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Abstract. We investigate the relation between the Grothendieck-Serre/Tate (G-S/T for short) conjectures with
Q`- and F`-coefficients for ` � 0 going through their ultraproduct formulations. Our main result roughly asserts

that the G-S/T conjecture with F`-coefficients for `� 0 always implies the G-S/T conjecture with Q`-coefficients for
`� 0 and that the converse implication holds at least in characteristic p > 0. In characteristic p > 0, this completes

partly the motivic picture predicting that the G-S/T conjecture should be independent of the field of coefficients.

As a concrete application of our result, we obtain that over an arbitrary finitely generated fields of characteristic
p > 0, the Tate conjecture with Q`-coefficients for divisors and some ` 6= p is equivalent to the finiteness of the

Galois-fixed part of the prime-to-p torsion subgroup of the geometric Brauer group. This generalizes a well-known

theorem of Tate over finite fields.
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1. Introduction

LetK be a field of characteristic p ≥ 0. Fix an algebraic closureK; write π1(K) := π1(Spec(K), Spec(K))(=
Aut(K/K)) for the absolute Galois group of K. A variety over K (or a K-variety) means a scheme sep-
arated and of finite type over K. Let SmP(K) denote the symmetric monoidal category of smooth
projective varieties over K.

1.1. Conjectures for realization functors. For X ∈ SmP(K), let CHw(X) denote the Chow group of
codimension w cycles (modulo rational equivalence) and CH(X) := ⊕w≥0CH

w(X) the Z-graded Chow
ring.

Let CHM(K) denote the category of Chow motives over K with Q-coefficients and SmP(K)op →
CHM(K) the canonical functor [A04, 4.1.3]; fix a Weil cohomology H : CHM(K) ⊗ CH → TH with
field of coefficients CH and enriched Tannakian target category TH - See [A04, 3.3, 4.2.5, 7.1]. For
X ∈ SmP(K), let GH(X) denote the Tannakian group of the Tannakian subcategory 〈H(X)〉 generated
by H(X) in TH . The following unifying conjecture is at the heart of the philosophy of pure motives.

1.1.1. Conjecture. For every X ∈ SmP(K),
(1) (Semisimplicity) H(X) is semisimple - equivalently GH(X) is a reductive algebraic group over CH ;
(2) (Fullness) The image of the cycle class map [−]H : CH(X)⊗CH → ⊕w≥0H2w(X)(w) is the subspace

of GH(X)-invariant classes.

The most standard avatars of Conjecture 1.1.1 are (for K = C) the Hodge conjecture ( [H52], [A04, 7.2])
for singular cohomology with enriched Tannakian target category the category of Q-Hodge structures
(so that CH = Q) and (for K finitely generated over its prime field) the Grothendieck-Serre/Tate (G-
S/T for short) conjecture ( [T65], [A04, 7.3]) for `-adic cohomology (` 6= p) with enriched Tannakian
target category the category of finite-dimensional Q`-vector spaces endowed with a continuous action of
π1(K) (so that CH = Q`). The fullness part of Conjecture 1.1.1 for H implies the standard conjecture of
Lefschetz type [A04, 5.2.4] for H. If p = 0 this is already enough to imply all the standard conjectures for
H [A04, 5.4.2.2]. If p > 0, combined with the semisimplicity part of Conjecture 1.1.1 for H, this also implies
all the standard conjectures for H (except possibly the standard conjecture of Hodge type) [A04, 7.1.1.1].
In particular, Conjecture 1.1.1 for H implies that numerical and H-homological equivalences coincide
so that, after modifying the commutativity constraint, the category of numerical motives becomes a
semisimple Tannakian category over Q. Let QX be any finite field extension of Q neutralizing the
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Tannakian subcategory 〈X〉 generated by the numerical motive X in the category of numerical motives
(with modified commutativity constraint) [DM82, Rem. 3.10], let H : 〈X ⊗ QX〉 → V ectQX be a fiber
functor and let G(X) denote the corresponding Tannakian group; this is a reductive group over QX acting
faithfully on the finite-dimensional QX -vector space H(X). Assume Conjecture 1.1.1 holds for another
Weil cohomology H′ : CHM(K) ⊗ CH′ → TH′ . Then the general formalism of Tannakian categories
implies the following.

1.1.2. Conjecture. For every X ∈ SmP(K) and embedding of QX in CH′, one has G(X) ×QX CH′ '
GH′(X)×CH′ CH′ acting on H(X)⊗QX CH′ ' H′(X)⊗CH′ CH′.

When K has characteristic 0, one expects QX = Q and the isomorphisms of Conjecture 1.1.2 to hold
over CH′ . When K has characteristic p > 0, as Serre noticed, this cannot always hold [Gr68, §1.7].

