
ON THE RATIONALITY OF ALGEBRAIC MONODROMY GROUPS OF COMPATIBLE SYSTEMS

CHUN YIN HUI

Abstract. Let E be a number field and X a smooth geometrically connected variety defined over a charac-
teristic p finite field. Given an n-dimensional pure E-compatible system of semisimple λ-adic representations

of the étale fundamental group of X with connected algebraic monodromy groups Gλ, we construct a com-

mon E-form G of all the groups Gλ and in the absolutely irreducible case, a common E-form G ↪→ GLn,E
of all the tautological representations Gλ ↪→ GLn,Eλ (Theorem 1.1). Analogous rationality results in char-

acteristic p assuming the existence of crystalline companions in F-Isoc†(X) ⊗ Ev for all v|p (Theorem 1.5)
and in characteristic zero assuming ordinariness (Theorem 1.6) are also obtained. Applications include a

construction of G-compatible system from some GLn-compatible system and some results predicted by the

Mumford-Tate conjecture.
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1. Introduction

1.1. The Mumford-Tate conjecture. Let A be an abelian variety defined over a number field K ⊂ C, V` :=
H1(AK ,Q`) the étale cohomology groups for all primes `, and V∞ = H1(A(C),Q) the singular cohomology
group. The famous Mumford-Tate conjecture [Mu66, §4] asserts that the `-adic Galois representations
ρ` : Gal(K/K) → GL(V`) are independent of `, in the sense that if G` denotes the algebraic monodromy
group of ρ` (the Zariski closure of the image of ρ` in GLV`) and GMT denotes the Mumford-Tate group of
the pure Hodge structure of V∞, then via the comparison isomorphisms V` ∼= V∞ ⊗Q` one has

(1) (GMT ↪→ GLV∞)×Q Q` ∼= G◦` ↪→ GLV` for all `.

In particular, the representations ρ` are semisimple and the identity components G◦` are reductive with the
same absolute root datum. This conjectural `-independence of different algebraic monodromy representations
can be formulated almost identically for projective smooth varieties Y defined over K, and more generally,
for pure motives over K by the universal cohomology theory envisaged by Grothendieck and some deep
conjectures in algebraic and arithmetic geometry (see [Se94, §3]).

The same Mumford-Tate type question can also be asked for projective smooth varieties Y defined over a
global field K of characteristic p > 0. Since V` = Hw(YK ,Q`) are Weil cohomology theories for YK only when
` 6= p1, one may ask if the algebraic monodromy representations G◦` ↪→ GLV` of the Galois representations
V` are independent of ` for all ` 6= p. This expectation is supported by the philosophy of motives (see [Dr18,
§E]). On the other hand, one can always exploit the fact that the system of `-adic Galois representations
{V` = Hw(YK ,Q`)}` is a Q-compatible system (in the sense of Serre [Se98, Chap. I-11 Definition]) that is pure
of weight w (proven by Deligne [De74, De80]) to directly argue `-independence of the algebraic monodromy
representations G◦` ↪→ GLV` . This approach holds, regardless of the characteristic of the global field K. By
utilizing the compatibility and weight conditions of the compatible system, Serre developed the method of
Frobenius tori [Se81] to prove the `-independence result below (Theorem A).

Let us define some notation first. If L is a subfield of Q, then denote by PL the set of places of L. Denote
by PL,f (resp. PL,∞) the set of finite (resp. infinite) places of L. Then PL = PL,f ∪ PL,∞. Denote by

P(p)
L,f the set of elements of PL,f not extending p. The residue characteristic of the finite place v ∈ PL,f is

denoted by pv. Let V and W be free modules of finite rank over a ring R. Let Gm ⊂ · · · ⊂ G1 ⊂ GLV
and Hm ⊂ · · · ⊂ H1 ⊂ GLW be two chain of closed algebraic subgroups over R. We say that the two chain
representations (or simply representations if it is clear that they are chains of subgroups of some GLn) are
isomorphic if there is an R-modules isomorphism V ∼= W such that the induced isomorphism GLV ∼= GLW
maps Gi isomorphically onto Hi for 1 ≤ i ≤ m.

Theorem A. (Serre) [Se81] (see also [LP97])

(i) (The component groups) The quotient groups G`/G
◦
` for all ` are isomorphic.

(ii) (Common Q-form of formal characters) For all v in a positive Dirichlet density subset of PK,f , there
exist a subtorus T := Tv of GLn,Q such that for all ` 6= pv, the representation (T ↪→ GLn,Q)×Q Q` is
isomorphic to the representation T` ↪→ GLV` for some maximal torus T` of G`.

It follows immediately that the connectedness and the absolute rank of G` are both independent of `. Later,
Larsen-Pink obtained some `-independence results for abstract semisimple compatible system on a Dirichlet
density one set of primes ` [LP92] and for the geometric monodromy of {V`}` if Char(K) > 0 [LP95].
When Char(K) = 0, the author proved that the formal bi-character (Definition 2.2(ii)) of G◦` ↪→ GLV` is
independent of ` and obtained `-independence of G◦` under some type A hypothesis [Hu13, Hu18]. The
next result is by far the best result in positive characteristic, in a setting more general than the above étale
cohomology case.

Let X be a smooth geometrically connected variety defined over a finite field Fq of characteristic p. Let
E be a number field. For any λ ∈ PE , denote by Eλ the λ-adic completion of E. Let

(2) ρ• := {ρλ : πét
1 (X,x)→ GL(Vλ)}

λ∈P(p)
E,f

1When ` = p, one has to consider crystalline cohomology group of Y .
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be an E-compatible system of n-dimensional semisimple λ-adic representations of the étale fundamental
group πét

1 (X,x) of X (with base point x) that is pure of integral weight w. Denote by Gλ ⊂ GLVλ the
algebraic monodromy group of the representation Vλ. For simplicity, set π1(X) = πét

1 (X,x) and for all

λ ∈ P(p)
E,f , choose coordinates for Vλ so that Gλ is identified as a subgroup of GLn,Eλ . The following theorem

was obtained by Chin when X is a curve [Ch04]2 and is true in general by reducing to the curve case by
finding a suitable curve S in some covering X ′ of X [BGP19, §3.3], see also [D’Ad20, §4.3].

Theorem B. Let ρ• be an E-compatible system of n-dimensional λ-adic semisimple representations of π1(X)
that is pure of integer weight w. The following assertions hold in some coordinates of Vλ.

(i) (Common E-form of formal characters): There exists a subtorus T of GLn,E such that for all λ ∈ P(p)
E,f ,

Tλ := T×E Eλ is a maximal torus of Gλ.
(ii) (λ-independence over an extension): There exist a finite extension F of E and a chain of subgroups

Tsp ⊂ Gsp ⊂ GLn,F such that Gsp is connected split reductive, Tsp is a split maximal torus of Gsp,

and for all λ ∈ P(p)
E,f , if Fλ is a completion of F extending λ on E, then there exists an isomorphism

of chain representations:

fFλ : (Tsp ⊂ Gsp ↪→ GLn,F )×F Fλ
∼=→ (Tλ ⊂ G◦λ ↪→ GLn,Eλ)×Eλ Fλ.

(iii) (Rigidity) The isomorphisms fFλ in (ii) can be chosen such that the restriction isomorphisms fFλ :

Tsp ×F Fλ → Tλ ×Eλ Fλ admit a common F -form fF : Tsp → T×E F for all λ ∈ P(p)
E,f and Fλ.

1.2. The results of the paper.

1.2.1. Characteristic p.

1.2.1.1. Theorem B(ii) asserts that the algebraic monodromy representations G◦λ ↪→ GLn,Eλ have a common
(split) F -model after finite extensions Fλ of Eλ. The main theme of this article is to remove these extensions.
Base on Theorem B(i)–(iii) and some ideas seeded in [Hu18], we prove the following E-rationality result
(Theorem 1.1). In case the representations Vλ are absolutely irreducible3, it answers the Mumford-Tate type
question in positive characteristic.

Theorem 1.1. Let ρ• := {ρλ : π1(X) → GL(Vλ)}
λ∈P(p)

E,f

be an E-compatible system of n-dimensional λ-adic

semisimple representations of π1(X) that is pure of integer weight w. Then the following assertions hold.

(i) There exists a connected reductive group G defined over E such that G×E Eλ ∼= G◦λ for all λ ∈ P(p)
E,f .

(ii) If moreover G◦λ ↪→ GLVλ is absolutely irreducible for some λ, then there exists a connected reductive

subgroup G of GLn,E such that for all λ ∈ P(p)
E,f , the representations are isomorphic:

(G ↪→ GLn,E)×E Eλ ∼= (G◦λ ↪→ GLVλ).

1.2.1.2. Let Oλ be the ring of integers of Eλ, OE be the ring of integers of E, OE,S be the localization for

some finite subset S ⊂ PE,f , and A(p)
E be the adele ring of E without factors above p. We construct an adelic

representation ρGA in Corollary 1.2 and in the absolutely irreducible case, a common model G ⊂ GLn,OE,S
of the group schemes Gλ ↪→ GLn,Oλ (with respect to some Oλ-lattice in Vλ) for all but finitely many λ in
Corollary 1.3.

Corollary 1.2. Let ρ• be a λ-adic compatible system of π1(X) as above. Suppose Gλ is connected for all λ.
Then the following assertions hold.

(i) There exist a connected reductive group G defined over E and an isomorphism G ×E Eλ
φλ→ Gλ for

each λ ∈ P(p)
E,f such that the direct product representation∏

λ∈P(p)
E,f

ρλ : π1(X)→
∏

λ∈P(p)
E,f

Gλ(Eλ)

2[Ch04] used pivotally Serre’s Frobenius tori and Lafforgue’s work [La02] on the Langlands’ conjectures. In case X is a
curve, Theorem B(i),(ii),(iii) follow, respectively, from Lemma 6.4, Thm. 1.4, Thm. 6.8 and Cor. 6.9 of the paper.

3In general, we expect a common E-form of the faithful representations Gλ ↪→ GLVλ for all λ ∈ P(p)
E,f exists.
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factors through a G-valued adelic representation via φλ:

ρGA : π1(X)→ G(A(p)
E ).

(ii) If the representations Vλ are absolutely irreducible, then there exist a connected reductive subgroup G

of GLn,E and an isomorphism of representations (G ↪→ GLn,E) ×E Eλ
φλ→ (Gλ ↪→ GLVλ) for each

λ ∈ P(p)
E,f such that the direct product representation∏

λ∈P(p)
E,f

ρλ : π1(X)→
∏

λ∈P(p)
E,f

Gλ(Eλ) ⊂
∏

λ∈P(p)
E,f

GLn(Eλ)

factors through a G-valued adelic representation via φλ:

ρGA : π1(X)→ G(A(p)
E ) ⊂ GLn,E(A(p)

E ).

Corollary 1.3. Let ρ• be a λ-adic compatible system of π1(X) as above. Suppose Vλ is absolutely irreducible
and Gλ is connected for all λ. Then there exists a smooth reductive group scheme G ⊂ GLn,OE,S defined over

OE,S (for some finite S) whose generic fiber is G ⊂ GLn,E such that for all λ ∈ P(p)
E,f\S, the representations

(G ↪→ GLn,OE,S ) × Oλ and Gλ ↪→ GLn,Oλ are isomorphic, where Gλ is the Zariski closure of ρλ(π1(X)) in
GLn,Oλ after some choice of Oλ-lattice in Vλ.

For almost all λ, G(Oλ) is a hyperspecial maximal compact subgroup of G(Eλ) [Ti79, §3.9.1]. Hence, Corollary
1.2(i) implies that for almost all λ, the image ρλ(π1(X)) is contained in hyperspecial maximal compact
subgroup of Gλ(Eλ) (see Proposition 3.6). Next corollary is about the G-valued compatibility of the system,
motivated by the papers [BHKT19],[Dr18] on Langlands conjectures. As obtained in [BHKT19, §6], the
results in [D’Ad20, §4] ([Ch04, §6] when X is a curve) imply that the E-compatible system ρ• (assume
connectedness of Gλ), after some finite extension F/E, factors through an F -compatible system ρG

sp

• of
Gsp-representations for some connected split reductive group Gsp defined over F . In some situation, we
prove that the extension F/E can be omitted. This shows evidence to the motivic hope in [Dr18, §E] that
the Tannakian categories Tλ(X) of semisimple (weight 0) Eλ-representations of π1(X), at least for all λ not
extending p, should come from a canonical category T (X) over E

T (X)⊗E Eλ
≈→ Tλ(X)

in a compatible way (see [Dr18, Thm. 1.4.1]). The definition of an E-compatible system of G-representations

will be recalled in §3.2. Let πλ : A(p)
E → Eλ be the natural surjection to the λ-component.

Corollary 1.4. Let ρ• be a λ-adic compatible system of π1(X) as above. Suppose Vλ is absolutely irreducible
and Gλ is connected for all λ. Let G ↪→ GLn,E be the E-form and ρGλ be the adelic representation in

Corollary 1.2(ii). Let NGLn,EG the normalizer of G in GLn,E. Then for each λ ∈ P(p)
E,f , there exists (a

change of coordinates) βλ ∈ (NGLn,EG)(Eλ) such that the system

ρG• := {ρGλ : π1(X)
ρGA→ G(A(p)

E )
πλ→ G(Eλ)

βλ→ G(Eλ)}
λ∈P(p)

E,f

is an E-compatible system of G-representations when one of the following holds.

(i) The group Gλ is split for all λ.
(ii) The outer automorphism group of the derived group Gder ×E E is trivial (βλ = id).

Hence, for any E-representation α : G→ GLm,E, the system of m-dimensional λ-adic semisimple represen-
tations {α ◦ ρGλ }λ∈P(p)

E,f

is also E-compatible.
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1.2.1.3. Denote by PE,p the set of finite places of E extending p. Let Qpk be a degree k unramified extension
of Qp, v ∈ PE,p, and Ev,pk the composed fields Ev ·Qpk . Let ρ• be in Theorem 1.1. The semisimple crystalline

companion object of ρ• at v (whose existence4 is conjectured by Deligne [De80, Conjecture 1.2.10]) is an object

Mv in the Tannakian category F-Isoc†(X) ⊗ Ev,q of overconvergent F -isocrystals of X with coefficients in
Ev,q (see [Ke22a, §2] for definition). Any t ∈ X(Fqk) induces a fiber functor to the category of vector spaces
over Ev,qk given by the composition

wt : F-Isoc†(X)⊗ Ev,q → F-Isoc†(x)⊗ Ev,qk → VecE
v,qk

,

where the first one is via the pull-back of i : t → X and the second one is the forgetful functor. The image
Vt,v := wt(Mv) is an n-dimensional vector space. The Tannakian group of the subcategory generated by Mv

with respect to wt can be identified as a reductive subgroup Gt,v ⊂ GLVt,v
∼= GLn,E

v,qk
and is called the

algebraic monodromy group of (Mv, wt). For different closed points t and t′ in X(Fqk), Gt,v and Gt′,v differ
by an inner twist [DS82, Theorem 3.2]. Let λ be a finite place of E not extending p. The absolute root data
of G◦t,v and G◦λ (resp. the component groups of Gt,v and Gλ) are proven to be isomorphic independently
by Pal [Pa15] and D’Addezio [D’Ad20] (relying on [La02] and [Ab18]). Moreover, given the closed point t
one can define the Frobenius tori Tt,v in Gt,v (see [D’Ad20, §4.2]) and Tt̄,λ in Gλ (up to conjugation, see
§3.3). Assume the crystalline companions of ρ• exist for all v ∈ PE,p and certain conditions, we prove an
E-rationality result (existence + uniqueness) for the above algebraic monodromy groups at all finite places
of E.

Theorem 1.5. Let ρ• := {ρλ : π1(X) → GL(Vλ)}
λ∈P(p)

E,f

be an E-compatible system of n-dimensional λ-adic

semisimple representations of π1(X) that is pure of integer weight w and t ∈ X(Fqk) a closed point of X.

Suppose the semisimple crystalline companion object Mv of ρ• exists in F-Isoc†(X)⊗Ev,q for each v ∈ PE,p
and the following conditions hold.

(a) The Frobenius torus Tt̄,λ is a maximal torus of Gλ for some λ.
(b) For all v ∈ PE,p, the field Qqk is contained in Ev.

(c) The number field E has at least one real place5.

Then the following assertions hold.

