_{n}.) A minimal rational curve Λ on X containing $x \in X$ is determined by the choice of complex vector subspaces $A, B \subset \mathbb{C}^{2 n}$, $\operatorname{dim}_{\mathbb{C}} A=q-1, \operatorname{dim}_{\mathbb{C}} B=q+1$, such that $A \subset V \subset B$. We say that the minimal rational curve $\Lambda \subset X$ is special if and only if B is isotropic in $\left(\mathbb{C}^{2 n}, J_{n}\right)$, otherwise Λ is referred to as a "general minimal rational curve" on X. Then, the set of vectors tangent to special minimal rational curves on X span a proper holomorphic distribution which is precisely $D \subsetneq T_{X}$. For a special rational curve Λ passing through $x \in X, T_{x}(\Lambda)=: \mathbb{C} \alpha$, we will refer to $[\alpha] \in \mathscr{C}_{x}(X)$ as a special rational tangent.

The VMRT $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$ can be described explicitly as follows.
Lemma 4.2. The highest weight orbit $\mathscr{S}_{0}(X)=\mathbb{P} U_{0}^{*} \otimes \mathbb{P} Q_{0} \hookrightarrow \mathbb{P}\left(U_{0}^{*} \otimes Q_{0}\right)$ of the L-representation in $\mathbb{P} T_{0}(D) \cong \mathbb{P}_{1}$ is the variety of special rational tangents at $0 \in X, \mathscr{S}_{0}(X) \subset \mathscr{C}_{0}(X)$, the VMRT at $0 \in X$. Writing \mathcal{W}_{0} for the highest weight orbit of the L-representation in $\mathbb{P}_{\mathfrak{g}_{2}}$, which is the image of $\mathbb{P} U_{0}^{*}$ in \mathbb{P}_{2} under the Veronese embedding, we have $\mathcal{W}_{0} \subset \mathscr{C}_{0}(X)$. Let $N \subset P$ be the
nilpotent Lie subgroup corresponding to the nilpotent Lie subalgebra $\mathfrak{n}:=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \subset \mathfrak{p}$, then the orbit of $\left[\lambda_{0} \odot \lambda_{0}\right], 0 \neq \lambda_{0} \in U_{0}^{*}$, under N is given by $N\left[\lambda_{0} \odot \lambda_{0}\right]=\left\{\left[\lambda_{0} \otimes \mu+\lambda_{0} \odot \lambda_{0}\right] \in \mathbb{P}\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}\right)\right.$: $\left.\mu \in Q_{0}\right\} \subset \mathscr{C}_{0}(X)$. Moreover the $V M R T \mathscr{C}_{0}(X)$ is precisely the union of $\mathscr{S}_{0}(X)$ and the N-orbits $N[\lambda \odot \lambda]$ as λ ranges over non-zero vectors in U_{0}^{*}. As a consequence $\mathscr{C}_{0}(X)$ is the union of $\mathscr{S}_{0}(X)$, the unique closed P-orbit in $\mathscr{C}_{0}(X)$, and the unique open P-orbit $\mathcal{O}:=\mathscr{C}_{0}(X)-\mathscr{S}_{0}(X)$. Thus, $\mathscr{C}_{0}(X)=\left\{[\lambda \otimes \mu+\lambda \odot \lambda]: 0 \neq \lambda \in U_{0}^{*}, \mu \in Q_{0}\right\}$.

Proof. Since $S L(q, \mathbb{C})$ acts transitively on \mathcal{W}_{0}, and N acts transitively on $N[\lambda \otimes \lambda]$ by definition, P acts transitively on $\mathcal{O}=\mathscr{C}_{0}(X)-\mathscr{S}_{0}(X)$. Clearly $\mathcal{O} \subset \mathscr{C}_{0}(X)$ is the unique (Zariski) open P-orbit. All other statements are implicitly in [HwM05, Chapter 2].

From the explicit description of the VMRT $\mathscr{C}_{0}(X)$ on the symplectic Grassmannian X, by a straightforward determination of the projective second fundamental form of $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$ as a projective submanifold we have readily the following characterization of $\mathscr{S}_{0}(X) \subset \mathscr{C}_{0}(X)$ and $\mathcal{O} \subset \mathscr{C}_{0}(X)$ in terms of projective geometry.

Lemma 4.3 (Lemma 6.6 in [HwL21]). Denote by $\zeta: S^{2} T_{\mathscr{C}_{0}(X)} \rightarrow N_{\mathscr{C}_{0}(X) \mid \mathbb{P} T_{0}(X)}$ the projective second fundamental form as a holomorphic bundle map. Then ζ is surjective at $[\alpha] \in \mathscr{C}_{0}(X)$ if and only if $[\alpha] \in \mathcal{O}$.

In Proposition 4.10 we will prove that H is a holomorphic immersion. The proof will rely on the theory of geometric substructures of [MZ19], especially the Thickening Lemma, and the characterization results of symplectic Grassmannians of Hwang-Li [HwL21]. Here it should be noted that according to HwL21], strictly speaking a symplectic Grassmannian other than a Lagrangian Grassmannian cannot be recognized among projective manifolds of Picard number 1 solely by the VMRT at a general point. In its place it has been shown in HwL21] that in these cases the symplectic Grassmannians are characterized by the VMRT at a general point together with the nondegeneracy of the Frobenius form associated to a proper distribution determined by the VMRT. We observe that this condition is automatically satisfied in the problem at hand, when the geometric substructure arises from a germ of VMRT-respecting germ of holomorphic map.

Given a uniruled projective manifold $\left(M, \mathcal{K}_{M}\right)$ and a locally closed complex submanifold S of M, for $x \in S$ we define $\mathscr{C}(S):=\mathscr{C}(M) \cap \mathbb{P} T(S), \mathscr{C}_{x}(S):=\mathscr{C}_{x}(M) \cap \mathbb{P} T_{x}(S)$. Writing $\mu: T_{x}(M)-$ $\{0\} \rightarrow \mathbb{P} T_{x}(M)$ for the canonical projection, for a subset $E \subset \mathbb{P} T_{x}(M)$ we write $\widetilde{E}:=\mu^{-1}(E) \subset$ $T_{x}(M)-\{0\}$ for the affinization of E. Write $\varpi:=\left.\pi\right|_{\mathscr{C}(S)}: \mathscr{C}(S) \rightarrow S$.

Definition 4.4. We say that $\varpi:=\left.\pi\right|_{\mathscr{C}(S)}: \mathscr{C}(S) \rightarrow S$ is a sub-VMRT structure on $\left(M, \mathcal{K}_{M}\right)$ if and only if
(a) the restriction of ϖ to each irreducible component of $\mathscr{C}(S)$ is surjective, and
(b) at a general point $x \in S$ and for any irreducible component Γ_{x} of $\mathscr{C}_{x}(S)$, we have $\Gamma_{x} \not \subset$ $\operatorname{Sing}\left(\mathscr{C}_{x}(M)\right)$.

Definition 4.5. Let $\left(M, \mathcal{K}_{M}\right)$ be a uniruled projective manifold M equipped with a minimal rational component \mathcal{K}_{M}. Let $\varpi: \mathscr{C}(S) \rightarrow S, \mathscr{C}(S):=\mathscr{C}(M) \cap \mathbb{P} T(S)$, be a sub-VMRT structure on a locally closed submanifold S of M. For a point $x \in S$, and $[\alpha] \in \operatorname{Reg}\left(\mathscr{C}_{x}(S)\right) \cap \operatorname{Reg}\left(\mathscr{C}_{x}(M)\right)$, we say that $\left(\mathscr{C}_{x}(S),[\alpha]\right)$, or equivalently $\left(\widetilde{\mathscr{C}_{x}}(S), \alpha\right)$, satisfies Condition (T) (with respect to the sub-VMRT structure $\varpi: \mathscr{C}(S) \rightarrow S$ on $\left.\left(M, \mathcal{K}_{M}\right)\right)$ if and only if $T_{\alpha}\left(\widetilde{\mathscr{C}}_{x}(S)\right)=T_{\alpha}\left(\widetilde{\mathscr{C}}_{x}(M)\right) \cap T_{x}(S)$.

Concerning Condition (T) we have the following lemma concerning linear sections Y of a projective submanifold M uniruled by projective lines which is a special case of [MZ19, Lemma 5.5] in which Y is further assumed nonsingular (and uniruled by projective lines).
Lemma 4.6. Let $\left(M, \mathcal{K}_{M}\right), M \subset \mathbb{P}^{N}$, be a uniruled projective manifold endowed with a minimal rational component consisting of projective lines, and denote by $\pi: \mathscr{C}(M) \rightarrow M$ the VMRT structure on M. Let $Y \subset M$ be a smooth linear section of M and write $\mathscr{C}(Y)=\mathscr{C}(M) \cap \mathbb{P} T(Y)$, the sub-VMRT structure on Y. Then, for a general point $z \in Y$ and a general smooth point $[\alpha] \in \mathscr{C}_{z}(Y),\left(\mathscr{Z}_{z}(Y),[\alpha]\right)$ satisfies Condition (T).

For the study of rational curves on a projective variety it is essential to find free rational curves lying on the smooth locus of the variety. From the perspective of the theory of sub-VMRT structures the following result, which is a simplified version of the Thickening Lemma in MZ19, Proposition 6.1], gives a sufficient condition for finding an open neighborhood of some rational curve which is an immersed complex submanifold.
Theorem 4.7. Let $\left(M, \mathcal{K}_{M}\right)$ be a uniruled projective manifold endowed with a minimal rational component, $\operatorname{dim}_{\mathbb{C}} M=: n$, and $\varpi: \mathscr{C}(S) \rightarrow S$ be a sub-VMRT structure. $\operatorname{dim}_{\mathbb{C}} S=: s$, and assume that there exists a projective subvariety $Y \subset M$ such that $\operatorname{dim}_{\mathbb{C}} Y=s$ and $S \subset Y$. Let $[\alpha] \in \mathscr{C}(S)$ be a t point of both $\mathscr{C}(S)$ and $\mathscr{C}(M)$ such that $\varpi: \mathscr{C}(S) \rightarrow S$ is a submersion at $[\alpha], \varpi([\alpha])=: x$, $[\ell] \in \mathcal{K}_{M}$ be the minimal rational curve (which is smooth at x) such that $T_{x}(\ell)=\mathbb{C} \alpha$, and $\varphi: \mathbf{P}_{\ell} \rightarrow \ell$ be the normalization of $\ell, \mathbf{P}_{\ell} \cong \mathbb{P}^{1}$. Suppose $\left(\mathscr{C}_{x}(S),[\alpha]\right)$ satisfies Condition (T). Then, there exists an s-dimensional complex manifold $\mathbf{E}(\ell), \mathbf{P}_{\ell} \subset \mathbf{E}(\ell)$, and a holomorphic immersion $\Phi: \mathbf{E}(\ell) \rightarrow M$ such that $\left.\Phi\right|_{\mathbf{P}_{\ell}} \equiv \varphi$ and such that $\Phi(\mathbf{E}(\ell)$ contains a neighborhood of x on S.

Crucial to our arguments is the following solution [HwL21] of Hwang-Li giving a solution to the Recognition Problem for the symplectic Grassmannian.
Theorem 4.8 ([HwL21). Let X be a symplectic Grassmannian $\operatorname{SGr}\left(q, \mathbb{C}^{2 n}\right), 0<q \leq n$. Let Y be a uniruled projective variety containing a smooth standard rational curve $\ell_{0} \subset \operatorname{Reg}(Y)$ in its smooth locus. Denoting by \mathcal{K}_{Y}^{0} the normalized moduli space of (unparametrized) free rational curves $\ell \subset \operatorname{Reg}(Y)$ which are deformations of ℓ_{0} inside $\operatorname{Reg}(Y)$. Denote by $\mathscr{C}_{y}^{0}(Y) \subset \mathbb{P} T_{y}(Y)$ the variety of \mathcal{K}_{Y}^{0}-rational tangents at a general point y on $\operatorname{Reg}(Y)$ and denote by $\mathscr{C}_{y}(Y)$ the topological closure of $\mathscr{C}_{y}^{0}(Y)$ in $\mathbb{P} T_{y}(Y)$. Assume that there exists a nonempty Euclidean open subset $O \subset Y$ such that for any $y \in O, \mathscr{C}_{y}(Y) \subset \mathbb{P} T_{y}(Y)$ is projectively equivalent to $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$ for a (and hence any) reference point $0 \in X$. Then, given any member $[\ell] \in \mathcal{K}_{Y}^{0}$ such that ℓ is a standard rational curve, some Euclidean neighborhood of ℓ is biholomorphic to a Euclidean neighborhood of a general line in one of the presymplectic Grassmannians corresponding to $\left(\mathbb{C}^{2 n}, \mu\right)$, where μ denotes a skew-symmetric complex bilinear form on $\mathbb{C}^{2 n}$.

For the meaning of presymplectic Grassmannians and that of a general line on such a space we refer the reader to HwL21.

By the hypothesis in Theorem 4.8, for any $y \in Y, \mathscr{C}_{y}(Y) \subset \mathbb{P} T_{y}(Y)$ is projectively equivalent to $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$ for a reference point $0 \in X$. Assuming $r \geq 1$ we have thus on O a uniquely determined $E \subsetneq T_{O}$ corresponding to the subspace \mathfrak{g}_{1}. We have the Frobenius form $\varphi: E \otimes E \rightarrow$ T_{O} / E defined as follows. Let $y \in O$ and $v, w \in E_{y}$. Shrinking the neighborhood $U(y)$ of y if necessary let $\widetilde{v}, \widetilde{w}$ by E-valued holomorphic vector fields on $U(y)$ such that $\widetilde{v}(y)=v$ and $\widetilde{w}(y)=w$, then $\varphi(v, w):=[\widetilde{v}, \widetilde{w}](y) / E_{y} \in T_{y}(Y) / E_{y}$ is uniquely determined independent of the holomorphic
extensions $\widetilde{v}, \widetilde{w} \in \Gamma(U(y), E)$, and the Frobenius form $\varphi: E \otimes E \rightarrow T_{O} / E$ is defined at the arbitrary point $y \in O$ by $\varphi(v \otimes w)=\varphi(v, w)$ and extended to $E \otimes E$ by complex linearity. Since the Lie bracket is skew-symmetric we may regard the Frobenius form as $\varphi: \bigwedge^{2} E \rightarrow T_{O} / E$.

Corollary 4.9. In the notation of the preceding paragraph and Theorem 4.8, assuming that the Frobenius form $\varphi: \bigwedge^{2} E \rightarrow T_{O} / E$ is nondegenerate in the sense that for any $y \in O$ and for any nonzero vector $v \in E_{y}$, there exists $w \in E_{y}$ such that $\varphi(v \wedge w) \neq 0$. Then, in the concluding statement of Theorem 4.8, there exists some Euclidean neighborhood of ℓ in Y which is biholomorphic to a Euclidean neighborhood of a general minimal rational curve on X.

In what follows we consider holomorphic embeddings defined on some nonempty connected open subset $U \subset X$. Shrinking U if necessary, we may assume that $\Lambda \cap S$ is either empty or a nonempty connected open set for any minimal rational curve Λ on X. (For example, composing the minimal projective embedding of X with a local affine linear projection in inhomogeneous coordinates, we may choose an open subset $U \subset X$ which is identified by means of local holomorphic coordinates with a convex open subset $U^{\prime} \subset \mathbb{C}^{s}$, so that $\Lambda \cap U$ is an open subset of an affine line whenever $\Lambda \cap U \neq \emptyset$.)
Proposition 4.10. Write $X:=\operatorname{SGr}\left(q, \mathbb{C}^{2 n}\right)$ and $X^{\prime}:=\operatorname{Gr}\left(q, \mathbb{C}^{2 n}\right), 2 \leq q \leq n$. Suppose there exists a nonempty connected open subset $U \subset X$, and a holomorphic embedding $h: U \rightarrow X^{\prime}$ onto a locally closed complex submanifold $S \subset X^{\prime}$ such that for any $x \in U$, writing $\mathscr{C}_{h(x)}(S):=$ $\mathscr{C}_{h(x)}\left(X^{\prime}\right) \cap \mathbb{P} T_{h(x)}(S)$, the inclusion $\mathscr{C}_{y}(S) \subset \mathbb{P}_{y}(S)$, for any $y \in S$, is projectively equivalent to $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$ for a reference point $0 \in X$, and such that for any minimal rational curve Λ on X such that $\Lambda \cap U \neq \emptyset, h(\Lambda \cap U)$ is an open subset of some projective line on X^{\prime}. Assume that $h: U \xrightarrow{\cong} S$ extends to a meromorphic mapping $H: X \rightarrow X^{\prime}$. Then, $H: X \rightarrow Y$ is a holomorphic immersion onto a projective subvariety $Y \subset X^{\prime}$.

Proof. Since the case of $q=n$ has been established in [M19], in what follows we assume that $2 \leq q<n$ so that X is a symplectic Grassmannian other than a Lagrangian Grassmannian.

There is a subvariety $A \subsetneq X$ such that the meromorphic map $H: X \rightarrow X^{\prime}$ is holomorphic and of maximal rank on $X-A$. Write $Y \subset X^{\prime}$ for the Zariski closure of $H(X-A)$. We apply Theorem 4.7, the Thickening Lemma adapted to our situation, to the meromorphic map $H: X \rightarrow$ Y in order to find an open neighborhood of ℓ in Y which is an immersed complex submanifold where ℓ is a certain projective line lying on Y. By the hypothesis, for every point $s \in S$, and for $\mathscr{C}_{s}(S):=\mathscr{C}_{s}\left(X^{\prime}\right) \cap \mathbb{P} T_{s}(S)$, the inclusion $\mathscr{C}_{s}(S) \subset \mathbb{P} T_{s}(S)$ is projectively equivalent to the inclusion $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X), 0 \in X$. For $x \in X-A$, writing $z:=H(x), H$ maps some connected open neighborhood $U(x)$ of x on $X-A$ onto a locally closed complex submanifold $S(z) \subset X^{\prime}$. Define $\mathscr{C}_{z}(S(z)):=\mathscr{C}_{z}\left(X^{\prime}\right) \cap \mathbb{P} T_{z}(S(z))$.

Consider the subset $W \subset X-A$ such that the inclusion $\mathscr{C}_{z}(S) \subset \mathbb{P} T_{z}(S(z))$ is projectively equivalent to the inclusion $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$. Then, W contains the nonempty connected open subset $U \subset X-A$ (in the Euclidean topology). We claim that W contains a nonempty Zariski open subset $\mathcal{W} \subset X-A$. To see this let $\chi: \mathscr{P} \rightarrow X^{\prime}$ be the Grassmann bundle whose fiber over $w \in X^{\prime}$ consists of s-planes $\Pi \subset T_{w}\left(X^{\prime}\right)$. Denote by $\mathscr{S} \subset \mathscr{P}$ the fiber subbundle whose fiber over $w \in X^{\prime}$ consists of s-planes Π such that the inclusion $\mathbb{P} \Pi \cap \mathscr{C}_{w}\left(X^{\prime}\right) \subset \mathbb{P} \Pi$ is projectively equivalent to the inclusion $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X) . \mathscr{S} \subset \mathscr{P}$ is a constructible subset. Hence, at every point $w \in X^{\prime}$, the topological closure $\mathscr{Q}_{w}:=\mathscr{S}_{w} \subset \mathscr{P}_{w}$ is a Zariski closed subset of \mathscr{P}_{w}, and \mathscr{S}_{w} contains a
nonempty Zariski open subset. Since Zariski open subsets are closed under taking unions, there is a biggest (nonempty) Zariski open subset in \mathscr{S}_{w}, to be denoted by $\mathscr{S}_{w}^{0} \subset \mathscr{S}_{w}$. Let G^{\prime} be the identity component of the automorphism group of $X^{\prime} . G^{\prime} \cong \mathbb{P} G L(2 n, \mathbb{C})$ is a connected complex algebraic group. For $w \in X^{\prime}$ write $P_{w}^{\prime} \subset G^{\prime}$ for the parabolic subgroup which is the isotropic subgroup of G^{\prime} at w, so that $X \cong G^{\prime} / P_{w}^{\prime}$. By the maximality of $\mathscr{S}_{w}^{0} \subset \mathscr{S}_{w}$ it follows that \mathscr{S}_{w}^{0} is invariant under the isotropy action of P_{w}^{\prime}, and it follows that by varying w over X^{\prime} we have an algebraic fiber bundle \mathscr{S}^{0} over X^{\prime} whose fiber at $w \in X^{\prime}$ is given by \mathscr{S}_{w}^{0}.

By assumption, over the connected open subset $U \subset X$ the holomorphic map $h: U \xrightarrow{\cong} S \subset X^{\prime}$ induces a holomorphic map $\theta: U \rightarrow \mathscr{S}$, which is the composition $\zeta \circ h$, here ζ is a holomorphic section of \mathscr{S}^{0} over S. The meromorphic map $H: X \rightarrow Y$ induces a meromorphic map $\Theta: X \rightarrow$ $\left.\mathscr{Q}\right|_{Y}\left(=\left.\overline{\mathscr{S}}\right|_{Y}\right)$ such that Θ is holomorphic on U and $\left.\Theta\right|_{U} \equiv \theta$. Hence there exists some Zariski open subset $\mathcal{W} \subset X-A$ containing U such that h is holomorphic and of maximal rank on \mathcal{W} and such that the induced holomorphic map Θ takes values in the Zariski open subset $\left.\mathscr{S}^{0}\right|_{Y}$ of $\left.\mathscr{S}\right|_{Y}$, as claimed.

Write $\mathcal{W}=X-\mathcal{A}, \mathcal{W} \subset W, \mathcal{A} \supset A$. Let now $x \in \operatorname{Reg}(\mathcal{A})$. Since the $\operatorname{VMRT} \mathscr{C}_{x}(X) \subset \mathbb{P} T_{x}(X)$ is projectively nondegenerate (cf. [HwM05]), there exists some $[\alpha] \in \mathscr{C}_{x}(X)$ such that $\alpha \notin T_{x}(\mathcal{A})$. Since the condition imposed on $[\alpha]$ is an open condition on $\mathscr{C}_{x}(X)$ without loss of generality we may assume that $[\alpha]$ is tangent to a general minimal rational curve (in the sense of the paragraph immediately following Theorem 4.8). Let now Λ be the (unique) minimal rational curve on X passing through x such that $T_{x}(\Lambda)=\mathbb{C} \alpha$. For any point $y \in \Lambda \cap \mathcal{W}, H$ is a holomorphic immersion at y and $\mathscr{C}_{w}\left(X^{\prime}\right) \cap \mathbb{P} T_{w}\left(Y^{\prime}\right), w:=H(y)$, is projectively equivalent to $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$, where we may take $Y^{\prime}=Y$ if Y is smooth at $H(y)$, and in general we take Y^{\prime} to be a nonsingular irreducible branch of $Y \cap V$ for some neighborhood V of $H(y)$ on X^{\prime} such that h (being a holomorphic immersion at y) is a biholomorphism of some neighborhood $U(y)$ of y onto Y^{\prime}. From the hypothesis that $h: U \xrightarrow{\cong} S$ maps open subsets of minimal rational curves onto open subsets of minimal rational curves of X^{\prime} lying on $S \subset X^{\prime}$, by analytic continuation it follows that over $\mathcal{W} \subset X-A$, the map H is a holomorphic immersion and it maps any germ of minimal rational curve onto a germ of minimal rational curve. Thus H maps the germ of Λ at y to the germ of a (unique) minimal rational curve ℓ of X^{\prime} at w.

By the choice of $\Lambda, \Lambda \cap \mathcal{W}$ is the complement in Λ of a finite number of points. Let now $y \in \Lambda \cap \mathcal{W}$ (so that in particular H is an immersion at y) and such that $H(y) \in \operatorname{Reg}(Y)$. We will apply Theorem 4.7 (the Thickening Lemma) to the minimal rational curve $\ell \subset X^{\prime}$ which lies on Y. For this purpose we have to check the validity of Condition (T) on the pair $\left(\mathscr{C}_{w}\left(Y^{\prime}\right),\left[T_{w}(\ell)\right]\right)$ for the germ of sub-VMRT structure $\varpi: \mathscr{C}\left(Y^{\prime}\right) \rightarrow Y^{\prime}$ for a smooth neighborhood Y^{\prime} of $H(y)$ on $Y, \mathscr{C}\left(Y^{\prime}\right):=\mathscr{C}\left(X^{\prime}\right) \cap \mathbb{P} T\left(Y^{\prime}\right)$. Recall that, writing $T_{w}(\ell)=\mathbb{C} \beta$, by Definition 4.6, $\left(\mathscr{C}_{w}\left(Y^{\prime}\right),[\beta]\right)$ satisfies Condition (T) for the sub-VMRT structure $\varpi: \mathscr{C}\left(Y^{\prime}\right) \rightarrow Y^{\prime}$ on Y^{\prime} if and only if

$$
(\dagger) \quad T_{\beta}\left(\widetilde{\mathscr{C}_{w}}\left(Y^{\prime}\right)\right)=T_{\beta}\left(\widetilde{\mathscr{C}_{w}}\left(X^{\prime}\right)\right) \cap T_{w}\left(Y^{\prime}\right)
$$

By hypothesis the inclusion $\mathscr{C}_{w}\left(Y^{\prime}\right) \subset \mathbb{P} T_{w}\left(Y^{\prime}\right)$ is projectively equivalent to the inclusion $\mathscr{C}_{0}(X) \subset \mathbb{P} T_{0}(X)$, hence the statement (\dagger) is equivalent to the statement

$$
(\dagger \dagger) \quad T_{\gamma}\left(\widetilde{C}_{0}(X)\right)=T_{\gamma}\left(\widetilde{C}_{0}\left(X^{\prime}\right)\right) \cap T_{0}(X)
$$

for $\gamma \in \widetilde{\mathscr{C}}_{0}(X)$ being a vector tangent to a general minimal rational curve on X^{\prime} passing through 0 . Writing G resp. G^{\prime} for the identity component of $\operatorname{Aut}(X)$ resp. Aut($\left.X^{\prime}\right)$, and $P \subset G$ resp.
$P^{\prime} \subset G^{\prime}$ for the isotropy (parabolic) subgroups at $0 \in X$ resp. $0 \in X^{\prime}$, we have the standard inclusions $G \subset G^{\prime}$ and $P=P^{\prime} \cap G \subset P^{\prime}, X=G / P \subset G^{\prime} / P^{\prime}=X^{\prime}$, which defines the standard embedding $\imath: X \hookrightarrow X^{\prime}$. Now P^{\prime} acts transitively on the VMRT $\mathscr{C}_{0}\left(X^{\prime}\right)$ for the Grassmannian $X=\operatorname{Gr}\left(q, \mathbb{C}^{2 n}\right)$ (which is an irreducible Hermitian symmetric space of the compact type), while by Lemma 4.3 the VMRT $\mathscr{C}_{0}(X)$ of the symplectic Grassmannian $X=S G r\left(q, \mathbb{C}^{2 n}\right)$ is almost homogeneous under the action of P, with a unique open P-orbit \mathcal{O} consisting of projectivizations of non-zero vectors γ tangent to general minimal rational curves passing through 0 , and a unique closed P-orbit $\mathcal{F}=\mathscr{C}_{0}(X)-\mathcal{O}$ consisting of projectivizations of those γ tangent to special minimal rational curves passing through 0 .