1.2. Realization functors arising from étale cohomology. Let L denote the set of all primes 6= p
and let U denote the set of all non-principal ultrafilters on L. For ` ∈ L let F` denote the finite field with
` elements and Q` the completion of Q at `. For u ∈ U let Qu (resp. Qu) denote the residue field of the
maximal ideal of F :=

∏
`∈L F` (resp. Q :=

∏
`∈LQ`) corresponding to u (See Section 8 for details about

ultraproducts).

The G-S/T conjecture is the incarnation of Conjecture 1.1.1 for the Weil cohomologies derived from étale
cohomology.

1.2.1. These are built from the following cohomology groups:

- For every ` ∈ L, Q`-cohomology Hw(XK ,Q`) := (lim
←−
n

Hw(XK ,Z/`
n))⊗Z` Q`;

- For every u ∈ U , Qu-cohomology Hw(XK ,Qu) := (
∏
`∈LHw(XK ,F`)⊗F Qu;

Qu-cohomology Hw(XK ,Qu) := (
∏
`∈LHw(XK ,Q`))⊗Q Qu.

The following diagram summarizes the relation between the various coefficients:

Q` Q

����

oooo Ẑoo

��

// // F // //

����

F`

Qu Ẑ⊗Qoo // // Qu

From now on, assume the base field K is finitely generated. Let C denote any of Q`, Qu, Qu and
write HC(X) := H(XK , C). The Tannakian target category THC is the category of finite-dimensional
continuous C-representations of π1(K) (as usual, F` is equipped with the discrete topology, Q` with the
`-adic topology, F, Q with the product topology and Qu, Qu with the quotient topology of the product
topology on F, Q). For X ∈ SmP(K) the group GHC (X) is the Zariski-closure of the image of π1(K)
acting on HC(X).

1.2.2. The G-S/T conjecture. For an integer w ≥ 0 and X ∈ SmP(K), consider the following assertions1.

(S, C, w
2 , X) The action of π1(K) on Hw(XK , C) is semisimple.

(wS, C, w, X) The inclusion H2w(XK , C(w))π1(K) ↪→ H2w(XK , C(w)) splits π1(K)-equivariantly.

(wS’, C, w, X) The canonical morphism cw : H2w(XK , C(w))π1(K) → H2w(XK , C(w))π1(K) induced
by the identity is an isomorphism.

(F, C, w, X) The cycle map [−] : CHw(X)⊗ C → H2w(XK , C(w))π1(K) is surjective.

(sF, C, w, X) The cycle map [−] : CHw(XK)⊗ C → lim
−→

K′/K finite

H2w(XK , C(w))π1(K′) is surjective.

Apart from sF, the above assertions also make sense with C replaced by F`, ` ∈ L; we will use the
corresponding notation.

1S stands for ‘semisimplicity’, wS for ‘weak semisimplicity’, F for ‘Fullness’ and sF for ‘stabilized Fullness’.
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With this notation, the classical ( [T66], where it is only formulated for C = Q`) G-S/T conjecture (=
Conjecture 1.1.1) for C asserts that (S, C, w

2 , X) and (F, C, w, X) hold for every X ∈ SmP(K) and
integer w ≥ 0.

1.2.3. Known results. The G-S/T conjecture is widely open. If p > 0 and K is finite (resp. p > 0, resp.
p = 0), Tate [T66] (resp. Zarhin [Z75], [Z77], Mori [Mo77], resp. Faltings [FW84]) proved (S, F`, 1

2 , X),

` � 0 and (S, Q`,
1
2 , X) for X arbitrary and (F, F`, 1, X), (S, F`, w

2 , X), ` � 0 and (F, Q`, 1, X), (S,
Q`,

w
2 , X) for X an abelian variety. Their proofs for F`, ` � 0 mimic their proofs for Q`; they do not

deduce one of the statements from the other.

By works of several authors ( [N83], [NO85], [Ma14], [Cha13], [MP15], [KMP16], [MP20], [I18]), (F, Q`,
w, X), (S, Q`,

w
2 , X) are now established for X a K3 surface. For K3 surfaces, (F, F`, w, X), `� 0 and

(S, F`, w2 , X), `� 0 hold as well. This is due to Skorobogatov-Zarhin if p ≥ 3 ( [SkZ15]), Ito if p = 2 [I18]
and Skorobogatov-Zarhin ( [SkZ08]). To our knowledge, these are the only instances where (F, F`, w, X),
`� 0 and (S, F`, w

2 , X), `� 0 are deduced directly from (F, Q`, w, X), `� 0 and (S, Q`,
w
2 , X) (and

not by mimicking or adjusting the proof for Q`-coefficients to F`-coefficients). The arguments of these
authors, however, rely on specific features of K3 surfaces, in particular the Kuga-Satake construction2.