(i) There exists a chain (of a connected reductive group together with a maximal torus) T ⊂ G defined

over E that is the unique common E-form of the chains Tt̄,λ ⊂ G◦λ for all λ ∈ P(p)
E,f and the chains

Tt,v ⊂ G◦t,v for all v ∈ PE,p.
(ii) If moreover G◦λ ↪→ GLVλ is absolutely irreducible for some λ, then there exist an inner form GLm,D

(for some division algebra D over E) of GLn,E over E containing a chain of subgroups T ⊂ G such
that T ⊂ G ↪→ GLm,D is the unique common E-form of the chain representations Tt̄,λ ⊂ Gλ ↪→ GLVλ
for all λ ∈ P(p)

E,f and the chain representations Tt,v ⊂ Gt,v ↪→ GLVt,v for all v ∈ PE,p. When E has
exactly one real place, we have GLm,D ∼= GLn,E.

1.2.2. Characteristic zero.

1.2.2.1. It turns out that the strategy for proving Theorem 1.1 retains in characteristic zero if ordinary
representations enter the picture. This part is influenced by the work of Pink [Pi98]. To keep things
simple, we only consider the Q-compatible system (with exceptional set S) of n-dimensional `-adic Galois
representations V` := Hw(YK ,Q`):

(3) ρ• := {ρ` : Gal(K/K)→ GL(V`)}`∈PQ,f ,

arising from a smooth projective variety Y defined over a number field K. The set S consists of the finite
places of K such that Y does not have good reduction. Let G` be the algebraic monodromy group at `. The
Grothendieck-Serre semisimplicity conjecture asserts that the representation ρ` is semisimple (see [Tat65]),

4Recent works of Kedlaya [Ke22b, Ke22c] establish the existence of crystalline companion when X is smooth.
5This condition is needed to ensure that the E-torus in Main Theorem II(d) is anisotropic at some place v of E.
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which is equivalent to the algebraic group G◦` being reductive. Choose coordinates for V` and identify G` as
a subgroup of GLn,Q` for all `. Embed Q` into C for all `.

Let v ∈ PK,f\S with p := pv. Let Kv be the completion of K at v, Ov the ring of integers, and Yv the

special fiber of a smooth model of Y over Ov. The local representation Vp = Hw(YK ,Qp) of Gal(Kv/Kv)
is crystalline and corresponds, via a mysterious functor of Fontaine [Fo79, Fo82, Fo83], to the crystalline
cohomology Mv := Hw(Yv/Ov) ⊗Ov Kv [FM87], [Fa89]. The local representation Vp is said to be ordinary
if the Newton and Hodge polygons of Mv coincide [Ma72]. This notion originates from ordinary abelian
varieties defined over finite fields. It is conjectured by Serre that if K is large enough, then the set of places
v in PK,f for which the local representations Vp are ordinary is of Dirichlet density one, for abelian varieties
of low dimensions, see Serre [Se98], Ogus [O82], Noot [No95, No00], Tankeev [Ta99]; for abelian varieties in
general, see Pink [Pi98]; and for K3 surfaces, see Bogomolov-Zarhin [BZ09].

Theorem 1.6. Let ρ• be the Q-compatible system (3) arising from the `-adic cohomology (of degree w) of
a smooth projective variety Y defined over a number field K. Suppose G` is connected for all ` and the
following conditions hold.

(a) (Ordinariness): The set of places v in PK,f for which the local representations Vp of Gal(Kv/Kv) are
ordinary is of positive Dirichlet density.

(b) (`-independence absolutely): There exists a connected reductive subgroup GC of GLn,C such that the
representations GC ↪→ GLn,C and (G` ↪→ GLn,Q`)×Q` C are isomorphic for all `.

(c) (Invariance of roots): Let Tss
C be a maximal torus of the derived group Gder

C . Then the normalizer
NGLn,C(Tss

C ) is invariant on the roots of Gder
C with respect to Tss

C .

Then the following assertions hold.

(i) There exists a connected reductive group G defined over Q such that G ×Q Q` ∼= G` for all `. In
particular, G` is unramified for `� 0.

(ii) If moreover GC is irreducible on Cn, then there exists a connected reductive subgroup G of GLn,Q such
that G ↪→ GLn,Q is a common Q-form of the representations G` ↪→ GLn,Q` for all `.

Remark 1.7. The conditions 1.6(a),(b),(c) are to be compared with Theorem B(i),(ii),(iii). Since Theorem
A(ii) only gives a common Q-form of formal characters for all but one `, the condition (a) is needed if one
aims at a Q-common form for all `. Given 1.6(a) and B(i), then 1.6(b) and B(ii) are easily seen to be
equivalent (E = Q). The rigidity assertion B(iii) is not known to hold in characteristic zero, and is now
replaced with the invariance of roots condition 1.6(c), which holds if Gder

C is of certain root system [Hu20,
Thm. A1, A2].

Remark 1.8. If ρ` is abelian at one `, then the rationality of G` ↪→ GLn,Q` for all ` is obtained by Serre via
Serre group Sm [Se98].

1.2.2.2. Suppose G` is connected reductive for all ` ∈ PQ,f .

Hypothesis H. For `� 0, the image of ρ` is contained in a hyperspecial maximal compact subgroup of G`(Q`).

This hypothesis follows from a Galois maximality conjecture of Larsen [Lar95] (see Theorem 3.9), which

has been established for type A representations [HL16], abelian varieties and hyper-K̈ahler varieties (degree
w = 2) [HL20]. Further assuming the hypothesis, we obtain the following corollaries which are analogous to
Corollaries 1.2 and 1.3.

Corollary 1.9. Let ρ• be an `-adic compatible system of Gal(K/K) as above. Suppose G` is connected for
all ` and Hypothesis H holds. Then the following assertions hold.

(i) There exist a connected reductive group G defined over Q and an isomorphism G×QQ`
φ`→ G` for each

` ∈ PQ,f such that the direct product representation∏
`∈PQ,f

ρ` : Gal(K/K)→
∏

`∈PQ,f

G`(Q`)
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factors through a G-valued adelic representation via φ`:

ρGA : Gal(K/K)→ G(AQ).

(ii) If the representations V` are absolutely irreducible, then there exist a connected reductive subgroup

G ⊂ GLn,Q and an isomorphism of representations (G ↪→ GLn,Q) ×Q Q`
φ`→ (G` ↪→ GLV`) for each

` ∈ PQ,f such that the direct product representation∏
`∈PQ,f

ρ` : Gal(K/K)→
∏

`∈PQ,f

G`(Q`) ⊂
∏

`∈PQ,f

GLn(Q`)

factors through a G-valued adelic representation via φ`:

ρGA : Gal(K/K)→ G(AQ) ⊂ GLn,Q(AQ).

Corollary 1.10. Let ρ• be an `-adic compatible system of Gal(K/K) as above. Suppose V` is absolutely
irreducible, G` is connected for all `, and Hypothesis H holds. Then there exists a smooth reductive group
scheme G ⊂ GLn,ZS defined over ZS (for some finite S ⊂ PQ,f ) whose generic fiber is G ⊂ GLn,Q such that
for all ` ∈ PQ,f\S, the representations (G ↪→ GLn,ZS ) × Z` and G` ↪→ GLn,Z` are isomorphic, where G` is

the Zariski closure of ρ`(Gal(K/K)) in GLn,Z` after some choice of Z`-lattice in V`.

1.2.2.3. Suppose Y = A is an abelian variety defined over K of dimension g and w = 1. We say that A has
ordinary reduction at v if the local representation Vp of Gal(Kv/Kv) is ordinary. The following results are
due to Pink.

Theorem C. [Pi98, Thm. 5.13(a),(c),(d), Thm. 7.1] Let A be an abelian variety defined over a number field
K with End(AK) = Z and suppose G` is connected for all `. There exists a connected reductive subgroup G
of GL2g,Q such that the following assertions hold.

(i) (G ↪→ GL2g,Q)×Q` is isomorphic to G` ↪→ GLV` for all ` in set L of primes of Dirichlet density one.
(ii) The derived group Gder is Q-simple.

(iii) If the root system of G is determined uniquely by its formal character, i.e., if G does not have an
ambiguous factor (in Theorem E), then we can take L in (i) to contain all but finitely many primes.

(iv) If G×QQ does not have any type Cr simple factors with r ≥ 3, then the abelian variety A has ordinary
reduction at a Dirichlet density one set of places v of K.

By the Tate conjecture of abelian varieties proven by Faltings [Fa83] and End(AK) = Z, the representations
V` are absolutely irreducible. The Q`-representation V` = H1(AK ,Q`) has a natural Z`-model H1(AK ,Z`).
Consider the representation Gal(K/K)→ GL(H1(AK ,Z`)) and let G` be the Zariski closure of the image in
GLH1(AK ,Z`). Combining the previous results, we obtain Theorem 1.11 below which extends Theorem C(iii)
to all ` assuming ordinariness.

Theorem 1.11. Let A be an abelian variety defined over a number field K with End(AK) = Z and suppose
G` is connected for all ` and the following conditions hold.

(a) The set of places v in PK,f for which the local representations Vp of Gal(Kv/Kv) are ordinary is of
positive Dirichlet density.

(b) The root system of G` is determined uniquely by its formal character.

Then there exists a smooth group subscheme G ⊂ GL2g,ZS over ZS (for some finite S ⊂ PQ,f ) with generic

fiber G ⊂ GL2g,Q and an isomorphism of representations (G ↪→ GL2g,Q) ×Q Q`
φ`→ (G` ↪→ GLV`) for each

` ∈ PQ,f such that the direct product representation∏
`∈PQ,f

ρ` : Gal(K/K)→
∏

`∈PQ,f

G`(Q`) ⊂
∏

`∈PQ,f

GL2g(Q`)

factors through a G-valued adelic representation via φ`:

ρGA : Gal(K/K)→ G(AQ) ⊂ GL2g,Q(AQ).

Moreover, for `� 0, the representations (G ↪→ GL2g,ZS )× Z` and G` ↪→ GLH1(AK ,Z`) are isomorphic.
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Remark 1.12. By Theorem C(iv), Theorem E, and the fact that for every `, every simple factor of G`×Q`Q`
is of type A, B, C, or D [Pi98, Cor. 5.11], the conditions 1.11(a),(b) hold if for some prime `′, every simple
factor of G`′ ×Q`′ Q`′ is of type Ar with r > 1.

1.3. The structure of the paper. The paper is structured on the purely algebraic main theorems I and II
in next section. Roughly speaking, it states that if a family of connected reductive algebraic subgroups

Gλ ↪→ GLn,Eλ indexed by λ ∈ P(p)
E,f (resp. PE,f ) satisfies some conditions, then there exist a common

E-form of the family of the subgroups (resp. the representations). The results in §1.2 are established in
two big steps. Firstly, we state and prove the main theorems in §2 which require different techniques from
representation theory and Galois cohomology. The notation and diagrams we developed in §2 are very much
influenced by the work [Hu18]. A crucial step to the existence of a common E-form in the main theorem is
based on the local-global aspects of Galois cohomology §2.5. Secondly, we prove Theorems 1.1, 1.5, and 1.6 in
§3 by checking that the conditions of the main theorems are satisfied for the corresponding family of algebraic
monodromy groups of the E-compatible systems and applying the main theorems. For the characteristic p
case, to prove Theorem 1.1 (resp. Theorem 1.5) by main theorem I (resp. II), the required conditions are
ensured by Theorem B (resp. recent work [D’Ad20], see Theorem B’). The characteristic zero case is more
involved. It requires the results of formal bi-character (§2.2c’-bi) and invariance of roots to compensate for
the lack of the rigidity condition B(iii). The information at the real place (Proposition 3.3) and a finite place
(ordinary representation Vp) are also needed. The other results in §1.2 will also be established in §3. The
statements that we quote are named using alphabets (e.g., Theorem A) and the statements that we prove
are named using numbers (e.g., Theorem 1.1).

2. Main theorems

2.1. Statements.

Main theorem I. Suppose a connected reductive subgroup Gλ ⊂ GLn,Eλ is given for each λ ∈ P(p)
E,f such that

the following conditions hold.

(a) (Common E-form of formal characters): There exists a subtorus T of GLn,E such that for all λ ∈ P(p)
E,f ,

Tλ := T×E Eλ is a maximal torus of Gλ.
(b) (λ-independence absolutely): There exists a chain of subgroups Tsp ⊂ Gsp ⊂ GLn,E such that Gsp is

connected split reductive, Tsp is a split maximal torus of Gsp, and for all λ ∈ P(p)
E,f , if Eλ is a completion

of E extending λ on E, then there exists an isomorphism of chain representations:

fEλ : (Tsp ⊂ Gsp ↪→ GLn,E)×E Eλ
∼=→ (Tλ ⊂ Gλ ↪→ GLn,Eλ)×Eλ Eλ.

(c) (Rigidity): The isomorphisms fEλ in (b) can be chosen such that the restriction isomorphisms fEλ :

Tsp ×E Eλ → Tλ ×Eλ Eλ admit a common E-form fE : Tsp ×E E → T×E E for all λ ∈ P(p)
E,f and Eλ.

(d) (Quasi-split): The groups Gλ are quasi-split for all but finitely many λ ∈ P(p)
E,f .

Then the following assertions hold.

(i) There exists a connected reductive group G defined over E such that G×E Eλ ∼= Gλ for all λ ∈ P(p)
E,f .

In particular, Gλ is unramified for all but finitely many λ.
(ii) If moreover Gsp ↪→ GLn,E is irreducible, then there exists a connected reductive subgroup G of GLn,E

such that G ↪→ GLn,E is a common E-form of the representations Gλ ↪→ GLn,Eλ for all λ ∈ P(p)
E,f .

For any E-algebra B, define GLm,B to be the affine algebraic group over E such that for any E-algebra
C the group of C-points is GLm(B ⊗E C).

Main theorem II. Suppose a connected reductive subgroup Gλ ⊂ GLn,Eλ is given for each λ ∈ PE,f such
that the following conditions hold.

(a) (Common E-form of formal characters): There exists a subtorus T of GLn,E such that for all λ ∈ PE,f ,
Tλ := T×E Eλ is a maximal torus of Gλ.
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(b) (λ-independence absolutely): There exists a chain of subgroups Tsp ⊂ Gsp ⊂ GLn,E such that Gsp is

connected split reductive, Tsp is a split maximal torus of Gsp, and for all λ ∈ PE,f , if Eλ is a completion

of E extending λ on E, then there exists an isomorphism of chain representations:

fEλ : (Tsp ⊂ Gsp ↪→ GLn,E)×E Eλ
∼=→ (Tλ ⊂ Gλ ↪→ GLn,Eλ)×Eλ Eλ.

(c) (Rigidity): The isomorphisms fEλ in (b) can be chosen such that the restriction isomorphisms fEλ :

Tsp ×E Eλ → Tλ ×Eλ Eλ admit a common E-form fE : Tsp ×E E → T×E E for all λ ∈ PE,f and Eλ.
(d) (Anisotropic torus): The twisted E-torus µ(T

sp/C) is anisotropic at some place of E and all real places
of E, where C is the center of Gsp and µ ∈ Z1(E,AutE Tsp) the cocycle defined by fE in (c).

Then the following assertions hold.

(i) There exists a unique connected reductive group G defined over E containing T such that (T ⊂ G)×E
Eλ ∼= (Tλ ⊂ Gλ) for all λ ∈ PE,f . In particular, Gλ is unramified for all but finitely many λ.

(ii) If moreover Gsp ↪→ GLn,E is irreducible, then there exist an inner form GLm,D (for some division
algebra D over E) of GLn,E over E containing a chain of subgroups T ⊂ G such that T ⊂ G ↪→ GLm,D
is a common E-form of the chain representations Tλ ⊂ Gλ ↪→ GLn,Eλ for all λ ∈ PE,f . Such a chain
of E-groups is unique.

Remark 2.1. There are similarities and differences between the two main theorems.

(1) The index set for main theorem I is P(p)
E,f and for main theorem II is PE,f .

(2) Conditions (a), (b), (c) of the two main theorems are identical except for the index sets.
(3) If we embed Eλ into C for all λ, then condition (b) is equivalent to asking that the C-representation

(Gλ → GLn,Eλ)×Eλ C is independent of λ.
(4) The rigidity condition (c) rigidifies the isomorphisms fEλ in (b) by requiring them to be extensions of

an E-isomorphism Tsp ×E E → T×E E where Tsp (resp. T) is the torus in (b) (resp. (a)).
(5) An F -torus T is said to be anisotropic if it does not have non-trivial F -character. If F is a number field,

T is said to be anisotropic at a place λ of F if it is anisotropic over Fλ. The twisted E-torus µ(T
sp/C)

in main theorem II(d) will be defined in §2.6.1.
(6) The conclusion of main theorem II is stronger than that of main theorem I as the E-torus T in condition

(a) can be found in the common E-form G in main theorem II. Moreover, if E has only one real place,
then the inner form GLm,D in main theorem II is equal to GLn,E by class field theory.