By Proposition 4.1 $X \subset, X^{\prime} \subset \mathbb{P}^{N}$ is a linear section when the Grassmannian X^{\prime} is identified as a projective submanifold by the Plücker embedding. By Proposition 4.6, at a general point $x \in X$ and a general point $[\xi] \in \mathscr{C}_{x}(X),\left(\mathscr{C}_{x}(X),[\xi]\right)$ satisfies Condition (T) (with respect to the subVMRT structure $\varpi: \mathscr{C}(X) \rightarrow X$ on $\left.X^{\prime}\right)$. In our case by homogeneity the conclusion holds actually at any point $x \in X$ (in place of requiring x to be a general point). Thus, we may take $x=0$, and conclude that $\left(\mathscr{C}_{0}(X),[\xi]\right)$ satisfies Condition (T) for a general point $[\xi] \in \mathscr{C}_{0}(X)$. Since the statement that Condition (T) holds for $\left(\mathscr{C}_{0}(X),[\xi]\right)$ is invariant under the action of P it follows that ($\dagger \dagger$) must hold everywhere on the unique open P-orbit $\mathcal{O} \subset \mathscr{C}_{0}(X)$, hence Condition (T) holds for $\left(\mathscr{C}_{0}(X),[\xi]\right)$ whenever $[\xi] \in \mathcal{O}$. As a consequence Condition (T) holds for $\left(\mathscr{C}_{w}\left(Y^{\prime}\right),[\beta]\right)$, $T_{w}(\ell)=\mathbb{C} \beta$ for the sub-VMRT structure $\varpi: \mathscr{C}\left(Y^{\prime}\right) \rightarrow Y^{\prime}$ on Y^{\prime}.

On the Grassmannian X^{\prime} the minimal rational curve $\ell \subset X^{\prime}$ is smooth, and the normalization $\varphi: \mathbf{P}_{\ell} \rightarrow \ell$ is just a biholomorphism. It follows by Theorem 4.7 that there exists some complex manifold $\mathbf{E}(\ell)$ containing \mathbf{P}_{ℓ} and a biholomorphism $\Phi: \mathbf{E}_{\ell} \rightarrow \Phi\left(\mathbf{E}_{\ell}\right) \subset X^{\prime}$ such that $\Phi\left(\mathbf{E}_{\ell}\right)=$: $Y_{\ell} \subset Y$. We compare now the two germs of complex manifolds along rational curves given by $(X ; \Lambda)$ on X and $\left(Y_{\ell} ; \ell\right)$ on Y. From our choices there is a point $y \in \Lambda$ and an open neighborhood $U(y)$ of y on X, such that H is holomorphic on $U(y), H$ maps $U(y)$ onto a neighborhood Y^{\prime} of $w=H(y)$ on Y_{ℓ} and $\Lambda \cap U(y)$ onto $\ell \cap Y^{\prime}$, and H is VMRT-respecting on $U(y)$ in the sense that for any $u \in U(y)$, writing $v=H(u)$ and $\mathscr{C}_{v}\left(Y_{\ell}\right):=\mathscr{C}_{v}\left(X^{\prime}\right) \cap \mathbb{P} T_{v}\left(Y_{\ell}\right), \mathscr{C}_{v}\left(Y^{\prime}\right)=[d H]\left(\mathscr{C}_{u}(X)\right)$ holds true while $\mathscr{C}_{u}(X) \subset \mathbb{P} T_{u}(X)$ is projectively equivalent to $\mathscr{C}_{v}\left(Y_{\ell}\right) \subset \mathbb{P} T_{v}\left(X^{\prime}\right)$. On Y^{\prime} we have by Lemma 4.2 a holomorphic distribution E which is spanned at every point $v=H(u)$ by the affinization of the subset $\mathcal{F}_{u} \subset \mathscr{C}_{u}\left(Y^{\prime}\right)$ consisting of points where the projective second fundamental form of $\mathscr{C}_{u}\left(Y^{\prime}\right) \subset \mathbb{P} T_{u}\left(Y^{\prime}\right)$ fails to be surjective. Since the latter property in projective geometry is obviously preserved by $[d H]$, it follows that $\mathcal{F}_{v}=[d H]\left(\mathbb{P} D_{u} \cap \mathscr{C}_{u}(U(y))\right)$ for every point $u \in U(y)$ where $D \subset T_{X}$ is the minimal holomorphic distribution spanned by special rational tangents. Since the Frobenius form $\varphi_{D}: \bigwedge^{2} D \rightarrow T_{X} / D$ associated to $D \subsetneq T(X)$ is nondegenerate (in the sense as described in Corollary 4.9) everywhere on X, and we have $[d H(\xi), d H(\eta)]=d H([\xi, \eta])$ for holomorphic D-valued vector fields on $U(y)$, it follows that the Frobenius form $\varphi_{E}: \bigwedge^{2} E \rightarrow T_{Y^{\prime}} / E$ associated to the holomorphic distribution $E \subsetneq T\left(Y^{\prime}\right)$ is also everywhere nondegenerate on $Y^{\prime} \subset$ $Y(\ell)$. It follows by Theorem 4.8 that, shrinking Y_{ℓ} if necessary, there exists some neighborhood \mathcal{U}_{0} of $\Lambda \subset X$ and a biholomorphism $\Theta_{0}: Y_{\ell} \xrightarrow{\cong} \mathcal{U}_{0}$ such that $\left.\Theta_{0}\right|_{\ell}: \ell \xrightarrow{\cong} \Lambda$, and moreover by the statement of Theorem 7.12 in HwL21] Θ_{0} preserves VMRTs.

A priori Θ_{0} is unrelated to H. However, using Θ_{0} we may now identify $Y(\ell)$ as an open subset of a copy X_{1} of X, and consider $\left.H\right|_{U(y)}: U(y) \xrightarrow{\cong} Y^{\prime}$ as a VMRT-preserving biholomorphism between the connected open subset $U(y) \subset X$ and $Y^{\prime} \subset Y(\ell) \subset X_{1}$. It follows by the Cartan-Fubini extension theorem of [HwM01] that $\left.H\right|_{U(y)}$ extends to a biholomorphism $\Psi: X \xrightarrow{\cong} X_{1}$. Thus,
shrinking $Y(\ell)$ (as a complex manifold containing ℓ) if necessary, there exists a neighborhood \mathcal{U} of Λ on X and a biholomorphism $\Theta: \mathcal{U} \xrightarrow{\cong} Y(\ell)$ such that $\left.\left.\Theta\right|_{U(y)} \cong H\right|_{U(y)}: U(y) \xrightarrow{\cong} Y^{\prime}$, $\left.\Theta\right|_{\Lambda}: \Lambda \xrightarrow{\cong} \ell$. In particular, we have proven that $H: X \rightarrow Y \subset X^{\prime}$ is holomorphic and in fact a local biholomorphism at $x \in \operatorname{Reg}(\mathcal{A})$. Since $x \in \mathcal{A}$ is arbitrary, we conclude that H is a local biholomorphism at every point $x \in X-\operatorname{Sing}(\mathcal{A})$. Replacing now \mathcal{A} by $\operatorname{Sing}(\mathcal{A})$ and repeating the argument a finite number of times we conclude that actually H is everywhere holomorphic and of maximal rank on X, and hence $H: X \rightarrow Y \subset X^{\prime}$ is a holomorphic immersion onto the projective subvariety $Y \subset X^{\prime}$. Since the only possible singularities of Y arise from intersection of locally closed complex submanifolds, denoting by $\nu: \widetilde{Y} \rightarrow Y$ the normalization of Y, \widetilde{Y} is a projective manifold, and $H: X \rightarrow Y \subset X^{\prime}$ lifts to a holomorphic covering map $H^{\sharp}: X \rightarrow \widetilde{Y}$ such that $H=\nu \circ H^{\sharp}$. As X is simply connected, we conclude that $H^{\sharp}: X \rightarrow \widetilde{Y}$ is a biholomorphism, hence $H: X \rightarrow Y \subset X^{\prime}$ is a birational holomorphic immersion onto Y, as asserted. The proof of Proposition 4.10 is complete.

Remark 4.11. Note that we have not proven that H is everywhere VMRT-respecting in the sense explained in the proof of the proposition. The latter is not clear since the VMRT-preserving property is not a priori a closed property as we vary on X. Nonetheless, the stronger statement that $H: X \rightarrow Y^{\prime}$ is everywhere VMRT-respecting will not be needed in the final proof of the rigidity phenomenon for germs of holomorphic VMRT-respecting maps from X to X^{\prime}.

As will be proven in Lemma 5.7, from the VMRT-respecting mapping $h: U \xrightarrow{\cong} S \subset X^{\prime}$, by using \mathbb{C}^{*}-action on X^{\prime} which preserves X, one can obtain a holomorphic one-parameter family of VMRT-respecting holomorphic embeddings $h_{s}: U \xrightarrow{\cong} S_{s} \subset X^{\prime}, s \in \mathbb{C}^{*}$. Moreover, if $h: U \rightarrow S$ extends to a holomorphic immersion $H: X \rightarrow X^{\prime}$, then h_{s} extends to a holomorphic immersion $H_{s}: X \rightarrow X^{\prime}$ such that H_{s} restricted to a big Schubert cell converges to the standard embedding uniformly on compact subsets as s tends to 0 (cf. Lemma 5.7 for details).

Recall that the holomorphic immersion $H: X \rightarrow X^{\prime}$ in Proposition 4.10 restricted to a general minimal rational curve in X is a biholomorphism onto a projective line in X^{\prime} and therefore preserves the volume of projective lines with respect to the standard metric. Due to the construction, the same is true for $H_{s}, s \in \mathbb{C}^{*}$.
Proposition 4.12. Let $H: X \rightarrow Y$ be a birational holomorphic immersion onto $Y \subset X^{\prime}$ such that $H_{*}: H_{2}(X, \mathbb{Z}) \xrightarrow{\cong} H_{2}\left(X^{\prime}, \mathbb{Z}\right) \cong \mathbb{Z}$. Then, there exists a one-parameter family of birational holomorphic immersions $H_{s}: X \rightarrow Y_{s}$ onto $Y_{s} \subset X^{\prime}, s \in \mathbb{C}^{*}$ such that $H_{1}=H$, and such that the reduced irreducible cycles $\left[Y_{s}\right] \in \operatorname{Chow}\left(X^{\prime}\right)$ converge as cycles to $\left[Y_{0}\right] \in \operatorname{Chow}\left(X^{\prime}\right), Y_{0} \subset X^{\prime}$ is the image of a standard embedding $H_{0}: X \xrightarrow{\cong} Y_{0} \subset X^{\prime}$.
Proof. Let ω resp. ω^{\prime} be a Kähler form on X resp. X^{\prime} such that minimal rational curves on X resp. X^{\prime} are of area equal to 1 . For $s \in \mathbb{C}^{*}$, since $H_{s *}: H_{2}(X, \mathbb{Z}) \xrightarrow{\cong} H_{2}\left(X^{\prime}, \mathbb{Z}\right) \cong \mathbb{Z}$, hence $H_{s}^{*}: H^{2}\left(X^{\prime}, \mathbb{Z}\right) \xrightarrow{\cong} H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}$, the Kähler forms ω and $H_{s}^{*} \omega^{\prime}$ must be cohomologous, and we have

$$
\operatorname{Volume}\left(Y_{s}, \omega^{\prime}\right)=\operatorname{Volume}(X, \omega)
$$

On the other hand, for the standard embedding $\imath: X \hookrightarrow X^{\prime}$ we also have $\imath^{*}: H^{2}\left(X^{\prime}, \mathbb{Z}\right) \xrightarrow{\cong}$ $H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}$, so that we also have $\operatorname{Volume}\left(Y_{0}, \omega^{\prime}\right)=\operatorname{Volume}(X, \omega)$. Now H_{s} converges uniformly on compact subsets of a big Schubert cell $\mathscr{S} \subset X$ to the standard embedding $H_{0}: \mathscr{S} \rightarrow \mathscr{S}^{\prime} \subset$
$X^{\prime}, \mathscr{S}^{\prime} \subset X^{\prime}$ being a big Schubert cell. Write $m:=\operatorname{dim}_{\mathbb{C}} X$. It follows that as m-cycles, the reduced m-cycles $\left[Y_{s}\right]$ must subconverge to the sum of the reduced m-cycle $\left[Y_{0}\right]$ and some cycle R with $\operatorname{Supp}(R) \subset X^{\prime}-\mathscr{S}^{\prime}$. Finally, knowing that for $s \in \mathbb{C}^{*}$, Volume $\left(Y_{s}, \omega^{\prime}\right)=\operatorname{Volume}\left(Y_{0}, \omega^{\prime}\right)=$ $\operatorname{Volume}(X, \omega)$ it follows that $\operatorname{Volume}\left(R, \omega^{\prime}\right)=0$ implying that $R=\emptyset$, and hence $\left[Y_{s}\right]$ converges to $\left[Y_{0}\right]$ as reduced cycles, as asserted.

We remark that since Y_{0} in Proposition 4.12 is a smooth variety, by the same argument in M19 $H: X \rightarrow X^{\prime}$ is a holomorphic embedding. Define a family $\mathcal{Y}:=\left\{(s, y): s \in \mathbb{C}, y \in Y_{s}\right\}$ which is a complex analytic subvariety $\mathcal{Y} \subset \mathbb{C} \times X^{\prime}$. Since all fibers of $\mathcal{Y} \rightarrow \mathbb{C}$ are equidimensional smooth and reduced subvarieties of $\mathbb{C} \times X^{\prime}, \mathcal{Y} \rightarrow \mathbb{C}$ is a regular family of projective submanifolds.
Proposition 4.13. The birational holomorphic immersion $H: X \rightarrow Y \subset X^{\prime}$ in Proposition 4.12 is actually a standard embedding $H: X \xrightarrow{\cong} Y \subset X^{\prime}$ onto a complex submanifold $Y \subset X^{\prime}$. In other words, regarding $X \subset X^{\prime}$ by means of the standard inclusion $\imath: X \hookrightarrow X^{\prime}$ of the symplectic Grassmannian $X=S G r\left(n-r, \mathbb{C}^{2 n}\right)$ as a subset of the Grassmannian $X^{\prime}=G r\left(n-r, \mathbb{C}^{2 n}\right)$, there exists some $\Xi \in G^{\prime}=\operatorname{Aut}_{0}\left(X^{\prime}\right)$ such that $\left.\Xi\right|_{X}=H, Y=\Xi(X)$.
Proof. By Proposition 4.12 and the remark above, there exists a one-parameter family of biholomorphism $H_{s}: X \rightarrow Y_{s}$ onto $Y_{s} \subset X^{\prime}, s \in \mathbb{C}$ such that $H_{1}=H$ and $\left[Y_{s}\right]$ converges to the reduced cycle $\left[Y_{0}\right]$ of the image of a standard embedding H_{0} of X into X^{\prime}. We may take H_{0} to be $\imath: X \hookrightarrow X^{\prime}$ so that $Y_{0}=X$. We assert that $X \subset X^{\prime}$ is infinitesimally rigid as a complex submanifold.

By Lemma 5.1 in [M19], it suffices to check that the restriction map $r: \Gamma\left(X^{\prime}, T_{X^{\prime}}\right) \rightarrow \Gamma\left(X,\left.T_{X^{\prime}}\right|_{X}\right)$ is surjective. Moreover by the scheme of Section 6 of [M19], it is enough to show that $\Gamma\left(X, N_{X \mid X^{\prime}}\right)$ is an irreducible representation of $\operatorname{Aut}(X)$. Since $N_{X \mid X^{\prime}}$ is a homogeneous vector bundle with the fiber $\Lambda^{2} U^{*}$ which is an irreducible homogeneous vector over $\operatorname{SGr}\left(n-r, \mathbb{C}^{2 n}\right)$, by the Bott-BorelWeil Theorem, $X \subset X^{\prime}$ is infinitesimally rigid.

Since X is infinitesimally rigid, there exists $\epsilon>0$ such that for any $s \in \mathbb{C}$ satisfying $|s|<\epsilon, Y_{s}$ must be the image $\Xi_{s}(X)$ for some automorphism $\Xi_{s} \in G^{\prime}$. Fix a complex number s_{0} such that $\left|s_{0}\right|<\epsilon$. Since $Y_{s_{0}}=\Phi_{s_{0}}(Y)$ for some $\Phi_{s_{0}} \in G^{\prime}$, we conclude that $Y=\Phi_{s_{0}}^{-1}\left(Y_{s_{0}}\right)=\Phi_{s_{0}}^{-1}\left(\Xi_{s_{0}}(X)\right)=$ $\Theta(X)$ for $\Theta:=\Phi_{s_{0}}^{-1} \circ \Xi_{s_{0}} \in G^{\prime}$, as desired.

5. RIGIDITY OF SUBGRASSMANNIAN RESPECTING HOLOMORPHIC MAPS

This section is devoted to prove the main technical result (Proposition 5.3) that will be used to show the rigidity of induced moduli maps. From now on, we denote by G and G^{\prime} the groups of automorphisms of $D_{r}(X)$ and $D_{r^{\prime}}\left(X^{\prime}\right)$, respectively for $r, r^{\prime}>0$.

We restate the definition of subgrassmannian respecting holomorphic maps as given in Definition 1.4 in a local form.

Definition 5.1. Let $U \subset D_{r}(X)$ be non-empty connected open subset. A holomorphic map $H: U \rightarrow D_{r^{\prime}}\left(X^{\prime}\right)$ is said to respect subgrassmannians if and only if for any $Z_{\tau} \subset D_{r}(X)$ such that $U \cap Z_{\tau} \neq \emptyset$ and for each irreducible component W_{τ}^{α} of $U \cap Z_{\tau}, \alpha \in A$, there exists $Z_{\tau^{\prime}(\alpha)} \subset D_{r^{\prime}}\left(X^{\prime}\right)$ such that
(1) $H\left(W_{\tau}^{\alpha}\right) \subset Z_{\tau^{\prime}(\alpha)}$ and
(2) $\left.H\right|_{W_{\tau}^{\alpha}}$ extends to a standard embedding from Z_{τ} to $Z_{\tau^{\prime}(\alpha)}$.

Definition 5.2. A holomorphic map $H: \operatorname{Gr}\left(a, W_{1}\right) \rightarrow G r\left(b, W_{2}\right)$ is called a trivial embedding if there exist a subspace $W_{0} \subset W_{2}$ of dimension $b-a$ and a linear embedding $\imath: W_{1} \rightarrow W_{2}$ such
that $H(V)=W_{0} \oplus \imath(V)$. Let $N \subset G r\left(a, W_{1}\right)$ be a complex submanifold of some connected open subset $U \subset G r\left(a, W_{1}\right)$. A holomorphic map $H: N \rightarrow G r\left(b, W_{2}\right)$ is called a trivial embedding if H extends to $\operatorname{Gr}\left(a, W_{1}\right)$ as a trivial embedding.

Proposition 5.3. Let $P \in \Sigma_{r}(X), P^{\prime} \in \Sigma_{r^{\prime}}\left(X^{\prime}\right)$ and let $H:\left(D_{r}(X), P\right) \rightarrow\left(D_{r^{\prime}}\left(X^{\prime}\right), P^{\prime}\right)$ be a germ of a subgrassmannian respecting holomorphic map such that

$$
H\left(\Sigma_{r}(X)\right) \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

and

$$
H_{*}\left(T_{P} D_{r}(X)\right) \not \subset T_{P^{\prime}} \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

Suppose that the rank of $Z_{\tau}, \tau \in \mathcal{D}_{0}(X)$, is greater than or equal to 2 , then H is a trivial embedding.
The proof will be given in several steps. First, we will show that the 1-jet of H coincides with a trivial embedding and H maps projective lines to projective lines. To be precise, we will prove Lemma 5.5. Note that if X is of type I or type II, then for any projective line $L \subset D_{r}(X)$, there exists a subgrassmannian Z_{τ} such that $L \subset Z_{\tau}$. Since H respects subgrassmannians, H sends projective lines to projective lines. For the type III case, we need the following lemma which concerns real hyperquadrics with mixed Levi signature in Euclidean spaces and holomorphic maps which transform germs of complex lines on such real hyperquadrics to one another. The lemma will lead to line-preserving rational maps between projective spaces. For a rational map $F: V \rightarrow W$ between two projective manifolds, writing $A \subset V$ for the set of indeterminacies (which is of codimension ≥ 2), we will write $\mathbf{F}(V):=\overline{F(V-A)}$ for the strict transform of V under F. We have

Lemma 5.4. Let $\Sigma \subset \mathbb{C}^{n}$, $n \geq 3$, be a Levi nondegenerate real hyperquadric with mixed Levi signature passing through 0 and let $H:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{N}, 0\right)$ be a germ of immersive holomorphic map which maps open pieces of complex lines in Σ into complex lines. Then, H extends to a projective linear embedding $\widetilde{H}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$.

Proof. For a point $P \in \Sigma$, let $\mathscr{C}_{P}(\Sigma)$ be the set of all complex lines in Σ passing through P. We regard $\mathscr{C}_{P}(\Sigma)$ as a subset of the projectivised complex tangent space $\mathbb{P} T_{P}^{1,0} \Sigma$, of complex dimension $=n-2 \geq 1$ since $n \geq 3$ by hypothesis, by identifying a complex line $L \in \mathscr{C}_{P}(\Sigma)$ with $\left[T_{P} L\right]$. Since Σ has mixed Levi signature, $\mathscr{C}_{P}(\Sigma)$ is a nondegenerate real hyperquadric in $\mathbb{P} T_{P}^{1,0} \Sigma$. Choose a representative of H denoted again by H and let $\operatorname{Dom}(H)$ be its domain of definition. Let $P \in \Sigma \cap \operatorname{Dom}(H)$. By the assumption on H, for any $L \in \mathscr{C}_{P}(\Sigma), H(L \cap \operatorname{Dom}(H))$ is contained in a complex line. Hence for any $k \geq 1$,

$$
\operatorname{Span}_{\mathbb{C}}\left\{j_{P}^{k}\left(H_{L}\right)\right\}:=\operatorname{Span}_{\mathbb{C}}\left\{\left(\frac{d^{j} H_{L}^{1}}{d \zeta^{j}}(0), \cdots, \frac{d^{j} H_{L}^{N}}{d \zeta^{j}}(0)\right), 1 \leq j \leq k\right\}
$$

is of dimension ≤ 1, where $H_{L}(\zeta):=H(P+\zeta v)$ for $0 \neq v \in T_{P} L$ and $\zeta \in \mathbb{C}$. Since the space $\operatorname{Span}_{\mathbb{C}}\left\{j_{P}^{k}\left(H_{L}\right)\right\}$ depends meromorphically on $L \in \mathbb{P} T_{P}^{1,0} \Sigma$ and $\mathscr{C}_{P}(\Sigma)$ is a nondegenerate real hypersurface in $\mathbb{P} T_{P}^{1,0} \Sigma$, for each integer $k \geq 1$ the dimension of $\operatorname{Span}_{\mathbb{C}}\left\{j_{P}^{k}\left(H_{L}\right)\right\}$ is less than or equal to 1 for all $L \in \mathbb{P} T_{P}^{1,0} \Sigma$. Hence for all $P \in \Sigma \cap \operatorname{Dom}(H)$ and for all $L \in \mathbb{P} T_{P}^{1,0} \Sigma, H$ maps L into a complex line.

Now let T be a germ of a nonvanishing holomorphic vector field at $0 \in \mathbb{C}^{n}$ such that $\operatorname{Re}(T)$ generates a one parameter family of CR translations on Σ and let $\left\{\xi_{\varepsilon}, \varepsilon \in \mathbb{C}\right\}$ be its flow for
a sufficiently small complex number ε. Let $P \in \Sigma$. Since ξ_{t} for sufficiently small $t \in \mathbb{R}$ is a CR automorphism of Σ, for all $L \in \mathbb{P} T_{P}^{1,0} \Sigma, H$ maps $\xi_{t}(L)$ into a complex line. Since the map

$$
t \in \mathbb{C} \rightarrow \operatorname{Span}_{\mathbb{C}}\left\{j_{\xi_{t}(P)}^{k}\left(H_{\xi_{t}(L)}\right)\right\}
$$

is meromorphic and $\mathbb{R} \subset \mathbb{C}$ is a maximal totally real submanifold, we obtain

$$
\operatorname{dim} \operatorname{Span}_{\mathbb{C}}\left\{j_{\xi_{t}(P)}^{k}\left(H_{\xi_{t}(L)}\right)\right\} \leq 1, \quad \forall k \geq 1
$$

Therefore for sufficiently small $t \in \mathbb{C}, H$ maps $\xi_{t}(L)$ into a complex line.
Let $\mathcal{M}\left(\mathbb{P}^{n}\right)$ be the set of all projective lines in \mathbb{P}^{n}. Then $\mathcal{M}\left(\mathbb{P}^{n}\right)$ is a finite dimensional complex manifold. Since Σ is Levi nondegenerate, $\left\{\xi_{\varepsilon}(L): P \in \Sigma, L \in \mathbb{P} T_{P}^{1,0} \Sigma, \varepsilon \in \mathbb{C}\right\}$ is an open set in $\mathcal{M}\left(\mathbb{P}^{n}\right)$ and H maps any (open piece of) complex line in $\left\{\xi_{\varepsilon}(L): P \in \Sigma, L \in \mathbb{P} T_{P}^{1,0} \Sigma, \varepsilon \in \mathbb{C}\right\}$ into a projective line. Then as in [MT92 or in [M99, (2.3)], we can extend H rationally to \mathbb{P}^{n}, and the extended rational map will still be denoted by $H: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$. Denote by $E \subset \mathbb{P}^{n}$ the set of indeterminacies of H, and by $R^{0} \subset \mathbb{P}^{n}-E$ the subvariety consisting of all points $y \in \mathbb{P}^{n}-E$ such that $\operatorname{dim}(d H(y))<n$. Then, $R:=\overline{R^{0}} \subset \mathbb{P}^{n}$ is a subvariety. Write $B:=R \cup E \subset \mathbb{P}^{n}$ and pick $x_{0} \in$ $\mathbb{P}^{n}-B$. Let $Q \subset \mathbb{P}^{N}$ be the projective linear subspace such that $T_{H(x)}(Q)=d H\left(T_{x_{0}}\left(\mathbb{P}^{n}\right)\right) \cong \mathbb{C}^{m}$. Since H maps the germ $\left(\ell ; x_{0}\right)$ of a projective line ℓ at x to the germ $\left(\Lambda ; H\left(x_{0}\right)\right)$ of a projective line $\Lambda \subset \mathbb{P}^{N}$ at $H\left(x_{0}\right), H\left(\mathbb{P}^{n}-B\right)$ is an open subset of Q containing $H\left(x_{0}\right), Q=\mathbf{H}\left(\mathbb{P}^{n}\right)$. For the proof of Lemma 5.4, we may take $Q=\mathbb{P}^{n} \subset \mathbb{P}^{N}, n=N \geq 3$. (We note that the rest of the arguments work also for $n=N=2$.)