Eventually, formal arguments allow to deduce a few other cases from the above ones - See e.g. [T94, Thm.
5.2].

1.3. When p = 0 and K is embedded into C, the existence of comparison isomorphisms between étale
and singular cohomologies (See e.g. [A04, 3.4.2]) implies that HQ†-homological equivalence is indepen-
dent of † ∈ L ∪ U , which ensures that Conjecture 1.1.2 for the HQ† , † ∈ L ∪ U and Conjecture 1.1.1
for one single HQ† , † ∈ L ∪ U imply Conjecture 1.1.1 for every HQ† , † ∈ L ∪ U . But, unfortunately,
very little is known about Conjecture 1.1.2 when p = 0. In contrast, when p > 0, and modulo the
semisimplicity part of Conjecture 1.1.1, Conjecture 1.1.2 essentially boils down to the Langlands corre-
spondence [L02], [Chi04], [CZ21]. However, in this case, the lack of comparison isomorphisms between
the HQ† , † ∈ L ∪ U makes it unclear whether Conjecture 1.1.1 for one single HQ† , † ∈ L ∪ U implies
Conjecture 1.1.1 for every HQ† , † ∈ L ∪ U .

Let u ∈ U . The aim of this note is to study a related but easier version of the above problem, namely to
relate Conjecture 1.1.1 (in our case, the G-S/T conjecture) for HQ` , ` ∈ S for some S ∈ u, for HQu and
for HQu . One motivation is to give conceptual and completely general (i.e. working for arbitrary smooth
projective varieties) proofs of results like the above mentioned results of Skorobogatov-Zarhin and Ito
for K3 surfaces. Another motivation is that we may hope that some new cases of the G-S/T conjecture
could be proved more easily for Qu-coefficients and then transferred to Qu- hence Q`-coefficients.

Assume p > 0. Let C denote any of Q`, Qu or Qu. For any integer w ≥ 0, v and X ∈ SmP(K), let GC(X)
denote the Zariski closure of the image of π1(K) acting on Hw(XK , C(v)). Before considering Conjecture
1.1.1, we prove the following variant of Conjecture 1.1.2 for the group of connected components.

1.3.1. Theorem. For every X ∈ SmP(K) the kernel of the canonical map π1(K)→ π0(GC(X)) is inde-
pendent of C = Q`, Qu, Qu.

For C = Q`, Theorem 1.3.1 is due to Serre [S00, p. 15 sqq] but Serre’s arguments do not transfer as they
are to C = Qu or Qu. Instead, we follow the argument of [LaP95, Prop. 2.2] and give a uniform proof of
Theorem 1.3.1 (which for C = Qu, relies on the results of [CHT17]).

When GC(X) is connected for one of (equivalently every) C = Q`, Qu, Qu, one says that X has con-
nected monodromy in degrees (w, v). Under the connected monodromy assumption in degrees (2w,w),

2The restriction p ≥ 3 in [SkZ15] is related to the fact that the Kuga-Satake construction was not available for p = 2 at
the time of [SkZ15]. This missing ingredient was developed by Kim and Madapusi Pera in [KMP16]. Building on [KMP16]
and the method of [SkZ15], Ito extended Skorobogatov-Zarhin’s result to the p = 2 case.
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H2w(XK , C(w))π1(K) = H2w(XK , C(w))π1(K′) for every finite field extension K ′/K and the G-S/T con-
jecture for X and X ′ := X ×K K ′ become equivalent - See Lemma 4.2.

Our second main result is the following statements.

1.3.2. Proposition. For every X ∈ SmP(K), equidimensional of dimension d, and u ∈ U , the following
hold.
(1) (F, Qu, d, X2) + (S, Qu,

w
2 , X) =⇒ (S, Qu,

w
2 , X);

(2) (F, Qu, d, X2) + (F, Qu, w, X) + (wS, Qu, w, X) =⇒ (wS, Qu, w, X).

1.3.3. Theorem. Assume p > 0. For every X ∈ SmP(K), equidimensional of dimension d, and u ∈ U ,
the following hold.
(1) (wS, Qu, w, X) =⇒ (wS, Qu, w, X);
(2) (S, Qu,

w
2 , X) =⇒ (S, Qu,

w
2 , X);

(3) (F, Qu, i, X), i = w, d− w + (wS, Qu, w, X) =⇒ (F, Qu, i, X), i = w, d− w (+ (wS, Qu, w, X)).

Proposition 1.3.2 and Theorem 1.3.3 imply formally (See Lemma 4.1) the following.