2.2. The rigidity condition. The rigidity condition (c) is important for the construction of the E-form G
in the main theorems. It does not come for free. In this section, we would like to prove that the rigidity
condition follows from conditions (a),(b) and (c’) below.

(c’) Both the following hold.
(c’-bi)=(Common E-form of formal bi-characters): There exists a subtorus Tss of T such that
Tss ×E Eλ is a maximal torus of the derived group Gder

λ of Gλ for all λ ∈ PE,f ;
(c’-inv)=(Invariance of roots): The normalizer NGLn,E (Tssp) is invariant on the roots of the derived

group (Gsp)der of Gsp with respect to the maximal torus Tssp := Tsp ∩ (Gsp)der.

2.2.1. Formal character and bi-character. Let F be a field and G a connected reductive subgroup of GLn,F .
If T is a maximal torus of G, then Tss := T ∩Gder is a maximal torus of the derived group Gder of G.

Definition 2.2. [Hu18, Def. 2.2, 2.3]

(i) The inclusion T ⊂ GLn,F is said to be a formal character of G ⊂ GLn,F .
(ii) The chain Tss ⊂ T ⊂ GLn,F is said to be a formal bi-character of G ⊂ GLn,F .

Remark 2.3. Given a chain of subtori Tss ⊂ T ⊂ GLn,F , it is a formal bi-character of G ⊂ GLn,F if
and only if T ⊂ GLn,F is a formal character of G ⊂ GLn,F and Tss ⊂ GLn,F is a formal character of
Gder ⊂ GLn,F . It is clear that (c’-bi) together with (a) in the main theorems mean that there exist a chain
of subtori, denoted Tss ⊂ T ⊂ GLn,E, such that

(Tss ⊂ T ⊂ GLn,E)×E Eλ
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is a formal bi-character of Gλ ⊂ GLn,Eλ for all λ.

Proposition 2.4. If conditions (a) and (b) in the main theorems hold and Gsp is irreducible on En, then
(c’-bi) holds.

Proof. Let T ⊂ GLn,E be in (a) and let Tss be the identity component of the kernel of the determinant map

T→ GLn,E
det→ Gm. Since Gλ is connected and the representation Gλ ⊂ GLn,Eλ is absolutely irreducible for

all λ by the assumptions, Gλ is either Gder
λ or Gder

λ ·Gm by Schur’s lemma. Hence by counting dimension,
Tss ×E Eλ is a maximal torus of Gder

λ for all λ. �

2.2.2. Invariance of roots. Let F be a field of characteristic zero and G a connected split semisimple subgroup
of GLn,F . Fix a split maximal torus T of G and denote by X the character group of T. Let R ⊂ X be the
set of roots of G with respect to T. Let N := NGLn,F (T) be the normalizer of T in GLn,F . Since N acts
on T, it also acts on X. We would like to know when R is invariant under N. It is easy to see that this
invariance of roots condition (i.e., N · R = R) is independent of the choice of the maximal torus T and is
invariant under field extension. So, we take F = C for simplicity. If H is an almost simple factor of G, then
by the Cartan-Killing classification the root system of H is one of the following: Ar (r ≥ 1), Br (r ≥ 2), Cr
(r ≥ 3), Dr (r ≥ 4), E6, E7, E8, F4, G2. We also use the convention that C2 = B2, D2 = A2

1, and D3 = A3.

2.2.2.1. Here are some examples for the invariance of roots condition.

Theorem D. [Hu18, Thm. 3.10],[Hu20, Thm. A2] The following C-connected semisimple groups G satisfy
the invariance of roots condition for all representations G ⊂ GLn,C.

(a) (Hypothesis A): G has at most one A4 almost simple factor and if H is an almost simple factor of G,
then H is of type Ar for some r ∈ N\{1, 2, 3, 5, 7, 8}.

(b) (Almost simple): G is almost simple of type different from {A7, A8, B4, D8}.

Suppose G is irreducible on the ambient space Cn. If G1 is a connected normal subgroup of G, then
there exists an unique complementary connected normal subgroup G2 of G such that the natural map
G1 ×G2 → G is an isogeny of semisimple groups. Moreover, there exist unique irreducible representations
V1 and V2 of respectively G1 and G2 such that the composition representation G1 ×G2 → G → GLn,C is
equal to the tensor product representation (G1 ×G2, V1 ⊗ V2) (see [FH91]). We say that the representation
(G1, V1) is a factor of the representation (G,Cn).

Theorem E. (by [LP90, Thm. 4]) If G,G′ ⊂ GLn,C are two connected semisimple subgroups with the same
formal character T ⊂ GLn,C and are both irreducible on the ambient space Cn. Then the roots R and R′

of respectively G and G′ (with respect to T) are identical in X and the two representations are isomorphic
unless one of the following conditions holds.

(a) For r1, ..., rm, r ∈ N such that r1 + · · ·+ rm = r, the spin representation of Br is a factor of (G,Cn) and
the tensor product of the spin representations of Brj for all 1 ≤ j ≤ m is a factor of (G′,Cn).

(b) For 1 ≤ k ≤ r−1 and r ≥ 2, the representation of Cr (resp. Dr) with highest weight (k, k−1, .., 2, 1, ...0)
is a factor of (G,Cn) (resp. (G′,Cn)).

(c) The unique dimension 27 irreducible representation of A2 (resp. G2) is a factor of (G,Cn) (resp.
(G′,Cn)).

(d) Pick two out of the three unique dimension 4096 = 212 irreducible representations of C4, D4, and F4.
Then one is a factor of (G,Cn) and the other one is a factor of (G′,Cn).

The following corollary follows directly by taking G′ = gGg−1, where g ∈ N.

Corollary 2.5. If G ⊂ GLn,C is a connected semisimple subgroup that is irreducible on the ambient space Cn,
then the invariance of roots condition holds if the following conditions are satisfied.

(a) For r1, ..., rm, r ∈ N such that r1 + · · ·+ rm = r, the spin representation of Br and the tensor product of
the spin representations of Brj for all 1 ≤ j ≤ m are not both factors of (G,Cn).

(b) For 1 ≤ k ≤ r − 1 and r ≥ 2, the representations of Cr and Dr with highest weight (k, k − 1, .., 2, 1, ...0)
are not both factors of (G,Cn).

(c) The unique dimension 27 irreducible representations of A2 and G2 are not both factors of (G,Cn).
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(d) Any two of the unique dimension 4096 irreducible representations of C4, D4, and F4 are not both factors
of (G,Cn).

2.2.2.2. Inspired by Theorem E, we give more examples for the invariance of roots condition.

Theorem 2.6. Suppose G ⊂ GLn,C is a connected adjoint semisimple subgroup that satisfies the following Lie
type assumptions:

(a) G does not have a factor of type Br (r ≥ 2).
(b) If G has a factor of type C3, then it cannot have a factor of type A3.
(c) If G has a factor of type Cr, then it cannot have a factor of type Dr (r ≥ 4).
(d) If G has a factor of type F4, then it cannot have a factor of type D4.
(e) If G has a factor of type G2, then it cannot have a factor of type A2.

Then the invariance of roots condition holds.

Proof. Let G1, ...,Gk be the almost simple factors of G. Then Ti = Gi ∩ T is a maximal torus of Gi for
all i. Let Xi be the character group of Ti and Ri the roots of Gi with respect to Ti. Let Φ ⊂ X (resp.
Φi ⊂ Xi) be the subgroup (root lattice) generated by R (resp. Ri). One can impose a metric on the real
vector space XR := X⊗Z R such that (R,XR) is a root system, the normalizer N is isometric on XR, and the
decomposition

(4) R =

k∐
i=1

Ri ⊂
k⊕
i=1

Φi ⊗ R =

k⊕
i=1

Xi ⊗ R = XR

is orthogonal (see e.g., [Hu20, Appendix A]). The root subsystem (Ri,Xi,R := Xi ⊗ R) is irreducible for all
i. The lemma below is needed.

Lemma 2.7. Suppose G ⊂ GLn,C is a connected semisimple subgroup that that satisfies the assumptions of
Theorem 2.6. The following assertions are equivalent.

(i) R is invariant under N.
(ii) If g ∈ N, then g ·R ⊂ Φ.

(iii) If g ∈ N, then g induces an automorphism of Φ.

Proof. (i) ⇒ (ii): trivial.
(ii)⇒ (iii): (ii) is equivalent to N ·Φ ⊂ Φ. Since g induces an automorphism of X and X/Φ is finite, g ·Φ ⊂ Φ
implies that g · Φ = Φ.
(iii) ⇒ (i): The set of non-zero elements of Φi with the shortest length is equal to the set of short roots R◦i
of Ri [LP90, §4 Lemma], which also spans Xi ⊗R. The decomposition in (4) is orthogonal and Φ = ⊕ki=1Φi
in XR. Since g is isometric on XR and induces an automorphism of Φ by (iii), g permutes the union
R◦1 ∪R◦2 ∪ · · · ∪R◦m. Note that R◦i = Ri if Ri is of type A,D,E and the following [LP90, p.395]:

B◦r = Ar1 (r ≥ 2), C◦3 = A3, C◦r = Dr (r ≥ 4), F ◦4 = D4, G◦2 = A2.

These facts and assumption (a) imply that R◦i remains irreducible for all i. Then the orthogonality of the
decomposition (4) and the fact that g is isometric on XR imply that g permutes the set {R◦1, R◦2, ..., R◦m}.
Since g is isometric on XR, the Lie type assumptions (a)–(e) and the above facts about short roots imply
that Ri and Rj (1 ≤ i, j ≤ m) are of the same type if g · R◦i = R◦j . By observing how the R◦i generate Ri
[GOV94, Table 1], we obtain g ·Ri = Rj . Hence, g actually permutes the union of roots R1 ∪R2 ∪ · · · ∪Rm.
By the orthogonality of the decomposition (4), the fact that g is isometric on XR, and induction, we conclude
that g permutes R. �

Back to the theorem, we have Φ = X because G is adjoint. Since X is invariant under N by definition, Φ
is invariant under N. Therefore, R is invariant under N by the lemma. �
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2.2.3. Conditions for rigidity.

Proposition 2.8. If conditions (a), (b) in the main theorem(s) and (c’) hold, then condition (c) in the main
theorem(s) also holds.

Proof. By (a) and (c’-bi), we have a chain of subtori Tss ⊂ T ⊂ GLn,E such that for all λ,

Tss
λ ⊂ Tλ ⊂ GLn,Eλ := (Tss ⊂ T ⊂ GLn,E)×E Eλ

is a formal bi-character of Gλ ⊂ GLn,Eλ . By (b), we have the field extensions diagram

Eλ

E Eλ

E

and a chain Tsp ⊂ Gsp (over E) such that for all λ, there exists an Eλ-isomorphism of representations fEλ
taking Tsp ⊂ Gsp to Tλ ⊂ Gλ (omitting the extension field for simplicity). This implies that fEλ maps

Tssp := Tsp ∩ (Gsp)der to Tss
λ = Tλ ∩Gder

λ for all λ. Hence, we conclude that for all λ, the two chains

(5) Tssp ⊂ Tsp ⊂ Gsp and Tss
λ ⊂ Tλ ⊂ Gλ

are conjugate in GLn(Eλ). In particular, the two E-chains

(6) Tssp ⊂ Tsp and Tss ⊂ T

are conjugate in GLn(E). So we choose M ∈ GLn(E) such that

(7) Tssp ⊂ Tsp = M(Tss ⊂ T)M−1.

To finish the proof, it suffices to find for all λ, a matrix Bλ ∈ GLn(Eλ), such that the conjugation map
by Bλ takes MGλM

−1 to Gsp and is identity on Tsp = MTM−1. Such Bλ exists. Indeed, there exists
Aλ ∈ GLn(Eλ) such that

(8) Tssp ⊂ Tsp ⊂ Gsp = AλM(Tss
λ ⊂ Tλ ⊂ Gλ)M−1A−1

λ

because the chains in (5) are conjugate in GLn(Eλ). Then (7) and (8) imply that Aλ ∈ NGLn(Tssp)
and conjugation by Aλ takes the roots of MGder

λ M−1 to the roots of (Gsp)der. By (c’-inv), the roots of
the two semisimple (derived) groups are identical (in the character group of Tssp). Hence, [Hu18, Thm.
3.8] implies that the absolute root data of MGλM

−1 and Gsp are identical with respect to the common
maximal torus MTλM

−1 = Tsp. By [Sp08, Thm. 16.3.2], there exists an Eλ-isomorphism bλ taking the
pair (MGλM

−1,MTλM
−1) to the pair (Gsp,Tsp) inducing the identity map between their root data. Let

i1 and i2 be the tautological representation of MGλM
−1 and Gsp into GLn. Then the two representations

i1 and i2 ◦ bλ are isomorphic. Therefore, bλ is just a conjugation by a matrix Bλ ∈ GLn(Eλ) that is identity
on MTλM

−1 = Tsp. �

2.3. Forms of reductive chains. This section is foundational to the proofs of the main theorems and is
developed from [Hu18, §4].

2.3.1. Galois cohomology. Let F be a field of characteristic zero, G1 and G′1 be linear algebraic groups defined
over F . The Galois group Gal(F/F ) acts (on the left) on the set of F -homomorphisms φ : G1×FF → G′1×FF
as follows: if σ ∈ Gal(F/F ), then σφ is the homomorphism such that

σφ(x) = σ(φ(σ−1x)) ∀x ∈ G1(F ).

Let Gk ⊂ · · · ⊂ G2 ⊂ G1 be a chain of linear algebraic groups defined over F . An F -form of the chain
Gk ⊂ · · · ⊂ G2 ⊂ G1 is a chain of reductive groups G′k ⊂ · · · ⊂ G′2 ⊂ G′1 defined over F that is

isomorphic to Gk ⊂ · · · ⊂ G2 ⊂ G1 over F , i.e., there exists a F -homomorphism φ : G1 ×F F → G′1 ×F F
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such that φ(Gi ×F F ) ⊂ G′i ×F F and the restriction φ|Gi×FF is an isomorphism for all 1 ≤ i ≤ k.

Since the groups are defined over F , the F -homomorphism σφ is also a F -isomorphism between the two
chains. In particular, the automorphism group AutF (G1,G2, ...,Gk) of the chain (i.e, the subgroup of the

automorphism group AutF G1 of G1×F F preserving the chain Gk ⊂ · · · ⊂ G2 ⊂ G1) is a Gal(F/F )-group.

Let φ : G1 ×F F → G′1 ×F F be a F -isomorphism from Gk ⊂ · · · ⊂ G2 ⊂ G1 to G′k ⊂ · · · ⊂ G′2 ⊂ G′1.
Then the association

(9) σ 7→ aσ := φ−1 ◦ σφ ∈ AutF (G1,G2, ...,Gk)

for all σ ∈ Gal(F/F ) satisfies the 1-cocycle condition:

aσσ′ = aσ
σaσ′ ,

producing a bijective correspondence (see [Se97, Ch. 3.1, Prop. 5 and its proof]) between the set of iso-
morphism classes of F -forms of the chain Gk ⊂ · · · ⊂ G2 ⊂ G1 and the Galois cohomology pointed set
H1(F,AutF (G1,G2, ...,Gk)) in which the neutral element is the trivial class [aσ = id] corresponding to the
F -isomorphism class of Gk ⊂ · · · ⊂ G2 ⊂ G1.

Let InnF G1 be the inner automorphism group of G1 ×F F . It is a (Gal(F/F )-) normal subgroup of
AutF G1. Denote the inner automorphism group of the chain by

InnF (G1,G2, ...,Gk) := AutF (G1,G2, ...,Gk) ∩ InnF G1.

and the outer automorphism group of the chain by

OutF (G1,G2, ...,Gk) := AutF (G1,G2, ...,Gk)/ InnF (G1,G2, ...,Gk).

Then we obtain a short exact sequence of Gal(F/F )-groups

(10) 1→ InnF (G1,G2, ...,Gk)→ AutF (G1,G2, ...,Gk)→ OutF (G1,G2, ...,Gk)→ 1.

and an exact sequence of pointed set [Se97, Ch. 1.5.5, Prop. 38]

(11) H1(F, InnF (G1,G2, ...,Gk))
i→ H1(F,AutF (G1,G2, ...,Gk))

π→ H1(F,OutF (G1,G2, ...,Gk)).