For a line-preserving surjective rational map $H: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}, R^{0} \subset \mathbb{P}^{n}-E$ is the ramification divisor of $\left.H\right|_{\mathbb{P}^{n}-E}$. We call $R=\overline{R^{0}} \subset \mathbb{P}^{n}$ the ramification divisor of H. The rational map H being the meromorphic extension of a line-preserving biholomorphism $h: U \xrightarrow{\cong} V$ between certain connected open subsets $U, V \subset \mathbb{P}^{n}$, we can apply the same argument to $h^{-1}: U \xrightarrow{\cong} V$ and conclude that $H: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ is birational. Hence, for any rational curve ℓ such that $\ell \cap(X-B) \neq \emptyset$, the holomorphic map $\left.H\right|_{\ell-B}$ extends to a biholomorphism from ℓ onto a projective line $\Lambda \subset \mathbb{P}^{n}$. Hence, by [M99, Proposition 2.4.1] and its proof, $R=\emptyset$ and $H: \mathbb{P}^{n} \xrightarrow{\cong} \mathbb{P}^{n}$ is a biholomorphism. This completes the proof of Lemma 5.4 .

Lemma 5.5. For $r>1$, let $H: U \subset D_{r}(X) \rightarrow D_{r^{\prime}}\left(X^{\prime}\right)$ be a subgrassmannian respecting holomorphic map defined on a connected open set U such that $U \cap \Sigma_{r}(X) \neq \emptyset$. If

$$
H\left(U \cap \Sigma_{r}(X)\right) \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

and

$$
\begin{equation*}
H(U) \not \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right) \tag{5.1}
\end{equation*}
$$

then for each $P \in U$, there exists a trivial embedding $\widetilde{H}=\widetilde{H}_{P}: D_{r}(X) \rightarrow D_{r^{\prime}}\left(X^{\prime}\right)$ such that

$$
H_{*}\left(T_{P} D_{r}(X)\right)=\widetilde{H}_{*}\left(T_{P} D_{r}(X)\right)
$$

Moreover, H maps complex lines to complex lines.
Proof. In the proof, we only consider the case when $X=L G r_{n}$ and $X^{\prime}=G r\left(q^{\prime}, p^{\prime}\right)$ so that $D_{r}(X)=S G r\left(n-r, \mathbb{C}^{2 n}\right)$ and $D_{r^{\prime}}\left(X^{\prime}\right)=G r\left(q^{\prime}-r^{\prime}, \mathbb{C}^{p^{\prime}+q^{\prime}}\right)$. The same argument can be applied to other cases.

For a Lagrangian subspace V_{0} in $\left(\mathbb{C}^{2 n}, J_{n}\right)$, choose a basis $\left\{e_{1}, \ldots, e_{2 n}\right\}$ of $\mathbb{C}^{2 n}$ such that $\left\{e_{1}+e_{n+1}, \ldots, e_{n}+e_{2 n}\right\}$ is a basis of V_{0} and $\tau \in \mathcal{D}_{0}(X)$ such that

$$
Z_{\tau}=G r\left(n-r, V_{0}\right) \subset D_{r}(X)
$$

At a point $\operatorname{Span}_{\mathbb{C}}\left\{e_{1}+e_{n+1}, \cdots, e_{n-r}+e_{2 n-r}\right\} \in Z_{\tau}$, we may take a local coordinate system of Z_{τ} such that Z_{τ} is locally given by $\left\{(x): x \in M^{\mathbb{C}}(r, n-r)\right\}$. Since H respects subgrassmannians, H restricted to Z_{τ} is a standard embedding. Hence we may assume that

$$
\begin{equation*}
\left.H\right|_{Z_{\tau}}(x)=W_{0} \oplus(x) \subset W_{0} \oplus G r\left(n-r, W_{1}\right) \tag{5.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.H\right|_{Z_{\tau}}(x)=W_{0} \oplus\left(x^{t}\right) \subset W_{0} \oplus G r\left(r, W_{1}\right) \tag{5.3}
\end{equation*}
$$

for some subspaces W_{0} and W_{1}.
Suppose (5.2) holds. Choose $V \in X$ such that $\operatorname{dim} V_{0} \cap V=n-1>n-r$. Let

$$
Z_{\rho}=G r(n-r, V)
$$

Without loss of generality, we may assume

$$
V_{0} \cap V=\operatorname{Span}_{\mathbb{C}}\left\{e_{1}+e_{n+1}, \ldots, e_{n-1}+e_{2 n-1}\right\}
$$

Since $Z_{\tau} \cap Z_{\rho}=G r\left(n-r, V_{0} \cap V\right)$ and H restricted to Z_{ρ} is also a standard embedding, by (5.2) with $x=\binom{x^{\prime}}{0}, x^{\prime} \in M^{\mathbb{C}}(r-1, n-r)$, we obtain

$$
H\left(Z_{\rho}\right) \subset W_{0} \oplus G r(n-r, W)
$$

for some W such that $W_{1} \cap W$ is of codimension one in W_{1} and W. Since $D_{r}(X)$ is connected by chain of Z_{ρ} 's with rank $Z_{\rho} \geq 2$, we obtain

$$
H\left(D_{r}(X)\right) \subset W_{0} \oplus G r\left(n-r, W_{0}^{\perp}\right)
$$

Let

$$
X^{\prime \prime}:=G r\left(q^{\prime \prime}, W_{0}^{\perp}\right)
$$

where $q^{\prime \prime}=q^{\prime}-\operatorname{dim} W_{0}$. Then we obtain

$$
\begin{equation*}
H\left(D_{r}(X)\right) \subset W_{0} \oplus D_{r^{\prime \prime}}\left(X^{\prime \prime}\right) \tag{5.4}
\end{equation*}
$$

where $r^{\prime \prime}$ satisfies

$$
D_{r^{\prime \prime}}\left(X^{\prime \prime}\right)=G r\left(n-r, W_{0}^{\perp}\right) \cong G r\left(n-r, \mathbb{C}^{m}\right), m=\operatorname{dim} W_{0}^{\perp}
$$

We will replace X^{\prime} and r^{\prime} with $X^{\prime \prime}$ and $r^{\prime \prime}$, still using the same notation.
Suppose (5.3) holds. Similarly, for each Z_{τ}, there exist $U_{\tau}, V_{\tau} \subset W_{1}^{\prime}$ with $\operatorname{dim} V_{\tau}=n$ such that

$$
\begin{equation*}
H\left(Z_{\tau}\right)=U_{\tau} \oplus G r\left(r, V_{\tau}\right) \tag{5.5}
\end{equation*}
$$

and there exists an $(n-r)$ dimensional vector space L independent of τ such that any $G r\left(r, V_{\tau}\right)$ contains a projective space of the form $\operatorname{Gr}\left(1, L+e_{\tau}\right)$ for some vector e_{τ}. Let

$$
U_{0}=\bigcap_{\tau} U_{\tau}
$$

Since $H\left(Z_{\tau}\right) \in \Sigma_{r^{\prime}}\left(X^{\prime}\right)$ for all $Z_{\tau} \subset \Sigma_{r}(X), U_{0} \oplus L$ is $I_{p^{\prime}, q^{\prime}}$ isotropic. Choose the minimal vector space V_{0} that contains $\bigcup_{\tau} U_{\tau} \oplus V_{\tau}$. Write

$$
V_{0}=U_{0} \oplus L \oplus V_{1}
$$

where V_{1} is orthogonal to $U_{0} \oplus L$ with respect to $I_{p^{\prime}, q^{\prime}}$. Then

$$
H\left(D_{r}(X)\right) \subset U_{0} \oplus G r\left(r^{\prime \prime}, L \oplus V_{1}\right) \cong G r\left(n-r, \mathbb{C}^{m}\right), \quad r^{\prime \prime}=\operatorname{dim} V_{1}
$$

where \cong in a big Schubert cell is given by $(x) \rightarrow\left(x^{t}\right)$. On the other hand, since $H(P) \in \Sigma_{r^{\prime}}\left(X^{\prime}\right)$ for $P \in \Sigma_{r}(X), V_{1}$ should be $I_{p^{\prime}, q^{\prime}}$-isotropic. Therefore $H\left(D_{r}(X)\right) \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)$, contradicting the assumption on H.

From now on we assume (5.2) and (5.4) hold. Choose local coordinates ($x ; y ; z$) of $G r\left(n-r, \mathbb{C}^{2 n}\right)$ and $(X ; Y ; Z)$ of $G r\left(n-r, \mathbb{C}^{m}\right)$ such that $\Sigma_{r}(X)$ is defined by (3.1), (3.2) and $\Sigma_{r^{\prime}}\left(X^{\prime}\right)$ is defined locally by

$$
-I_{n-r}-X^{*} X+Y^{*} Y+Z^{*} Z=0
$$

where $Y \in M^{\mathbb{C}}(n-r, n-r), X \in M^{\mathbb{C}}(a, n-r), Z \in M^{\mathbb{C}}(b, n-r)$ for some $a \leq b$. For $i, j=$ $1, \ldots, n-r$, define

$$
\theta_{i}^{j}:=\sum_{k=1}^{n-r} \overline{y_{k}^{i}} d y_{k}^{j}-\sum_{\ell=1}^{r} \overline{x_{\ell}{ }^{i}} d x_{\ell}{ }^{j}+\sum_{\ell=1}^{r} \overline{z_{\ell}{ }^{i}} d z_{\ell}{ }^{j}
$$

and

$$
\Theta_{i}{ }^{j}:=\sum_{k=1}^{n-r} \overline{Y_{k}^{i}} d Y_{k}^{j}-\sum_{L=1}^{a} \overline{X_{L}{ }^{i}} d X_{L}{ }^{j}+\sum_{L=1}^{b} \overline{Z_{L}{ }^{i}} d Z_{L}^{j} .
$$

Then by Section 3.3, θ and Θ are contact forms of $\Sigma_{r}(X)$ and $\Sigma_{r^{\prime}}\left(X^{\prime}\right)$, respectively which define their CR structures. Since the CR bundles over $\Sigma_{r}(X)$ and $\Sigma_{r^{\prime}}\left(X^{\prime}\right)$ are defined by

$$
\theta_{i}{ }^{j}=0, \quad \Theta_{i}{ }^{j}=0, \quad i, j=1, \ldots, n-r,
$$

we may assume that for a fixed reference point $P_{0}=\left(0 ; I_{n-r} ; 0\right) \in \Sigma_{r}(X)$,

$$
\begin{equation*}
T_{P_{0}}^{1,0} \Sigma_{r}(X)=\left\{d y_{i}^{j}=0\right\}, \quad T_{H\left(P_{0}\right)}^{1,0} \Sigma_{r^{\prime}}\left(X^{\prime}\right)=\left\{d Y_{i}^{i}=0 \quad i, j=1, \ldots, n-r\right\} . \tag{5.6}
\end{equation*}
$$

Since H preserves the CR structure, we obtain

$$
\begin{equation*}
H^{*}\left(\Theta_{i}{ }^{j}\right)=0 \quad \bmod \theta \tag{5.7}
\end{equation*}
$$

We will omit H^{*} in 5.7) and the following equations if there is no confusion. Let

$$
\Theta_{1}^{1}=\sum_{j, k} u_{j}^{k} \theta_{k}^{j}
$$

By differentiation, we obtain

$$
\begin{equation*}
\sum_{k} d \overline{Y_{k}{ }^{1}} \wedge d Y_{k}{ }^{1}-\sum_{L}\left(d \overline{X_{L}{ }^{1}} \wedge d X_{L}{ }^{1}-d \overline{Z_{L}^{1}} \wedge d Z_{L}{ }^{1}\right)=\sum_{j, k, \ell, m} u_{j}^{k}\left(d \overline{y_{m}^{k}} \wedge d y_{m}^{j}-d \overline{x_{\ell}^{k}} \wedge d x_{\ell}^{j}+d \overline{z_{\ell}^{k}} \wedge d z_{\ell}{ }^{j}\right) \tag{5.8}
\end{equation*}
$$

modulo θ. Choose a maximal subgrassmannian $N \subset \Sigma_{r}(X)$ passing through $P_{0} \in \Sigma_{r}(X)$. Since H maps $\Sigma_{r}(X)$ into $\Sigma_{r^{\prime}}\left(X^{\prime}\right)$ and respects subgrassmannians, by (5.6), we may assume that

$$
\begin{aligned}
N & =\left\{\left(x ; I_{n-r} ; x\right): x \in M^{\mathbb{C}}(r, n-r)\right\} \\
N^{\prime}:=H(N) & =\left\{\left(\binom{x}{0} ; I_{n-r} ;\binom{x}{0}\right): x \in M^{\mathbb{C}}(r, n-r)\right\}
\end{aligned}
$$

and

$$
H\left(x ; I_{n-r} ; x\right)=\left(\binom{x}{0} ; I_{n-r} ;\binom{x}{0}\right)
$$

up to $\operatorname{Aut}\left(\Sigma_{r}(X)\right)$ and $\operatorname{Aut}\left(\Sigma_{r^{\prime}}\left(X^{\prime}\right)\right)$. Define

$$
\psi_{\ell}{ }^{j}=d z_{\ell}^{j}-d x_{\ell}^{j}, \quad \ell=1, \ldots, r
$$

and

$$
\begin{gathered}
\Psi_{L}^{j}=d Z_{L}^{j}-d X_{L}^{j}, \quad L=1, \ldots, a, \\
\Psi_{L}^{j}=d Z_{L}^{j}, \quad L=a+1, \ldots, b .
\end{gathered}
$$

Since N and N^{\prime} are integral manifolds of $\psi=0$ and $\Psi=0$, respectively and $H: N \rightarrow N^{\prime}$ is the identity map, we obtain

$$
\begin{equation*}
\Psi=0 \quad \bmod \theta, \psi \tag{5.9}
\end{equation*}
$$

and for $j=1, \ldots, n-r$,

$$
\begin{gathered}
d X_{\ell}{ }^{j}=d x_{\ell}^{j} \quad \bmod \theta, \psi, \quad \ell=1, \ldots, r, \\
d X_{L}^{j}=0 \quad \bmod \theta, \psi, \quad L>r
\end{gathered}
$$

Then on $T_{P_{0}}^{1,0} \Sigma_{r}(X)$,5.8) can be written as

$$
\sum_{\ell=1}^{r} \overline{\Psi_{\ell}{ }^{1}} \wedge d x_{\ell}{ }^{1}+\overline{d x_{\ell}{ }^{1}} \wedge \Psi_{\ell}{ }^{1}=\sum_{j, k, \ell, m} u_{j}^{k}\left(\overline{\psi_{\ell}{ }^{k}} \wedge d x_{\ell}{ }^{j}+\overline{d x_{\ell}{ }^{k}} \wedge \psi_{\ell}{ }^{j}\right), \quad \bmod \bar{\psi} \wedge \psi
$$

which implies

$$
\Theta_{1}{ }^{1}=u \theta_{1}{ }^{1}
$$

where $u=u_{1}{ }^{1}$ and together with (5.9) and Cartan's lemma,

$$
\Psi_{\ell}{ }^{1}=u \psi_{\ell}{ }^{1} \quad \bmod \theta, \quad \ell=1, \ldots, r .
$$

Suppose $u \equiv 0$, i.e.,

$$
\Phi_{1}{ }^{1} \equiv 0 .
$$

Since $j=1$ is an arbitrary choice, we may assume

$$
\Theta_{j}^{j} \equiv 0, \quad j=1, \ldots, n-r
$$

Then we obtain

$$
\Psi_{\ell}{ }^{j}=0, \quad \bmod \theta, \quad \forall j, \ell
$$

and by differentiating

$$
\Theta_{j}{ }^{i}=0 \bmod \theta
$$

and substituting $\Psi_{\ell}{ }^{j}=0$ modulo θ, we obtain

$$
\Theta_{j}{ }^{i} \equiv 0, \quad i, j=1, \ldots, n-r .
$$

In particular, $H\left(\Sigma_{r}(X) \cap U\right)$ is an integral manifold of $\Theta \equiv 0$. Hence there exists a maximal complex manifold $M \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)$ that contains $H\left(\Sigma_{r}(X) \cap U\right)$. Since H is holomorphic, by Lemma 3.8, we obtain

$$
H_{*}\left(T_{P} D_{r}(X)\right)=H_{*}\left(T_{P} \Sigma_{r}(X)\right)+J H_{*}\left(T_{P} \Sigma_{r}(X)\right) \subset T_{H(P)} M, \quad \forall P \in \Sigma_{r}(X) \cap U .
$$

Hence we obtain

$$
H(U) \subset M \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

contradicting (5.1). Therefore we obtain $u \not \equiv 0$ and after dilation (See Appendix), we may assume that $u \equiv 1$ on an open set. Since θ and Θ are Hermitian symmetric and $H: N \rightarrow N^{\prime}$ is the identity map, by continuing the process, we obtain

$$
\Theta_{i}{ }^{j}=\theta_{i}{ }^{j}, \quad i, j=1, \ldots, n-r
$$

and

$$
\begin{equation*}
\Psi_{\ell}{ }^{j}=\psi_{\ell}{ }^{j} \quad \bmod \theta, \quad \ell=1, \ldots, r . \tag{5.10}
\end{equation*}
$$

Fix $j=1$. Then after rotation (See Appendix), we may assume that

$$
\begin{align*}
& d X_{\ell}^{1}-d x_{\ell}^{1}=d Z_{\ell}^{1}-d z_{\ell}^{1}=0 \quad \bmod \theta, \quad \ell=1, \ldots, r, \tag{5.11}\\
& d X_{L}^{1}=d Z_{L}^{1}=0 \quad \bmod \theta,\left\{d x_{\ell}^{k}, d z_{\ell}^{k}: k>1\right\}, \quad L>r . \tag{5.12}
\end{align*}
$$

Since H respects subgrassmannians, by restricting H to subgrassmannians of the form $\left\{\left(x ; I_{n-r} ; U x\right)\right.$: $\left.x \in M^{\mathbb{C}}(r, n-r)\right\}$, where U is an $r \times r$ symmetric matrix, (5.11) implies that for all $j=1, \ldots, n-r$,

$$
\begin{equation*}
d X_{\ell}{ }^{j}-d x_{\ell}{ }^{j}=d Z_{\ell}{ }^{j}-d z_{\ell}{ }^{j}=0 \quad \bmod \theta, \quad \ell=1, \ldots, r . \tag{5.13}
\end{equation*}
$$

Moreover, since H sends all rank one vectors in subgrassmannians to rank one vectors, (5.13) applied to (5.12) implies

$$
d X_{L}^{1}=d Z_{L}^{1}=0 \quad \bmod \theta, \quad L>r .
$$

Since H respects subgrassmannian distributions, this implies that for all $j=1, \ldots, n-r$,

$$
\begin{equation*}
d X_{L}^{j}=d Z_{L}^{j}=0 \quad \bmod \theta, \quad L>r . \tag{5.14}
\end{equation*}
$$

Since $d x_{\ell}{ }^{j}, d z_{\ell}{ }^{j}$ and $d X_{L}{ }^{j}, d Z_{L}{ }^{j}$ form coframes of $T_{P_{0}}^{1,0} \Sigma_{r}(X)$ and $T_{H\left(P_{0}\right)}^{1,0} \Sigma_{r^{\prime}}\left(X^{\prime}\right)$, respectively, (5.13) and (5.14) imply

$$
H_{*}\left(T_{P_{0}}^{1,0} \Sigma_{r}(X)\right)=T_{H\left(P_{0}\right)}^{1,0} \widetilde{\Sigma}_{r}
$$

where

$$
\widetilde{\Sigma}_{r}:=\Sigma_{r^{\prime}}\left(X^{\prime}\right) \cap\left\{\left(\binom{x}{0} ; y ;\binom{z}{0}\right): x, z \in M^{\mathbb{C}}(r, n-r), y \in M^{\mathbb{C}}(n-r, n-r)\right\} .
$$

Since $n-r \geq 2, \ell$ and L are independent of the choice of $j=1, \ldots, n-r$, by the same argument of [K21], we obtain

$$
d X_{\ell}^{j}-d x_{\ell}^{j}=d Z_{\ell}^{j}-d z_{\ell}^{j}+\xi_{\ell}{ }^{k} \theta_{k}^{j}=0, \quad \ell=1, \ldots, r,
$$

for some smooth functions $\xi_{\ell}{ }^{k}$ and

$$
d X_{L}{ }^{j}=d Z_{L}^{j}=0, \quad L>r .
$$

After a frame change of the form (9) in Appendix, we obtain

$$
d X_{\ell}{ }^{j}-d x_{\ell}^{j}=d Z_{\ell}^{j}-d z_{\ell}^{j}=d X_{L}^{j}=d Z_{L}^{j}=0 .
$$

In particular, together with (5.10),

$$
T_{H\left(P_{0}\right)} H\left(\Sigma_{r}(X)\right)=d H\left(T_{P_{0}} \Sigma_{r}(X)\right)=T_{H\left(P_{0}\right)} \widetilde{\Sigma}_{r} .
$$

More generally, we can choose smooth functions $g: \Sigma_{r}(X) \rightarrow G \cap \operatorname{Aut}\left(\Sigma_{r}(X)\right), g^{\prime}: \Sigma_{r}(X) \rightarrow$ $G^{\prime} \cap \operatorname{Aut}\left(\Sigma_{r^{\prime}}\left(X^{\prime}\right)\right)$ such that

$$
\begin{equation*}
d H \circ g(P)=g^{\prime}(P) \circ I d, \quad \forall P \in \Sigma_{r}(X) \tag{5.15}
\end{equation*}
$$

Since

$$
T_{P} D_{r}(X)=T_{P} \Sigma_{r}(X)+J\left(T_{P} \Sigma_{r}(X)\right),
$$

(5.15) implies that

$$
H_{*}\left(T_{P} D_{r}(X)\right)=T_{H(P)} g^{\prime}(P) \cdot \widetilde{D}_{r}, \quad P \in \Sigma_{r}(X)
$$

where
$\widetilde{D}_{r}:=\left\{\left(\binom{x}{0} ; y ;\binom{z}{0}\right): x, z \in M^{\mathbb{C}}(r, n-r), y \in M^{\mathbb{C}}(n-r, n-r), y-y^{t}+x^{t} z-z^{t} x=0\right\}$.
In particular, $H_{*}\left(T_{P} D_{r}(X)\right)$ is contained in the G^{\prime}-orbit of $T_{P} \widetilde{D}_{r}$ for all $P \in \Sigma_{r}(X)$. Since H is holomorphic, G^{\prime} acts holomorphically on $T D_{r^{\prime}}\left(X^{\prime}\right)$ and $\Sigma_{r}(X)$ is a generic CR manifold with a bracket generating CR structure in $D_{r}(X)$, we obtain that for all $P \in D_{r}(X), T_{H(P)} H\left(D_{r}(X)\right)$ is contained in the G^{\prime}-orbit of $T_{P} \widetilde{D}_{r}$, i.e.,

$$
T_{H(P)} H\left(D_{r}(X)\right)=T_{H(P)} \widetilde{H}\left(D_{r}(X)\right)
$$

for some standard embedding \widetilde{H}.
Now fix $P \in \Sigma_{r}(X)$ and choose a maximal rank one subspace $M \subset D_{r}(X)$ passing through P. By 5.15), H sends rank one vectors in $T_{P} \Sigma_{r}(X)$ to rank one vectors and hence all vectors in $H_{*}\left(T_{P} M\right)$ are rank one vectors. Since H is holomorphic and $\Sigma_{r}(X)$ is nondegenerate, we obtain

$$
\left[H_{*}(v)\right] \subset \mathscr{C}_{H(P)}\left(G r\left(n-r, \mathbb{C}^{m}\right)\right), \quad \forall v \in T_{P} M
$$

Since

$$
\operatorname{rank} G r\left(n-r, \mathbb{C}^{m}\right) \geq \operatorname{rank} Z_{\tau} \geq 2, \quad \tau \in \mathcal{D}_{0}(X)
$$

and $\operatorname{dim} M \geq 3$, by $\mathrm{CH04}$, we obtain

$$
H\left(M \cap \Sigma_{r}(X)\right) \subset M^{\prime} \cap \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

for some maximal rank one subspace M^{\prime} in $\operatorname{Gr}\left(n-r, \mathbb{C}^{m}\right)$. Furthermore $M \cap \Sigma_{r}(X)$ is a nondegenerate hyperquadric in M with mixed Levi-signature and H maps every projective line in $M \cap \Sigma_{r}(X)$ into a projective line, by Lemma $5.4, H$ restricted to M is a projective linear map. In particular, H maps projective lines to projective lines.
Lemma 5.6. For $X=L G r_{n}$ and $X^{\prime}=G r\left(q^{\prime}, p^{\prime}\right)$ or $X=O G r_{n}$ and $X^{\prime}=O G r_{n^{\prime}}$, assuming $r>1$ let $U \subset D_{r}(X)$ be a connected open set and $H: U \rightarrow D_{r^{\prime}}\left(X^{\prime}\right)$ be a subgrassmannian respecting holomorphic immersion such that

$$
H\left(\Sigma_{r}(X) \cap U\right) \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

and

$$
H(U) \not \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right)
$$

Then there exists a subgrassmannian M of $D_{r^{\prime}}\left(X^{\prime}\right)$ isomorphic to $G r\left(n-r, \mathbb{C}^{2 n}\right)$ if $X=L G r_{n}$, isomorphic to $O G r\left(2[n / 2]-2 r, \mathbb{C}^{2 n}\right)$ if $X=O G r_{n}$ such that $H(U) \subset M$.
Proof. First we assume that $X=L G r_{n}$ and $X^{\prime}=G r\left(q^{\prime}, p^{\prime}\right)$ so that $D_{r}(X)=S G r\left(n-r, \mathbb{C}^{2 n}\right)$ and $D_{r^{\prime}}\left(X^{\prime}\right)=G r\left(q^{\prime}-r^{\prime}, \mathbb{C}^{p^{\prime}+q^{\prime}}\right)$. In the proof of Lemma 5.5, we can choose a subgrassmannian of $D_{r^{\prime}}\left(X^{\prime}\right)$ isomorphic to $G r\left(n-r, \mathbb{C}^{m}\right)$ that contains $H\left(D_{r}(X)\right)$. Hence we may assume that $D_{r^{\prime}}\left(X^{\prime}\right)=G r\left(n-r, \mathbb{C}^{m}\right)$.