1.3.4. Corollary. For every X ∈ SmP(K), equidimensional of dimension d,
(1) (F, F`, d, X2) + (S, F`, w

2 , X), `� 0 =⇒ (S, Q`,
w
2 , X), `� 0;

(2) (F, F`, d, X2) + (F, F`, w, X) + (wS, F`, w, X), `� 0 =⇒ (wS, Q`, w, X), `� 0.
Assume p > 0. Then
(3) (wS, Q`, w, X), `� 0 =⇒ (wS, F`, w, X), `� 0;
(4) (S, Q`,

w
2 , X), `� 0 =⇒ (S, F`, w

2 , X), `� 0;
(5) (F, Q`, i, X), i = w, d− w + (wS, Q`, w, X), ` � 0 =⇒ (F, F`, i, X), i = w, d− w (+ (wS, F`, w,

X)), `� 0.

1.3.5. For divisors, Theorem 1.3.3, Corollary 1.3.4 (3)-(5) yield [T94, Prop. 5.1] that for every X ∈
SmP(K),

(1) (F, Qu, 1, X) =⇒ (F, Qu, 1, X) + (wS, Qu, 1, X);
(2) (F, Q`, 1, X), `� 0 =⇒ (F, F`, 1, X) + (wS, F`, 1, X), `� 0.

In particular, for X an abelian variety or a K3 surface one can directly deduce (F, F`, 1, X) + (wS, F`,
1, X), ` � 0 from (F, Q`, 1, X) (See Subsection 1.2.3) without resorting to any specific arithmetico-
geometric features of X as in [SkZ15] or [I18].

1.3.6. Remark. The implication (F, F`, w, X) =⇒ (F, Q`, w, X) always holds for ` � 0 (hence the
implication (F, Qu, w, X) =⇒ (F, Qu, w, X)). This follows from Nakayama’s lemma and the fact that
H2w(XK ,Z`) is torsion-free for ` � 0 ( [G83] - See Fact 2.2). More precisely, we have the commutative
diagram

CHw(X) //

�� **

H2w(XK ,Z`(w))π1(K)

����
H2w(XK ,F`(w))π1(K) H2w(XK ,Z`(w))π1(K) ⊗ F`,oo

where the bottom arrow is injective for `� 0. So if the left vertical arrow is surjective, the bottom arrow
is an isomorphism hence the diagonal arrow is surjective.

1.4. Divisors and finiteness of Brauer groups. Let X ∈ SmP(K) with connected monodromy in
degrees (2, 1). Then (F, Q`, 1, X) is equivalent to the finiteness of the `-primary π1(K)-invariant part

Br(XK)π1(K)[`∞] of the Brauer group of XK (e.g. [CCh20, Prop. 2.1.1] and the references therein). One
has the following strengthening.

Corollary. Assume p > 0. Then for every X ∈ SmP(K) the following assertions are equivalent

(1) (F, Q`, 1, X), for some ` 6= p;
(2) (F, Q`, 1, X), for every ` 6= p;
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(3) Br(XK)π1(K)[p′] is finite,

(where Br(XK)π1(K)[p′] denotes the prime-to-p part of Br(XK)π1(K)).

When K is finite, Corollary 1.4 was proved by Tate [T94, Prop. 4.3]. In this setting, it is even known
that (F, Q`, 1, X) is independent of ` 6= p and implies that Br(X) is finite (See the references in the
proof of [T94, Prop. 4.3]). That the equivalence (1) ⇔ (2) holds in general was pointed out to us by
Yanshuai Qin. This is essentially the same argument as in the finite field case and relies on [T94, Prop.
2.9]. Though it is well-known to experts (see e.g. [P15, §7] or [Q20, Cor. 1.7]), for completeness we briefly
recall the proof in Subsection 7.1. The delicate implication is (2) ⇒ (3), which requires Corollary 1.3.4
(3). Establishing (3) when X is a K3 surface was the main motivation of Skorobogatov-Zarhin and Ito
in [SkZ15], [I18].

1.5. The proof of Theorem 1.3.1 is carried out in Section 3, the proof of Proposition 1.3.2 in Section 5
and the proof of Theorem 1.3.3 in Section 6. The proof of Proposition 1.3.2 is formal; this is why it also
holds for p = 0. The proofs of Theorem 1.3.1 and Theorem 1.3.3 rely on deeper arithmetico-geometric
inputs which, for the convenience of the reader, are summarized in Section 2; the assumption that p > 0
is crucial. Eventually, the proof of Corollary 1.4 is carried out in Section 7. In Section 8, we gathered
basic properties of ultraproducts of fields.

Acknowledgments: The first author was partly funded by the ANR project ECOVA, ANR-15-CE40-
0002-01, the CNRS-JSPS project ASPIC and is supported by the Institut Universitaire de France. This
project was initiated while the first and second authors were visiting the third author at RIMS; they want
to thank RIMS for providing remarkable working conditions. The third author was partly supported by
JSPS KAKENHI Grant Numbers 15H03609, 20H01796.