The exactness means that the preimage π−1([id]) is equal to the image Im(i).
An F -form G′k ⊂ · · · ⊂ G′2 ⊂ G′1 of Gk ⊂ · · · ⊂ G2 ⊂ G1 is called an inner F -form (or inner form)

if there exists an F -isomorphism φ such that in (9), the element aσ belongs to InnF (G1,G2, ...,Gk) for all
σ. In general, the isomorphism classes of inner F -forms do not form a subset of the isomorphism classes of
F -forms since the map i in (11) is not injective. However, the sequence (11) is a short exact sequence of
pointed sets (and thus i is injective) if (10) splits. We will see in later sections that the splitting of (10)
holds for some chains (e.g., Tsp ⊂ Gsp). The following simple lemma is useful to study the conjugacy class
of a subgroup in GLn,F .

Lemma 2.9. Let D be a central division algebra over F . Let U = GLm,D be an F -inner form of GLn,F ,

T ⊂ G ⊂ GLn,F and T′ ⊂ G′ ⊂ U be two chains. If the two chains of F -representations (T ⊂ G ↪→
GLn,F )×F F and (T′ ⊂ G′ ↪→ U)×F F are isomorphic, then the following hold.

(i) The chain T′ ⊂ G′ ⊂ U is an inner form of T ⊂ G ⊂ GLn,F .
(ii) If the cohomology class [T′ ⊂ G′ ⊂ U] ∈ H1(F, InnF (GLn,F ,G,T)) is the neutral class, then D = F

and the two F -representations T ⊂ G ↪→ GLn,F and T′ ⊂ G′ ↪→ U = GLn,F are isomorphic.

Proof. Identify U×F F with GLn,F . The condition implies that there exists an F -inner automorphism ψ of

GLn,F such that ψ(G×F F ) = G′ ×F F and ψ(T×F F ) = T′ ×F F . This defines a 1-cocycle

σ 7→ aσ := ψ−1 ◦ σψ ∈ InnF (GLn,F ,G,T),

which proves (i). If the cocycle is neutral, then there exists γ ∈ InnF (GLn,F ,G,T) ⊂ PGLn(F ) such that

aσ = γ−1 ◦ σγ for all σ ∈ Gal(F/F ). This is equivalent to

ψ ◦ γ−1 = σ(ψ ◦ γ−1) ∀σ ∈ Gal(F/F ).

Hence, ψ ◦ γ−1 ∈ PGLn(F ) and GLn,F and GLm,D are F -isomorphic. Therefore, D = F , U = GLn,F , and
ψ ◦ γ−1 is an F -inner automorphism of GLn,F taking G to G′ as well as T to T′, which prove (ii). �



14 CHUN YIN HUI

2.3.2. Some diagrams. In this section, some diagrams of groups and Galois cohomology will be presented.
Let F be a field. Denote by

• Gsp a connected split reductive group defined over F ,
• Tsp a split maximal torus of Gsp,
• N the normalizer of Tsp in Gsp,
• W := N/Tsp the Weyl group,
• B a Borel subgroup of Gsp containing Tsp,
• C the center of Gsp,
• (Gsp)ad := Gsp/C the adjoint quotient of Gsp,
• ΘF := OutF Gsp the outer automorphism group of Gsp.

• Zk(F,M) := Zk(F,M(F )) the cocycles if M is a linear algebraic group defined over F .
• Hk(F,M) := Hk(F,M(F )) the cohomology if M is a linear algebraic group defined over F .

2.3.2.1. Consider the following diagram of Gal(F/F )-groups:

(12)

1 // N/C(F )
� _

��

i
// AutF (Gsp,Tsp)

� _

ResGsp

��

π
// ΘF

=

��

// 1

1 // (Gsp)ad(F )
i

// AutF Gsp π
// ΘF

// 1

where the top (resp. bottom) row is (10) for Tsp ⊂ Gsp by [Hu18, Prop. 4.3] (resp. Gsp) and the vertical
arrows are all natural inclusions induced by restricting automorphisms to Gsp:

(13) ResGsp : AutF (Gsp,Tsp)→ AutF Gsp.

Since Gsp is split, the Galois group Gal(F/F ) acts trivially on the outer automorphism group ΘF . The
proposition below is well-known.

Proposition F. (see e.g. [Hu18, Prop. 4.1]) The automorphism group AutF Gsp contains a Gal(F/F )-
invariant subgroup that preserves Tsp and B and is mapped isomorphically onto OutF Gsp. Hence, the top

(resp. bottom) row in (12) is a split short exact sequence of Gal(F/F )-groups:

(14) 1 // N/C(F )
i
// AutF (Gsp,Tsp)

π
// ΘF

j

{{
// 1.

Denote by

• ΩF := Im(ResTsp), where ResTsp restricts automorphisms to Tsp:

(15) ResTsp : AutF (Gsp,Tsp)→ AutF Tsp.

Then the first row in (12) also fits into the following diagram of Gal(F/F )-groups with exact rows and
columns by [Hu18, Prop. 4.3] and j denotes a splitting induced by (14).
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(16)

1

��

1

��

1

��

1 // Tsp/C(F )

��

// Tsp/C(F )

��

// 1

��

// 1

1 // N/C(F )

��

i
// AutF (Gsp,Tsp)

ResTsp

��

π
// ΘF

j

{{

=

��

// 1

1 // W
i

//

��

ΩF
π

//

��

ΘF

��

// 1

1 1 1

2.3.2.2. Suppose given a faithful (absolutely) irreducible representation Gsp ↪→ GLn,F . Then we have the
chain Tsp ⊂ Gsp ⊂ GLn,F . The irreducibility condition implies that C is contained in the subgroup of
scalars in GLn,F and the following inclusions hold .

(17)

N/C(F )
� _

��

� � // InnF (GLn,F ,G
sp,Tsp)

� _

Res(GLn,F ,G
sp)

��

� � // AutF (Gsp,Tsp)
� _

ResGsp

��

(Gsp)ad(F )
� � // InnF (GLn,F ,G

sp)
� � // AutF Gsp

In diagram (16), denote by

• θF := π(InnF (GLn,F ,G
sp,Tsp)) ∈ ΘF ,

• ωF := ResTsp(InnF (GLn,F ,G
sp,Tsp)) ∈ ΩF .

By diagrams (12), (16), (17) and the fact that the squares in (17) are Cartesian, we obtain the following two
diagrams with exact rows and columns. Moreover, (18) injects naturally into (12), (19) injects naturally into
(16), and j denotes the splitting induced by (14).

(18)
1 // N/C(F )

� _

��

i
// InnF (GLn,F ,G

sp,Tsp)
� _

Res(GLn,F ,G
sp)

��

π
// θF

j

yy

=

��

// 1

1 // (Gsp)ad(F )
i

// InnF (GLn,F ,G
sp)

π
// θF

j

yy
// 1
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(19)

1

��

1

��

1

��

1 // Tsp/C(F )

��

// Tsp/C(F )

��

// 1

��

// 1

1 // N/C(F )

��

i
// InnF (GLn,F ,G

sp,Tsp)

ResTsp

��

π
// θF

j

yy

=

��

// 1

1 // W
i

//

��

ωF
π

//

��

θF

��

// 1

1 1 1

2.3.2.3. By taking Galois cohomology on diagrams (12),(16),(18),(19), the splitting j, and Hilbert’s Theorem
90: H1(F,Tsp/C) = H1(F,Gm)⊕k = 0, we obtain the following diagrams of pointed sets such that the rows
and columns are all exact. Moreover, there are natural maps from (22) to (20), (23) to (21), and j denotes
again the splitting.

(20)
0 // H1(F,N/C)

��

i
// H1(F,AutF (Gsp,Tsp))

ResGsp

��

π
// H1(F,ΘF )

j

ww

=

��

// 0

0 // H1(F, (Gsp)ad)
i
// H1(F,AutF Gsp)

π
// H1(F,ΘF )

j

ww
// 0

(21)

0

��

0

��

0

��

0 // H1(F,N/C)

��

i
// H1(F,AutF (Gsp,Tsp))

ResTsp

��

π
// H1(F,ΘF )

j

ww

=

��

// 0

0 // H1(F,W )
i

// H1(F,ΩF )
π

// H1(F,ΘF ) // 0

(22)
0 // H1(F,N/C)

��

i
// H1(F, InnF (GLn,F ,G

sp,Tsp))

Res(GLn,F ,G
sp)

��

π
// H1(F, θF )

j

vv

=

��

// 0

0 // H1(F, (Gsp)ad)
i

// H1(F, InnF (GLn,F ,G
sp))

π
// H1(F, θF )

j

vv
// 0
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(23)

0

��

0

��

0

��

0 // H1(F,N/C)

��

i
// H1(F, InnF (GLn,F ,G

sp,Tsp))

ResTsp

��

π
// H1(F, θF )

j

vv

=

��

// 0

0 // H1(F,W )
i

// H1(F, ωF )
π

// H1(F, θF ) // 0

2.4. Twisting. Let G be a profinite group and A be a G-group (a discrete group on which G acts contin-
uously). The Galois cohomology H1(G,A) is a pointed set with neutral element given by the trivial class

[idA]. Let 1→ A
i→ B

π→ C → 1 be a short exact sequence of G-groups. Then one obtains an exact sequence
of pointed sets

H1(G,A)
i→ H1(G,B)

π→ H1(G,C),

meaning that the image of i is equal to π−1([idC ]) = π−1(π([idB ])), the fiber of π([idB ]). Let [β] ∈ H1(G,B)
be a cohomology class. To study the image of π as well as the fiber of π([β]), that is, the set π−1(π([β])), one
uses the method of twisting in [Se97, Ch. 1.5.3–1.5.7]. This technique will be applied to some short exact
sequences in §2.4.2.

2.4.1. Definition. Let G be a group, M a (left) G-group, and A (resp. B) be a M -group on which G acts
compatibly on the left, i.e., g(m(a)) = g(m)(g(a)) for g ∈ G, m ∈ M , and a ∈ A. Suppose µ := (mg) ∈
Z1(G,M) is a 1-cocycle. Then one can define a G-group µA twisted by µ, which can be viewed as A with a
new G-action: as a group µA = A and the G-action is defined by

(24)
G× µA −→ µA

(g, a) 7→ mg(g(a)).

As M acts on itself by inner automorphism (conjugation): (−) 7→ m(−)m−1, denote by µM the twisted
G-group. Then µA is a µM -group under the identification

(25)

µM × µA //

=

��

µA

=

��

M ×A // A

on which G acts compatibly on the left. If µ, µ′ ∈ Z1(G,M) are cohomologous, then µA and µ′A are
isomorphic. The association A 7→ µA is functorial: if f : A → B is a G-, M -group homomorphism,
then µf : µA → µB is a G-, µM -group homomorphism [Se97, Ch. 1.5.3]. Since A acts on itself by inner
automorphism: A → Inn(A), it acts on B via the map A → B → Inn(B) such that A → B is an A-group
homomorphism. The following correspondences are crucial.

Proposition G. [Se97, Ch. 1.5.3 Prop. 35 bis] Let f : A → B be a G-group homomorphism, α = (ag) ∈
Z1(G,A) be a cocycle, and β = (bg) ∈ Z1(G,B) the image of α. Write A′ = αA, B′ = βB, and f ′ : A′ → B′

the map. To each cocycle (a′g) ∈ Z1(G,A′) (resp. (b′g) ∈ Z1(G,B′)), associate the cocycle (a′gag) ∈ Z1(G,A)

(resp. (b′gbg) ∈ Z1(G,B)). This induces the following commutative diagrams such that the vertical arrows
are bijective correspondence taking neutral cocycles (resp. classes) to α, β (resp. [α], [β]).

(26)

Z1(G,A′)
f ′
//

tα

��

Z1(G,B′)

tβ

��

H1(G,A′)
f ′
//

τα

��

H1(G,B′)

τβ

��

Z1(G,A)
f
// Z1(G,B) H1(G,A)

f
// H1(G,B)

Therefore, τα : (f ′)−1(f ′([idA′ ]))→ f−1(f([α])) is a bijective correspondence between the fibers of classes.



18 CHUN YIN HUI

2.4.2. Fibers of π. Given a split short exact sequence of G-groups:

(27)
1 // A

i
// B

π
// C

j

��
// 1.

Then we obtain a split short exact sequence of pointed sets:

(28)
0 // H1(G,A)

i
// H1(G,B)

π
// H1(G,C)

j

{{
// 0.

Since C acts on itself by inner automorphism, it also acts on B and A by the splitting j. Let χ ∈ Z1(G,C)
be a cocycle. It can also be seen as a cocycle in B via j. Hence, we let

(29)
1 // A′

i′
// B′

π′
// C ′

j′

��
// 1

be the split short exact sequence of G-groups constructed by twisting (27) by χ. We obtain the corollary
below by Proposition G.

Corollary 2.10. In the diagram below, the rows are split short exact sequence of pointed sets and the vertical
arrows are bijective with τj(χ)([idB′ ]) = [j(χ)], τχ([idC′ ]) = [χ], and τχ ◦ π′ = π ◦ τj(χ).

(30)
0 // H1(G,A′)

i′
// H1(G,B′)

π′
//

τj(χ)

��

H1(G,C ′)

j′

zz
//

τχ

��

0

0 // H1(G,A)
i
// H1(G,B)

π
// H1(G,C)

j

zz
// 0

2.4.2.1. Let Gsp be a connected split reductive group defined over F . By Proposition F, there is a split
short exact sequence of Gal(F/F )-groups

0 // (Gsp)ad(F )
i
// AutF Gsp π

// ΘF

j

~~
// 0,

inducing a split short exact sequence of pointed sets

(31)
0 // H1(F, (Gsp)ad)

i
// H1(F,AutF Gsp)

π
// H1(F,ΘF )

j

xx
// 0.

A reductive group G/F is said to be quasi-split if G has a Borel subgroup defined over F . The group ΘF

via j is a group of F -automorphisms of Gsp/F . The image of j in (31) can be characterized.

Theorem I. (see e.g. [Hu18, Thm. 4.2] and its proof) The set j(H1(F,ΘF )) in (31) is equal to the set

of isomorphism classes of quasi-split F -forms of Gsp. Moreover, if χ ∈ Z1(F,ΘF ), then the Gal(F/F )-

group χG
sp(F ) is the F -points of a quasi-split connected reductive group G′ over F corresponding to the

F -isomorphism class [G′] = j([χ]).

Since the twisted automorphism group χAutF Gsp acts on χG
sp(F ) = G′(F ) by Theorem I, the twisted group

χAutF Gsp is naturally isomorphic to AutF G′. Denote by G
′ad the adjoint quotient of G′. By Corollary

2.10, the following diagram has split short exact rows of pointed sets and the vertical arrows are bijective
with τj(χ)([id]) = [G′] and τχ ◦ π′ = π ◦ τj(χ).



ON THE RATIONALITY OF ALGEBRAIC MONODROMY GROUPS OF COMPATIBLE SYSTEMS 19

(32)
0 // H1(F,G

′ad)
i′
// H1(F,AutF G′)

π′
//

τj(χ)

��

H1(F,Θ′
F

)

j′

xx
//

τχ

��

0

0 // H1(F, (Gsp)ad)
i
// H1(F,AutF Gsp)

π
// H1(F,ΘF )

j

xx
// 0

Remark 2.11.

(1) The middle vertical correspondence τj(χ) in (32) is the identity map if we identify the set of isomorphism
classes of F -forms of G′ with that of Gsp in a natural way.

(2) The twisted group Θ′
F

is naturally isomorphic to OutF G′ and corresponds via j′ to the set of isomorphism

classes of quasi-split F -forms of G′.
(3) Let G1 and G2 be two F -forms of Gsp. The form G1 is said to be an inner form of G2 if π([G1]) =

π([G2]). By Theorem I, any F -form G1 is an inner form of a unique quasi-split F -form G′.

2.4.2.2. Similarly, let χ ∈ Z1(F, θF ) and twist the second row of (18) by χ. Then we obtain an F -form
G′ ⊂ GLm′,D′ of the chain Gsp ⊂ GLn,F , where G′ is a quasi-split F -form of Gsp and GLm′,D′ is an inner
form of GLn,F (for some central division algebra D′ over F ). Since G′ is quasi-split and the tautological
representation is absolutely irreducible, it follows that GLm′,D′ = GLn,F [Ti71, Thm. 3.3] and the F -form is

(33) G′ ⊂ GLn,F

such that the following diagram has split short exact rows of pointed sets and the vertical arrows are bijective
with τj(χ)([id]) = [G′ ⊂ GLn,F ] and τχ ◦ π′ = π ◦ τj(χ).

(34)
0 // H1(F,G

′ad)
i′

// H1(F, InnF (GLn,F ,G
′))

π′
//

τj(χ)

��

H1(F, θ′
F

)

j′

ww
//

τχ

��

0

0 // H1(F, (Gsp)ad)
i
// H1(F, InnF (GLn,F ,G

sp))
π
// H1(F, θF )

j

ww
// 0

Corollary 2.12. The fiber π−1([χ]) in (32) (resp. (34)) can be identified with H1(F,G
′ad).