Let

$$
Z=H\left(D_{r}(X)\right)
$$

For $P \in Z$, choose a unique minimal subgrassmannian M_{P} passing through P such that

$$
\begin{equation*}
T_{P} Z \subset T_{P} M_{P} \tag{5.16}
\end{equation*}
$$

By Lemma 5.5, M_{P} is of the form $\operatorname{Gr}\left(n-r, V_{P}\right)$ for some $V_{P} \subset \mathbb{C}^{m}$ with $\operatorname{dim} V=2 n$. Therefore we can choose a Grassmannian frame $Z_{1}, \ldots, Z_{n-r}, X_{n-r+1}, \ldots, X_{m}$ of $\operatorname{Gr}\left(n-r, \mathbb{C}^{m}\right)$ such that

$$
\operatorname{Span}_{\mathbb{C}}\left\{Z_{1}, \ldots, Z_{n-r}\right\}=P
$$

and

$$
P+\operatorname{Span}_{\mathbb{C}}\left\{X_{n-r+1}, \ldots, X_{2 n}\right\}=V_{P}
$$

Let $\left\{\mu_{\alpha}{ }^{H}\right\}$ be a collection of one forms such that

$$
d Z_{\alpha}=\mu_{\alpha}^{H} X_{H} \quad \bmod P .
$$

Then by (5.16),

$$
T_{P} Z \subset\left\{\mu_{\alpha}^{H}=0, H=2 n+1, \ldots, m\right\}
$$

Furthermore, since

$$
T_{P} Z=H_{*}\left(T_{P} D_{r}(X)\right)
$$

for some standard embedding $H: D_{r}(X) \rightarrow D_{r^{\prime}}\left(X^{\prime}\right)$, we can choose $X_{H}, H=n-r+1, \ldots, X_{m}$ such that

$$
T_{P} Z=\left\{\mu_{\alpha}^{H}=0, H=2 n+1, \ldots, m\right\} \cap\left\{\mu_{\alpha}^{n-r+\beta}-\mu_{\beta}^{n-r+\alpha}=0, \alpha, \beta=1, \ldots n-r\right\} .
$$

Since we choose a Grassmannian frame, we obtain

$$
d \mu_{\alpha}^{H}=\mu_{\alpha}^{K} \wedge \Omega_{K}^{H} \quad \bmod \mu_{\beta}^{H}, \beta=1, \ldots, n-r
$$

for some one forms Ω_{K}^{H} such that

$$
d X_{K}=\Omega_{K}^{H} X_{H} \quad \bmod P .
$$

Therefore on $T Z$, we obtain

$$
0=\sum_{k=n-r+1}^{2 n} \mu_{\alpha}^{k} \wedge \Omega_{k}^{H}
$$

Since $\mu_{\alpha}^{k}, k=n-r+1, \ldots, 2 n$ are linearly independent for all fixed α, by Cartan's lemma we obtain

$$
\Omega_{k}^{H}=0 \bmod \left\{\mu_{\alpha}^{\ell}, \ell=n-r+1, \ldots, 2 n\right\} .
$$

Since k is independent of $\alpha=1, \ldots, n-r$ and $n-r \geq 2$, we obtain

$$
\Omega_{k}^{H}=0
$$

which implies

$$
d Z_{\alpha}=d X_{j}=0 \quad \bmod V_{P}, \quad \alpha=1, \ldots, n-r, j=n-r+1, \ldots, 2 n
$$

i.e., V_{P} is independent of P.

Now assume that $X=O G r_{n}$ and $X^{\prime}=O G r_{n^{\prime}}$ so that $D_{r}(X)=O G r\left(2[n / 2]-2 r, \mathbb{C}^{2 n}\right)$ and $D_{r^{\prime}}\left(X^{\prime}\right)=O G r\left(2\left[n^{\prime} / 2\right]-2 r^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)$. Since we may regard $O G r\left(2\left[n^{\prime} / 2\right]-2 r^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)$ as a submanifold in $\operatorname{Gr}\left(2\left[n^{\prime} / 2\right]-2 r^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)$, by the same argument as above, we obtain that there exists a subspace $W \subset \mathbb{C}^{2 n^{\prime}}$ of dimension $2 n$ such that

$$
H\left(D_{r}(X)\right) \subset W_{0} \oplus G r(2[n / 2]-2 r, W)
$$

for some W_{0}. Let $a:=\operatorname{dim}\left(W_{0}\right), b:=(2[n / 2]-2 r)$ so that $a+b=2\left(\left[n^{\prime} / 2\right]-2 r^{\prime}\right)$, and let the base point P correspond to $W_{0} \oplus E_{0}$, where $\left[E_{0}\right] \in G r(b, W)$. In what follows let V^{\prime} denote any element in $G r(b, W)$ such that $W_{0} \oplus V^{\prime} \in H\left(D_{r}(X)\right)$. Since

$$
H\left(D_{r}(X)\right) \subset D_{r^{\prime}}\left(X^{\prime}\right)=O G r\left(2\left[n^{\prime} / 2\right]-2 r^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)
$$

we have

$$
S_{n^{\prime}}\left(W_{0} \oplus V^{\prime} ; W_{0} \oplus V^{\prime}\right)=0
$$

whenever $W_{0} \oplus V^{\prime} \in H\left(D_{r}(X)\right)$. In particular, $W_{0} \subset \mathbb{C}^{2 n^{\prime}}$ is an $S_{n^{\prime}}$-isotropic a-plane, $V^{\prime} \subset \mathbb{C}^{2 n^{\prime}}$ is an $S_{n^{\prime}}$-isotropic b-plane, and W_{0} and V^{\prime} are orthogonal with respect to S_{n}^{\prime}, i.e., $S\left(W_{0}, V^{\prime}\right)=0$. We claim that actually $S\left(W_{0}, W\right)=0$. From Lemma 5.5 it follows readily that $\left.S_{n^{\prime}}\right|_{W}$ is nondegenerate. Suppose there exists some $w \in W$ such that w is not orthogonal to W_{0} with respect to $S_{n^{\prime}}$. Then, for any $S_{n^{\prime}}$-isotropic n-plane $V^{\prime \prime}$ in W containing $w S\left(W_{0}, V^{\prime \prime}\right) \neq 0$, so that $\left[W_{0} \oplus V^{\prime \prime}\right] \notin O G r\left(2\left[n^{\prime} / 2\right]-\right.$ $\left.2 r^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)$, hence $\left[W_{0} \oplus V^{\prime \prime}\right] \notin H(U)$. Define $\mathscr{S}:=\left(W_{0} \oplus O G r(n-r, W)\right) \cap O G r\left(2\left[n^{\prime} / 2\right]-2 r^{\prime}, \mathbb{C}^{2 n^{\prime}}\right)$. Then, $\mathscr{S} \subsetneq W_{0} \oplus O G r(n-r, W)$, so that $\operatorname{dim}(H(U)) \leq \operatorname{dim}(\mathscr{S})<\operatorname{dim}(O G r(n-r, W))=$ $\operatorname{dim}(U)$, a contradiction since we know that H is a holomorphic immersion. Our claim follows, and we conclude that $H(U)$ is an open subset of the subgrassmannian $M:=W_{0} \oplus O G r(n-r, W)$ isomorphic to $\operatorname{OGr}\left(2[n / 2]-2 r, \mathbb{C}^{2 n}\right)$, as desired. The proof of 5.6 is completed.

Proof of Proposition 5.3: If X and X^{\prime} are of the same type, then as in the proof of Lemma 5.6 there exists a subgrassmannian Y in X^{\prime} which is biholomorphic to X such that $H\left(D_{r}(X)\right) \subset$ $D_{r}(Y)$. Hence we may consider H as a map from $D_{r}(X)$ into $D_{r}(X)$. By Theorem 9 in M08b and Lemma 5.5, H is an automorphism of $D_{r}(X)$. Hence we obtain the proposition in these cases.

From now on we assume $X=S G r\left(n-r, \mathbb{C}^{2 n}\right)$ and $X^{\prime}=G r\left(n-r, \mathbb{C}^{2 n}\right)$. By Lemma 5.5, we may further assume $H\left(0 ; I_{n-r} ; 0\right)=\left(0 ; I_{n-r} ; 0\right)$ and $\left.d H\right|_{\left(0 ; I_{n-r} ; 0\right)}=I d$. Since by Lemma $5.5 H$ is a rational map preserving minimal rational curves, H is a holomorphic immersion into X^{\top} by Proposition 4.10. Then the following lemma and Proposition 4.13 will complete the proof.
Lemma 5.7. There exists a family of holomorphic maps $\left\{H_{s}\right\}: S G r\left(n-r, \mathbb{C}^{2 n}\right) \rightarrow G r\left(n-r, \mathbb{C}^{2 n}\right)$ with $s \in \mathbb{C}^{*}$ which converges to a standard embedding on a big Schubert cell $\mathcal{W} \cong M^{\mathbb{C}}(n+r, n-r)$ as s tends to 0 with respect to the compact-open topology. Moreover, there exists a \mathbb{C}^{*}-action $\Psi:=$ $\left\{\Psi_{s}\right\}_{s \in \mathbb{C}^{*}}$ on $G r\left(n-r, \mathbb{C}^{2 n}\right)$ such that Ψ fixes $\left(0 ; I_{n-r} ; 0\right)$, preserves $S G r\left(n-r, \mathbb{C}^{2 n}\right) \subset G r\left(n-r, \mathbb{C}^{2 n}\right)$ as a set and such that $H_{s}(x ; y ; z)=\Psi_{\frac{1}{s}}\left(H\left(\Psi_{s}(x ; y, z)\right)\right)-\left(0 ; I_{n-r} ; 0\right)$.

Proof. Choose local coordinates $(x ; y ; z)$ of $G r\left(n-r, \mathbb{C}^{2 n}\right)$ defined on a big Schubert cell $\mathcal{W} \cong$ $M_{n+r, n-r}^{\mathbb{C}} \subset G r\left(n-r, \mathbb{C}^{2 n}\right)$ with $x, z \in M^{\mathbb{C}}(r, n-r), y \in M^{\mathbb{C}}(n-r, n-r)$ so that $S G r\left(n-r, \mathbb{C}^{2 n}\right)$ is defined locally by

$$
y-y^{t}+x^{t} z-z^{t} x=0
$$

Let $(X ; Y ; Z)$ be local coordinates of $G r\left(n-r, \mathbb{C}^{2 n}\right)$ such that $\Sigma_{r}\left(G r\left(n-r, \mathbb{C}^{2 n}\right)\right)$ can be expressed by

$$
-I_{n-r}-X^{*} X+Y^{*} Y+Z^{*} Z=0
$$

where $Y \in M_{n-r, n-r}^{\mathbb{C}}, X \in M_{r, n-r}^{\mathbb{C}}, Z \in M_{r, n-r}^{\mathbb{C}}$. Let $\left(H_{X}, H_{Y}, H_{Z}\right)$ be the coordinate expression of H with respect to $(X ; Y ; Z)$. Then by Lemma 5.5, we may assume

$$
\begin{equation*}
H=(x ; y ; z)+O\left(\left\|\left(x ; y-I_{n-r} ; z\right)\right\|^{2}\right) \tag{5.17}
\end{equation*}
$$

Moreover, since we have $H\left(\Sigma_{r}(X)\right) \subset \Sigma_{r}\left(X^{\prime}\right)$, we obtain

$$
-I_{n-r}-H_{X}^{*} H_{X}+H_{Y}^{*} H_{Y}+H_{Z}^{*} H_{Z}=u \cdot\left(-I_{n-r}-x^{*} x+y^{*} y+z^{*} z\right)
$$

for some C^{ω} function u. Hence by power series expansion,

$$
\begin{equation*}
0=-H_{X}^{*} \frac{\partial^{|\alpha|+|\beta|} H_{X}}{\partial x^{\alpha} \partial z^{\beta}}+H_{Y}^{*} \frac{\partial^{|\alpha|+|\beta|} H_{Y}}{\partial x^{\alpha} \partial z^{\beta}}+H_{Z}^{*} \frac{\partial^{|\alpha|+|\beta|} H_{Z}}{\partial x^{\alpha} \partial z^{\beta}}=\frac{\partial^{|\alpha|+|\beta|} H_{Y}}{\partial x^{\alpha} \partial z^{\beta}} \tag{5.18}
\end{equation*}
$$

at $\left(0 ; I_{n-r} ; 0\right)$ for any multi-indices α, β. Let

$$
H_{Y}=I_{n-r}+\widetilde{H}_{Y}=I_{n-r}+\sum_{|\alpha| \geq 1} B_{\alpha} w^{\alpha}
$$

with $w=\left(x, y-I_{n-r}, z\right)$ be the power series expansion of H_{Y} at $\left(0 ; I_{n-r} ; 0\right)$. Then (5.18) implies

$$
\begin{equation*}
\widetilde{H}_{Y}=y-I_{n-r}+O\left(\|(x, z)\|^{3}+\left\|y-I_{n-r}\right\|^{2}\right) . \tag{5.19}
\end{equation*}
$$

Now for $0 \neq s \in \mathbb{C}$, define a holomorphic map H_{s} on X whose restriction on the big Schubert cell $M_{n+r, n-r}^{\mathbb{C}} \cap S G r\left(n-r, \mathbb{C}^{2 n}\right)$ is given by

$$
H_{s}(x ; y ; z)=\left(\frac{1}{s} H_{X}\left(w_{s}\right) ; I_{n-r}+\frac{1}{s^{2}} \widetilde{H}_{Y}\left(w_{s}\right) ; \frac{1}{s} H_{Z}\left(w_{s}\right)\right),
$$

where $w_{s}=\left(s x ; s^{2}\left(y-I_{n-r}\right) ; s z\right)$. In particular, $H_{s}: S G r\left(n-r, \mathbb{C}^{2 n}\right) \rightarrow G r\left(n-r, \mathbb{C}^{2 n}\right)$ is a holomorphic immersion. Furthermore, by (5.17) and (5.19), we obtain

$$
H_{s}(x ; y ; z)=(x ; y ; z)+O(s),
$$

implying that H_{s} converges uniformly to $H_{0}(x ; y ; z):=(x ; y ; z)$ on any compact subset $K \subset$ $M^{\mathbb{C}}(n+r, n-r) \cap S G r\left(n-r, \mathbb{C}^{n}\right)$ as s tends to 0 .

Defining $\Psi_{s}(x ; y ; z):=w_{s}+\left(0 ; I_{n-r} ; 0\right)=\left(s x ; s^{2}\left(y-I_{n-r}\right) ; s z\right)+\left(0 ; I_{n-r} ; 0\right)$ on the big Schubert cell \mathcal{W}, for $s \in \mathbb{C}^{*}$ we have $H_{s}(x ; y ; z)=\Psi_{\frac{1}{s}}\left(H\left(\Psi_{s}(x ; y ; z)\right)-\left(0 ; I_{n-r} ; 0\right)\right.$. It is clear that $\Psi:=$ $\left\{\Psi_{s}\right\}_{s \in \mathbb{C}^{*}}$ fixes $\left(0 ; I_{n-r} ; 0\right)$ and that it is a \mathbb{C}^{*} action on \mathcal{W}. Furthermore, from the defining equation $y-y^{t}+x^{t} z-z^{t} x=0$ for $S G r\left(n-r, \mathbb{C}^{2 n}\right) \cap \mathcal{W}$, it follows readily that Ψ preserves $S G r\left(n-r, \mathbb{C}^{2 n}\right) \cap \mathcal{W}$ as a set. To complete the proof of Proposition 5.7 it remains to check that each Ψ_{s} extends to an automorphism of $G r\left(n-r ; \mathbb{C}^{2 n}\right)$ yielding hence a \mathbb{C}^{*}-action on the latter manifold.

Writing $\Theta_{s}(x ; y ; z):=\left(s x ; s^{2} y ; s z\right)$ we have $\Psi_{s}(x, y ; z)=\Theta_{s}\left(x ; y-I_{n-r} ; z\right)+\left(0 ; I_{n-r} ; z\right)=$ $T_{P_{0}} \circ \Theta_{s} \circ T_{-P_{0}}$, where $P_{0}=\left(0 ; I_{n-r} ; 0\right)$ and $T_{Q}(w)=w+Q$, for $Q \in \mathcal{W}$, is a Euclidean translation on \mathcal{W}. Recall that $G^{\prime}=\operatorname{Aut}\left(G r\left(n-r, \mathbb{C}^{2 n}\right)\right)$. With respect to the Harish-Chandra decomposition $\mathfrak{g}^{\prime}=\mathfrak{m}^{\prime+} \oplus \mathfrak{k}^{\prime \mathbb{C}} \oplus \mathfrak{m}^{\prime-}$ of the Lie algebra \mathfrak{g}^{\prime} of G^{\prime}, a Euclidean translation in Harish-Chandra coordinates extends to an element of the commutative Lie subgroup $M^{\prime+}=\exp \left(\mathfrak{m}^{\prime+}\right) \subset G^{\prime}$, thus $\left\{\Psi_{s}\right\}_{s \in \mathbb{C}^{*}}$ is a conjugate of $\left\{\Theta_{s}\right\}_{s \in \mathbb{C}^{*}}$ in G^{\prime} and it suffices to check the latter is a \mathbb{C}^{*}-action. If in place of the coordinates $(x ; y ; z)$ we use the matrix form $\Gamma=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in M^{\mathbb{C}}(n+r, n-r)$ as coordinates for points on \mathcal{W}, then $\Theta_{s}(\Gamma)=D_{s} \Gamma$, for some invertible (diagonal) matrix $D_{s} \in M^{\mathbb{C}}(n+r, n+r)$. Now $K^{\prime \mathbb{C}}=\exp \left(\mathfrak{k}^{\prime \mathbb{C}}\right)$ consists of invertible linear transformations $\Gamma \mapsto A \Gamma B$ where A resp B is an invertible $(n+r) \times(n+r)$ resp. $(n-r) \times(n-r)$ matrix, hence $\Theta_{s} \in K^{\prime \mathbb{C}} \subset G^{\prime}$ for $s \in \mathbb{C}^{*}$. As a consequence, $\Theta=\left\{\Theta_{s}\right\}_{s \in \mathbb{C}^{*}}$ and hence $\Psi=\left\{\Psi_{s}\right\}_{s \in \mathbb{C}^{*}}$ are \mathbb{C}^{*}-actions on $\operatorname{Gr}\left(n-r, \mathbb{C}^{2 n}\right)$, as desired. The proof of Proposition 5.7 is complete.

We note that in standard notation the \mathbb{C}^{*}-action Θ is generated by an element L of the Cartan subalgebra $\mathfrak{h}^{\prime} \subset \mathfrak{g}^{\prime} \cong \mathfrak{s l}(2 n, \mathbb{C})$ such that $\operatorname{ad}(L)$ preserves the Lie subalgebra $\mathfrak{g}^{\prime} \subset \mathfrak{g}, \mathfrak{g}^{\prime} \cong \mathfrak{s p}(n, \mathbb{C})$ and such that the restriction of $\operatorname{ad}(L)$ to $\mathfrak{s p}(n, \mathbb{C})$ defines on the latter the structure of a graded

Lie algebra associated to the marked Dynkin diagram $\left(C_{n}, \alpha_{n-r}\right)$, in the notation of [Ya93], which is the graded Lie algebra structure on $\mathfrak{s p}(n, \mathbb{C})$ with parabolic subalgebra \mathfrak{p} underlying the rational homogeneous manifold $G / P \cong S G r\left(n-r, \mathbb{C}^{2 n}\right)$. Thus $\mathfrak{g}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}, T_{0}(G / P)=$ $\mathfrak{g} / \mathfrak{p} \cong \mathfrak{g}_{1} \oplus \mathfrak{g}_{2},\left[L, v_{1}\right]=v_{1}$ for $v_{1} \in \mathfrak{g}_{1}$ and $\left[L, v_{2}\right]=2 v_{2}$, which explains the different exponents in $\Theta_{s}(x ; y ; z)=\left(s ; s^{2} y ; s z\right)$. Thus $\left.\operatorname{ad}(L)\right|_{\mathfrak{g}}$ defines the standard \mathbb{C}^{*}-action Θ at $0=e P \in G / P$ with 0 as the isolated fixed point serving as a 1-parameter group of dilations which replaces the 1-parameter group of dilations in the case of irreducible Hermitian symmetric spaces of the compact type in [M19] defined by the Euler vector field and expressible in terms of Harish-Chandra coordinates as scalar multiplications $\Theta_{s}(x)=s x$ for $s \in \mathbb{C}$.

6. Induced moduli map

We start with some relevant general facts about subvarieties of irreducible Hermitian symmetric spaces of the compact type M. A characteristic subspace Γ of M is an invariantly totally geodesic complex submanifold of M according to [MT92] in the sense that it is totally geodesic in (M, s) with respect to any choice of Kähler-Einstein metric s on M. Equivalently, fixing a big Schubert cell \mathcal{W}, $\mathcal{M} \cong \mathbb{C}^{m}$ in terms of Harish-Chandra coordinates, $S \subset M, 0 \in S$, is invariantly totally geodesic in M if and only if for any $\gamma \in P, \gamma(P) \cap \mathcal{W}$ is a linear subspace of \mathbb{C}^{m}. It follows that the set of invariantly totally geodesic complex submanifolds of M is closed under taking intersections. In the case where M is the Grassmann manifold $\operatorname{Gr}(a, b), 0=\left[V_{0}\right]$, writing $T_{0}(M)=V_{0}^{*} \otimes \mathbb{C}^{a+b} / V_{0}=$: $A \otimes B$, for an invariantly totally geodesic complex submanifold $S \subset M$ passing through 0 we have $T_{0}(S)=A^{\prime} \otimes B^{\prime}$, where $A^{\prime} \subset A, B^{\prime} \subset B$ are linear subspaces. Given any family $\left\{S_{\alpha}\right\}$ of invariantly totally geodesic complex submanifolds of $\operatorname{Gr}(a, b), T_{0}\left(S_{\alpha}\right)=: A_{\alpha} \otimes B_{\alpha}$, the intersection $S:=\bigcap\left\{S_{\alpha}\right\}$ is determined by $T_{0}(S)=A \otimes B$, where $A:=\bigcap\left\{A_{\alpha}\right\}, B:=\bigcap\left\{S_{\alpha}\right\} . S \subset M$ is a subgrassmannian. In the case of $M=L G r_{n}$, writing $T_{0}(M)=S^{2} V_{0}$, a characteristic subspace Γ passing through $0 \in L G r_{n}$ is determined by $T_{0}(\Gamma)=S^{2} A$ for some linear subspace $A \subset V_{0}$, hence the intersection of any family of characteristic subspaces is necessarily a characteristic subspace. In the case where $M=O G r_{n}$, writing $T_{0}(M)=\Lambda^{2} V_{0}$, a characteristic subspace Γ passing through $0 \in L G r_{n}$ is determined by $T_{0}(\Gamma)=\Lambda^{2} A$ for some linear subspace $A \subset V_{0}$ of even codimension, hence the intersection S of any family of characteristic subspaces passing through $0 \in M$ is determined by $T_{0}(S)=\Lambda^{2} A . S \subset M$ is a characteristic subspace if and only if $A \subset V_{0}$ is of even codimension, otherwise embedding $O G r_{n}$ into $O G r_{n+1}:=M^{\prime}$ as usual, $S \subset M^{\prime}$ is a characteristic subspace.

Let now Ω and Ω^{\prime} be irreducible bounded symmetric domains of type I, II or III and let $f: \Omega \rightarrow \Omega^{\prime}$ be a proper holomorphic map. In this section, we define induced moduli maps $f_{r}^{\sharp}, f_{r, \frac{1}{2}}^{\sharp}$, f_{r}^{b} and $f_{r, \frac{1}{2}}^{b}$ on $\mathcal{D}_{r}(X), \mathcal{D}_{r, \frac{1}{2}}(X), D_{r}(X)$ and $D_{r, \frac{1}{2}}(X)$, respectively.

Let $r>0$ be fixed. Consider a manifold

$$
\mathcal{U}_{r}(X):=\left\{(P, \sigma) \in X \times \mathcal{D}_{r}(X): P \in X_{\sigma}\right\} \subset X \times \mathcal{D}_{r}(X)
$$

Then, there is a canonical double fibration

$$
\pi_{1}: \mathcal{U}_{r}(X) \rightarrow X, \quad \pi_{2}: \mathcal{U}_{r}(X) \rightarrow \mathcal{D}_{r}(X)
$$

Define $j: \mathcal{U}_{r}(X) \rightarrow \mathcal{G}\left(n_{r}, T X\right)$ with $n_{r}=\operatorname{dim} T_{P} X_{\sigma}$ by $j(P, \sigma)=T_{P} X_{\sigma}$, where $\mathcal{G}\left(n_{r}, T X\right)$ is a Grassmannian bundle over $T X$. Then, j is a G-equivariant holomorphic embedding such that $j\left(\mathcal{U}_{r}(X)\right)=\mathcal{N} \mathcal{S}_{r}(X)$.

We will define f_{r}^{\sharp} and $f_{r, \frac{1}{2}}^{\sharp}$ as follows. For each $\sigma \in \mathcal{D}_{r}(\Omega)$ and $\gamma \in \mathcal{D}_{r, \frac{1}{2}}(\Omega)$, define $f_{r}^{\sharp}(\sigma)$ and $f_{r, \frac{1}{2}}^{\sharp}(\gamma)$ by

$$
X_{f_{r}^{\sharp}(\sigma)}^{\prime}:=\bigcap_{\sigma^{\prime}} X_{\sigma^{\prime}}^{\prime} \quad \text { and } \quad X_{f_{r, \frac{1}{2}}^{\sharp}}^{\prime}(\gamma):=\bigcap_{\gamma^{\prime}} X_{\gamma^{\prime}}^{\prime},
$$

where the intersection is taken over all characteristic subspaces $X_{\sigma^{\prime}}^{\prime}$ of X^{\prime} containing $f\left(\Omega \cap X_{\sigma}\right)$ and $X_{\gamma^{\prime}}^{\prime}$ of X^{\prime} containing $f\left(\Omega \cap X_{\gamma}\right)$, respectively.