2. Étale cohomology

Let K be a finitely generated field of characteristic p ≥ 0 and let X ∈ SmP(K). Let k denote the algebraic
closure of the prime field of K in K.

2.1. Convention. In several places, we will fix a smooth projective model f : X → S of X → Spec(K)
with S a smooth separated and geometrically connected scheme over k with generic point η and set
of closed points |S|. In particular, for every geometric point s over a point s ∈ S, locally constant
constructible Z`-sheaf F (` 6= p) and up to choosing étale paths from s to η, one gets canonical equivariant
isomorphisms

(R∗f∗F(v))s
' // (R∗f∗F(v))η Hw(Xη,F) Hw(XK ,F)

π1(s, s)

00

// π1(S, s)

;;

' // π1(S, η)

;;

π1(η, η) = π1(K).

<<

oooo

When p > 0 (so that k is a finite field) and s ∈ |S|, let ϕs ∈ π1(s) denote the geometric Frobenius, which
we identify with its image (well-defined up to conjugacy if we ignore base points, which we will do most
of the time) in π1(S, s)→̃π1(S, η).

Assume p > 0. Fix integers w ≥ 0, v. The following are consequences of the theory of Frobenius weights
developed by Deligne in [D80].

2.2. Fact.
(1) ( [G83]) The Z`-local systems Rwf∗Z`(v) are torsion-free (of finite constant rank) for `( 6= p)� 0. In

particular, for every geometric point s on S, (R∗f∗Z`(v))s ⊗ F`→̃(Rwf∗F`(v))s, `(6= p)� 0;
(2) ( [CHT17, Thm. 1.3]) H0(Sk, R

wf∗Z`(v))⊗ F`→̃H0(Sk, R
wf∗F`(v)), `(6= p)� 0.

2.3. Fact.
(1) ( [D80, 3.4.1 (iii)]) Rwf∗Q`(v)|Sk is a semisimple Q`-local system on Sk, ` 6= p;

(2) ( [CHT17, Thm. 1.1]) Rwf∗F`(v)|Sk is a semisimple F`-local system on Sk for `(6= p)� 0.
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2.4. Fact.
(1) ( [D80, Cor. 3.2.9]) For every closed point s ∈ |S| the characteristic polynomial Ps := det(IdT −

ϕs|(Rwf∗Q`(v))s) of the geometric Frobenius ϕs ∈ π1(s) is in Z[1/p][T ], independent of `(6= p);
(2) (e.g. [LaP95, (proof of) Prop. 2.1]) The characteristic polynomial P := det(IdT−ϕ|H0(Sk, R

wf∗Q`(v)))
of the geometric Frobenius ϕ ∈ π1(k) is in Z[1/p][T ] and independent of `.

From Fact 2.2 (1), Fact 2.4 (1) implies that, for `( 6= p) � 0, the reduction modulo ` of Ps ∈ Z[1/p][T ]
coincides with the characteristic polynomial Ps,F` := det(IdT − ϕs|(Rwf∗F`(v))s) ∈ F`[T ]. In turn, this
implies that Ps ∈ Z[1/p][T ] coincides with the characteristic polynomial det(IdT − ϕs|Hw(Xs,Qu(v))),
u ∈ U . (It also directly follows from Fact 2.2 (1) that Ps ∈ Z[1/p][T ] coincides with the characteristic
polynomial det(IdT − ϕs|Hw(Xs,Qu(v))), u ∈ U).

From Fact 2.2 (2), Fact 2.4 (2) implies that, for `(6= p)� 0, the reduction modulo ` of P ∈ Z[1/p][T ] co-
incides with the characteristic polynomial PF` := det(IdT −ϕ|H0(Sk, R

wf∗F`(v))) ∈ F`[T ]. In particular,
if δQ`(1) (resp. δF`(1)) denotes the multiplicity of 1 as a root of P (resp. PF`), δQ`(1) is independent of `
and one δQ`(1) = δF`(1) for `( 6= p)� 0.

2.5. Let Π (resp. Π) denote the image of π1(Sk) (resp. π1(S)) acting on
∏
`∈L(Rwf∗F`(v))s. Then,

Fact. ( [CT19, §3.1]) Π (hence Π) is a topologically finitely generated profinite group.

Let ΠQu denote the image of π1(S) acting on Hw(Xη,Qu(v))). Fact 2.5 has the following (non-trivial!)
consequence

Corollary. For every finite index subgroup Π′Qu
⊂ ΠQu there exists a connected étale cover S ′ → S such

that Π′Qu
coincides with the image of π1(S ′) acting on Hw(Xη,Qu(v))).