2.4.3. Image of π. Given a short exact sequence of G-groups with A abelian:

(35) 1 // A
i
// B

π
// C // 1.

Then C acts on A naturally and there is the twisted group χA for every χ ∈ Z1(G,C). One associates to χ
a cohomology class ∆(χ) ∈ H2(G, χA) as follows. Lift χ to a continuous map g 7→ bg of G into B and define

(36) ag,g′ = bgg(bg′)b
−1
gg′ ,

which is a 2-cocycle with values in χA [Se97, Ch. 1.5.6].

Proposition J. [Se97, Ch. 1.5.6 Prop. 41] The cohomology class [χ] belongs to the image of π : H1(G,B)→
H1(G,C) if and only if ∆(χ) vanishes in H2(G, χA).

Since the middle columns of (16) and (19) are short exact sequence of Gal(F/F )-groups with Tsp/C
abelian, we obtain the following.

Corollary 2.13. Let µ ∈ Z1(F,ΩF ) (resp. Z1(F, ωF )). The cohomology class [µ] belongs to the image of
ResTsp in (21) (resp. (23)) if and only if ∆(µ) vanishes in H2(F, µ(T

sp/C)).

2.5. Local-global aspects.
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2.5.1. The localization map. Let E be a number field and PE be the set of places of E. Let G be a linear
algebraic group (or more generally an automorphism group of a reductive chain in §2.3.1) defined over E .
For any λ ∈ PE , denote by Eλ the completion of E with respect to λ and by iλ : E → Eλ the embedding.
Let iλ : E → Eλ be an embedding extending iλ. Then it induces homomorphisms Gal(Eλ/Eλ)→ Gal(E/E)

and G(E)→ G(Eλ) for which the Gal(Eλ/Eλ)-module G(Eλ) and Gal(E/E)-module G(E) are compatible.
We obtain a map of cocycles (k = 0, 1 if G non-abelian)

(37) locλ : Zk(E,G)→ Zk(Eλ,G).

The associated map of Galois cohomology

(38) locλ : Hk(E,G)→ Hk(Eλ,G)

is called the localization map at λ. It is functorial and does not depend on iλ [Se97, Ch. 2.1.1].

2.5.2. Some results. We would like to present some results for the map

(39)
∏
λ∈PE

locλ : Hk(E,G)→
∏
λ∈PE

Hk(Eλ,G)

when G is connected reductive and k = 1 and when G is a torus and k = 2. For simplicity, we use the
notation and formulation of [Bo98] although the results were obtained earlier by Harder [Ha66], Kneser
[Kn69], Sansuc [Sa81], Kottwitz [Ko86]. Let Xk(E,G) be the kernel of the map (39). The reductive group
G is said to satisfy the Hasse principle if the Shafarevich-Tate group X1(E,G) of G vanishes.

Denote by G the group G×E E, by G
der

the derived group of G, by G
sc

the simply-connected cover of

G
der

, by ρ : G
sc → G the natural map, by T a maximal torus of G, and by X∗ the cocharacter functor for

a torus. The algebraic fundamental group of G [Bo98, Def. 1.3] is a Gal(E/E)-module defined as

M := X∗(T)/ρ∗(X∗(ρ−1(T))).

For each λ ∈ PE , one has a map [Bo98, 5.15]

(40) µλ : H1(Eλ,G)
ab1

−→ H1
ab(Eλ,G) = T −1

λ (M)
cor−1

λ−→ T −1(M) = (MGal(E/E))tor,

where H1
ab(Eλ,G) is the first abelian Galois cohomology group of G [Bo98, Definition 2.2] and (MGal(E/E))tor

denotes the the torsion subgroup of the Galois coinvariants of M . The surjectivity of abelianization map ab1

is by [Bo98, Thm. 5.4]. If Eλ is non-Archimedean, then T −1
λ (M) = (MGal(Eλ/Eλ))tor [Bo98, Propositions

2.8 and 4.1(i)] and cor−1
λ is the natural map [Bo98, 4.7].

Theorem K. [Bo98, Thm. 5.16] When k = 1, the map in (39) factors through
⊕

λ∈PE H
1(Eλ,G) and

0→X1(E,G)→ H1(E,G)→
⊕
λ

H1(Eλ,G)
⊕µλ−→ (MGal(E/E))tor

is exact.

As M is finite for semisimple G, we obtain the following.

Proposition 2.14. If G is semisimple and Eλ is non-Archimedean, then µλ in (40) is surjective.

We have the following result for torus G = T by class field theory and [Bo98, Lemma 5.6.2].

Proposition L. Suppose T is a direct product of a split torus Tsp and a torus T′ such that T′ is anisotropic
over Eλ for some place λ of E. Then X2(E,T) = X2(E,Tsp)⊕X2(E,T′) = 0.

2.6. Proofs of main theorems.
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2.6.1. The 1-cocycles µ and χ. According to conditions (a),(b),(c) of the main theorem(s), we have a chain
Tsp ⊂ Gsp ⊂ GLn,E , a chain T ⊂ GLn,E , and an E-isomorphism of representations

fE : (Tsp ×E E ↪→ GLn,E)
∼=→ (T×E E ↪→ GLn,E).

This produces a 1-cocycle (as well as a Galois representation since Gal(E/E) acts trivially on AutE Tsp):

(41) µ = (µσ) := (f−1

E
◦ σfE) ∈ Z1(E,AutE Tsp) = Hom(Gal(E/E),AutE Tsp).

As ΩE (resp. ωE) is a subgroup of AutE Tsp (§2.3.2), we first show the following.

Proposition 2.15. The image of the Galois representation µ : Gal(E/E) → AutE Tsp is contained in ΩE
(resp. ωE if Gsp is irreducible on En). Thus, it defines a class µ ∈ Z1(E,ΩE) (resp. Z1(E,ωE)).

Proof. For every iλ : E → Eλ with λ ∈ PE,f ,

locλ(µ) = ResTsp ◦ locλ((f−1

Eλ
◦ σfEλ)) ∈ Hom(Gal(Eλ/Eλ),ΩEλ) = Hom(Gal(Eλ/Eλ),ΩE)

(resp. Hom(Gal(Eλ/Eλ), ωE)) by (37), condition (b), and diagram (16) (resp. diagrams (17) and (19)) for
F = Eλ. Hence, all the local representations land on ΩE (resp. ωE). Since AutE Tsp is discrete, the image
of µ is finite. We are done by the Chebotarev density theorem. �

So it makes sense to define by diagram (16) (resp. (19)) for F = E the twisted torus

(42) µ(T
sp/C)

for main theorem II(d) and the ΘE-valued (resp. θE-valued) 1-cocycle

(43) χ := π(µ).

2.6.2. Proof of main theorem I(i). By condition (b) and diagram (21) for F = Eλ, in H1(Eλ,ΘEλ
) the

cohomology class π([Tλ ⊂ Gλ]) is equal to locλ[χ]. Then by applying ResGsp in diagram (20), the class

π([Gλ]) = locλ[χ] for all λ ∈ P(p)
E,f . By Theorem I for F = E, we obtain a quasi-split connected reductive

group G′ over E such that [G′] = j[χ] in (31). On the one hand, for all λ ∈ P(p)
E,f , [G′ ×E Eλ] and [Gλ]

belong to same fiber of π in (31) for F = Eλ. On the other hand, for almost all λ ∈ P(p)
E,f

(44) [G′ ×E Eλ] = j(locλ[χ]) = [Gλ]

by Theorem I for F = Eλ and condition (d). Hence, by Corollary 2.12 for F = Eλ for all λ ∈ P(p)
E,f to identify

[Gλ] as an element in H1(Eλ,G
′ad ×E Eλ), we obtain that [Gλ] = 0 for almost all λ ∈ P(p)

E,f . Let λ′ be a

place of E extending p. Then λ′ /∈ P(p)
E,f . Since G

′ad is semisimple, there exists an element [G] ∈ H1(E,G
′ad)

such that locλ[G] = [Gλ] for all λ ∈ P(p)
E,f by Theorem K and Proposition 2.14. Here G is an inner form of

G
′ad (Remark 2.11(3)). Therefore, we conclude that G×E Eλ ∼= Gλ for all λ ∈ P(p)

E,f and Gλ is unramified
for all but finitely many λ. �

Remark 2.16. Besides locλ[G] = [Gλ] for all λ ∈ P(p)
E,f , we can impose conditions at other places of E except

λ′. For example, we can require that locλ[G] = [G′ ×E Eλ] for all λ ∈ PE\(P(p)
E,f ∪ {λ′}).

2.6.3. Proof of main theorem I(ii). By condition (b) and diagram (23) for F = Eλ, the cohomology class
π([Tλ ⊂ Gλ ⊂ GLn,Eλ ]) is equal to locλ[χ] in H1(E, θEλ). Then by Res(GLn,Eλ ,G

sp) in diagram (22), the

class π([Gλ ⊂ GLn,Eλ ]) = locλ[χ] for all λ ∈ P(p)
E,f . By (33) for F = E, we obtain an E-form G′ ⊂ GLn,E

of Gsp ⊂ GLn,E where G′ is quasi-split such that [G′ ⊂ GLn,E ] = j[χ] in (34). On the one hand, for all

λ ∈ P(p)
E,f , [(G′ ⊂ GLn,E)×E Eλ] and [Gλ ⊂ GLn,Eλ ] belong to same fiber of π in (34) for F = Eλ. On the

other hand, for almost all λ ∈ P(p)
E,f

(45) [(G′ ⊂ GLn,E)×E Eλ] = j(locλ[χ]) = [Gλ ⊂ GLn,Eλ ]

by Theorem I for F = Eλ, condition (d), and the proposition below.
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Proposition 2.17. [Ti71, Lemma 3.2, Thm. 3.3] Let F be a field of characteristic zero and Di (i = 1, 2) be
central simple algebras over F . Let H be a connected reductive group over F and ρi : H→ GLmi,Di (i = 1, 2)

be two F -representations that are absolutely irreducible. If ρ1 ×F F ∼= ρ2 × F , then ρ1
∼= ρ2.

Hence, by Corollary 2.12 for F = Eλ for all λ ∈ P(p)
E,f to identify [Gλ ⊂ GLn,Eλ ] as an element in

H1(Eλ,G
′ad ×E Eλ), we obtain that [Gλ ⊂ GLn,Eλ ] = 0 for almost all λ ∈ P(p)

E,f . Let λ′ be a place of E

extending p. Then λ′ /∈ P(p)
E,f . Since G

′ad is semisimple, there exists an element [G ⊂ GLm,D] ∈ H1(E,G
′ad)

such that

locλ[G ⊂ GLm,D] = [Gλ ⊂ GLn,Eλ ], ∀λ ∈ P(p)
E,f

locλ[G ⊂ GLm,D] = [(G′ ⊂ GLn,E)× Eλ], ∀λ ∈ PE\(P(p)
E,f ∪ {λ

′})
(46)

by Theorem K and Proposition 2.14. Here G (resp. GLm,D) is an inner form of G
′ad (resp. GLn,E) and

GLm,D = GLn,E by (46) and class field theory. By Lemma 2.9, we conclude that (G ↪→ GLn,E) ×E Eλ ∼=
(Gλ ↪→ GLn,Eλ) as representations for all λ ∈ P(p)

E,f and Gλ is unramified for all but finitely many λ. �

2.6.4. Proof of main theorem II. Consider the cocycle µ ∈ Z1(E,ΩE) (resp. Z1(E,ωE)). By condition (b),
locλ[µ] = ResTsp [Tλ ⊂ Gλ] (resp. ResTsp [Tλ ⊂ Gλ ⊂ GLn,Eλ ]) for all λ ∈ PE,f . It suffices to show that [µ]
belongs to the image of the injection ResTsp (ensuring uniqueness) in diagram (21) (resp. (23)) for F = E.
By Corollary 2.13, this is equivalent to ∆(µ) = 0 in H2(E, µ(T

sp/C)). By condition (d) and Proposition L,
it remains to prove that locλ(∆(µ)) = 0 for all places λ of E. For a finite place λ, this is true by the fact that
the image of ResTsp in (21) (resp. (23)) contains locλ[µ] and Corollary 2.13 for F = Eλ. For a real place,
this is true by (d) and H2(R,SR) = 0 if SR is an R-anisotropic torus (see [Ko86, Lemma 10.4]). Therefore,
we obtain a common E-form T ⊂ G (resp. T ⊂ G ↪→ GLm,D by Lemma 2.9) of the chain Tλ ⊂ Gλ (resp.
the chain representation Tλ ⊂ Gλ ↪→ GLn,Eλ) for all finite places λ of E. �

3. Rationality of algebraic monodromy groups

This section is devoted to the proofs of the statements in §1.2. Fix a number field E and denote by pλ
the residue characteristic of the finite place λ ∈ PE,f .

3.1. Profinite group Π and Frobenius elements Fr. Consider two cases.

3.1.1. (Characteristic zero). In this case, Π denotes the absolute Galois group Gal(K/K) of a number field
K and P := PE,f . Equip Π with a subset Fr ⊂ Π of Frobenius elements as follows.

For all v ∈ PK,f , let qv be the size of the residue field Fqv of Kv and consider the natural surjection

πv : Gal(Kv/Kv)→ Gal(Fqv/Fqv ).

For each v, fix a lift φv ∈ π−1
v (Fr−1

qv ), where Fr−1
qv ∈ Gal(Fqv/Fqv ) is the geometric Frobenius. Each v ∈ PK,f

determines an embedding ιv : Gal(Kv/Kv)→ Gal(K/K). For v ∈ PK,f , define Frv to be ιv(φv) where v is
the restriction of v to K. Define

Frv :=
⋃
v|v

[Frv] and Fr :=
⋃

v∈PK,f

Frv.

For any Galois extension L/K that is unramified except finitely many v ∈ PK,f and any finite subset
S ⊂ PK,f , the image of

⋃
v∈PK,f\S Frv in Gal(L/K) is dense [Se98, Chap. I, §2.2 Cor. 2]. Assign the number

qv to the elements in Frv.
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3.1.2. (Characteristic p). In this case, Π denotes the étale fundamental group πét
1 (X, x̄) (with some base

point x̄) of a smooth geometrically connected variety X/Fq in characteristic p and P := P(p)
E,f . Equip Π with

a subset Fr ⊂ Π of Frobenius elements as follows.
Let Xcl be the set of closed points of X. For any geometric point x′ over x′ ∈ Xcl, let Frx′ be the image

of the geometric Frobenius Fr−1
qx′
∈ Gal(Fqx′/Fqx′ ) = π1(x′, x′) under the natural map

π1(x′, x′)→ π1(X,x′)
σxx′−→ π1(X,x),

where qx′ is the size of the residue field of x′. Note that the change of base point isomorphism σxx′ is
unique up to an inner automorphism of π1(X,x). Since the conjugacy class [Frx′ ] depends only on x′, write
Frx′ := [Frx′ ] and define

Fr :=
⋃

x′∈Xcl
Frx′ .

The subset Fr is dense in Π [Se65]. Assign the number qx′ to the elements in Frx′ .

3.2. E-compatible systems. Let (Π,Fr,P) be one of the two cases in §3.1. In the characteristic zero case,
denote by S a finite subset of PK,f . Otherwise, S is the empty set.

3.2.1. GLn-valued compatible systems. A system of n-dimensional λ-adic (continuous) representations

ρ• := {ρλ : Π→ GLn(Eλ)}λ∈P

of Π is said to be semisimple (resp. irreducible, absolutely irreducible) if for all λ ∈ P, ρλ is semisimple (resp.
irreducible, absolutely irreducible). The system ρ• is said to be E-compatible (with exceptional set S) if

• in the characteristic zero case, ρλ is unramified outside S ∪ {t ∈ PK,f : pλ|qt} for each λ ∈ P;
• for each Frobenius element Frt ∈ Fr satisfying t /∈ S and for each λ satisfying pλ - qt, the characteristic

polynomial

(47) Pt(T ) := det(ρλ(Frt)− T · In) ∈ Eλ[T ]

has coefficients in E and depends only on t (independent of λ ∈ P).

The compatible system ρ• is said to be pure of weight w ∈ R (resp. mixed of weights) if for each Frt ∈ Fr

with t /∈ S and each root α ∈ E of Pt(T ), the absolute value |i(α)| is equal to q
w/2
t for all complex embedding

i : E → C (resp. is independent of the complex embedding i : E → C).