Then there exists a flag manifold $\mathcal{F}\left(a_{r}, b_{r} ; V_{X^{\prime}}\right)$ such that $f_{r}^{\sharp}(\sigma) \in \mathcal{F}\left(a_{r}, b_{r} ; V_{X^{\prime}}\right)$ for a general member $\sigma \in \mathcal{D}_{r}(\Omega)$. Denote this $\mathcal{F}\left(a_{r}, b_{r} ; V_{X^{\prime}}\right)$ by $\mathcal{F}_{i_{r}}\left(X^{\prime}\right)$, where i_{r} is defined by $i_{r}:=q^{\prime}-a_{r}$ if X^{\prime} is one of $G r\left(q^{\prime}, p^{\prime}\right)$ and $L G r_{q^{\prime}}, i_{r}:=2\left[n^{\prime} / 2\right]-a_{r}$ if X^{\prime} is $O G r_{n^{\prime}}$. If X^{\prime} is one of $G r\left(q^{\prime}, p^{\prime}\right)$ and $L G r_{q^{\prime}}$, then $i_{r} \leq q^{\prime}-1$. If X^{\prime} is $O G r_{n^{\prime}}$, then $i_{r} \leq 2\left[n^{\prime} / 2\right]-2$. Similarly we define $\mathcal{F}\left(a_{r, \frac{1}{2}}, b_{r, \frac{1}{2}} ; V_{X^{\prime}}\right)$ and denote it by $\mathcal{F}_{r, \frac{1}{2}}\left(X^{\prime}\right)$, where $i_{r, \frac{1}{2}}$ is defined by $i_{r, \frac{1}{2}}=2\left[n^{\prime} / 2\right]-a_{r, \frac{1}{2}}$. Define

$$
\begin{gathered}
\mathcal{F}_{i_{r}}\left(\Omega^{\prime}\right):=\left\{\sigma^{\prime} \in \mathcal{F}_{i_{r}}\left(X^{\prime}\right): X_{\sigma^{\prime}}^{\prime} \cap \Omega^{\prime} \neq \emptyset\right\}, \\
\mathcal{F}_{i_{r, 1 / 2}}\left(\Omega^{\prime}\right):=\left\{\sigma^{\prime} \in \mathcal{F}_{i_{r, 1 / 2}}\left(X^{\prime}\right): X_{\sigma^{\prime}}^{\prime} \cap \Omega^{\prime} \neq \emptyset\right\}, \\
\mathcal{F}_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right):=\left\{\sigma^{\prime} \in \mathcal{F}_{i_{r}}\left(X^{\prime}\right): X_{\sigma^{\prime}}^{\prime} \cap S_{m}\left(X^{\prime}\right) \text { is open in } X_{\sigma^{\prime}}^{\prime}\right\} .
\end{gathered}
$$

Lemma 6.1. $f_{r}^{\sharp}: \mathcal{D}_{r}(\Omega) \rightarrow \mathcal{F}_{i_{r}}\left(\Omega^{\prime}\right)$ and $f_{r, \frac{1}{2}}^{\sharp}: \mathcal{D}_{r, \frac{1}{2}}(\Omega) \rightarrow \mathcal{F}_{i_{r, \frac{1}{2}}}\left(\Omega^{\prime}\right)$ are meromorphic maps.
Proof. Since the proof for the map $f_{r, \frac{1}{2}}^{\sharp}$ is similar to that for f_{r}^{\sharp}, we will only give a proof for f_{r}^{\sharp}. Consider a map $\mathcal{F}_{r}: \mathcal{U}_{r}(\Omega) \rightarrow \mathcal{F}_{i_{r}}\left(X^{\prime}\right)$ defined by

$$
\mathcal{F}_{r}(P, \sigma)=f_{r}^{\sharp}(\sigma)
$$

Suppose \mathcal{F}_{r} is a meromorphic map. Then by taking a local holomorphic section of the fibration $\pi_{2}: \mathcal{U}_{r}(\Omega) \rightarrow \mathcal{D}_{r}(\Omega)$, we can complete the proof.

Let

$$
\mathcal{M}:=\left\{\left(y, \sigma^{\prime}\right) \in X^{\prime} \times \mathcal{F}_{i_{r}}\left(X^{\prime}\right): y \in X_{\sigma^{\prime}}^{\prime}\right\} .
$$

Then as above, there exist a double fibration

$$
\pi_{1}^{\prime}: \mathcal{M} \rightarrow X^{\prime}, \quad \pi_{2}^{\prime}: \mathcal{M} \rightarrow \mathcal{F}_{i_{r}}\left(X^{\prime}\right)
$$

and a holomorphic embedding of \mathcal{M} into $\mathcal{G}\left(n_{r}^{\prime}, T X^{\prime}\right)$ for $n_{r}^{\prime}=\operatorname{dim} X_{\sigma^{\prime}}^{\prime}$. Hence we may regard \mathcal{M} as a closed submanifold of $\mathcal{G}\left(n_{r}^{\prime}, T X^{\prime}\right)$.

We regard X^{\prime} as a submanifold in the matrix space $\operatorname{Hom}\left(E, V_{X^{\prime}} / E\right)$ on a small neighborhood of $E \in X^{\prime}$. Fix a point $P_{0} \in X$ and let $E=f\left(P_{0}\right)$. Let $(P, \sigma) \in \mathcal{U}_{r}(\Omega)$ for P sufficiently close to P_{0}. Consider a subspace

$$
\mathcal{N}_{(P, \sigma)}^{k}:=\operatorname{Span}_{\mathbb{C}}\left\{\partial^{\alpha}\left(\left.f\right|_{X_{\sigma}}\right)(P):|\alpha| \leq k\right\} \subset \operatorname{Hom}\left(E, V_{X^{\prime}} / E\right)
$$

Then there exists an integer k_{0} such that for a general pair (P, σ),

$$
\mathcal{N}_{(P, \sigma)}^{k}=\mathcal{N}_{(P, \sigma)}^{k+1}, \quad k \geq k_{0} .
$$

Define

$$
R_{(P, \sigma)}:=\operatorname{Span}_{\mathbb{C}}\left\{\operatorname{Im}(A): A \in \mathcal{N}_{(P, \sigma)}^{k_{0}}\right\}, \quad K_{(P, \sigma)}:=\bigcap\left\{\operatorname{Ker}(A): A \in \mathcal{N}_{(P, \sigma)}^{k_{0}}\right\} .
$$

Then

$$
G r_{(P, \sigma)}:=\left\{A \in \operatorname{Hom}\left(E, R_{(P, \sigma)}\right): \operatorname{Ker}(A) \supset K_{(P, \sigma)}\right\}
$$

is a linear subspace in $\operatorname{Hom}\left(E, V_{X^{\prime}} / E\right)$ such that

$$
T_{f(P)} X_{f_{r}^{\sharp}(\sigma)}^{\prime}=G r_{(P, \sigma)}
$$

for a general pair (P, σ) by minimality of $X_{f_{r}^{\sharp}(\sigma)}^{\prime}$. Moreover the defining function of $G r_{(P, \sigma)}$ depends meromorphically on the k_{0}-th jet of f at P and $T_{P} X_{\sigma}$. Hence the closure of

$$
\left\{\left(P, \sigma, f(P), G r_{(P, \sigma)}\right):(P, \sigma) \in \mathcal{U}_{r}(\Omega) \backslash S\left(f_{r}^{\sharp}\right)\right\}
$$

in $\mathcal{U}_{r}(\Omega) \times \mathcal{M}$ is an analytic variety whose defining function depends meromorphically on the k_{0}-th jet of f, where we let

$$
S\left(f_{r}^{\sharp}\right):=\left\{(P, \sigma): \operatorname{dim} G r_{(P, \sigma)} \text { is not maximal }\right\},
$$

implying that \mathcal{F}_{r} is a meromorphic map.
Lemma 6.2. f_{r}^{\sharp} has a rational extension $f_{r}^{\sharp}: \mathcal{D}_{r}(X) \rightarrow \mathcal{F}_{i_{r}}\left(X^{\prime}\right)$.
Proof. By using Lemma 2.2, the same proof of Proposition 2.6 in MT92 can be applied.
Since f_{r}^{\sharp} is rational and $\mathcal{D}_{r}\left(S_{k}(\Omega)\right)$ is not contained in any complex subvariety, we obtain

$$
\operatorname{Dom}\left(f_{r}^{\sharp}\right) \cap \mathcal{D}_{r}\left(S_{k}(X)\right) \neq \emptyset
$$

Lemma 6.3. For each $k \geq r$, there exists m_{k} depending only on k such that

$$
f_{r}^{\sharp}\left(\mathcal{D}_{r}\left(S_{k}(X)\right) \cap \operatorname{Dom}\left(f_{r}^{\sharp}\right)\right) \subset \mathcal{F}_{i_{r}}\left(S_{m_{k}}\left(X^{\prime}\right)\right) .
$$

Proof. We will prove the lemma when X is of type I. The same proof can be applied to other types.

Let $\sigma_{0} \in \mathcal{D}_{r}\left(S_{k}(X)\right) \cap \operatorname{Dom}\left(f_{r}^{\sharp}\right)$. Then $X_{\sigma_{0}} \cap S_{k}$ is a complex manifold in S_{k}. Therefore we can choose a totally geodesic subspace of Ω of the form $\Delta^{q-k} \times \Omega_{0}$ such that $X_{\sigma_{0}} \cap S_{k}=\left\{t_{0}\right\} \times \Omega_{0}$ for some $t_{0} \in(\partial \Delta)^{q-k}$. Choose a sequence $t_{j} \in \Delta^{q-r}, j=1,2, \ldots$, converging to t_{0} and let $\sigma_{j} \in \mathcal{D}_{r}(\Omega)$ be the characteristic subspaces such that $X_{\sigma_{j}} \cap \Omega=\left\{t_{j}\right\} \times \Omega_{0}$. Fix a point $x_{0} \in \Omega_{0}$. By passing to a subsequence, we may assume that $f\left(t_{j}, x_{0}\right), j=1,2, \ldots$, converges. Since f is proper, the limit $y=\lim _{j \rightarrow \infty} f\left(t_{j}, x_{0}\right)$ is in the boundary of Ω^{\prime}. Since Ω^{\prime} is convex, there exists a complex linear supporting function h of Ω^{\prime} such that $h(y)=0$. Since $h \circ f$ is bounded, we may assume that $h_{j}:=\left.h \circ f\right|_{\left\{t_{j}\right\} \times \Omega_{0}}$ is a convergent sequence that converges to H. Since h_{j} never vanishes while its limit vanishes at x_{0}, H is a trivial function, i.e., cluster points of $\left\{f\left(t_{j}, x\right): j=1,2, \ldots\right\}$ for any $x \in \Omega_{0}$ is in the zero set of h. Since h is arbitrary, the limit set of $f\left(\left\{t_{j}\right\} \times \Omega_{0}\right)$ should be in a boundary component of Ω^{\prime} which contains y. Let $S_{m}\left(X^{\prime}\right)$ be a boundary orbit containing y. Since $\sigma_{0} \in \operatorname{Dom}\left(f_{r}^{\sharp}\right)$, we may assume $f_{r}^{\sharp}\left(\sigma_{j}\right)$ converges to $f_{r}^{\sharp}\left(\sigma_{0}\right)$. Then, $X_{f_{r}^{\sharp}\left(\sigma_{0}\right)}^{\prime}$ contains the limit set of $f\left(\left\{t_{j}\right\} \times \Omega_{0}\right)$, which implies $f_{r}^{\sharp}\left(\sigma_{0}\right) \in \mathcal{F}_{i_{r}}\left(S_{m}^{\prime}\left(X^{\prime}\right)\right)$. In particular, we obtain

$$
f_{r}^{\sharp}(\sigma) \in \mathcal{F}_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)
$$

for a general member $\left.\sigma \in \mathcal{D}_{r}\left(S_{k}(X)\right) \cap \operatorname{Dom}\left(f_{r}^{\sharp}\right)\right)$. By continuity of f_{r}^{\sharp}, we obtain

$$
\left.f_{r}^{\sharp}\left(\mathcal{D}_{r}\left(S_{k}(X)\right) \cap \operatorname{Dom}\left(f_{r}^{\sharp}\right)\right)\right) \subset \mathcal{F}_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right) .
$$

Next we will show that m depends only on k. Since $S_{k}(X)$ is foliated by boundary components of rank k, for any $\sigma \in \mathcal{D}_{r}\left(S_{k}\right)$, there exists a unique $\mu \in \mathcal{D}_{k}\left(S_{k}\right)$ such that $X_{\sigma} \cap S_{k} \subset X_{\mu} \cap S_{k}$. Then $f_{r}^{\sharp}(\sigma)$ should be contained in $f_{k}^{\sharp}(\mu)$. Hence m depends only on k.

Recall that

$$
D_{r}(X)=\operatorname{pr}\left(\mathcal{D}_{r}(X)\right), \quad \Sigma_{r}(X)=\operatorname{pr}\left(\mathcal{D}_{r}\left(S_{r}(X)\right)\right)
$$

where $p r: \mathcal{F}\left(a, b ; V_{X}\right) \rightarrow G r\left(a, V_{X}\right)$ is a projection map defined by

$$
p r\left(V_{1}, V_{2}\right)=V_{1} .
$$

Define

$$
D_{r}\left(S_{m}(X)\right):=\operatorname{pr}\left(\mathcal{D}_{r}\left(S_{m}(X)\right)\right)
$$

Define

$$
\begin{aligned}
F_{i_{r}}\left(X^{\prime}\right) & :=\operatorname{pr}^{\prime}\left(\mathcal{F}_{i_{r}}\left(X^{\prime}\right)\right), \\
F_{i_{r, 1 / 2}}\left(X^{\prime}\right) & :=\operatorname{pr}^{\prime}\left(\mathcal{F}_{r, 1 / 2}\left(X^{\prime}\right)\right), \\
F_{i_{r}}\left(\Omega^{\prime}\right) & :=\operatorname{pr}^{\prime}\left(\mathcal{F}_{i_{r}}\left(\Omega^{\prime}\right)\right), \\
F_{i_{r, 1 / 2}}\left(\Omega^{\prime}\right) & :=\operatorname{pr}^{\prime}\left(\mathcal{F}_{i_{r, 1 / 2}}\left(\Omega^{\prime}\right)\right), \\
F_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right) & :=\operatorname{pr}^{\prime}\left(\mathcal{F}_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)\right),
\end{aligned}
$$

where $p r^{\prime}: \mathcal{F}\left(a, b ; V_{X^{\prime}}\right) \rightarrow \operatorname{Gr}\left(a, V_{X^{\prime}}\right)$ is a projection map defined as above. $F_{i_{r}}\left(X^{\prime}\right)$ is one of $G r\left(a_{r}, \mathbb{C}^{p^{\prime}+q^{\prime}}\right), \operatorname{OGr}\left(a_{r}, \mathbb{C}^{2 n^{\prime}}\right), \operatorname{SGr}\left(a_{r}, \mathbb{C}^{2 n^{\prime}}\right)$ according to the type of X^{\prime} and $F_{i_{r, 1 / 2}}\left(X^{\prime}\right)$ is $\operatorname{SGr}\left(a_{i_{r, 1 / 2}}, \mathbb{C}^{2 n^{\prime}}\right)$. Note that $F_{i_{r}}\left(X^{\prime}\right), F_{i_{r}}\left(\Omega^{\prime}\right)$ and $F_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)$ can be expressed as subsets of $D_{r^{\prime}}(Y), D_{r^{\prime}}\left(\Omega_{Y}\right)$ and $D_{r^{\prime}}\left(S_{m^{\prime}}(Y)\right)$, respectively for suitable Hermitian symmetric space Y and its dual bounded symmetric domain $\Omega_{Y} \subset Y$. For instance, if X^{\prime} is one of the type I and III, then we can choose Y to be X^{\prime} itself and if X^{\prime} is of type II and $n^{\prime}-a_{r}$ is odd, then we may regard $O G r\left(a_{r}, \mathbb{C}^{2 n^{\prime}}\right)$ as a submanifold in $O G r\left(a_{r}, \mathbb{C}^{2 n^{\prime}+2}\right)=D_{r^{\prime}}\left(O G r_{n^{\prime}+1}\right)$ for suitable r^{\prime} by embedding $O G r_{n}$ into $O G r_{n+1}$ in a usual way.

Lemma 6.4. There exists a holomorphic map f_{r}^{b} defined on a neighborhood U of $\Sigma_{r}(X) \cap$ $\operatorname{pr}\left(\operatorname{Dom}\left(f_{r}^{\sharp}\right)\right), f_{r}^{b}: U \rightarrow F_{i_{r}}\left(X^{\prime}\right)$, such that

$$
p r^{\prime} \circ f_{r}^{\sharp}=f_{r}^{b} \circ p r .
$$

Moreover, f_{r}^{b} has a rational extension to $D_{r}(X)$.
Proof. Since $p r: \mathcal{D}_{r}(X) \rightarrow D_{r}(X)$ is a biholomorphic map if X is of type II or III, $f_{r}^{b}:=p r^{\prime} \circ f_{r}^{\sharp} \circ$ $p r^{-1}$ satisfies the condition. Hence it is enough to prove the lemma when X is type I. In this case, by Lemma 3.4, we can define a smooth CR map by

$$
f_{r}^{b}:=p r^{\prime} \circ f_{r}^{\sharp} \circ p r^{-1}: \Sigma_{r}(X) \cap p r\left(\operatorname{Dom}\left(f_{r}^{\sharp}\right)\right) \rightarrow F_{i_{r}}\left(X^{\prime}\right) .
$$

Then by Lemma 3.8 and analytic disc attaching method ([BER99]), f_{r}^{b} extends holomorphically to a neighborhood of $\Sigma_{r}(X) \cap \operatorname{pr}\left(\operatorname{Dom}\left(f_{r}^{\sharp}\right)\right)$.

Let

$$
\Gamma_{r}^{\sharp}:=\overline{\left\{\left(x, f_{r}^{\sharp}(x)\right): x \in \operatorname{Dom}\left(f_{r}^{\sharp}\right)\right\}}
$$

be the closure of the graph of f_{r}^{\sharp}. Since f_{r}^{\sharp} is a rational map, Γ_{r}^{\sharp} and its image under the map

$$
\pi=p r \times p r^{\prime}: \mathcal{D}_{r}(X) \times \mathcal{F}_{i_{r}}\left(X^{\prime}\right) \rightarrow D_{r}(X) \times F_{i_{r}}\left(X^{\prime}\right)
$$

are irreducible closed varieties. Moreover, since f_{r}^{b} satisfies

$$
p r^{\prime} \circ f_{r}^{\sharp}=f_{r}^{b} \circ p r,
$$

we obtain

$$
\left\{\left(y, f_{r}^{b}(y)\right): y \in \operatorname{Dom}\left(f_{r}^{b}\right)\right\} \subset \pi\left(\Gamma_{r}^{\sharp}\right)
$$

as an open subset. Therefore, f_{r}^{b} extends to $D_{r}(X)$ as a meromorphic map whose graph is a dense open subset of $\pi\left(\Gamma_{r}^{\sharp}\right)$. Since $D_{r}(X)$ is a rational variety, by [C49], f_{r}^{b} is also rational.

Note that since f is proper, we obtain

$$
f_{r}^{b}\left(D_{r}(\Omega)\right) \cap F_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)=\emptyset, \quad \forall m \geq 1
$$

Moreover, by Lemma 6.3, we obtain

$$
\left(f_{r}^{b}\right)^{-1}\left(F_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)\right) \subset D_{r}\left(S_{\ell}(X)\right)
$$

for some $m \geq \ell$.
Fix r. For $\tau^{\prime} \in \mathcal{F}_{i_{s}}\left(X^{\prime}\right)$ with $s<r$, define

$$
\begin{array}{cl}
\mathcal{Z}_{\tau^{\prime}}^{\prime}:=\left\{\sigma^{\prime} \in \mathcal{F}_{i_{r}}\left(X^{\prime}\right): X_{\sigma^{\prime}}^{\prime} \supset X_{\tau^{\prime}}^{\prime}\right\}, \quad Z_{\tau^{\prime}}^{\prime}=p r^{\prime}\left(\mathcal{Z}_{\tau^{\prime}}^{\prime}\right), \\
\left(\mathcal{Z}_{\tau^{\prime}}^{1 / 2}\right)^{\prime}:=\left\{\sigma^{\prime} \in \mathcal{F}_{i_{r, 1 / 2}}\left(X^{\prime}\right): X_{\sigma^{\prime}}^{\prime} \supset X_{\tau^{\prime}}^{\prime}\right\}, \quad\left(Z_{\tau^{\prime}}^{1 / 2}\right)^{\prime}=p r^{\prime}\left(\mathcal{Z}_{\tau^{\prime}}^{1 / 2}\right)
\end{array}
$$

and for $\mu^{\prime} \in \mathcal{F}_{i_{s}}\left(X^{\prime}\right)$ with $s>r$, define

$$
\mathcal{Q}_{\mu^{\prime}}^{\prime}:=\left\{\left[\sigma^{\prime}\right] \in \mathcal{F}_{i_{r}}\left(X^{\prime}\right): X_{\sigma^{\prime}}^{\prime} \subset X_{\mu^{\prime}}^{\prime}\right\}, \quad Q_{\mu^{\prime}}^{\prime}=p r^{\prime}\left(\mathcal{Q}_{\mu^{\prime}}^{\prime}\right)
$$

Lemma 6.5. Let $s<r$. Then f_{r}^{b} satisfies

$$
f_{r}^{b}\left(Z_{\tau} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Z_{f_{s}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s}(\Omega)} \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)
$$

and

$$
f_{r}^{b}\left(Z_{\tau} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Z_{f_{s, 1 / 2}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s, 1 / 2}(\Omega)} \cap \operatorname{Dom}\left(f_{s, 1 / 2}^{\sharp}\right) .
$$

Similarly $f_{r, 1 / 2}^{b}$ satisfies

$$
f_{r, 1 / 2}^{b}\left(Z_{\tau} \cap \operatorname{Dom}\left(f_{r, 1 / 2}^{b}\right)\right) \subset Z_{f_{s}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s}(\Omega)} \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)
$$

and

$$
f_{r, 1 / 2}^{b}\left(Z_{\tau} \cap \operatorname{Dom}\left(f_{r, 1 / 2}^{b}\right)\right) \subset Z_{f_{s, 1 / 2}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s, 1 / 2}(\Omega)} \cap \operatorname{Dom}\left(f_{s, 1 / 2}^{\sharp}\right) .
$$

Proof. First assume that $\tau \in \mathcal{D}_{s}(\Omega)$. Choose $\sigma \in \mathcal{D}_{r}(\Omega)$ such that $\sigma \in \mathcal{Z}_{\tau}$, i.e.,

$$
\emptyset \neq X_{\tau} \cap \Omega \subset X_{\sigma} \cap \Omega
$$

Since

$$
f\left(X_{\tau} \cap \Omega\right) \subset f\left(X_{\sigma} \cap \Omega\right)
$$

$f\left(X_{\tau} \cap \Omega\right)$ is contained in any characteristic subspace containing $f\left(X_{\sigma} \cap \Omega\right)$. Since $X_{f_{s}^{\sharp}(\tau)}^{\prime}$ is the intersection of all characteristic subspaces containing $f\left(X_{\tau} \cap \Omega\right)$, we obtain

$$
X_{f_{s}^{\sharp}(\tau)}^{\prime} \subset Y
$$

for any characteristic subspace Y containing $f\left(X_{\sigma} \cap \Omega\right)$. Since $f_{r}^{\sharp}(\sigma)$ is the intersection of all characteristic subspaces containing $f\left(X_{\sigma} \cap \Omega\right)$, we obtain

$$
X_{f_{s}^{\sharp}(\tau)}^{\prime} \subset X_{f_{r}^{\sharp}(\sigma)}^{\prime},
$$

i.e.,

$$
\begin{equation*}
p r^{\prime}\left(f_{r}^{\sharp}(\sigma)\right) \in Z_{f_{s}^{\sharp}(\tau)}^{\prime}, \tag{6.1}
\end{equation*}
$$

which implies

$$
f_{r}^{b}\left(Z_{\tau} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Z_{f_{s}^{\sharp}(\tau)}^{\prime} .
$$

Let $\tau \in \partial \mathcal{D}_{s}(\Omega) \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)$. Choose a sequence $\tau_{j}, j=1,2, \ldots$ in $\mathcal{D}_{s}(\Omega) \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)$ that converges to τ. Since $\operatorname{pr}(\sigma) \in Z_{\tau}$ if and only if $\operatorname{pr}(\tau) \subset \operatorname{pr}(\sigma)$ as subspaces of V_{X}, for any $\operatorname{pr}(\sigma) \in Z_{\tau}$, there exists a sequence $\operatorname{pr}\left(\sigma_{j}\right) \in Z_{\tau_{j}}, j=1,2, \ldots$, that converges to $\operatorname{pr}(\sigma)$. By (6.1), we obtain

$$
p r^{\prime}\left(f_{s}^{\sharp}\left(\tau_{j}\right)\right) \subset p r^{\prime}\left(f_{r}^{\sharp}\left(\sigma_{j}\right)\right) .
$$

By taking limits, we obtain

$$
p^{\prime}\left(f_{s}^{\sharp}(\tau)\right) \subset p r^{\prime}\left(f_{r}^{\sharp}(\sigma)\right),
$$

i.e.,

$$
p^{\prime}\left(f_{r}^{\sharp}(\sigma)\right) \in Z_{f_{s}^{\sharp}(\tau)}^{\prime} .
$$

The same argument can be applied to other cases, which completes the proof.
Similarly, we obtain
Lemma 6.6. Let $s>r$. Then f_{r}^{b} satisfies

$$
f_{r}^{b}\left(Q_{\tau} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Q_{f_{s}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s}(\Omega)} \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)
$$

and

$$
f_{r}^{b}\left(Q_{\tau} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Q_{f_{s, 1 / 2}}^{\prime}(\tau), \quad \tau \in \overline{\mathcal{D}_{s, 1 / 2}(\Omega)} \cap \operatorname{Dom}\left(f_{s, 1 / 2}^{\sharp}\right) .
$$

Similarly $f_{r, 1 / 2}^{b}$ satisfies

$$
f_{r, 1 / 2}^{b}\left(Q_{\tau} \cap \operatorname{Dom}\left(f_{r, 1 / 2}^{b}\right)\right) \subset Q_{f_{s}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s}(\Omega)} \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)
$$

and

$$
f_{r, 1 / 2}^{b}\left(Q_{\tau} \cap \operatorname{Dom}\left(f_{r, 1 / 2}^{b}\right)\right) \subset Q_{f_{s, 1 / 2}^{\sharp}(\tau)}^{\prime}, \quad \tau \in \overline{\mathcal{D}_{s, 1 / 2}(\Omega)} \cap \operatorname{Dom}\left(f_{s, 1 / 2}^{\sharp}\right) .
$$

Lemma 6.7. Let Ω_{ρ} be a general rank s boundary component of Ω and let $\sigma \in \mathcal{D}_{r}\left(S_{s}(X)\right)$ be a general point such that $\Omega_{\sigma} \subset \Omega_{\rho}$. Suppose there exists a boundary component $\Omega_{\mu^{\prime}}^{\prime}$ of Ω^{\prime} such that

$$
\Omega_{f_{r}^{\sharp}(\sigma)}^{\prime} \subset \Omega_{\mu^{\prime}}^{\prime} .
$$

Then for all general $\nu \in \mathcal{D}_{r}\left(S_{s}(X)\right)$ such that $\Omega_{\nu} \subset \Omega_{\rho}$,

$$
\Omega_{f_{r}^{\sharp}(\nu)}^{\prime} \subset \Omega_{\mu^{\prime}}^{\prime}
$$

As a consequence,

$$
f_{r}^{b}\left(Q_{\rho} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Q_{\mu^{\prime}}^{\prime} .
$$

Proof. Let $\Omega_{\nu} \subset \Omega_{\rho}$. Choose a sequence $\left\{\rho_{j}\right\}_{j} \subset \mathcal{D}_{s}(\Omega) \cap \operatorname{Dom}\left(f_{s}^{\sharp}\right)$ as in the proof of Lemma 6.3 that converges to ρ. Since Ω_{σ} and Ω_{ν} are contained in Ω_{ρ}, we can choose sequences $\left\{\sigma_{j}\right\}_{j}$ and $\left\{\nu_{j}\right\}_{j}$ converging to σ and ν, respectively such that $\Omega_{\sigma_{j}} \cup \Omega_{\nu_{j}} \subset \Omega_{\rho_{j}}$. Since $\Omega_{\sigma_{j}}$ and $\Omega_{\nu_{j}}$ are contained in the same characteristic subdomain of Ω, we can choose $x_{j} \in \Omega_{\sigma_{j}}$ and $y_{j} \in \Omega_{\nu_{j}}$ such that Kobayashi distance between x_{j} and y_{j} is bounded above by a fixed constant C independently of j. Since f is holomorphic, Kobayashi distance between $f\left(x_{j}\right)$ and $f\left(y_{j}\right)$ is bounded above by the same constant C. Therefore any cluster points of $\left\{f\left(x_{j}\right)\right\}$ and $\left\{f\left(y_{j}\right)\right\}$ should be contained in the same boundary component. Hence by the same argument as in the proof of Lemma 6.3, $\Omega_{f_{r(\sigma)}^{\prime}}$ and $\Omega_{f_{r}^{\sharp}(\nu)}^{\prime}$ should be contained in the same boundary component.