Proof. From Fact 2.5, Π is a topologically finitely generated profinite group. As the inverse image Π′ ⊂ Π
of Π′Qu

in Π is again of finite index it follows from [NS07a, Thm. 1.1] (which relies on [NS07b]) that Π′

is automatically open in Π hence corresponds to a connected étale cover S ′ → S. �

The fact that Π is topologically finitely generated also ensures (Lemma 8.4.2)

Hw(Xη,Qu(v))π1(Sk) = (
∏
`∈L

Hw(Xη,F`(v))π1(Sk))⊗Qu = (
∏
`∈L

H0(Sη, Rwf∗F`(v))⊗Qu

so that, from Fact 2.2 (2) and Fact 2.4 (2), P ∈ Q[T ] coincides with the characteristic polynomial

det(IdT − ϕ|Hw(Xs,Qu(v))π1(Sk)), u ∈ U .

(From Fact 2.4 (2) and [B96, 6.3.1, 6.3.2], similar results hold for Qu-coefficients).

3. Proof of Theorem 1.3.1

Let K be a finitely generated field of characteristic p > 0 and let X ∈ SmP(K). We retain the notation
of 2.1. For C = Qu,Q`,Qu, set HC := Hw(XK , C(v)) and let GC ⊂ GL(HC) denote the Zariski-closure
of the image ΠC of π1(K) acting on HC .

Let C1, C2 be any fields of the form Q`,Qu or Qu. Since π1(S)-semisimplification does not change
the kernel of π1(S) � π0(GCi), one may assume HCi is a semisimple ΠCi-module. Note also that
π1(S)-semisimplification does not affect the action of π1(Sk) on HCi by Fact 2.3 (and Lemma 8.4.5 if
Ci = Qu or Qu). As π1(S) acts on HCi through a topologically finitely generated quotient, the kernel of
π1(S) � π0(GC1) is an (a normal) open subgroup of π1(S) ( [NS07a], [NS07b]) so that, up to replacing S
by the corresponding étale (Galois) cover, one may assume GC1 is connected that is, equivalently ( [D82,
Prop. 3.1 (a), (c)]), for every finite index subgroup U ⊂ π1(S) and integers m,n ≥ 0, dim((H⊗mC1

⊗
H∨⊗nC1

)U ) = dim((H⊗mC1
⊗ H∨⊗nC1

)π1(S)). One has to show that this implies that for every finite index

subgroup U ⊂ π1(S) and integers m,n ≥ 0, dim((H⊗mC2
⊗H∨⊗nC2

)U ) = dim((H⊗mC2
⊗H∨⊗nC2

)π1(S)) [LaP95,

Lemma 2.3]. Again, since π1(S) acts on HCi through a topologically finitely generated quotient, one may
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restrict to open subgroups U ⊂ π1(S). That is, equivalently, one has to show that for every connected

étale cover S ′ → S and integers m,n ≥ 0, dim((H⊗mC2
⊗ H∨⊗nC2

)π1(S′)) = dim((H⊗mC2
⊗ H∨⊗nC2

)π1(S)).

But recall that HCi = Hw(Xη, Ci(v)) so that, by Kunneth formula, H⊗mCi ⊗ H
∨⊗n
Ci

is a direct factor of

Hmw+n(2d−w)(Xm+n
η , Ci(n(d− v))). In other words, replacing X → S with the the m+nth fibered power

Xm+n = X ×S × · · · ×S X → S (and the Tate twists −(v) with −(n(d − v))), it is enough to show that

for every connected étale cover S ′ → S, dim((HC2)π1(S′)) = dim((HC2)π1(S)). But as, by assumption,

dim(H
π1(S′)
C1

) = dim(H
π1(S)
C1

), it is actually enough to show that for every connected étale cover S ′ → S,

dim((HC2)π1(S′)) = dim((HC1)π1(S′)). Write S := S ′ to simplify. As HCi is a semisimple ΠCi-module

(and using Lemma 8.4.2 for Ci = Qu or Qu), dim((HCi)
π1(S)) is the multiplicity of 1 as an eigenvalue of

the Frobenius ϕ ∈ π1(k) ' π1(S)/π1(Sk) acting on (HCi)
π1(Sk). So the assertion follows from the last

paragraph of Subsection 2.5.

4. Preliminary observations

Let X ∈ SmP(K). We begin by the following elementary observations, which follow from the formal
properties of ultraproducts.

4.1. Lemma. For (?, ??) = (S,w2 ), (wS,w), (wS’,w), (F,w) we have
(1) For every u ∈ U , (?, Qu, ??, X) ⇐⇒ The set of all ` ∈ L such that (?, Q`, ??, X) holds is in u. In

particular, (?, Q`, ??, X), `� 0 ⇐⇒ (?, Qu, ??, X) for every ultrafilter u ∈ U ;
(2) For every u ∈ U , (?, Qu, ??, X) ⇐⇒ The set of all ` ∈ L such that (?, F`, ??, X) holds is in u.