3.2.2. Coefficient extension and the Weil restriction. Let ρ• be an n-dimensional (semisimple) E-compatible
system of Π that is pure of weight w (resp. mixed of weights). For a number field E′, denote by P ′ = PE′,f
in characteristic zero case and by P ′ = P(p)

E′,f in characteristic p case.

If E′ is an extension of E, then we obtain by coefficient extension a (semisimple) system ρ• ⊗E E′ of
n-dimensional λ′-adic representations:

(48) (ρ• ⊗E E′)λ′ := (Π
ρλ→ GLn(Eλ) ⊂ GLn(E′λ′)),

where λ is the restriction of λ′ to E. The system is E′-compatible (with exceptional set S), pure of weight
w (resp. mixed of weights), and called the coefficient extension of ρ• to E′ (see [BGP19, Definition 3.2]).

If E′ is a subfield of E, then we obtain by the Weil restriction of scalars a (semisimple) system ResE/E′ρ•
of n[E : E′]-dimensional λ′-adic representations:

(49) (ResE/E′ρ•)λ′ :=
⊕
λ|λ′

ρλ : Π→
∏
λ|λ′

GLn(Eλ) = (ResE/E′GLn,E)(E′λ′) ⊂ GLn[E:E′](E
′
λ′).

The system is E′-compatible (with exceptional set S), pure of weight w (resp. mixed of weights), and called
the Weil restriction of ρ• (see [BGP19, Definition 3.4]).
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3.2.3. G-valued compatible systems. Let G be a linear algebraic group defined over E with affine coordinate
ring R. Since G acts on itself by conjugation, G acts on R. The subring of invariant functions is denoted
by RG. For all g ∈ G, let gs be the semisimple part of g. If g is defined over a field extension F/E, then
gs is also defined over F . A system of λ-adic G-representations {ρλ : Π → G(Eλ)}λ∈P of Π is said to be
E-compatible (with exceptional set S) if

• in the characteristic zero case, ρλ is unramified outside S ∪ {t ∈ PK,f : pλ|qt} for each λ ∈ P;
• for each Frobenius element Frt ∈ Fr satisfying t /∈ S, each λ satisfying pλ - qt, and each f ∈ RG the

number

(50) f(ρλ(Frt)s) ∈ Eλ
belongs to E and depends only on t and f [Se98, Chap. I, §2.4] (independent of λ ∈ P)6.

It follows that an n-dimensional E-compatible system is the same as an E-compatible system of GLn,E-
representations.

3.2.4. Algebraic monodromy groups and connectedness. For all λ ∈ P, the algebraic monodromy group of ρλ,
i.e., the Zariski closure of the image of ρλ in GLn,Eλ , is denoted by Gλ. It is an closed subgroup of GLn,Eλ .
The image ρλ(Π) is a compact subgroup of the λ-adic Lie group Gλ(Eλ). The following result is well-known
by using the compatibility condition, see [LP92, Prop. 6.14].

Proposition M. The component groups Gλ/G
◦
λ are isomorphic for all λ ∈ P. In particular, the connectedness

of Gλ is independent of λ.

3.2.5. Group schemes. Suppose the algebraic monodromy group Gλ is connected reductive for all λ. Let Oλ
be the ring of integers of Eλ with residue field kλ of characteristic pλ. Let Λλ be an Oλ-lattice of Enλ that is
invariant under the image ρλ(Π). Let Gλ be the Zariski closure of ρλ(Π) in GLΛλ

∼= GLn,Oλ , endowed with
the unique structure of reduce closed subscheme. The generic fiber of Gλ is Gλ. The special fiber, denoted by
Gkλ , is identified as a subgroup of GLn,kλ . When pλ ≥ n, the subgroup Gkλ ⊂ GLn,kλ is said to be saturated

if for any unipotent element u ∈ Gkλ(kλ), the one parameter subgroup {ua : a ∈ kλ} ⊂ GLn(kλ) belongs to

Gkλ(kλ) [Se94, §4.2].

Proposition N. [LP95, Prop. 1.3],[BGP19, Prop. 5.51, Thm. 5.52] For all but finitely many λ ∈ P, the
following assertions hold.

(i) The group scheme Gλ is smooth with constant absolute rank over Oλ.
(ii) The identity component of the special fiber Gkλ ⊂ GLn,kλ is saturated.

3.3. Frobenius torus.

3.3.1. Frobenius torus and maximal torus. For all λ ∈ P, let Gλ be the algebraic monodromy group of ρλ.
The identity component of Gλ is reductive since ρλ is semisimple. Let ρλ be a member of the system and
Frt ∈ Fr be a Frobenius element with t /∈ S. If pλ - qt, then the Frobenius torus Tt,λ of Frt is defined to
be the identity component of the smallest (diagonalizable) algebraic subgroup St,λ in GLn,Eλ containing the
semisimple part of ρλ(Frt). It follows that Tt,λ ⊂ St,λ ⊂ Gλ. The following theorem is due to Serre.

Theorem O. (see [LP97, Thm. 1.2 and its proof], [Ch04, Thm. 5.7], [Hu18, Thm. 2.6]) Suppose the algebraic
monodromy group Gλ′ is connected for some λ′ ∈ P. Suppose there exists a finite subset Q ⊂ Q such that for
all Frt ∈ Fr with t /∈ S, the following conditions are satisfied for every root α of the characteristic polynomial
Pt(T ) in (47):

(a) the absolute values of α in all complex embeddings are equal;
(b) α is a unit at any finite place not extending pt;
(c) for any finite place w of Q such that w(pt) > 0, the ratio w(α)/w(qt) belongs to Q.

Then there exists a proper closed subvariety Yλ′ of Gλ′ such that Tt,λ′ is a maximal torus of Gλ′ whenever
ρλ′(Frt) ∈ Gλ′\Yλ′ .

6This is equivalent to the conjugacy class of ρλ(Frt)s in G being defined over E and depends only on t /∈ S (independent of

λ).
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Remark 3.1.

(1) If Gλ is connected and the Frobenius torus Tt,λ is maximal, then Tt,λ = St,λ.
(2) Conditions O(a),(b) hold for our mixed compatible system ρ•.
(3) Condition O(c) holds in the characteristic p case by replacing X with a non-empty open subset U [DK17,

Thm. 1.3.3(i), Remark 1.3.5].
(4) Condition O(c) holds in the characteristic zero case if we assume the system is {Hw(YK ,Q`)}`∈PQ,f for

some smooth projective variety Y/K [LP97, Thm. 1.1].
(5) In the characteristic p case, the subset of elements Frt of Fr whose Frobenius tori Tt,λ′ are maximal in

Gλ′ is dense in Π.
(6) In the characteristic zero case, the subset of places v ∈ PK,f such that Tv,λ′ is a maximal torus of Gλ′

is of Dirichlet density one (see [Hu18, Cor. 2.7]).

Let Frt be a Frobenius element. There is a semisimple matrix Mt of GLn(E) with Pt(T ) (47) as char-
acteristic polynomial. For all λ ∈ P with pλ - qt, Mt is conjugate to the semisimple part ρλ(Frt)s in
GLn(Eλ) by E-compatibility. Hence, if we let St be the smallest algebraic subgroup of GLn,E containing
Mt and Tt be the identity component of St, then the chain representations (Tt ⊂ St ↪→ GLn,E)×E Eλ and
Tt,λ ⊂ St,λ ↪→ GLn,Eλ are isomorphic for all λ ∈ P with pλ - qt.

Corollary 3.2. Assume the conditions of Theorem O. Then the following assertions hold.

(i) (Common E-form of formal characters) If the Frobenius torus Tt,λ′ is a maximal torus of Gλ′ , then
the Frobenius torus Tt,λ is also a maximal torus of Gλ for all λ ∈ P with pλ - qt. Moreover, the
representation (Tt ↪→ GLn,E)×E Eλ is isomorphic to Tt,λ ↪→ GLn,Eλ for all λ ∈ P with pλ - qt.

(ii) (Absolute rank) The absolute rank of Gλ is independent of λ.

Proof. Assertion (i) is straight forward by Theorem O and the above construction of Tt. Assertion (ii) is
obvious by (i) in the characteristic p case and follows from (i) and Remark 3.1(6) in the characteristic zero
case. �

3.3.2. Anisotropic subtorus. In this subsection, Gλ is connected for all λ ∈ P. The subtorus Tt ⊂ GLn,E
in Corollary 3.2(i) is studied under the following hypothesis. Let k be the order of St/Tt. Then the Zariski
closure of MkZ

t in GLn,E is Tt.

Hypothesis R: Assume for each real embedding E → R, the set of powers det(Mt)
Z ⊂ R contains some

non-zero integral power of the absolute value |i(α)| for every root α of Pt(T ) and every complex embedding
i : E → C extending E → R.

Proposition 3.3. If Hypothesis R holds, then the subtorus (Tt∩SLn,E)◦ of Tt is anisotropic at all real places
of E.

Proof. Embed E into R and let Tt,R ⊂ St,R ⊂ GLn,R be the base change to R. If χ : Tt,R → Gm,R is a

R-character, then χ(Mk
t ) ∈ Gm(R) = R∗ Let i : E → C be an embedding extending E → R. Then χ(Mk

t ) is
the product of some integral powers of the roots i(α) of the polynomial i(Pt(T )) ∈ R[T ]. Hence, there exist
integers h 6= 0 and m such that

χ2h(Mk
t ) = det(Mt)

2m ∈ R∗>0

by Hypothesis R. This implies χ2hk = det2m on Tt,R since (Mk
t )Z is Zariski dense in Tt,R. Hence, χ2hk is

trivial on the subtorus (Tt,R ∩ SLn,R)◦ for some 2hk 6= 0. We conclude that the torus (Tt,R ∩ SLn,R)◦ is
anisotropic. �

Corollary 3.4. If Hypothesis R holds and E has a real place, then the subtorus (Tt ∩ SLn,E)◦ of Tt is
anisotropic at a positive Dirichlet density subset P ′ of PE,f .

Proof. Let r be the absolute rank of the E-torus (Tt∩SLn,E)◦. Then it is an E-form of the split torus Grm,E
with automorphism group GLr(Z). The isomorphism class of (Tt ∩ SLn,E)◦ is represented by an element of

H1(E,GLr(Z)), which is a continuous group homomorphism φ : Gal(E/E) → GLr(Z) up to conjugation.
Let c ∈ Gal(E/E) be a complex conjugation corresponding to a real place of E. Since (Tt ∩ SLn,E)◦ is
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anisotropic over R by Proposition 3.3 and c is of order two, it follows that φ(c) = −Ir. Since the image of
φ is finite, there is a positive Dirichlet density set P ′ of finite places λ of E such that φ(Frλ) = −Ir by the
Chebotarev density theorem. Therefore, (Tt ∩ SLn,E)◦ is anisotropic over Eλ for all λ ∈ P ′. �

Remark 3.5.

(1) Hypothesis R holds for every Pt(T ) if the E-compatible system is pure.
(2) If λ ∈ P ′ in Corollary 3.4, then the Eλ-subtorus (Tt,λ∩Gder

λ )◦ of (Tt,λ∩SLn,Eλ)◦ ∼= (Tt∩SLn,E)◦×EEλ
is also anisotropic. If Tt,λ ⊂ Gλ is a maximal torus, then Tt,λ ∩Gder

λ ⊂ Gder
λ is also a maximal torus.

(3) Corollary 3.4 is not true for general E since (Tt ∩ SLn,E)◦ can be a non-trivial split torus over E. This
is done by taking a finite extension E′/E such that Pt[T ] splits and replacing the E-compatible system
ρ• with its coefficient extension ρ• ⊗E E′ (§3.2.2).

Let G be a connected reductive group defined over a field F . A torus T ⊂ G is said to be fundamental if
it is a maximal torus with minimal F -rank. In the characteristic zero case, let S be the subset of elements
v ∈ PK,f such that for some λ ∈ PE,f , the Frobenius torus Tv,λ

∼= Tv ×E Eλ is a fundamental torus of Gλ.
A Frobenius torus Tv,λ ⊂ Gλ being fundamental is equivalent to Tv,λ is a maximal torus and Tv,λ ∩Gder

λ is
anisotropic [Bo98, Prop. 5.3.2]. When Hypothesis R holds and E has a real place, Remark 3.1(6), Corollary
3.4, and Remark 3.5(2) imply that S is of Dirichlet density one.

Question Q: Suppose Hypothesis R holds, what is the Dirichlet density of S in PK,f when E is totally
imaginary?

We do not know the answer; we even do not know if S is non-empty. If we want to apply main theorem
II to the algebraic monodromy representations {Gλ ↪→ GLn,Eλ}λ∈PE,f when E is totally imaginary, then a
positive Dirichlet density of S is necessary.

3.4. Proofs of characteristic p results. Let P be P(p)
E,f .

3.4.1. Proof of Theorem 1.1. By Proposition M and taking a finite Galois covering of X, we assume that Gλ

is connected for all λ ∈ P. It suffices to check conditions (a),(b),(c),(d) of main theorem I for the system of
algebraic monodromy representations

{Gλ ↪→ GLn,Eλ}λ∈P .
Conditions (a),(b),(c) follow directly from assertions (i),(ii),(iii) of Theorem B. Condition (d) holds by
[BGP19, Cor. 7.9], or by Proposition 3.6 below, for almost all λ, the existence of a hyperspecial maxi-
mal compact subgroup of Gλ(Eλ) implies that Gλ is unramified [Mi92, §1]. We are done by main theorem
I. �

Proposition 3.6. If Gλ is connected for all λ ∈ P, then the image of ρλ is contained in a hyperspecial maximal
compact subgroup Hλ of Gλ(Eλ) for almost all λ.

Proof. Since π1(X) is compact, we may assume ρλ(π1(X)) ⊂ GLn(Oλ) after some change of coordinates
Vλ ∼= Enλ for all λ. The geometric étale fundamental group πgeo

1 (X) of X satisfies the short exact sequence

1→ πgeo
1 (X)→ π1(X)→ Gal(Fq/Fq)→ 1.

Denote the Zariski closure of ρλ(πgeo
1 (X)) in GLn,Eλ by Ggeo

λ . Let Gλ (resp. Ggeo
λ ) be the Zariski closure

of Gλ (resp. the identity component of Ggeo
λ ) in GLn,Oλ with special fiber Gkλ (resp. Ggeo

kλ
). It suffices

to prove that for almost all λ, Hλ := Gλ(Oλ) is a hyperspecial maximal compact subgroup of Gλ(Eλ). By
Bruhat-Tits theory, this condition follows if we show that the Oλ-group scheme Gλ is reductive [Ti79, §3.8.1].

By [BGP19, Thm. 7.3], the Oλ-group scheme Ggeo
λ is semisimple for almost all λ. Let kλ be the residue

field of Eλ. Since the Oλ-group scheme Gλ is smooth with constant absolute rank for almost all λ by
Proposition N(i) and contains Ggeo

λ as a closed normal subgroup scheme, the inequalities

dimGλ = dim(Gkλ) = dim(Ggeo
kλ

) + dim(Gkλ/G
geo
kλ

)

≥ dim(Ggeo
kλ

) + rk(Gkλ/G
geo
kλ

) = dimGgeo
λ + rk(Gλ/G

geo
λ ) = dimGλ.
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implies that the special fiber Gkλ has trivial unipotent radical for almost all λ. Therefore, the smooth group
scheme Gλ is reductive over Oλ for almost all λ. �

3.4.2. Proof of Corollary 1.2. By Theorem 1.1(i), there is a connected reductive group G defined over E
and an isomorphism φλ : G ×E Eλ → Gλ for each λ ∈ P. For almost all λ, the Oλ-points G(Oλ) is
well-defined (by finding some integral model G of G) and is a hyperspecial maximal compact subgroup
of the Eλ-points G(Eλ) [Ti79, §3.8.1]. Let Gad

λ be the adjoint group of Gλ. The subgroup Gad
λ (Eλ) of

AutEλ Gλ(Eλ) is transitive on the set of hyperspecial maximal compact subgroups of Gλ(Eλ) [Ti79, §2.5].