Now consider all moduli maps

$$
f_{r}^{b}: D_{r}(X) \rightarrow F_{i_{r}}\left(X^{\prime}\right), \quad r=1, \ldots, q-1
$$

Lemma 6.8. For each r, we have $i_{r-1}<i_{r}$. Furthermore, if X is of type II, then $i_{r-1}<i_{r-1,1 / 2}<$ i_{r} for $r=2, \ldots, q-1$.

Proof. By definition, we obtain $i_{r-1} \leq i_{r}$. Suppose $i_{r-1}=i_{r}$. Let $\tau \in \mathcal{D}_{r-1}(\Omega) \cap \operatorname{Dom}\left(f_{r-1}^{\sharp}\right)$ and let $V \in Z_{\tau}$. By Lemma 6.5, we obtain

$$
f_{r}^{b}(V) \in Z_{f_{r-1}^{\sharp}(\tau)}^{\prime},
$$

which implies that as a subspace of $V_{X^{\prime}}$,

$$
f_{r}^{b}(V) \subset p r^{\prime} \circ f_{r-1}^{\sharp}(\tau)
$$

Since $i_{r}=i_{r-1}$ by assumption, we obtain

$$
\operatorname{dim} f_{r}^{b}(V)=\operatorname{dim} p r^{\prime} \circ f_{r-1}^{\sharp}(\tau)
$$

and hence

$$
f_{r}^{b}(V)=p r^{\prime} \circ f_{r-1}^{\sharp}(\tau)
$$

i.e., f_{r}^{b} is constant on Z_{τ}. Since $D_{r}(\Omega)$ is Z_{τ}-connected, we obtain that f_{r}^{b} is a constant map. On the other hand, by Lemma 6.3, we obtain

$$
f_{r}^{\sharp}\left(\mathcal{D}_{r}(X)\right) \cap \mathcal{F}_{i_{r}}\left(S_{k}\left(X^{\prime}\right)\right) \neq \emptyset
$$

for some k, which implies

$$
f_{r}^{b}(V)=p r^{\prime}\left(\mu^{\prime}\right)
$$

for some fixed $\mu^{\prime} \in \mathcal{F}_{i_{r}}\left(S_{k}\left(X^{\prime}\right)\right)$. In particular,

$$
f(\Omega) \subset S_{k}\left(X^{\prime}\right)
$$

contradicting the assumption that f is a proper holomorphic map between Ω and Ω^{\prime}.
Now suppose $\Omega=D_{n}^{I I}$ and $i_{r-1, \frac{1}{2}}=i_{r}$. Then by the similar argument given above, we obtain that f_{r}^{b} is a constant map which is a contradiction. Suppose $i_{r-1}=i_{r-1, \frac{1}{2}}$. Then again by the similar argument, we obtain that $f_{r-1, \frac{1}{2}}^{b}$ is a constant map on $D_{r-1, \frac{1}{2}}(\Omega)$. Since

$$
X_{\mu}=\bigcup_{\sigma \in Q_{\mu}^{1 / 2}} X_{\sigma}, \quad \mu \in \mathcal{D}_{r}(X)
$$

f_{r}^{b} is also constant which is a contradiction.

7. Rigidity of the induced moduli map

Let $\left(\Omega, \Omega^{\prime}\right)$ be a pair of bounded symmetric domains with rank q and q^{\prime}, respectively that satisfies the conditions in Theorem 1.2 or Theorem 1.3 . Suppose that X and X^{\prime} are one of the type I and III, $i_{r} \geq i_{r-1}+2$ for all $r=1, \ldots, q-1$, where we let $i_{0}=0$. Since

$$
i_{q-1} \leq q^{\prime}-1<2 q-2=2(q-1)
$$

this is impossible. Hence there exists $r \geq 1$ such that $i_{r}=i_{r-1}+1$. Similarly by Lemma 6.8, we obtain that if X and X^{\prime} are of the type II, then $2 \leq i_{r} \leq 2(2 q-3)$ and there exists r such that $i_{r}=i_{r-1, \frac{1}{2}}+1$ or $i_{r, \frac{1}{2}}=i_{r}+1$. If X is of the type II, X^{\prime} is one of the type I and III, then the only possible case is $q^{\prime}=2[n / 2]-1$ and $i_{1}=1, i_{r}=i_{r-1}+2, r>1$. In this section, we will show the rigidity of the induced moduli map f_{r}^{b} for such r. More precisely, we will prove the following.

Lemma 7.1. There exists r such that f_{r}^{b} extends to a trivial embedding.
The proof of Lemma 7.1 will be given in several steps. Let r be an integer such that

$$
\begin{equation*}
i_{r}=i_{r-1}+1 \tag{7.1}
\end{equation*}
$$

whenever X^{\prime} is of type I or III. If X and X^{\prime} are both of type II, then we let $r=1$ if $i_{1}=2$ and we let $1<r$ be an integer such that

$$
i_{r-1, \frac{1}{2}}=i_{r-1}+1 \quad \text { or } \quad i_{r}=i_{r-1, \frac{1}{2}}+1
$$

if $i_{1}>2$.
Proof of Lemma 7.1 when $r=1$: In this case we obtain

$$
f_{1}^{b}\left(D_{1}(X)\right) \subset p r^{\prime}\left(\mathcal{D}_{1}\left(X^{\prime}\right)\right)
$$

In particular f sends minimal discs of Ω into balls in Ω^{\prime}. Hence by M08b, and N15a, f is a totally geodesic isometric embedding and preserves the variety of minimal rational tangents. Let $0 \in \Omega$ be a general point. Assume that $f(0)=0$. Since $d f$ preserves VMRT, $d f_{0}: T_{0}(X) \rightarrow T_{0}\left(X^{\prime}\right)$ is an embedding that preserves rank one vectors. For instance if $X=L G r_{n}$ and $X^{\prime}=G r\left(q^{\prime}, \mathbb{C}^{p^{\prime}+q^{\prime}}\right)$, then $d f_{0}$ satisfies

$$
\left[d f_{0}\right]\left[S^{2} v\right]=[a \otimes b]
$$

for some a and b. Consider

$$
\left[d f_{0}\right]\left[S^{2}\left(v_{0}+t v_{1}\right)\right]=\left[a_{t} \otimes b_{t}\right], \quad t \in \mathbb{R} .
$$

By comparing the coefficient of t^{k}, we obtain that either one of a_{t} and b_{t} is constant or $a_{t}=a_{0}+t a_{1}$ and $b_{t}=b_{0}+t b_{1}$. In the first case, we obtain that $\left[d f_{0}\right]$ maps $\mathbb{P} T_{0} X$ into $\mathscr{C}_{0}\left(X^{\prime}\right)$. Since the holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ is already known be a totally geodesic isometric embedding, it would follow that $S:=f(\Omega) \subset \Omega^{\prime}$ is a Hermitian symmetric subspace of rank-1, which is impossible given that Ω is not biholomorphic to a complex unit ball. Hence the second case holds. Since v_{0} and v_{1} are arbitrary, we obtain

$$
\left[d f_{0}\right]\left[S^{2} v\right]=\left[L_{1}(v) \otimes L_{2}(v)\right]
$$

for some linear embeddings L_{1} and L_{2}. After composing with a suitable automorphism of X^{\prime}, we may assume without loss of generality

$$
\left[d f_{0}\right]\left(S^{2} v\right)=\left[\imath_{1}(v) \otimes \imath_{2}(v)\right]
$$

where $\imath_{1}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p^{\prime}}$ and $\iota_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{q^{\prime}}$ are trivial embeddings. Since f is an isometric embedding and the set of all rank one vectors spans $T_{0}(X)$, this implies that $f: D_{n}^{I I I} \rightarrow D_{p^{\prime}, q^{\prime}}^{I}$ is a trivial embedding. The same argument can be applied to the other cases.

Proof of Lemma 7.1 when $2 \leq r<q-1$: In this case, as subgrassmannians in $D_{r}(X)$ and $F_{i_{r}}\left(X^{\prime}\right)$, respectively, we have

$$
\begin{equation*}
\operatorname{rank} Z_{\tau} \geq 2, \quad \tau \in \mathcal{D}_{0}(X) \tag{7.2}
\end{equation*}
$$

and

$$
\operatorname{rank} Z_{\tau^{\prime}}^{\prime} \geq 2, \quad \tau^{\prime} \in \mathcal{D}_{0}\left(X^{\prime}\right)
$$

If X and X^{\prime} are of type II, then as subgrassmannians in $D_{r-1}(X)$ and $F_{i_{r-1}}\left(X^{\prime}\right)$, respectively, we have

$$
\operatorname{rank} Z_{\tau} \geq 2, \quad \tau \in \mathcal{D}_{0}(X)
$$

and

$$
\operatorname{rank} Z_{\tau^{\prime}}^{\prime} \geq 2, \quad \tau^{\prime} \in \mathcal{D}_{0}\left(X^{\prime}\right)
$$

Therefore the following two lemmas and Lemma 5.3 will complete the proof.
Lemma 7.2. $f_{r}^{b}: \operatorname{Dom}\left(f_{r}^{b}\right) \subset D_{r}(X) \rightarrow F_{i_{r}}\left(X^{\prime}\right)$ or $f_{r-1}^{b}: \operatorname{Dom}\left(f_{r-1}^{b}\right) \subset D_{r}(X) \rightarrow F_{i_{r-1}}\left(X^{\prime}\right)$ respects subgrassmannian distributions.

Proof. Suppose that X is of the type I or III and $i_{r}=i_{r-1}+1$. Then by Table 2 and Lemma 6.5, we can show that f_{r}^{b} maps all rank one vectors in $T Z_{\tau}, \tau \in \mathcal{D}_{0}(X)$ into rank one vectors in $T Z_{f_{0}^{\prime}(\tau)}^{\prime}$. Then by Mok's result (M 08 b$]$) and (7.2), we obtain that either f_{r}^{b} restricted to each general maximal subgrassmannians in $D_{r}(X)$ is a standard embedding or the image of f_{r}^{b} is contained in a fixed rank one subspace in $F_{i_{r}}\left(X^{\prime}\right)$. But since f is proper, the latter case does not happen.

Suppose that X and X^{\prime} are of the type II. Note that in this case, $f_{r}^{\sharp}=f_{r}^{b}$. Suppose that $i_{r}=i_{r-1, \frac{1}{2}}+1$. Then by the similar argument above we can show that $f_{r}^{b}: \operatorname{Dom}\left(f_{r}^{b}\right) \subset D_{r}(X) \rightarrow$ $F_{i_{r}}\left(X^{\prime}\right)$ respects subgrassmannian distribution. Now suppose $i_{r-1, \frac{1}{2}}=i_{r-1}+1$. Then by the similar argument, we can show that $f_{r-1, \frac{1}{2}}^{b}$ respects subgrassmannian distributions. Let $\tau \in D_{0}(\Omega)$ so that $Z_{\tau} \subset D_{r-1}(\Omega)$. Then it is enough to show that f_{r-1}^{\sharp} is a standard map on Z_{τ} for all $\tau \in D_{0}(\Omega)$. Let

$$
Z_{\tau}^{r-1}=G r(a, V)
$$

Then

$$
Z_{\tau}^{r-1, \frac{1}{2}}=G r(a-1, V)
$$

and by assumption, $f_{r-1, \frac{1}{2}}^{\sharp}: G r(a-1, V) \rightarrow G r\left(b, V^{\prime}\right)$ is a standard embedding for some $G r\left(b, V^{\prime}\right)=$ $Z_{\tau^{\prime}}^{\prime}$. For a fixed $\xi \in G r(a-1, V)$, consider a rank one subspace

$$
L_{\xi}:=\{[\xi \oplus W] \in G r(a, V): W \in G r(1, V), W \not \subset \xi\} .
$$

Then for each $[\xi \oplus W] \in L_{\xi}$, there exists $\sigma_{W} \in Z_{\tau}^{r-1, \frac{1}{2}}$ such that

$$
X_{[\xi \oplus W]}=X_{\xi} \cap X_{\sigma_{W}}
$$

where $X_{[\xi \oplus W]}$ is the rank $r-1$ characteristic subspace corresponding to $[\xi \oplus W]$ and X_{ξ} and $X_{\sigma_{W}}$ are totally invariantly geodesic subspaces corresponding to ξ and σ_{W}, respectively. By the definition of f_{r-1}^{\sharp}, for $\eta_{W}=[\xi \oplus W] \in L_{\xi}$, we have

$$
X_{f_{r-1}^{\sharp}\left(\eta_{W}\right)}^{\prime}=\bigcap_{\eta^{\prime}} X_{\eta^{\prime}}^{\prime} \subset X_{f_{r-1, \frac{1}{2}}^{\sharp}}^{\prime}(\xi) \cap X_{f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right)}^{\prime}
$$

where the first intersection is taken over all characteristic subspaces $X_{\eta^{\prime}}^{\prime}$ containing $f\left(\Omega \cap X_{\eta_{W}}\right)$. Since $i_{r-1, \frac{1}{2}}=i_{r-1}+1$, this inclusion implies

$$
X_{f_{r-1}^{\sharp}\left(\eta_{W}\right)}^{\prime}=X_{f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{0}\right)}^{\prime} \cap X_{f_{r-1, \frac{1}{2}}^{\sharp}}^{\prime}\left(\sigma_{W}\right)=X_{f_{r-1, \frac{1}{2}}^{\sharp}(\xi)+f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right)}^{\prime}
$$

and $f_{r-1, \frac{1}{2}}^{\sharp}(\xi)$ is a codimension one subspace of $f_{r-1, \frac{1}{2}}^{\sharp}(\xi)+f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right)$. Here $f_{r-1, \frac{1}{2}}^{\sharp}(\xi)+f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right)$ is the smallest subspace in V^{\prime} that contains $f_{r-1, \frac{1}{2}}^{\sharp}(\xi) \cup f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right)$. Moreover since $f_{r-1, \frac{1}{2}}^{\sharp}$ is a standard embedding, we obtain that on $L_{\xi}, f_{r-1, \frac{1}{2}}^{\sharp}(\xi)+f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right)$ is either constant or of the form

$$
f_{r-1}^{\sharp}(\xi) \oplus \phi(W)
$$

for some projective linear embedding $\phi: G r(1, V) \rightarrow G r\left(1, V^{\prime}\right)$. In the first case, since τ and ξ are arbitrary, f_{r-1}^{\sharp} is constant on $D_{r-1}(\Omega)$, which is impossible. Therefore the second case holds and $\left\{f_{r-1, \frac{1}{2}}^{\sharp}(\xi)+f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right): W \in G r(1, V), W \not \subset \xi\right\} \neq\left\{f_{r-1, \frac{1}{2}}^{\sharp}(\widetilde{\xi})+f_{r-1, \frac{1}{2}}^{\sharp}\left(\sigma_{W}\right): W \in G r(1, V), W \not \subset \widetilde{\xi}\right\}$ if $\xi \neq \widetilde{\xi}$. Since ξ is arbitrary, f_{r-1}^{\sharp} restricted to Z_{τ}^{r-1} is a standard embedding by [M08a.

We may assume that $f(\Omega)$ is not contained in any proper totally invariantly geodesic subspace of Ω^{\prime}. Let $V \in X\left(=\mathcal{D}_{0}(X)\right)$. Let $Z_{V}=G r\left(a_{r}, V\right)$. Since f_{r}^{b} respects subgrassmannians, there exists subspaces W_{0}, W_{1} such that on a big Schubert cell, f_{r}^{b} is given by

$$
\begin{equation*}
(x) \in Z_{V} \rightarrow W_{0} \oplus(x) \in W_{0} \oplus G r\left(a_{r}, W_{1}\right) \tag{7.3}
\end{equation*}
$$

or

$$
\begin{equation*}
(x) \in Z_{V} \rightarrow W_{0} \oplus\left(x^{t}\right) \in W_{0} \oplus G r\left(b_{r}, W_{1}\right) \tag{7.4}
\end{equation*}
$$

where $b_{r}=r$ if X is one of the type I and III, $b_{r}=n-2[n / 2]+2 r$ if $X=O G r_{n}$. Suppose (7.4) holds. Since $D_{r}(X)$ is Z_{τ}-connected with $\tau \in \mathcal{D}_{0}(X)$, as in the proof of Lemma 5.3 , there exist subspaces $W_{0}^{\prime}, W_{1}^{\prime}, W_{2}^{\prime} \subset V_{X^{\prime}}$ independently of $\tau \in \mathcal{D}_{0}(X)$ with $\operatorname{dim} W_{1}^{\prime}=b_{r}>0$ such that for $\tau \in \mathcal{D}_{0}(X)$,

$$
f_{r}^{b}\left(Z_{\tau}\right) \subset W_{0}^{\prime} \oplus G r\left(c_{r}, W_{1}^{\prime} \oplus W_{2}^{\prime}\right), \quad c_{r}=\operatorname{dim} W_{2}^{\prime}
$$

On the other hand, since f_{r}^{b} maps Z_{V} to $Z_{f(V)}^{\prime}=\operatorname{Gr}\left(a_{i_{r}}, f(V)\right)$ for $V \in \Omega$, in view of (7.4), we obtain

$$
W_{1}^{\prime} \subset f(V), \quad \forall V \in \Omega
$$

Therefore $f(\Omega)$ is contained in a totally invariantly geodesic subspace of Ω^{\prime}, which is a contradiction. Hence f_{r}^{b} on Z_{τ} is of the form (7.3) and there exists a subspace W_{2} such that

$$
f_{r}^{b}\left(D_{r}(X)\right) \subset W_{0} \oplus G r\left(a_{r}, W_{2}\right)
$$

where W_{0} is given in (7.3). Since

$$
f_{r}^{b}\left(D_{r}(\Omega)\right) \subset F_{i_{r}}\left(\Omega^{\prime}\right)
$$

we obtain

$$
\left.I_{p^{\prime}, q^{\prime}}\right|_{W_{0}}>0
$$

Write

$$
f_{r}^{b}=W_{0} \oplus H
$$

Choose $I_{p^{\prime}, q^{\prime}}$-isotropic subspace \widetilde{W}_{0} such that $\operatorname{dim} \widetilde{W}_{0}=\operatorname{dim} W_{0}$ and $I_{p^{\prime}, q^{\prime}}\left(\widetilde{W_{0}}, W_{2}\right)=0$. Then, we obtain the following lemma.

Lemma 7.3. H satisfies

$$
\begin{align*}
& \widetilde{W}_{0} \oplus H\left(\Sigma_{r}(X)\right) \subset \Sigma_{i_{r}}\left(X^{\prime}\right), \tag{7.5}\\
& \widetilde{W}_{0} \oplus H\left(D_{r}(X)\right) \not \subset \Sigma_{r^{\prime}}\left(X^{\prime}\right) . \tag{7.6}
\end{align*}
$$

Proof. By Lemma 6.3, Lemma 6.4, there exists m such that

$$
\begin{equation*}
f_{r}^{b}\left(\Sigma_{r}(X)\right) \subset F_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right) \tag{7.7}
\end{equation*}
$$

Since $\left.I_{p^{\prime}, q^{\prime}}\right|_{W_{0}}>0$, to show (7.5), it is enough to show that $m \leq i_{r}-\operatorname{dim} W_{0}$. Suppose that (7.5) does not hold. Then $m>i_{r}-\operatorname{dim} W_{0}$. Let $V_{0} \in \Sigma_{r}(X)$ be a general point. Choose $\sigma_{0} \in \mathcal{D}_{r}\left(S_{r}(X)\right)$ such that $V_{0}=\operatorname{pr}\left(\sigma_{0}\right)$. By (7.7), there exists a unique boundary component $\Omega_{\mu_{0}^{\prime}}^{\prime}$ of Ω^{\prime} with rank m such that $\Omega_{f_{r}^{\sharp}\left(\sigma_{0}\right)}^{\prime} \subset \Omega_{\mu_{0}^{\prime}}^{\prime}$. Since $m>i_{r}-\operatorname{dim} W_{0}, p r^{\prime}\left(\mu_{0}^{\prime}\right)$ is a proper subspace of $H\left(V_{0}\right)$. Since $\Omega_{f_{r}^{\sharp}\left(\sigma_{0}\right)}^{\prime}$ is contained in a unique boundary component, $\operatorname{pr}^{\prime}\left(\mu_{0}\right)$ is the unique maximal $I_{p^{\prime}, q^{\prime}}$-isotropic subspace of $H\left(V_{0}\right)$. In what follows, we will show that

$$
f_{r}^{b}\left(D_{r}(\Omega)\right) \subset Q_{\mu_{0}^{\prime}}^{\prime}
$$

which is a contradiction to the assumption that f is proper.
Choose a general $\tau \in \mathcal{S}_{0}(\Omega)$ such that $V_{0}\left(=\operatorname{pr}\left(\sigma_{0}\right)\right) \in Z_{\tau} \subset \Sigma_{r}(X)$. Write

$$
Z_{\tau}=G r\left(n_{r}, V_{\tau}\right)
$$

for suitable $V_{\tau} \subset V_{X}$. Since f_{r}^{b} respects subgrassmannian distributions and f_{r}^{b} restricted to Z_{τ} satisfies (7.3), we obtain

$$
f_{r}^{b}\left(Z_{\tau}\right)=W_{0} \oplus G r\left(n_{r}, L_{\tau}\right)
$$

for some L_{τ}. Then there exists a unique subspace $R \subsetneq V_{0}$ such that

$$
f_{r}^{b}\left(\left\{V \in Z_{\tau}: V \supset R\right\}\right)=\left\{V^{\prime} \in f_{r}^{b}\left(Z_{\tau}\right): V^{\prime} \supset p r^{\prime}\left(\mu_{0}^{\prime}\right)\right\} .
$$

Since R is a subspace of V_{0}, we obtain

$$
I_{p, q}(R, R)=0
$$

Hence there exists a unique boundary component $\Omega_{\rho}=X_{\rho} \cap \partial \Omega$ of rank $s>r$ such that $\operatorname{pr}(\rho)=R$ and $\partial \Omega_{\rho} \supset \Omega_{\sigma_{0}}$.