In particular, (?, F`, ??, X), `� 0 ⇐⇒ (?, Qu, ??, X) for every u ∈ U .

Proof. For ? =F, see 8.3.3 (with P the property of being surjective) and 8.4.2 (which can be applied by ??
(2)). For ? =S, see 8.4.5 (with P the property of acting semisimply). For ? =wS, see 8.4.6. For ? =wS’,
see 8.4.2, 8.4.1 and 8.3.3 (with P the property of being an isomorphism). �

4.2. Let C = Q`,Qu or Qu and let K ′/K be a finite field extension. Write X ′ := X ×K K ′. Then,

Lemma.
(1) (S, C, w

2 , X ′) ⇔ (S, C, w
2 , X);

(2) (sF, C, w, X ′) ⇔ (sF, C, w, X);
(3) If K ′/K is Galois, (F, C, w, X ′) ⇒ (F, C, w, X).
Assume furthermore X has connected monodromy in degrees (2w,w). Then,
(4) (wS, C, w, X) ⇔ (wS, C, w, X ′);
(5) The assertions (sF, C, w, X), (sF, C, w, X ′), (F, C, w, X), (F, C, w, X ′) are all equivalent.

Proof. We show (3); the other assertions are purely group-theoretic and elementary. Let

α ∈ H2w(XK , C(w))π1(K) ⊂ H2w(XK , C(w))π1(K′).

Then, from (F, C, w, X ′), one can write α =
∑

1≤i≤r λi[Y
′
i ] with λi ∈ C and Y ′i ∈ Zω(X ′) an integral

cycle. But, then,

α =
1

[K ′ : K]

∑
1≤i≤r

λi
∑

σ∈Gal(K′/K)

σ[Y ′i ] =
1

[K ′ : K]

∑
1≤i≤r

λi[
∑

σ∈Gal(K′/K)

σY ′i ].

The conclusion follows from the fact that
∑

σ∈Gal(K′/K) σY
′
i is in Zω(X ′)Gal(K

′/K) = Zω(X). �

4.3. Lemma. Assume p > 0. Then,
(1) For ` 6= p, (wS, Q`, w, X) ⇐⇒ (wS’, Q`, w, X);
(2) For `� 0, (wS, F`, w, X) ⇐⇒ (wS’, F`, w, X).
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Proof. Let C = Q` or F`. We retain the notation of 2.1. Write H := H2w(X,C(w)) and Π := π1(Sk),
Π := π1(S). The implication (wS’, C, w, X) ⇒ (wS, C, w, X) is straightforward since the composition
of c−1

w : HΠ→̃HΠ with the canonical projection H � HΠ provides a Π-equivariant splitting of HΠ ↪→ H.
Conversely, let φ ∈ Π such that φ and Π generate Π. As Π acts semisimply on H (Fact 2.3) the

canonical morphism HΠ → HΠ is an isomorphism. Assume (wS, C, w, X) and consider a Π-equivariant

decomposition H = HΠ ⊕ M ; in particular MΠ = 0. Then it is enough to show that 0 = MΠ =

(MΠ)ϕ←̃(MΠ)ϕ but this follows from the exact sequence

0→MΠ = (MΠ)ϕ →MΠ ϕ−1→ MΠ → (MΠ)ϕ → 0.

�

5. Proof of Proposition 1.3.2

5.1. Let X ∈ SmP(K) of dimension d. For C = Q`,Z`,F` write HC := Hw(XK , C) and set Π := π1(K).
To prove Proposition 1.3.2, one may freely replace L by a subset in u; in particular one may replace L
by a cofinite subset hence assume

(5.1.1) HZ` ⊗ F` = HF` , ` ∈ L

(Fact 2.2 (1) if p > 0; if p = 0, this follows from comparison between singular and Z`-cohomology, using
the fact that for every embedding K ⊂ C, Hsing(X(C),Z) is a finitely generated Z-module). By Künneth
formula and Poincaré duality, (F, Qu, d, X2) ensures that up to replacing L by a subset in u one has

(5.1.2) EndΠ(HZ`)⊗ F` = (HZ` ⊗H∨Z`)
Π ⊗ F`→̃(HF` ⊗H∨F`)

Π = EndΠ(HF`), ` ∈ L.

5.2. Proof of Proposition 1.3.2 (1).

5.2.1. Let Q be a field and Γ a group. In this subsection, a Γ-module means a finite-dimensional Q-vector
space endowed with an action of Γ by Q-linear automorphisms. For a Γ-module V , let V ss denote the
Γ-semisimplification of V .

Lemma. One has dim(EndΓ(V )) ≤ dim(EndΓ(V ss)) and dim(EndΓ(V )) = dim(EndΓ(V ss)) if and only
if V is a semisimple Γ-module.