Hence, by Proposition 3.6 and adjusting φλ for almost all λ, we assume φλ(G(Oλ)) = Hλ ⊂ Gλ(Eλ) for

almost all λ. Then the image of the map
∏
λ∈P φ

−1
λ ◦ ρλ is contained in the adelic points G(A(p)

E ), which

defines the desired G-valued adelic representation ρGA . This proves assertion (i).
The proof of (ii) is exactly the same except we want to adjust the isomorphism of representation

φλ : (G ↪→ GLn,E)×E Eλ → (Gλ ↪→ GLn,Eλ)

in order to have

(51) φ−1
λ (Hλ) = G(Oλ) ⊂ GLn,E(Oλ)

for almost λ (the inclusion is defined by finding some integral model G ⊂ GLn,OE,S of G ⊂ GLn,E). This

can be achieved since Gad
λ (Eλ) is a subgroup of InnEλ(GLn,Eλ ,Gλ)(Eλ) (see §2.3.1) as the representation

ρλ is absolutely irreducible. �

3.4.3. Proof of Corollary 1.3. Find a smooth OE,S-model G ⊂ GLn,OE,S of G ⊂ GLn,E for some finite
S ⊂ PE,f . Then by enlarging S we obtain that the group scheme GLn,OE,S × Oλ (resp. G × Oλ) is the
group scheme associated to the hyperspecial maximal compact subgroup GLn,OE,S (Oλ) of GLn,OE,S (Eλ) =
GLn(Eλ) (resp. G(Oλ) of G(Eλ)) for all λ ∈ P\S [Ti79, §3.9.1]. We may assume that for all λ ∈ P\S, the
inclusion

G(Oλ) ⊂ GLn,OE,S (Oλ) = GLn(Oλ)

gives the construction G(Oλ) ⊂ GLn,E(Oλ) in (51). Since the λ-component

(ρGA )λ : π1(X)→ G(Oλ) ⊂ GLn,OE,S (Oλ) = GLn(Oλ) ⊂ GLn(Eλ)

of the adelic representation ρGA is isomorphic to ρλ by Corollary 1.2(ii), the representation (G ↪→ GLn,OE,S )×
Oλ is isomorphic to Gλ ↪→ GLn,Oλ , where Gλ is the Zariski closure of ρλ(π1(X)) in GLn,Oλ after some choice
of Oλ-lattice in Vλ. �

Remark 3.7. The proofs of Corollaries 1.2 and 1.3 are standard in the sense that they only require the
common E-forms G and G ⊂ GLn,E in Theorem 1.1, Proposition 3.6, and Bruhat-Tits theory [Ti79].

3.4.4. Proof of Corollary 1.4. By Corollary 1.2(ii), there is a common E-form ι : G ↪→ GLn,E . For each

λ ∈ P, choose an embedding E → Eλ. We claim that the conjugacy class of the semisimple part ρGλ (Frt)s ∈
G(Eλ) is defined over E for all Frobenius element Frt and all λ ∈ P. Indeed, by field extension, we obtain

ρGλ (Frt)s ∈ (G× E)(Eλ)
ιE
↪→ GLn,E(Eλ).

It suffices to show that for any irreducible representation ψ of G × E, the trace of ψ(ρGλ (Frt)s) ∈ E. This

is true because the roots α of the characteristic polynomial Pt(T ) of ρGλ (Frt) ∈ GLn,E(Eλ) belong to E by
E-compatibility and ψ is a subrepresentation of ⊗rιE ⊗s ι∗E for some r, s ∈ Z≥0.

The next step is to show that for a fixed Frobenius element Frt, the conjugacy class of ρGλ (Frt)s in G is
independent of λ. By [D’Ad20, Thm. 4.3.2] ([Ch04, Thm. 6.8, Cor. 6.9] when X is a curve), there is a
finite extension F of E and a connected reductive subgroup Gsp ⊂ GLn,F such that for all λ ∈ P, if Fλ is a
completion of F extending λ on E, then there exists an isomorphism of representations:

(52) fFλ : (Gsp ↪→ GLn,F )×F Fλ
∼=→ (Gλ ↪→ GLn,Eλ)×Eλ Fλ.
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Moreover by [D’Ad20, Proof of Thm. 4.3.2] ([Ch04, Thm. 6.12] when X is a curve), the representations

(53) ρG
sp

λ : π1(X)
ρλ→ (Gλ × Fλ)(Fλ)

f−1
Fλ→ Gsp(Fλ)

for all λ form an F -compatible system of Gsp-representations. Hence, the conjugacy class [ρG
sp

λ (Frt)s] in
Gsp is independent of λ. If βλ ∈ NGLn,E (G)(Eλ), we obtain the isomorphisms below

(G×E Eλ ↪→ GLn,Eλ)×Eλ Fλ
β−1
λ ×Fλ−→ (G×E Eλ ↪→ GLn,Eλ)×Eλ Fλ

=(G ↪→ GLn,E)×E Fλ
φλ×Fλ−→ (Gλ ↪→ GLn,Eλ)×Eλ Fλ

f−1
Fλ−→ (Gsp ↪→ GLn,F )×F Fλ

(54)

by Corollary 1.2(ii) and (52). Fix λ′ ∈ P, define βλ′ = id, and embed Fλ into C for all λ ∈ P. It suffices to
find βλ for all λ ∈ P\{λ′} such that

(55) Φλ := [(βλ × Fλ) ◦ (φλ × Fλ)−1 ◦ fFλ ◦ f
−1
Fλ′
◦ (φλ′ × Fλ′)]× C ∈ InnC(G× C).

Then Φλ([ρGλ′(Frt)s]) = [ρGλ (Frt)s] is an equality of conjugacy class in G for all Frt ∈ Fr.
For (i), since Gλ is split and is irreducible on the ambient space, NGLn,E (G)(Eλ) surjects onto θEλ in

(18). Thus, there is βλ ∈ NGLn,E (G)(Eλ) such that Φλ ∈ InnC(G × C) = Gad(C). For (ii), take βλ = id

for all λ. Since the outer automorphism group Out(Gder × C) is trivial and G× C ↪→ GLn,C is irreducible,
the image of Φλ in Out(G × C) is also trivial. Hence, we conclude that in both cases (i) and (ii), Φλ is
inner and [ρλ′(Frt)s] = [ρλ(Frt)s] for all Frt. For Frt ∈ Fr, it follows that the E-conjugacy class [ρλ(Frt)s] is
independent of λ ∈ P.

Let R be the affine coordinate ring of G. For any f ∈ RG, ft := f([ρGλ (Frt)s]) ∈ E is independent of λ
and also belongs to Eλ for all λ ∈ P. Therefore, ft ∈ E and we conclude that {ρGλ }λ∈P is an E-compatible
system of G-representations. The last claim of the Corollary is immediate. �

Remark 3.8. In general, if we can find for each λ an element βλ ∈ InnEλ(GLn,Eλ ,Gλ)(Eλ) such that Φλ
(defined in (55)) belongs to InnC(G× C), then the conclusion of the corollary also follows.

3.4.5. Proof of Theorem 1.5. For each λ ∈ P(p)
E,f , we have the chain Tt̄,λ ⊂ G◦λ ⊂ GLVλ

∼= GLn,Eλ . For each

v ∈ PE,p, we have the chain Tt,v ⊂ G◦t,v ⊂ GLVt,v
∼= GLn,Ev by condition (b) of Theorem 1.5. By identifying

the algebraic monodromy groups as subgroups of GLn, we obtain a chain Tλ ⊂ G◦λ ⊂ GLn,Eλ for each finite
place λ of E. Here we simplify our notation by representing places of E extending p also as λ. To prove
the theorem, it suffices to find a torus T ⊂ GLn,E and a chain Tsp ⊂ Gsp ⊂ GLn,E such that conditions
(a),(b),(c),(d) of main theorem II for the system

{Tλ ⊂ G◦λ ⊂ GLn,Eλ}λ∈PE,f
hold. Note that the last sentence of Theorem 1.5(ii) follows from Remark 2.1(6). The verifications rely on
the following result of D’Addezio (enhancing Theorem B) and the fact that Tλ is a maximal torus of Gλ for
all λ ∈ PE,f by condition (a) of Theorem 1.5.

Theorem B’. [D’Ad20, Construction 4.2.1 (Frobenius tori), Theorem 4.3.2 and its proof] Let ρ• be the E-
compatible system in Theorem 1.5 and Tλ ⊂ G◦λ ⊂ GLn,Eλ be the chain defined above for each λ ∈ PE,f .
Then the following assertions hold.

(i) (Common E-form of formal characters): There exists a subtorus T := Tt of GLn,E such that for all
λ ∈ PE,f , Tλ := T×E Eλ is a maximal torus of G◦λ.

(ii) (λ-independence over an extension): There exist a finite extension F of E and a chain of subgroups
Tsp ⊂ Gsp ⊂ GLn,F such that Gsp is connected split reductive, Tsp is a split maximal torus of Gsp,
and for all λ ∈ PE,f , if Fλ is a completion of F extending λ on E, then there exists an isomorphism
of chain representations:

fFλ : (Tsp ⊂ Gsp ↪→ GLn,F )×F Fλ
∼=→ (Tλ ⊂ G◦λ ↪→ GLn,Eλ)×Eλ Fλ.

(iii) (Rigidity) The isomorphisms fFλ in (ii) can be chosen such that the restriction isomorphisms fFλ :
Tsp ×F Fλ → Tλ ×Eλ Fλ admit a common F -form fF : Tsp → T×E F for all λ ∈ PE,f and Fλ.



ON THE RATIONALITY OF ALGEBRAIC MONODROMY GROUPS OF COMPATIBLE SYSTEMS 29

Then conditions II(a),(b),(c) are just Theorem B’(i),(ii),(iii). For condition II(d), let Tt ⊂ GLn,E be the E-
form in Theorem B’(i). By §2.6.1 and conditions II(a),(b),(c), there exists an isomorphism of representations

fE : (Tsp ↪→ GLn,E)×E E
∼=→ (Tt ↪→ GLn,E)×E E

which produces the cocycle µ as in (41). Consider the short exact sequence of E-groups

(56) 1→ C→ Tsp → Tsp/C→ 1.

By Proposition 2.15, µ as Galois representation acts on C and hence (56) in an equivariant way, inducing
the short exact sequence of E-groups by twisting (§2.4.1)

(57) Tt

=

��

1 //
µC //

µT
sp //

µ(T
sp/C) // 1

Since µ is constructed from fE , it has values in InnE(GLn,E ,T
sp). It follows that µ as Galois representations

acts on the surjection of E-groups

(58) (Tsp ∩ SLn,E)◦ � Tsp/C

in an equivariant way. Hence, we obtain the surjection of E-groups

(59) (Tt ∩ SLn,E)◦ = µ(T
sp ∩ SLn,E)◦ � µ(T

sp/C).

By condition (c) of Theorem 1.5, E has a real place. Since (Tt ∩ SLn,E)◦ is anisotropic over each real place
of E by Proposition 3.3, Remark 3.5(1), and the fact that ρ• is pure of weight w, it follows that the twisted
torus µ(T

sp/C) is also anisotropic over each real place of E by the surjection (59). �

3.5. Proofs of characteristic zero results. Let P be PQ,f .

3.5.1. Proof of Theorem 1.6. It suffices to check conditions (a),(b),(c),(d) of main theorem II for the system
of algebraic monodromy representations

{G` ↪→ GLn,Q`}`∈P
and note Remark 2.1(6). Since the conditions remain the same after taking any finite extension F of K, it
is free to do so.

Condition II(a): By condition 1.6(a) and Remark 3.1(6), there is a place v ∈ PK,f\S such that the
Frobenius torus Tv,` is a maximal torus of G` for all ` not equal to p := pv and the local representation Vp
of Gal(Kv/Kv) is ordinary. It remains to check the condition for the places over p.

Let Yv be the special fiber of a smooth model of Y overOv andMv := Hw(Yv/Ov)⊗OvKv be the crystalline

cohomology group, which belongs to the category MFfKv of weakly admissible filtered modules over Kv. There
are algebraic subgroups (HVp ⊂ GLVp)×QpKv and HMv

⊂ GLMv
such that their tautological representations

(via the mysterious functor of Fontaine) are inner forms of each other, in particular isomorphic over Qp,

(HVp ↪→ GLVp)×Qp Qp
ι∼=−→ (HMv

↪→ GLMv
)×Kv Qp,

where HVp is the algebraic monodromy group of the local crystalline representation ρp : Gal(Kv/Kv) →
GL(Vp) and HMv is the automorphism group of the fiber functor on the full Tannakian subcategory of MFfKv
generated by Mv that assigns a filtered K-module the underlying K-vector space (see [Pi98, §2]). Let mv be
the degree [Kv : Qp] and fMv the crystalline Frobenius. By Katz-Messing [KM74] (see [Pi98, Thm. 3.10]),
fmvMv

is an element of HMv (Kv) ⊂ GL(Mv) with characteristic polynomial equal to Pv(T ), the characteristic
polynomial of ρ`(Frv) (` 6= p).

Let ΦVp be the element in HVp(Qp) corresponding to fmvMv
∈ HMv (Qp) via ι. The group HVp is generated

by cocharacters (connected) and the smallest algebraic subgroup containing ΦVp [Pi98, Prop. 2.6]. It is
connected because the characteristic polynomial of ΦVp ∈ GLVp is Pv(T ) and the (maximal) Frobenius torus
Tv,` is equal to Sv,` by Remark 3.1(1). Let V ss

p be the semisimplification of the representation HVp ↪→ GLVp .
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Since the local representation Vp is ordinary, HVp is solvable [Pi98, Prop. 2.9] and its image Hred
Vp

in GLV ss
p

is

a torus. Since the conjugacy class of ΦVp in HVp is defined over Qp [Pi98, Prop. 2.2] and Hred
Vp

is abelian, the

image of ΦVp in Hred
Vp

, denoted by Φred
Vp

, belongs to Hred
Vp

(Qp). By the splitting of the surjection HVp � Hred
Vp

,

there is a semisimple element Φv ∈ HVp(Qp) ⊂ GL(Vp) with characteristic polynomial Pv(T ). The smallest
algebraic subgroup of HVp ⊂ Gp containing Φv is a Qp-maximal torus Tv,p of Gp because the absolute rank
of G` is independent of ` by Corollary 3.2(ii) and Tv,` is a maximal Frobenius torus. Since the characteristic
polynomials of Φv and ρ`(Frv)s for all ` 6= p are equal to Pv(T ), the tori representations Tv,` ↪→ GLV` for
all ` admit a common Q-form Tv ↪→ GLn,Q. �

Condition II(b): This is just condition 1.6(b). �

Condition II(c): By Proposition 2.8 and condition 1.6(c), it suffices to check condition (c’-bi) in §2.2.
Identify GLV` as GLn,Q` for all `. We employ the technique in [Hu13, Prop. 3.18, Thm. 3.19]. Let {ψ`}`∈P
be an r-dimensional semisimple Q-compatible system of abelian `-adic representations of Gal(K/K). Let
S` ⊂ GLr,Q` be the algebraic monodromy group of ψ` and assume S` is torus and with the largest possible
dimension dK ([Hu13, Thm. 3.8]) for all `. Consider the semisimple Q-compatible system {ρ` ⊕ψ`}`∈P and
let G′` ⊂ GLn,Q` ×GLr,Q` be the algebraic monodromy group at `. Let

(60) p′i,` : G′` → GLn,Q` ×GLr,Q`

be the projection to the ith factor, i = 1, 2. By considering p′1,`, there is a diagonalizable subgroup D` of S`
with a short exact sequence

(61) 1→ D` → G′` → G` → 1.

Let k be the number of components of D`′ for some prime `′. By replacing {ρ`⊕ψ`}`∈P with {ρ`⊕ψk` }`∈P ,
we assume that D`′ is connected. Since G`′ is connected, G′`′ is connected by (61). Hence, G′` is connected
for all ` by Proposition M. Since the dimension of the center of G′` is dK = dimS` for all ` [Hu13, Prop. 3.8,
Thm. 3.19], it follows that for all `

(62) ker(p′2,`)
◦ = (G′`)

der = Gder
` .

Proposition P. [Fa83],[Se98, Chap. II],[Sc88, Chap. 1, Thm. 4.1] Fix a prime `′′, there exist a finite
extension F of K and an abelian variety A over F that is a direct product of CM abelian varieties with the
following properties. Let

{ε` : Gal(F/F )→ GL(W`)}`∈P
be the semisimple compatible system of Galois representations with W` := H1(AF ,Q`). Let M` and G′′` be

respectively the algebraic monodromy group of the Galois representation ε` and ρ` ⊕ ε` of Gal(F/F ). Then
the following assertions hold.

(i) For all `, G′′` is connected and M` is a torus with dimension independent of `.

(ii) The restriction map ψ`′′ : Gal(F/F )→ GLr(Q`′′) factors through a morphism M`′′ ×Q`′′ → GLr,Q`′′ .