Consider

$$
Q_{\rho}=\left\{p r(\sigma) \in D_{r}(X): X_{\sigma} \subset X_{\rho}\right\}
$$

By definition, we obtain

$$
H(V) \supset p r^{\prime}\left(\mu_{0}^{\prime}\right), \quad V \in Q_{\rho} \cap Z_{\tau}
$$

Since Z_{τ} is of rank ≥ 2 and

$$
R \subsetneq V_{0} \subsetneq V_{\tau},
$$

$Q_{\rho} \cap Z_{\tau}$ contains a rank one subspace of dimension at least 2 . Since f_{r}^{b} on each Z_{τ} satisfies (7.3), we obtain

$$
f_{r}^{b}\left(\left\{V \in D_{r}(X): V \supset R\right\}\right) \subset\left\{V^{\prime} \in F_{i_{r}}(X): V^{\prime} \supset p r^{\prime}\left(\mu_{0}^{\prime}\right)\right\},
$$

i.e.,

$$
\begin{equation*}
f_{r}^{b}\left(Q_{\rho}\right) \subset Q_{\mu_{0}^{\prime}}^{\prime} \tag{7.8}
\end{equation*}
$$

Choose a general $\sigma \in \mathcal{Q}_{\rho}$ such that $\Omega_{\sigma} \subset \Omega_{\rho}$. Then $\Omega_{f_{r}^{\sharp}(\sigma)}^{\prime}$ is contained in a rank $m^{\prime} \geq m$ boundary component of Ω^{\prime}. By (7.8), we obtain that $m^{\prime}=m$. Since Ω_{ρ} and $\Omega_{\mu_{0}^{\prime}}^{\prime}$ are rank s and rank m boundary components of Ω and Ω^{\prime}, respectively, by Lemma 6.3, we obtain

$$
f_{r}^{\sharp}\left(\mathcal{D}_{r}\left(S_{s}(X) \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset \mathcal{F}_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)\right.
$$

Let

$$
A:=\left(f_{r}^{b}\right)^{-1}\left(Q_{\mu_{0}^{\prime}}^{\prime}\right) \cap D_{r}\left(S_{s}(X)\right) .
$$

Then A is a nonempty set containing $\left\{p r(\nu) \in Q_{\rho}: \Omega_{\nu} \subset \Omega_{\rho}\right\}$. Let $\nu \in A$ be a general point. Then by definition

$$
\Omega_{f_{(\nu)}^{\sharp}}^{\prime} \subset \Omega_{\mu_{0}^{\prime}}^{\prime} .
$$

Choose a rank s boundary component $\Omega_{\widetilde{\rho}}$ of Ω such that $\Omega_{\nu} \subset \Omega_{\widetilde{\rho}}$ and choose a general $\widetilde{\sigma}$ such that $\Omega_{\tilde{\sigma}}$ is a rank r boundary component of $\Omega_{\tilde{\rho}}$. Then by Lemma 6.7, we obtain

$$
\Omega_{f_{r}^{\sharp}(\widetilde{\sigma})} \subset \overline{\Omega_{\mu_{0}^{\prime}}^{\prime}} .
$$

On the other hand, by $(7.7), \Omega_{f_{r}^{\sharp}(\widetilde{\sigma})}^{\prime}$ should be contained in a rank m boundary component of Ω^{\prime}. Since $\Omega_{\mu_{0}^{\prime}}^{\prime}$ is a rank m boundary component of Ω^{\prime}, we obtain

$$
\Omega_{f_{r}^{\sharp}(\widetilde{\sigma})}^{\prime} \subset \Omega_{\mu_{0}^{\prime}}^{\prime} .
$$

Since $\Omega_{\tilde{\sigma}}$ is a boundary component of $\Omega_{\tilde{\rho}}$, by the same argument as above, we obtain

$$
f_{r}^{b}\left(Q_{\tilde{\rho}}\right) \subset Q_{\mu_{0}^{\prime}}^{\prime}
$$

Since any two points $\sigma_{1}, \sigma_{2} \in \Sigma_{r}$ are connected by $Q_{\tilde{\rho}}$-chain for $\widetilde{\rho} \in \mathcal{D}_{s}\left(S_{s}(X)\right)$. we obtain

$$
f_{r}^{b}\left(\Sigma_{r} \cap \operatorname{Dom}\left(f_{r}^{b}\right)\right) \subset Q_{\mu_{0}^{\prime}}^{\prime} .
$$

Since $\Sigma_{r}(X)$ is a Levi nondegenerate generic CR manifold, we obtain

$$
f_{r}^{b}\left(D_{r}(X) \cap \operatorname{Dom}(H)\right) \subset Q_{\mu_{0}^{\prime}}^{\prime}
$$

Next suppose (7.6) does not hold. Then there exists m such that $f_{r}^{b}\left(D_{r}(X)\right) \subset D_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)$. Hence we obtain $f_{r}^{\sharp}\left(\mathcal{D}_{r}(\Omega)\right) \subset \mathcal{D}_{i_{r}}\left(S_{m}\left(X^{\prime}\right)\right)$, which contradicts the assumption that f is proper.
Proof of Lemma 7.1 when $r=q-1$: Assume that X^{\prime} is of type I or III. If $i_{1}=1$, then $r=1$ satisfies the condition (7.1). By the proof of Lemma 7.1 in the case of $r=1$, then f is a standard embedding. We may therefore assume without loss of generality that $i_{1}>1$. If $i_{q-1}<q^{\prime}-1$, then since $1<i_{1}$ and $i_{q-1}<q^{\prime}-1 \leq 2 q-3, i_{q-2}=i_{q-1}-1<2 q-4$, hence there must necessarily exist another r satisfying $2 \leq r<q-1$ such that $i_{r}=i_{r-1}+1$, which has already been taken care of in the above.

Without loss of generality we may therefore assume that $i_{q-1}=q^{\prime}-1$, in which case $i_{q-1}<$ $2(q-1)$ and hence X cannot be of type II. Therefore X is of type I or III and $i_{q-1}=i_{q-2}+1$, which implies that $f_{q-1}^{b} \operatorname{maps} Z_{\tau}, \tau \in \mathcal{D}_{q-2}\left(S_{q-2}(X)\right)$ to $Z_{\tau^{\prime}}^{\prime}, \tau^{\prime} \in \mathcal{D}_{q^{\prime}-2}\left(X^{\prime}\right)$. By Lemma 3.5.
$Z_{\tau}, \tau \in \mathcal{D}_{q-2}\left(S_{q-2}(X)\right)$ and $Z_{\tau^{\prime}}^{\prime}, \tau^{\prime} \in \mathcal{D}_{q^{\prime}-2}\left(X^{\prime}\right)$ are projective lines in $\Sigma_{q-1}(X)$ and $D_{q^{\prime}-1}\left(X^{\prime}\right)$, respectively. Hence f_{q-1}^{b} sends projective lines in $\Sigma_{q-1}(X)$ to projective lines in $D_{q^{\prime}-1}\left(X^{\prime}\right)$. Note that f_{q-1}^{b} maps Σ_{q-1} to $\Sigma_{q^{\prime}-1}^{\prime}$. Since Σ_{q-1} and $\Sigma_{q^{\prime}-1}^{\prime}$ are Levi nondegenerate CR hyperquadrics and $f_{q-1}^{b}\left(D_{q-1}(X)\right)$ is not contained in $\Sigma_{q^{\prime}-1}^{\prime}, f_{q-1}^{b}$ restricted to Σ_{q-1} is a transversal CR map at a general point. In particular, f_{q-1}^{b} is of maximal rank at a general point. Therefore Lemma 5.4 completes the proof.

Assume now that X^{\prime} is of type II. Since the pair $\left(X, X^{\prime}\right)$ satisfies the hypothesis in Theorem 1.2 or Theorem $1.3, X$ must necessarily be of type II. Therefore Z_{τ} and $Z_{\tau^{\prime}}^{\prime}$ are of rank greater or equal to 2 . Therefore by the same argument as in the case of $r<q-1$, we can show that f_{q-2}^{b} is a trivial embedding if $i_{q-2, \frac{1}{2}}=i_{q-2}+1$ and f_{q-1}^{b} is a trivial embedding if $i_{q-1}=i_{q-2, \frac{1}{2}}+1$.

By Lemma 7.1, we can choose $r>1$ such that f_{r}^{b} is a trivial holomorphic embedding. Moreover, if $r<q-1$, then there exists a natural embedding of $\imath: V_{X} \rightarrow V_{X^{\prime}}$ given by f_{r}^{b} such that

$$
f_{r}^{b}\left(D_{r}(X)\right) \subset V_{0} \oplus G r\left(a_{r}, \imath\left(V_{X}\right)\right)
$$

and $f_{r}^{b}=V_{0} \oplus S_{r}$, where $a_{r}=q-r$ if X is of type I or III and $a_{r}=2(q-r)$ if X is of type II and $S_{r}: D_{r}(X) \rightarrow G r\left(a_{r}, \imath\left(V_{X}\right)\right)$ is a trivial embedding. We will identify V_{X} with $\imath\left(V_{X}\right)$ and regard V_{X} as a subspace of $V_{X^{\prime}}$.

Lemma 7.4. There exists $V_{0} \subset V_{X^{\prime}}$ such that

$$
f_{q-1}^{b}=V_{0} \oplus S_{q-1}: D_{q-1}(D) \rightarrow V_{0} \oplus G r\left(1, V_{0}^{\perp}\right)
$$

if X is of type I or III and

$$
f_{q-1}^{b}=V_{0} \oplus S_{q-1}: D_{q-1}(D) \rightarrow V_{0} \oplus G r\left(2, V_{0}^{\perp}\right)
$$

if X is of type $I I$.
Proof. First we assume that X is of type I or III. Then by assumption on the pair $\left(X, X^{\prime}\right)$ in Theorem 1.2 or Theorem $1.3, X^{\prime}$ is of type I or III, too. If $i_{q-1}=q^{\prime}-1$, then it is clear. Suppose $i_{q-1}<q^{\prime}-1$. Then we can choose $r<q-1$ such that $i_{r}=i_{r-1}+1$. Hence it is enough to show that if $r<q-1$ and $i_{r}=i_{r-1}+1$, then $i_{r+1}=i_{r}+1$ and $f_{r+1}^{b}=V_{0} \oplus S_{r+1}$. Let $\mu \in \mathcal{D}_{r+1}(\Omega)$ be a general point. Let V_{μ} be a subspace of V_{X} of dimension $q-r-1$ such that

$$
Q_{\mu}=\left\{V \in D_{r}(X): V_{\mu} \subset V\right\}
$$

Since f_{r}^{b} preserves Q_{μ}, we obtain

$$
f_{r}^{b}\left(Q_{\mu}\right) \subset Q_{f_{r+1}^{\sharp}(\mu)}^{\prime}
$$

Let $L_{\mu} \subset L_{X}$ be a minimal subspace such that

$$
Q_{f_{r+1}^{\sharp}(\mu)}^{\prime} \cap f_{r}^{b}\left(D_{r}(X)\right)=V_{0} \oplus\left\{V^{\prime} \in G r\left(a_{r}, V_{X}\right): L_{\mu} \subset V^{\prime}\right\} .
$$

Since S_{r} is a standard embedding, we obtain $\operatorname{dim} L_{\mu}=\operatorname{dim} V_{\mu}$. We will show that

$$
f_{r+1}^{b}\left(V_{\mu}\right)=V_{0} \oplus L_{\mu}
$$

or equivalently

$$
p r^{\prime}\left(f_{r+1}^{\sharp}(\mu)\right)=V_{0} \oplus L_{\mu} .
$$

By assumption on f_{r}^{b} and Lemma 6.6, we obtain

$$
f_{r}^{b}\left(Q_{\mu}\right)=V_{0} \oplus\left\{V \in G r\left(a_{r}, V_{X}\right): L_{\mu} \subset V\right\} \subset Q_{f_{r+1}^{\sharp}(\mu)}^{\prime} .
$$

Since by definition

$$
Q_{f_{r+1}^{\sharp}(\mu)}^{\prime}=\left\{V^{\prime} \subset V_{X^{\prime}}: p r^{\prime}\left(f_{r+1}^{\sharp}(\mu)\right) \subset V^{\prime}\right\},
$$

we obtain

$$
p r^{\prime}\left(f_{r+1}^{\sharp}(\mu)\right) \subset V_{0} \oplus L_{\mu}
$$

as a subspace. On the other hand, for any $\sigma \in \mathcal{D}_{r}(\Omega)$ with $\operatorname{pr}(\sigma) \in Q_{\mu}$, we obtain

$$
p r^{\prime} \circ f_{r}^{\sharp}(\sigma)=f_{r}^{b} \circ p r(\sigma) \in f_{r}^{b}\left(Q_{\mu}\right)=V_{0} \oplus\left\{V \in G r\left(a_{r}, V_{X}\right): L_{\mu} \subset V\right\},
$$

which implies

$$
f_{r}^{\sharp}(\sigma) \in\left\{\left(V_{0} \oplus V_{1}, V_{2}\right) \in \mathcal{F}_{\left(a_{r}^{\prime}, b_{r}^{\prime}\right)}\left(\Omega^{\prime}\right): L_{\mu} \subset V_{1}\right\} .
$$

Since

$$
f\left(\Omega_{\mu}\right) \subset \bigcup_{\sigma \in \mathcal{Q}_{\mu}} f\left(\Omega_{\sigma}\right)
$$

we obtain

$$
f\left(\Omega_{\mu}\right) \subset X_{\left(V_{0} \oplus L_{\mu}, W\right)}^{\prime}
$$

for some $W \subset V_{X^{\prime}}$. Since $f_{r+1}^{\sharp}(\mu)$ is the smallest Hermitian symmetric subspace that contains $f\left(\Omega_{\mu}\right)$, we obtain

$$
V_{0} \oplus L_{\mu} \subset p r^{\prime}\left(f_{r+1}^{\sharp}(\mu)\right)
$$

completing the proof. The same argument can be applied to the type II case.

8. Proof of Theorems

8.1. Proof of Theorem 1.2. By Lemma 7.4 we obtain $f_{q-1}^{b}=V_{0} \oplus S_{q-1}: D_{q-1}(X) \rightarrow F_{i_{q-1}}\left(X^{\prime}\right)$ is a trivial embedding. Then we obtain

$$
f=V_{0} \oplus \hat{f}: \Omega \rightarrow V_{0} \oplus \Omega^{\prime \prime}
$$

for some subdomain $\Omega^{\prime \prime}$ of Ω^{\prime} with rank $\leq q^{\prime}$. By replacing $f: \Omega \rightarrow \Omega^{\prime}$ with $\hat{f}: \Omega \rightarrow \Omega^{\prime \prime}$, we may assume that $f_{q-1}^{b}: D_{q-1}(X) \rightarrow G r\left(1, V_{X^{\prime}}\right) \subset F_{i_{q-1}}\left(X^{\prime}\right)$ is a trivial embedding if X is of type I or III and $f_{q-1}^{b}: D_{q-1}(X) \rightarrow G r\left(2, V_{X^{\prime}}\right) \subset F_{i_{q-1}}\left(X^{\prime}\right)$ is a trivial embedding if X is of type II. Let $j: V_{X} \rightarrow V_{X^{\prime}}$ be a linear embedding induced by f_{q-1}^{b}. Then j defines a standard holomorphic embedding $g: X \rightarrow X^{\prime}$ such that $g_{q-1}^{b}=f_{q-1}^{b}$.

Lemma 8.1. Let $g: X \rightarrow X^{\prime}$ be the standard holomorphic embedding induced by $j: V_{X} \rightarrow V_{X^{\prime}}$ and $Y \subset X^{\prime}$ be the maximal Hermitian symmetric subspace such that $g(X) \times Y$ is a totally geodesic subspace of X^{\prime}. Then there exists a holomorphic mapping $h: \Omega \rightarrow Y$ such that

$$
f=g \times h: \Omega \rightarrow g(\Omega) \times Y
$$

Proof. Assume that $f(0)=g(0)$. Assume further that Ω and Ω^{\prime} satisfy the condition 2), i.e., Ω is of type III and Ω^{\prime} is of type I. Since $f_{q-1}^{b}=g_{q-1}^{b}$ is induced by a standard holomorphic embedding, by Lemma 6.3, we obtain

$$
f_{q-1}^{b}\left(\Sigma_{q-1}(X)\right) \subset \Sigma_{q^{\prime}-1}\left(X^{\prime}\right)
$$

Moreover, since $p r^{\prime}: \mathcal{D}_{q^{\prime}-1}\left(S_{q^{\prime}-1}\left(X^{\prime}\right)\right) \rightarrow \Sigma_{q^{\prime}-1}\left(X^{\prime}\right)$ is one to one, for each $\sigma \in \mathcal{D}_{q-1}\left(S_{q-1}(X)\right)$, there exists a unique maximal boundary component M_{σ} of Ω^{\prime} such that

$$
g\left(\Omega_{\sigma}\right) \subset \Omega_{g_{q-1}^{\sharp}(\sigma)}^{\prime} \subset M_{\sigma} .
$$

Note that since $f_{q-1}^{b}=g_{q-1}^{b}$ and M_{σ} is a maximal boundary component, we obtain

$$
\begin{equation*}
\Omega_{f_{q-1}^{\sharp}(\sigma)}^{\prime} \subset M_{\sigma} . \tag{8.1}
\end{equation*}
$$

For a maximal characteristic subdomain $\Omega_{\sigma} \subset \Omega$, choose a minimal disc $\Delta_{\sigma} \subset \Omega$ passing through 0 such that $\Delta_{\sigma} \times \Omega_{\sigma}$ is a totally geodesic subspace of Ω and hence $\partial \Delta_{\sigma} \times \Omega_{\sigma} \subset S_{q-1}(\Omega)$. Let

$$
\Omega_{\sigma(t)}:=\{t\} \times \Omega_{\sigma}, t \in \bar{\Delta}_{\sigma}
$$

Since $g: X \rightarrow X^{\prime}$ is a standard embedding and

$$
g\left(\Omega_{\sigma(t)}\right) \subset M_{\sigma(t)}, \quad \forall t \in \partial \Delta_{\sigma}
$$

there exists a minimal disc Δ_{σ}^{\prime} of Ω^{\prime} such that

$$
\begin{equation*}
g\left(\Omega_{\sigma(t)}\right) \subset \Delta_{\sigma}^{\prime} \times g\left(\Omega_{\sigma}\right) \subset \Delta_{\sigma}^{\prime} \times M_{\sigma}, \quad \forall t \in \Delta_{\sigma} \tag{8.2}
\end{equation*}
$$

Since $f_{q-1}^{b}=g_{q-1}^{b}$, by 8.1 and 8.2, we obtain

$$
\begin{equation*}
f\left(\Omega_{\sigma(t)}\right) \subset \Omega_{f_{q-1}^{\sharp}([\sigma(t)])}^{\prime} \subset \Delta_{\sigma}^{\prime} \times M_{\sigma}, \quad \forall t \in \Delta_{\sigma} . \tag{8.3}
\end{equation*}
$$

Define

$$
Z:=\bigcap_{\sigma}\left(\Delta_{\sigma}^{\prime}\right)^{\perp}
$$

where the intersection is taken over all minimal disc Δ_{σ} passing through $0, \Delta_{\sigma}^{\prime}$ is the minimal disc given in (8.2) and $\left(\Delta_{\sigma}^{\prime}\right)^{\perp}$ is the maximal characteristic subspace passing through $f(0)$ such that $T_{f(0)}\left(\Delta_{\sigma}^{\prime}\right)^{\perp}=\mathcal{N}_{[v]}, v \in T_{0} \Delta_{\sigma}^{\prime}$. Then by (8.2), Z is a maximal Hermitian symmetric space such that $g(X) \times Z$ is totally geodesic in X^{\prime}. We let $Y=Z$.

Choose the minimal Hermitian symmetric subspace $X_{\left(V_{1}, V_{2}\right)}^{\prime} \subset X^{\prime}$ of rank q such that $g(X) \subset$ $X_{\left(V_{1}, V_{2}\right)}^{\prime}$. Considering 0 as a subspace, decompose 0 into $V_{1} \oplus W_{1}$. Choose a local coordinate system of X^{\prime} at $f(0)$ such that $f=\left(F_{1}, F_{2}\right)$ satisfies

$$
F_{1}: \Omega \rightarrow X_{\left(V_{1}, V_{X^{\prime}}\right)}^{\prime}, \quad F_{2}: \Omega \rightarrow X_{\left(W_{1}, V_{X^{\prime}}\right)}^{\prime}
$$

By (8.3) and induction on dimension, we can show that for any properly embedded maximal polydisc $\Delta^{q} \subset \Omega$, there exist a q-dimensional polydisc $\widetilde{\Delta}^{q} \subset X_{\left(V_{1}, V_{X^{\prime}}\right)}^{\prime}$ and a subdomain $\Omega^{\prime \prime} \subset$ $\Omega^{\prime} \cap X_{\left(W_{1}, V_{X^{\prime}}\right)}^{\prime}$ of rank $q^{\prime}-q$ orthogonal to $\widetilde{\Delta}^{q}$ such that $\widetilde{\Delta}^{q} \times \Omega^{\prime \prime}$ is totally geodesic and

$$
f\left(\Delta^{q}\right) \subset \widetilde{\Delta}^{q} \times \Omega^{\prime \prime}
$$

which implies that on $\Delta^{q} \subset \Omega$,

$$
\left\langle F_{1}, F_{2}\right\rangle_{p^{\prime}, q^{\prime}} \equiv 0 .
$$

By differentiating it, we obtain

$$
\left\langle\partial F_{1}, F_{2}\right\rangle_{p^{\prime}, q^{\prime}} \equiv 0
$$

on Δ^{q}. Since Δ^{q} is arbitrary, we obtain

$$
\begin{equation*}
\left\langle\partial F_{1}, F_{2}\right\rangle_{p^{\prime}, q^{\prime}} \equiv 0 \tag{8.4}
\end{equation*}
$$

On the other hand, since f is proper, by (8.3), we obtain

$$
\lim _{x \in \Delta^{q} \rightarrow p \in \partial\left(\Delta^{q}\right)} f(x) \subset \partial\left(\widetilde{\Delta}^{q}\right) \times \Omega^{\prime \prime} \subset \partial \Omega^{\prime}
$$

In particular, $F_{1}: \Omega \rightarrow X_{\left(V_{1}, V_{X^{\prime}}\right)}^{\prime} \cap \Omega^{\prime}$ is proper. Then by Ts93], F_{1} is a totally geodesic isometric embedding. Since $f_{q-1}^{b}=g_{q-1}^{b}$, we obtain $\partial F_{1}=\partial g$. Hence by complexifying 8.4), we obtain that $F_{2}(\Omega)$ is contained in a subdomain of Ω^{\prime} orthogonal to $g(\Omega)$, i.e., $f(\Omega) \subset g(\Omega) \times Y$ and

$$
F_{1} \equiv g
$$

The same argument can be applied to the case when Ω and Ω^{\prime} satisfy the condition (1).
We have proven that writing $F=F_{1} \times F_{2}: \Omega \rightarrow \Omega_{1}^{\prime} \times \Omega_{2}^{\prime}, F_{1}: \Omega \rightarrow \Omega^{\prime}$ is a standard embedding, and it follows that $F: \Omega \rightarrow \Omega_{1}^{\prime} \times \Omega_{2}^{\prime}$ is a holomorphic totally geodesic isometric embedding with respect to Kobayashi metrics. By Mok ([M22] Theorem 3.1), the holomorphic embedding $\imath: \Omega_{1}^{\prime} \times \Omega_{2}^{\prime} \rightarrow \Omega^{\prime}$ is a holomorphic totally geodesic isometric embedding with respect to Kobayashi metrics. It follows that $f: \Omega \rightarrow \Omega^{\prime}$ is also a holomorphic totally geodesic isometric embedding with respect to Kobayashi metrics, as desired.

Remark Given a complex manifold X hyperbolic with respect to the Kobayashi metric, a point $x \in X$, and a nonzero real tangent vector $v \in T_{x}^{\mathbb{R}}(X)$, there can be more than one germ of real geodesic curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow X$ such that $\gamma(0)=x$ and $\gamma^{\prime}(0)=v$. We say that a complex submanifold $S \subset X$ is totally geodesic to mean that given any two distinct points $x_{1}, x_{2} \in S$, there always exist a real geodesic curve γ on X joining x_{1} to x_{2} such that the image of γ lies on S (while there may be other real geodesic curves on X joining x_{1} and x_{2} that do not entirely lie on S).
8.2. Proof of Theorem 1.3. First assume that Ω and Ω^{\prime} satisfy the condition 1). Suppose that there exists a proper holomorphic map $f: D_{p, q}^{I} \rightarrow D_{q^{\prime}}^{I I I}$ with $2 \leq q \leq q^{\prime}<2 q-1$. By composing a standard embedding $j: D_{q^{\prime}}^{I I I} \rightarrow D_{q^{\prime}, q^{\prime}}^{I}$, we may assume that $f: D_{p, q}^{I} \rightarrow D_{q^{\prime}, q^{\prime}}^{I}$ is a proper holomorphic map. Then by Theorem 1.2, f is of he form $g \times h$, where $g: D_{p, q}^{I} \rightarrow D_{q^{\prime}, q^{\prime}}^{I}$ is a standard holomorphic map and $h: \Omega \rightarrow \Omega^{\prime \prime}$ is a holomorphic map for some subdomain $\Omega^{\prime \prime} \subset D_{q^{\prime}, q^{\prime}}^{I}$ orthogonal to $g\left(D_{p, q}^{I}\right)$. Since $f\left(D_{p, q}^{I}\right) \subset D_{q^{\prime}}^{I I I}$, this implies that $D_{q^{\prime}}^{I I I}$ contains a rank q characteristic subspace that contains $D_{p, q}^{I}$, which is impossible.

Next assume that Ω and Ω^{\prime} satisfy the condition 2). By the same reason as above, we may assume that Ω^{\prime} is of type I. Suppose there exists a proper holomorphic map $f: D_{n}^{I I} \rightarrow D_{p^{\prime}, q^{\prime}}^{I}$ with $2 \leq q^{\prime}<2[n / 2]-1$. Since Ω^{\prime} is of type I, we obtain $i_{1}=1, i_{q-1}=q^{\prime}-1$ and $i_{r}=i_{r-1}+2$ for all $r=2, \ldots, q-1$. Since $i_{1}=1, f$ preserves VMRT and therefore is a standard embedding. Then by the same argument in the proof of Lemma 7.2 , we obtain that for all $r=1, \ldots,[n / 2]-1$ and all $\tau \in \mathcal{D}_{0}(X), f_{r}^{b}$ restricted to Z_{τ} is a standard embedding. In particular, $f_{2}^{b}: Z_{\tau} \cap Z_{\rho} \rightarrow$ $Z_{f_{2}^{\sharp}(\tau)} \cap Z_{f_{2}^{\sharp}(\rho)}$ is a standard embedding from a Grassmannian of rank 3 to a Grassmannian of rank 2 if $\operatorname{dim} Z_{\tau} \cap Z_{\rho}>0$, which is impossible.

9. Appendix

For $X=\operatorname{Gr}(q, p)$, see [K21]. Let p, q be positive integers such that $q \leq p$. Define a Hermitian inner product $\langle,\rangle_{p, q}$ in \mathbb{C}^{p+q} by

$$
\langle u, v\rangle_{p, q}:=u_{1} \bar{v}_{1}+\cdots+u_{q} \bar{v}_{q}-u_{q+1} \bar{v}_{q+1}-\cdots-u_{p+q} \bar{v}_{p+q},
$$

for $u=\left(u_{1}, \ldots, u_{p+q}\right)$ and $v=\left(v_{1}, \ldots, v_{p+q}\right)$. Recall

$$
\begin{aligned}
\Sigma_{r}(G r(q, p)) & =\left\{Z \in G r\left(q-r, \mathbb{C}^{p+q}\right):\left.\langle,\rangle_{p, q}\right|_{Z}=0\right\} \text { for } r \leq q, \\
\Sigma_{r}\left(O G r_{n}\right) & =\left\{Z \in G r\left(2[n / 2]-r, \mathbb{C}^{2 n}\right):\left.\langle,\rangle_{n, n}\right|_{Z}=0,\left.S_{n}\right|_{Z}=0\right\} \text { for } r \leq n, \\
\Sigma_{r}\left(L G r_{n}\right) & =\left\{Z \in G r\left(n-r, \mathbb{C}^{2 n}\right):\left.\langle,\rangle_{n, n}\right|_{Z}=0,\left.J_{n}\right|_{Z}=0\right\} \text { for } r \leq n
\end{aligned}
$$

For $X=G r(q, p), O G r_{n}$ or $L G r_{n}$, let ℓ denote $q-r, 2[n / 2]-r$, or $n-r, G$ denote $S U(p, q)$, $S O(n, n)$ or $S p(n)$, and \mathfrak{g} denote $s u(p, q)$, so (n, n) or $s p(n)$ respectively. If $X=O G r_{n}$ or $L G r_{n}$, then $p=q=n$. For $X=G r(q, p), O G r_{n}$ or $L G r_{n}$, a Grassmannian frame adapted to $\Sigma_{r}(X)$, or simply $\Sigma_{r}(X)$-frame is a frame $\left\{Z_{1}, \ldots, Z_{p+q}\right\}$ of \mathbb{C}^{p+q} with $\operatorname{det}\left(Z_{1}, \ldots, Z_{p+q}\right)=1$ such that

$$
\begin{equation*}
\left\langle Z_{\alpha}, Z_{p+q-\ell+\beta}\right\rangle_{p, q}=\left\langle Z_{p+q-\ell+\alpha}, Z_{\beta}\right\rangle_{p, q}=\delta_{\alpha \beta},\left\langle Z_{\ell+j}, Z_{\ell+k}\right\rangle_{p, q}=\widehat{\delta}_{j k} \tag{9.1}
\end{equation*}
$$

for $\alpha, \beta=1, \ldots, \ell, j, k=1, \ldots, p+q-2 \ell$ and

$$
\left\langle Z_{\Lambda}, Z_{\Gamma}\right\rangle_{p, q}=0 \text { otherwise }
$$

where $\widehat{\delta}_{j k}=\delta_{j k}$ if $\min (j, k) \leq q-\ell, \widehat{\delta}_{j k}=-\delta_{j k}$ otherwise, and the capital Greek indices Λ, Γ, Ω etc. run from 1 to $p+q$, i.e., the scalar product $\langle\cdot, \cdot\rangle_{p, q}$ in basis $\left\{Z_{1}, \ldots, Z_{p+q}\right\}$ is given by the matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & I_{\ell} \\
0 & I_{q-\ell} & 0 & 0 \\
0 & 0 & -I_{p-\ell} & 0 \\
I_{\ell} & 0 & 0 & 0
\end{array}\right) .
$$

We use the notation

$$
\begin{aligned}
Z & :=\left(Z_{1}, \ldots, Z_{\ell}\right), \\
X=\left(X_{1}, \ldots, X_{p+q-2 \ell}\right) & :=\left(Z_{\ell+1}, \ldots, Z_{p+q-\ell}\right), \\
Y=\left(Y_{1}, \ldots, Y_{\ell}\right) & :=\left(Z_{p+q-\ell+1}, \ldots, Z_{p+q}\right) .
\end{aligned}
$$

Let $\mathcal{B}_{r}(X)$ be the set of all $\Sigma_{r}(X)$-frames. Then $\mathcal{B}_{r}(X)$ can be identified with G by the left action. By abuse of notation, we also denote by Z the q-dimensional subspace of \mathbb{C}^{p+q} spanned by Z_{1}, \ldots, Z_{q}. Then we can regard $\mathcal{B}_{r}(X)$ as a bundle over $\Sigma_{r}(X)$ with respect to a natural projection $(Z, X, Y) \rightarrow Z$. The Maurer-Cartan form $\pi=\left(\pi_{\Lambda}^{\Gamma}\right)$ on $\mathcal{B}_{r}(X)$ is a \mathfrak{g}-valued one form given by the equation

$$
d Z_{\Lambda}=\pi_{\Lambda}^{\Gamma} Z_{\Gamma}
$$

satisfying the structure equation

$$
d \pi_{\Lambda}^{\Gamma}=\pi_{\Gamma}^{\Omega} \wedge \pi_{\Omega}^{\Gamma} .
$$

We use the block matrix representation with respect to the basis (Z, X, Y) to write

$$
\left(\begin{array}{ccc}
\pi_{\alpha}^{\beta} & \pi_{\alpha}^{\ell+j} & \pi_{\alpha}^{p+q-\ell+\beta} \\
\pi_{q+k}^{\beta} & \pi_{\ell+j}^{\ell+k} & \pi_{\ell+k}^{p+\ell+\beta} \\
\pi_{p+q-\ell+\alpha}^{\beta} & \pi_{p+q-\ell+\alpha}^{\ell+j} & \pi_{p+q-\ell+\alpha}^{p+q-\ell+\beta}
\end{array}\right)=:\left(\begin{array}{ccc}
\psi_{\alpha}^{\beta} & \theta_{\alpha}^{j} & \phi_{\alpha}^{\beta} \\
\sigma_{k}{ }^{\beta} & \omega_{k}^{j} & \theta_{k}^{\beta} \\
\xi_{\alpha}{ }^{\beta} & \sigma_{\alpha}^{j} & \widehat{\psi}_{\alpha}^{\beta}
\end{array}\right)
$$

which satisfies the symmetry relations

$$
\left(\begin{array}{ccc}
\psi_{\alpha}{ }^{\beta} & \theta_{\alpha}^{j} & \phi_{\alpha}{ }^{\beta} \\
\sigma_{k}{ }^{\beta} & \omega_{k}{ }^{j} & \theta_{k}{ }^{\beta} \\
\xi_{\alpha}{ }^{\beta} & \sigma_{\alpha}^{j} & \widehat{\psi}_{\alpha}{ }^{\beta}
\end{array}\right)=-\left(\begin{array}{ccc}
\widehat{\psi}_{\bar{\beta}}^{\bar{\alpha}} & \widehat{\delta}_{j}^{i} \theta_{\bar{i}}^{\bar{\alpha}} & \phi_{\overline{\bar{\beta}}}{ }^{\bar{\alpha}} \\
\widehat{\delta}_{i}^{k} \sigma_{\overline{\bar{\beta}}} & \widehat{\delta}_{i}^{k} \omega_{\bar{j}}^{\bar{i}} & \widehat{\delta}_{i}^{k} \theta_{\bar{\beta}}^{\bar{\beta}} \\
\xi_{\bar{\beta}}^{\bar{\alpha}} & \widehat{\delta}_{j}^{i} \sigma_{\bar{i}}^{\bar{\alpha}} & \psi_{\bar{\beta}}^{\bar{\alpha}}
\end{array}\right)
$$

that follow directly by differentiating (9.1). For a change of frame given by

$$
\left(\begin{array}{l}
\widetilde{Z} \\
\widetilde{X} \\
\widetilde{Y}
\end{array}\right):=U\left(\begin{array}{l}
Z \\
X \\
Y
\end{array}\right)
$$

π changes via

$$
\widetilde{\pi}=d U \cdot U^{-1}+U \cdot \pi \cdot U^{-1}
$$

If $X=L G r_{n},\left\{Z_{1} \ldots, Z_{2 n}\right\}$ satisfies

$$
J_{n}\left(Z_{\alpha}, Z_{\beta}\right)=0, \quad \alpha, \beta=1, \ldots, \ell .
$$

We may regard $\Sigma_{r}(X)$ as a submanifold of $\Sigma_{r}(G r(n, n))$. Since $\Sigma_{r}\left(L G r_{n}\right)$ is a generic CR manifold in $\operatorname{SGr}\left(n-r, \mathbb{C}^{2 n}\right)$, we obtain

$$
\mathbb{C} T_{P} \Sigma_{r}(X) /\left(T_{P}^{1,0} \Sigma_{r}(X)+T_{P}^{0,1} \Sigma_{r}(X)\right)=T_{P} S G r\left(n-r, \mathbb{C}^{2 n}\right) / D \cong S^{2} U^{*}
$$

where D and U^{*} are defined in section 4 . Therefore we obtain a reduction of frame by

$$
\begin{equation*}
\phi_{\alpha}^{\beta}-\phi_{\beta}{ }^{\alpha}=0 \tag{9.2}
\end{equation*}
$$

and $\phi_{\alpha}{ }^{\beta}+\phi_{\beta}{ }^{\alpha}, \alpha, \beta=1, \ldots, \ell$ span the contact forms. That is, the set of all $\Sigma_{r}(\operatorname{Gr}(n, n))$-frames adapted to $\Sigma_{r}(X)$ is the maximal integral manifold of 9.2 . If $X=O G r_{n}$, then $\left\{Z_{1} \ldots, Z_{2 n}\right\}$ satisfies

$$
S_{n}\left(Z_{\alpha}, Z_{\beta}\right)=0, \quad \alpha, \beta=1, \ldots, \ell
$$

and

$$
\mathbb{C} T_{P} \Sigma_{r}(X) /\left(T_{P}^{1,0} \Sigma_{r}(X)+T_{P}^{0,1} \Sigma_{r}(X)\right)=T_{P} O G r\left(2([n / 2]-r), \mathbb{C}^{2 n}\right) / D \cong \Lambda^{2} E^{*}
$$

where for $P=[E]$,

$$
D=E \otimes\left(E^{\perp} / E\right), \quad E^{*}=\mathbb{C}^{2 n} / E^{\perp}
$$

Therefore we obtain a reduction of frame by

$$
\phi_{\alpha}^{\beta}+\phi_{\beta}^{\alpha}=0
$$

and $\phi_{\alpha}{ }^{\beta}-\phi_{\beta}{ }^{\alpha}, \alpha, \beta=1, \ldots, \ell$ span the contact forms.
There are several types of frame changes.
Definition 9.1. We call a change of frame
i) change of position if

$$
\widetilde{Z}_{\alpha}=W_{\alpha}{ }^{\beta} Z_{\beta}, \quad \widetilde{Y}_{\alpha}=V_{\alpha}{ }^{\beta} Y_{\beta}, \quad \widetilde{X}_{j}=X_{j}
$$

where $W=\left(W_{\alpha}{ }^{\beta}\right)$ and $V=\left(V_{\alpha}{ }^{\beta}\right)$ are $\ell \times \ell$ matrices satisfying $\overline{V^{t}} W=I_{\ell}$ and if $X=O G r_{n}$ or $L G r_{n}, W$ and V are symmetric or skew-symmetric, respectively;
ii) change of real vectors if

$$
\widetilde{Z}_{\alpha}=Z_{\alpha}, \quad \widetilde{X}_{j}=X_{j}, \quad \widetilde{Y}_{\alpha}=Y_{\alpha}+H_{\alpha}^{\beta} Z_{\beta}
$$

where $H=\left(H_{\alpha}{ }^{\beta}\right)$ is a Hermitian matrix;
iii) dilation if

$$
\widetilde{Z}_{\alpha}=\lambda_{\alpha}^{-1} Z_{\alpha}, \quad \widetilde{Y}_{\alpha}=\lambda_{\alpha} Y_{\alpha}, \quad \widetilde{X}_{j}=X_{j}
$$

where $\lambda_{\alpha}>0 ;$
iv) rotation if

$$
\widetilde{Z}_{\alpha}=Z_{\alpha}, \quad \widetilde{Y}_{\alpha}=Y_{\alpha}, \quad \widetilde{X}_{j}=U_{j}^{k} X_{k}
$$

where $\left(U_{j}{ }^{k}\right)$ is an $S U(q-\ell, p-\ell)$ matrix.
Change of position in Definition 9.1 sends ϕ and θ to

$$
\widetilde{\phi}_{\alpha}^{\beta}=W_{\alpha}^{\gamma} \phi_{\gamma}^{\delta} W_{\delta}^{*}{ }_{\delta}^{\beta}, \quad W_{\delta}^{*}{ }_{\delta}^{\beta}=\overline{W_{\beta}^{\delta}}, \quad \tilde{\theta}_{\alpha}^{j}=W_{\alpha}^{\beta} \theta_{\beta}^{j} .
$$

Dilation changes $\phi_{\alpha}{ }^{\beta}, \theta_{\alpha}{ }^{j}$ to

$$
\widetilde{\phi}_{\alpha}^{\beta}=\frac{1}{\lambda_{\alpha} \lambda_{\beta}} \phi_{\alpha}^{\beta}, \quad \widetilde{\theta}_{\alpha}^{j}=\frac{1}{\lambda_{\alpha}} \theta_{\alpha}^{j}
$$

while rotation remains $\phi_{\alpha}{ }^{\beta}$ unchanged and changes $\theta_{\alpha}{ }^{j}$ to

$$
\widetilde{\theta}_{\alpha}{ }^{j}=\theta_{\alpha}{ }^{k} U_{k}{ }^{j} .
$$

Finally, we will use the change of frame given by

$$
\widetilde{Z}_{\alpha}=Z_{\alpha}, \quad \widetilde{X}_{j}=X_{j}+C_{j}^{\beta} Z_{\beta}, \quad \widetilde{Y}_{\alpha}=Y_{\alpha}+A_{\alpha}^{\beta} Z_{\beta}+B_{\alpha}^{j} X_{j}
$$

such that

$$
C_{j}^{\alpha}+B_{j}^{\alpha}=0
$$

and

$$
A_{\alpha}^{\beta}+\overline{A_{\beta}^{\alpha}}+B_{\alpha}^{j} B_{j}{ }^{\beta}=0,
$$

where

$$
B_{j}^{\alpha}:=\widehat{\delta}_{j k} \overline{B_{\alpha}{ }^{k}} .
$$

Then the new frame $(\widetilde{Z}, \widetilde{X}, \widetilde{Y})$ is an $\Sigma_{r}(X)$-frame and the related one forms $\widetilde{\phi}_{\alpha}{ }^{\beta}$ remain the same, while $\widetilde{\theta}_{\alpha}{ }^{j}$ change to

$$
\tilde{\theta}_{\alpha}{ }^{j}=\theta_{\alpha}^{j}-\phi_{\alpha}{ }^{\beta} B_{\beta}{ }^{j} .
$$

References

[A95] Akhiezer, Dmitri N. Lie Group Actions in Complex Analysis. Aspects of Mathematics, E27. Friedr. Vieweg \& Sohn, Braunschweig, 1995. viii+201 pp. ISBN: 3-528-06420-X
[A74] Alexander, H.: Holomorphic mappings from the ball and polydisc. Math. Ann. 209 (1974), 249-256.
[BER99] Baouendi, M.S.; Ebenfelt, P.; Rothschild, L.P.: Real Submanifolds in Complex Space and Their Mappings. Princeton Mathematical Series, 47. Princeton University Press, Princeton, NH, 1999.
[CH04] Choe, I.; Hong, H.: Integral varieties of the canonical cone structure on G/P. Math. Ann. 329 (2004), no. 4, 629-652.
[C20] Chan, S.T.: On proper holomorphic maps between bounded symmetric domains. Proc. Amer. Math. Soc. 148 (2020), no. 1, 173-184.
[C21] Chan, S.T.: Rigidity of proper holomorphic maps between Type-I irreducible bounded symmetric domains. Int. Math. Res. Not.; DOI: https://doi.org/10.1093/imrn/rnaa373
[C49] Chow, W.-L.: On compact complex analytic varieties. Amer. J. Math. 71 (1949), 893-914.
[CS90] Cima, H.; Suffridge, T.H.: Boundary behavior of rational proper maps. Duke Math. 60 (1990), 135-138.
[D88a] D'Angelo, J.P.: Proper holomorphic maps between balls of different dimensions. Michigan Math. J. 35 (1988), no. 1, 83-90.
[D91] D'Angelo, J.P.: Polynomial proper holomorphic mappings between balls. II. Michigan Math. H. $\mathbf{3 8}$ (1991), no. 1, 53-65.
[D03] D'Angelo, J.P.: Proper holomorphic mappings, positivity conditions, and isometric imbedding. H. Korean Math. Soc. 40 (2003), no. 3, 341-371.
[DKR03] D'Angelo, J.P.: Kos, Š; Riehl, E.: A sharp bound for the degree of proper monomial mappings between balls. J. Geom. Anal. 13 (2003), no. 4, 581-593.
[DL09] D'Angelo, J.P.; Lebl, J.: On the complexity of proper holomorphic mappings between balls. Complex Var. Elliptic Equ. 54 (2009), no. 3-4, 187-204.
[DL16] D'Angelo, J.P.; Lebl, J.: Homotopy equivalence for proper holomorphic mappings. Adv. Math. 286 (2016), 160-180.
[D88b] D'Angelo, J.P.: Polynomial proper maps between balls. Duke Math. J. 57 (1988), no. 1, 211-219.
[Fa86] Faran J.H.: On the linearity of proper maps between balls in the lower codimensional case. J. Differential Geom. 24 (1986), 15-17.
[F86] Forstnerič, F.: Proper holomorphic maps between balls. Duke Math. J. 53 (1986), 427-440.
[F89] Forstnerič, F.: Extending proper holomorphic mappings of positive codimension. Invent. Math. 95 (1989), 31-61.
[G87] Globevnik, J.: Boundary interpolation by proper holomorphic maps. Math. Z. 194 (1987), no. 3, 365373.
[HN84] Henkin, G.M.; Novikov, R.G.: Proper mappings of classical domain, in Linear and Complex Analysis Problem Book, 341-343, Lecture Notes in Math., vol.1043, Springer, Berlin, 1984.
[HoM10] Hong, H.; Mok, N.: Analytic continuation of holomorphic maps respecting varieties of minimal rational tangents and applications to rational homogeneous manifolds. J. Differential Geom. 86 (2010), no. 3, 539-567.
[HoN21] Hong, H.; Ng, S.-C.: Local holomorphic mappings respecting homogeneous subspaces on rational homogeneous spaces. Math. Ann. 380 (2021), no. 1-2, 885-909.
[Hu99] Huang, X.: On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Differential Geom. 51 (1999), 13-33.
[Hu03] Huang, X.: On a semi-rigidity property for holomorphic maps. Asian J. Math. 7 (2003), no. 4, 463-492.
[HuJ01] Huang, X.; Ji, S.: Mapping B^{n} into $B^{2 n-1}$. Invent. Math. 145 (2) (2001), 219-250.
[HuJX06] Huang, X.; Ji, S.; Xu, D. A new gap phenomenon for proper holomorphic mappings from B^{n} into B^{N}. Math. Res. Lett. 13 (2006), no. 4, 515-529.
[Hw15] Hwang, J.-M.: Cartan-Fubini type extension of holomorphic maps respecting varieties of minimal rational tangents. Sci. China Math. 58 (2015), no. 3, 513-518.
[HwL21] Hwang, J.-M.; Li, Q. Characterizing symplectic Grassmannians by varieties of minimal rational tangents. J. Differential Geom. 119 (2021), no. 2, 309-381.
[HwM01] Hwang, J.-M.; Mok, N.: Cartan-Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1. J. Math. Pures Appl. (9) 80(2001), no. 6, 563-575.
[HwM04] Hwang, J.-M.; Mok, N.: Birationality of the tangent map for minimal rational curves. Asian J. Math. 8 (2004), no. 1, 51-63.
[HwM05] Hwang, J.-M.; Mok, N.: Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation. Invent. Math. 160(2005), no. 3, 591-645 (2005)
[K21] Kim, S.-Y.: Holomorphic maps between closed $S U(\ell, m)$-orbits in Grassmannian. Math. Res. Lett. 28 (2021), no. 3, 729-783.
[KZ13] Kim, S.Y.; Zaitsev, D.: Rigidity of CR maps between Shilov boundaries of bounded symmetric domains. Invent. Math. 193 (2013), no. 2, 409-437.
[KZ15] Kim, S.-Y.; Zaitsev, D.: Rigidity of proper holomorphic maps between bounded symmetric domains. Math. Ann. 362 (2015), no. 1-2, 639-677.
[KoO81] Kobayashi, S.; Ochiai, T.: Holomorphic structures modelled after compact Hermitian Symmetric spaces, in Manifolds and Lie Groups in Honor of Yozo Matsushima, Boston 1981.
[M87] Mok, N.: Uniqueness theorems of Hermitian metrics of seminegative curvature on locally symmetric spaces of negative Ricci curvature. Ann. Math. 125 (1987), 105-152.
[M89] Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Series in Pure Mathematics, 6. World Scientific Publishing Co., Inc., Teaneck, NH, 1989.
[M99] Mok, N.: G-structures on irreducible Hermitian symmetric spaces of rank ≥ 2 and deformation rigidity, Contemp. Math. 222 (1999), 81-107.
[M08a] Mok, N.: Characterization of standard embeddings between complex grassmannians by means of varieties of minimal rational tangents. Sci. China Ser. A, 4 (2008), 660-684.
[M08b] Mok, N.: Geometric structures on uniruled projective manifolds defined by their varieties of minimal rational tangents, in Géométrie Différentielle, Physique Mathématique, Mathématiques et Société. II. Astérisque No. 322 (2008), 151-205. ISBN: 978-285629-259-4
[M08c] Mok, N.: Nonexistence of proper holomorphic maps between certain classical bounded symmetric domains. Chin. Ann. Math. Ser. B 29 (2008), no. 2, 135-146.
[M16] Mok, N.: Geometric structures and substructures on uniruled projective manifolds, in Foliation Theory in Algebraic Geometry (Simons Symposia), ed. P. Cascini, J. McKernan and J.V. Pereira, Springer-Verlag, Heidelberg-New York-London 2016, pp.103-148.
[M19] Mok, N.: Rigidity of certain admissible pairs of rational homogeneous spaces of Picard number 1 which are not of the subdiagram type. Sci. China Math. 62 (2019), no. 11, 2335-2354.
[M22] Mok, N.: Holomorphic retractions of bounded symmetric domains onto totally geodesic complex submanifolds. https://www.math.hku.hk/imrwww/IMRPreprintSeries/2022/IMR2022-01.pdf
[MT92] Mok, N. Tsai, I-H.: Rigidity of convex realizations of irreducible bounded symmetric domains of rank 2. J. Reine Angew Math., 431 (1992), 91-122
[MNT10] Mok, N.; Ng, S.-C.; Tu, Z.: Factorization of proper holomorphic maps on irreducible bounded symmetric domains of rank ≥ 2. Sci. Chi. Math. 53 (2010), no. 3, 813-826.
[MZ19] Mok, N.; Zhang, Y.: Rigidity of pairs of rational homogeneous spaces of Picard number 1 and analytic continuation of geometric substructures on uniruled projective manifolds. J. Differential Geom. 112 (2019), no. 2, 263-345.
[N12] Ng, S.-C.: Cycle spaces of flag domains on Grassmannians and rigidity of holomorphic mappings. Math. Res. Lett. 19 (2012), no. 6, (2012), 1219-1236.
[N13] Ng, S.-C.: Proper holomorphic mappings on $S U(p, q)$-type flag domains on projective spaces. Michigan Math. J. 62, (2013), no. 4, 769-777.
[N15a] Ng, S.-C.: On proper holomorphic mappings among irreducible bounded symmetric domains of rank at least 2. Proc. Amer. Math. Soc. 143, (2015), no. 1, 219-225
[N15b] Ng, S.-C.: Holomorphic double fibration and the mapping problems of classical domains. Int. Math. Res. Not. 2015 (2015), no. 2, 291-324.
[Oc70] Ochiai, T.: Geometry associated with semisimple flat homogeneous spaces. Trans. Amer. Math. Soc. 152 (1970), 159-193.
[P07] Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo (2) 23 (1907), 185-220.
[S15] Seo, A.: New examples of proper holomorphic maps among symmetric domains. Michigan Math. J. 64 (2015), no. 2, 435-448.
[S16] Seo, A.: Proper holomorphic polynomial maps between bounded symmetric domains of classical type, Proc. Amer. Math. Soc. 144 (2016), no. 2, 739-751.
[S18] Seo, A.: Remark on proper holomorphic maps between reducible bounded symmetric domains. Taiwanese J. Math. 22 (2018), no. 2, 325-337.
[St96] Stensønes, B.: Proper maps which are Lipschitz α up to the boundary. J. Geom. Anal. 6 (1996), no. 2, 317-339.
[Ts93] Tsai, I-H.: Rigidity of proper holomorphic maps between symmetric domains. J. Differential Geom. $\mathbf{3 7}$ (1993), no. 1, 123-160.
[Tu02b] Tu, Z.: Rigidity of proper holomorphic mappings between nonequidimensional bounded symmetric domains. Math. Z. 240 (2002), no. 1, 13-35.
[Tu02a] Tu, Z.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains. Proc. Amer. Math. Soc. 130 (2002), no. 4, 1035 -1042.
[TuK82] Tumanov, A.E.; Khenkin, G. M.: Local characterization of analytic automorphisms of classical domains (Russian), Dokl. Akad. Nauk SSSR 267 (1982), no. 4, 796-799.
[W65] Wolf, J.A.; Korányi, A.: Generalized Cayley transformations of bounded symmetric domains. Amer. J. Math. 87 (1965), 899-939.
[W69] Wolf, J.A.: The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components. Bull. Amer. Math. Soc. 75 (1969), 1121-1237.
[W72] Wolf, J.A.: Fine structure of Hermitian symmetric spaces, in Symmetric Spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), pp. 271-357. Pure and App. Math., Vol. 8, Dekker, New York, 1972.
[Ya93] Yamaguchi, K.: Differential systems associated with simple graded Lie algebras, Adv. Study Pure Math. 22, Progress in Differential Geometry (1993) 413-494.
S.-Y. Kim: Center for Complex Geometry, Institute for Basic Science, 55, Expo-ro, Yuseonggu, Daejeon, Korea, 34126

Email address: sykim8787@ibs.re.kr
n. Mok: Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

Email address: nmok@hku.hk
A. Seo: Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea

Email address: aeryeong.seo@knu.ac.kr

[^0]: 2010 Mathematics Subject Classification. 32H35, 32M15, 14M15, 32V40 .
 Key words and phrases. Proper holomorphic map, Bounded symmetric domain, Moduli space of subgrassmannians.