Since G′` is connected for all `, it is again the algebraic monodromy group of the restriction of ρ` ⊕ ψ`
to Gal(F/F ). Again, let p′′i,` : G′′` → GLn,Q` ×M` be the projection to the ith factor, i = 1, 2. Since there

exists a surjective map G′′`′′ → G′`′′ by Proposition P(ii), it follows from (62) and the connectedness of G′′`′′
(Proposition P(i)) that

(63) ker(p′′2,`′′)
◦ = Gder

`′′ = (G′′`′′)
der

is the semisimple part of G′′`′′ . Since {ρ` ⊕ ε`}`∈P is a compatible system of representations of Gal(F/F ),
the semisimple rank and the dimension of the center of G′′` is independent of ` [Hu13, Thm. 3.19]. This,
together with (63) and the `-independence of dimM` (Proposition P(i)), imply that

(64) ker(p′′2,`)
◦ = (G′′` )der

for all `. Hence, if T′′` is a maximal torus of G′′` , then

ker(p′′2,` : T′′` →M`)
◦ ⊂ p′′1,`(T′′` ) ↪→ GLn,Q`
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is a formal bi-character of G`.
Finally, we follow the strategy in condition II(a). If v is a finite place of F such that Y ×K F and A

have good reduction, then write p := pv and the Frobenius element Frv have characteristic polynomials
Pv(T ) ∈ Q[T ] on V` and Qv(T ) ∈ Q[T ] on W` for all ` 6= p. By condition 1.6(a), there exists v ∈ PF,f such

that the Frobenius torus T′′v,` ⊂ G′′` is maximal for all ` 6= p and the local representation Vp of Gal(F v/Fv)
is ordinary. Then we let HVp⊕Wp ⊂ GLVp ×GLWp be the algebraic monodromy group of the local crystalline
representation

ρp ⊕ εp : Gal(F v/Fv)→ GL(Vp)×GL(Wp)

and Hred
Vp⊕Wp

its image (semisimplification) in the (abelian) diagonalizable subgroup Hred
Vp
×Mp ⊂ GLVp ×

GLWp
, where Hred

Vp
is defined in condition II(a). Since the local representation Vp ⊕Wp is crystalline, we

conclude by repeating the arguments in the second and third paragraphs of condition II(a) that there exists

an element in Hred,◦
Vp⊕Wp

(Qp) lifting to a semisimple element Φ′′v ∈ H◦Vp⊕Wp
(Qp) ∈ G′′p(Qp) with characteristic

polynomials Pv(T ) on Vp and Qv(T ) on Wp. The smallest algebraic subgroup T′′v,p of G′′p containing Φ′′v is also

a maximal torus as the absolute rank of G′′` is independent of `. By using the polynomials Pv(T ), Qv(T ) ∈
Q[T ], we construct a common Q-form T′′v ↪→ GLn,Q ×GL2 dimA,Q of the formal characters T′′v,` ↪→ GLn,Q` ×
GLW`

of G′′` ⊂ GLn,Q` ×GLW`
for all ` such that

(65) ker(p2 : T′′v → GL2 dimA,Q)◦ ⊂ p1(T′′v) ↪→ GLn,Q

is a common Q-form of formal bi-characters of G` ⊂ GLn,Q` for all `, where p1, p2 are the obvious projections.
We may replace Tv ↪→ GLn,Q constructed in condition II(a) with p1(T′′v) ↪→ GLn,Q in (65). �

Condition II(d): Let Tv ⊂ GLn,Q be the Q-form we found in condition II(a). This part is exactly the
same as the verification of condition II(d) for Theorem 1.5 once we replace the field E by Q and the E-torus
Tt by the Q-torus Tv. �

3.5.2. Proofs of Corollaries 1.9 and 1.10. Since Corollaries 1.9 and 1.10 (of Theorem 1.6) assume Hypothesis
H, they follow along the same lines in the proofs of Corollaries 1.2 and 1.3 by Remark 3.7. �

3.5.3. Galois maximality and Hypothesis H. Let K be a number field and {ρ` : Gal(K/K)→ GLn(Q`)}`∈P
be a Q-compatible system of `-adic representations. Let Γ` be the image of ρ` and G` be the algebraic
monodromy group of ρ`. Then Γ` is a compact subgroup of G`(Q`). Suppose for simplicity that G` is
connected for all `. Denote by Gss

` be the quotient of G` by its radical and by Gsc
` the simply-connected

covering of Gss
` . Denote by Γss

` the image of Γ` in Gss
` (Q`) and by Γsc

` the inverse image of Γss
` in Gsc

` (Q`).
When ` � 0 compared to the absolute rank of Gsc

` , a compact subgroup H` of Gsc
` (Q`) is hyperspecial

maximal compact if the “mod ` reduction” of H` is “of the same Lie type” as the semisimple group Gsc
` (see

[HL16]). In [Lar95], Larsen proved that the set of primes ` for which Γsc
` ⊂ Gsc

` (Q`) is hyperspecial maximal
compact is of Dirichlet density one and conjectured the following.

Conjecture S. For all `� 0, Γsc
` is a hyperspecial maximal compact subgroup of Gsc

` (Q`).

This conjecture is also related to the conjectures of Serre on maximal motives [Se94, 11.4, 11.8]. Suppose
the `-adic compatible system is {Hw(YK ,Q`)}`∈P , where Y is a smooth projective variety defined over a
number field K. When Y is an elliptic curve without complex multiplication and w = 1, a well-known
theorem of Serre states that for ` � 0, Γ` ∼= GL2(Z`) is maximal compact in GL(V`) [Se72]. In general, by
studying the mod ` compatible system {Hw(YK ,F`)}`�0, we proved that Γ` ⊂ G`(Q`) is large in the sense
that its mod ` reduction has “the same semisimple rank” as the algebraic group G` for ` � 0 [Hu15, Thm.
A]. This result is crucial to the following.

Theorem T. [HL16, HL20] Let ρ• be the Q-compatible system (3) arising from a smooth projective variety
Y defined over K. Conjecture S holds in the following cases.

(i) For `� 0, Gsc
` is of type A, i.e., isomorphic to

∏
i SLni over Q`.

(ii) Y is an abelian variety.
(iii) Y is a hyper-Kähler variety and degree w = 2.
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Let Λ` be a Z`-lattice of Qn` that is invariant under Γ` and G` (resp. Gder
` ) the Zariski closure of Γ` (resp.

the derived group [Γ`,Γ`]) in GLn,Z` , endowed with the unique reduced closed subscheme structure. Write
GF` (resp. Gder

F` ) as the special fiber.

Theorem 3.9. Suppose G` is connected reductive for all `. Then Conjecture S implies that G` is a reductive
group scheme over Z` for `� 0 and Hypothesis H.

Proof. Let π` : Gsc
` (Q`)→ Gder

` (Q`)→ G`(Q`) be the natural morphism. Consider the natural commutative
diagram where each vertical map is the commutator map

Gsc
` ×Gsc

`

��

// G` ×G`

��

// Gss
` ×Gss

`

��

Gsc
`

π`
// G`

// Gss
` .

Then by the definition of Γsc
` , the inclusion π`([Γ

sc
` ,Γ

sc
` ]) ⊂ [Γ`,Γ`] holds. Suppose Conjecture S holds, then

the hyperspecial maximal compact Γsc
` is perfect for ` � 0 (see e.g., [HL16, Proof of Cor. 11]). Thus, for

`� 0, it follows that π`(Γ
sc
` ) ⊂ [Γ`,Γ`]. The closed subscheme G` ⊂ GLn,Z` is smooth by Proposition N for

`� 0. Also, the subscheme Gder
` is smooth for `� 0 (see e.g., [CHT17, Thm. 9.1.1, §9.2.1], note that Gder

`

is connected). Then for `� 0,

(66) π`(Γ
sc
` ) ⊂ [Γ`,Γ`] ⊂ Gder

` (Z`) ⊂ G`(Z`) ⊂ GLn(Z`).

If we can prove that G` is a reductive group scheme over Z`, then G`(Z`) ⊂ G`(Q`) is hyperspecial maximal
compact by Bruhat-Tits theory. So it remains to prove that the special fiber GF` is reductive.

By taking mod ` reduction of (66), we obtain by Hensel’s lemma that for `� 0,

(67) π`(Γsc
` ) ⊂ Gder

` (Z`) = Gder
F` (F`) ⊂ GLn(F`).

For `� n, let S` ⊂ GLn,F` be the Nori envelope [Nor87] of the finite subgroup π`(Γsc
` ) ⊂ GLn(F`). It is the

connected algebraic subgroup of GLn,F` generated by the one parameter unipotent subgroups {ut : t ∈ F`}
for all order ` elements of π`(Γsc

` ). It is semisimple by unipotent. Let π`(Γsc
` )

+
be the (normal) subgroup of

π`(Γsc
` ) generated by the order ` elements. Then π`(Γsc

` )
+

is a subgroup of S`(F`) and [π`(Γsc
` ) : π`(Γsc

` )
+

]

is prime to `. The Nori envelope S` approximates the finite subgroup π`(Γsc
` ) ⊂ GLn(F`) in the sense that

the index [S`(F`) : π`(Γsc
` )

+
] is bounded by a constant depending only on n for all prime ` large enough

compared to n [Nor87, Thm. B(1), 3.6(v)].

Proposition 3.10. For `� 0, the smooth group scheme Gder
` is reductive.

Proof. Suppose ` ≥ n. Since Γsc
` is maximal compact in Gsc

` (Q`) for `� 0, the equality π−1
` (Gder

` (Z`)) = Γsc
`

holds for `� 0. Thus, there is a constant c such that

(68) [Gder
` (Z`) : π`(Γ

sc
` )] ≤ c

for all `� 0 [HL20, Cor. 2.5]. Hence, after reduction we also have

(69) [Gder
F` (F`) : π`(Γsc

` )] ≤ c

If the proposition is false, then the unipotent radical of the special fiber Gder
F` is non-trivial for infinitely many

primes `. Thus, (69) implies that π`(Γsc
` ) contains a non-trivial normal unipotent subgroup U` (consisting

of order ` elements) for infinitely many primes `. Let S′` be the Nori envelope of the semisimplification of

π`(Γsc
` ) ↪→ GLn(F`) (with image π`(Γsc

` )
red

) for `� 0. By the definition of Nori envelope [Nor87, §§1, 3], for
all `� 0 we have a short exact sequence

(70) 1→ U` → S`
π→ S′` → 1

where π is induced by semisimplification. For infinitely many primes `, we have dimU` ≥ 1 since U` contains
a one parameter subgroup t 7→ ut := exp(tlog(u)) [Nor87] for some non-identity element u ∈ U`.
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Since S′` is semisimple, [HL16, Prop. 4(iii)] asserts that dimS′` = dim` S
′
`(F`) (the `-dimension [HL16,

§2]). Since Γsc
` is hyperspecial maximal compact in Gsc

` (Q`), there is a reductive group scheme H` over Z`
such that the generic fiber is Gsc

` and H`(Z`) = Γsc
` . By the definition of `-dimension and [HL16, Prop.

4(iii)] again, we obtain

(71) dim` S
′
`(F`) = dim` S

′
`(F`)+ = dim` π`(Γsc

` )
red

= dim` Γsc
` = dim`H`(F`) = dimGsc

` .

It follows from (70) that dimS` > dimGder
` for infinitely many `, but this contradicts [Lar10, Thm. 7]. �

Let Gred
F` be the quotient of G◦F` by its unipotent radical. For ` � 0, the special fiber Gder

F` (of Gder
` ) is a

normal connected semsimple subgroup of G◦F` (Proposition 3.10), which injects into Gred
F` . It follows that

dimGF` ≥ dimGred
F` ≥ dimGder

F` + rkGred
F` − rkGder

F`

= dimGder
` + rkG` − rkGder

` = dimG`.
(72)

Therefore, (72) is an equality and the special fiber GF` is reductive for `� 0. �

Remark 3.11. Let F be a finitely generated field of characteristic p and Y be a smooth projective variety
defined over F . Conjecture S holds for the Q-compatible system {Hw(YF ,Q`)}` 6=p [CHT17, Thm. 1.2].

3.5.4. Proof of Theorem 1.11. Embed Q` into C for all `. Since EndK(A) = Z, the representations ρ` are
all absolutely irreducible by the Tate conjecture proven by Faltings [Fa83]. Since the formal bi-character of
(G` ↪→ GL(V`))×C is independent of ` [Hu13, Thm. 3.19], condition 1.11(b) and Theorem E imply that the
tautological representation (G` → GL(V`)) × C is independent of `. Since condition 1.11(b) and Theorem
C(ii) hold, the simple factors of G` ×Q` Q` are of the same type and the invariance of roots condition holds
by Corollary 2.5. We conclude that condition 1.6(a),(b),(c) hold. Hence, Theorem 1.6(ii), Theorem T(ii),
Theorem 3.9, and Corollaries 1.9, 1.10 give Theorem 1.11 except the last assertion. It suffices to show that
for `� 0, the two Z`-representations

VZ` : Gal(K/K)→ G(Z`) = G(Z`)→ GL2g(Z`),

H1(AK ,Z`) : Gal(K/K)→ G`(Z`)→ GL(H1(AK ,Z`))
(73)

are isomorphic.
Since VZ` ⊗ Q` ∼= H1(AK ,Q`) ∼= H1(AK ,Z`) ⊗ Q`, there is an element Φ` in the free Z`-module

HomGal(K/K)(VZ` , H
1(AK ,Z`)) that is non-zero after mod ` reduction. Since EndK(A) = Z, the represen-

tation H1(AK ,F`) is absolutely irreducible for `� 0 [FW84, Theorem 4.2]. Thus, the non-zero Gal(K/K)-
equivariant map

Φ` × F` : VZ` ⊗ F` → H1(AK ,F`)

is surjective for ` � 0. By Nakayama’s lemma, Φ` is surjective for ` � 0. Therefore, Φ` is bijective and
induces an isomorphism of the Galois representations VZ` and H1(AK ,Z`) for `� 0. �

Remark 3.12. Embed Q` into C. Let {(Hi, Vi) : 1 ≤ i ≤ k} be the irreducible factors of the irreducible
representation (Gder

` → GL(V`)) × C, i.e., Hi is almost simple and Vi is irreducible (§2.2.2.1). By [Pi98,
Thm. 3.18], the irreducible representation (G` → GL(V`)) × C is a strong Mumford-Tate pair of weight
{0, 1}. Then [Pi98, Prop. 4.5] and [Pi98, Table 4.6] imply that k is odd and the representations (Hi, Vi) have
the following possibilities:

Ar:
∧r

(standard), r ≡ 1 mod 4, r ≥ 1.
Br: Spin, r ≡ 1, 2 mod 4, r ≥ 2.
Cr: Standard, r ≥ 3.
Dr: Spin+, r ≡ 2 mod 4, r ≥ 6.

One observes that each simple Lie algebra has at most one possible representation.
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3.6. Final remarks.

(1) We construct a common E-form G ↪→ GLn,E of the algebraic monodromy representations Gλ ↪→ GLn,Eλ
of the system (2) in case it is absolutely irreducible and Gλ is connected (for all λ) in Theorem 1.1(ii).
The non-absolutely irreducible case and the non-connected case remain open.

(2) Let ρ• be the system in Theorem 1.6 and assume Conjecture S. Then Corollary 1.9(i) produces an adelic
representation ρGA : Gal(K/K)→ G(AQ). Let ρGF` be the mod ` reduction of the `-component ρG` of ρGA
for ` � 0. One can deduce by [Hu15, Thm. A, Cor. B] that there is a constant C > 0 such that the
index satisfies

[G(F`) : ρGF`(Gal(K/K))] ≤ C, ∀`� 0.

Thus, the composition factors of Lie type in characteristic ` of ρGF`(Gal(K/K)) can be described when
`� 0, see a similar result [Hu18, Cor. 1.5] for certain type A compatible system.

(3) The smooth subgroup scheme Gλ ⊂ GLn,Oλ in Corollary 1.3 depends on the choice of an Oλ-lattice of
Vλ. It is shown in [Ca17] that for almost all λ, the subscheme Gλ ⊂ GLn,Oλ is unique up to isomorphism.

(4) The E-forms G and G ⊂ GLn,E we constructed in Theorem 1.1 are not unique for the simple reason
that X1(E,Gad) in Theorem K may not be trivial, where Gad denotes the adjoint quotient of G.

(5) Let S′ be a non-empty finite subset of PE,f . Actually, by examining the proof, main theorem I holds if

we replace P(p)
E,f with PE,f\S′.

(6) In the characteristic zero case, Question Q in §3.3.2 should be addressed if one wants to apply main
theorem II to an E-compatible system when E is totally imaginary. However, one can always use main
theorem I by omitting a finite place of E if one knows that Gλ is quasi-split for almost all λ, or, one
can take the Weil restriction ResE/Q (§3.2.2) to obtain a Q-compatible system and see if main theorem
II can be applied.
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