Proof. Let 0→ A→ V → B → 0 be a short exact sequence of Γ-modules and W a Γ-module. Then

0 −→ HomΓ(B,W ) −→ HomΓ(V,W ) −→ HomΓ(A,W )

and

0 −→ HomΓ(W,A) −→ HomΓ(W,V ) −→ HomΓ(W,B)

are exact and hence we obtain

dim HomΓ(V,W ) ≤ dim HomΓ(A⊕B,W )

and

dim HomΓ(W,V ) ≤ dim HomΓ(W,A⊕B).

By taking W = V in the first inequality and W = A⊕B in the second, we obtain

dim EndΓ(V ) ≤ dim EndΓ(A⊕B)

and induction implies

(∗) dim EndΓ(V ) ≤ dim EndΓ(V ss).

When (∗) is an equality, V is semisimple. Indeed, all the inequalities become equalities. Hence, the
sequence

0 −→ HomΓ(A⊕B,A) −→ HomΓ(A⊕B, V ) −→ HomΓ(A⊕B,B) −→ 0

and thus

0 −→ HomΓ(B,A) −→ HomΓ(B, V ) −→ HomΓ(B,B) −→ 0

are exact, implying that 0→ A→ V → B → 0 splits. �
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5.2.2. From (5.1.1) and (5.1.2) dim(EndΠ(HQ`)) = dim(EndΠ(HF`)). On the other hand (S, Qu,
w
2 , X)

ensures that up to replacing L by a subset in u one may assume (S, F`, w
2 , X), ` ∈ L (See Lemma 4.1

(2)). Let TZ` ⊂ Hss
Q` be any Π-stable Z`-lattice and set TF` := TZ` ⊗ F`. Then since T ssF` and HF` are

semisimple Π-modules with the same traces, they are isomorphic. Hence

dim(EndΠ(Hss
Q`)) ≥ dim(EndΠ(HQ`)) = dim(EndΠ(HF`))

= dim(EndΠ(T ssF` )) ≥ dim(EndΠ(TF`)) ≥ dim(EndΠ(Hss
Q`)),

where the first and second inequalities follow from Lemma 5.2.1 and the third inequality always holds.
As a result, one obtains

dim(EndΠ(HQ`)) = dim(EndΠ(Hss
Q`)).

The conclusion follows from the equality case in Lemma 5.2.1.

5.3. Proof of Proposition 1.3.2 (2).

5.3.1. Given a ring R, let Idem(R) and CIdem(R) denote respectively the idempotents and central idem-
potents in R.

Let A be a Z`-algebra which, as a Z`-module, is free of finite rank. The following lemma is possibly clas-
sical (see e.g. [Do72, Thm. 44.3 (2)] for the surjectivity part of the assertion) but for lack of a suitable
complete reference and to keep the exposition self-contained, we include a proof.

Lemma. (Lifting idempotents) The reduction modulo-` morphism A � A ⊗ F` restricts to a surjective
map Idem(A) � Idem(A⊗ F`) and to a bijective map CIdem(A)→̃CIdem(A⊗ F`).

Proof. First, observe that for every a, a′ ∈ A such that [a, a′] = 0 and a− a′ ∈ `NA, we have a`
n − a′`n ∈

`N+nA. Indeed, write a− a′ = `Nb0 ∈ `NA. Then, b0 commutes with a, a′ and one has

a` − a′` =
∑

1≤k≤`

(
`

k

)
`Nka

′`−kbk0 = `N+1
∑

1≤k≤`

(
`

k

)
`Nk

`N+1
a
′`−kbk0 = `N+1b1.

The conclusion follows by straightforward induction.
- Let ε ∈ Idem(A ⊗ F`) and pick any a ∈ A such that a = ε. By construction, a`

m − a ∈ `A, m ≥ 0
hence, from the preliminary observation,

a`
n+p − a`n = (a`

p
)`
n − a`n ∈ `n+1A, n ≥ 0

hence {a`n}n is a Cauchy sequence. Set e := lim
n→∞

a`
n
. By construction, for n � 0 we have e = a`

n
=

ε`
n

= ε. Furthermore, since a2 − a ∈ `A, we get, again, a2`n − a`n ∈ `n+1A, n ≥ 0. Since (−)2 : A→ A
is continuous, one gets e2 = e. This shows Idem(A) � Idem(A⊗ F`).

- Let e ∈ Idem(A) such that e ∈ CIdem(A⊗ F`). Then e(A⊗ F`)(1− e) = 0 forces

eA(1− e) ⊂ `A = e`Ae⊕ (1− e)`Ae⊕ e`A(1− e)⊕ (1− e)`A(1− e).
Multiplying by e on the left and 1−e on the right, one gets eA(1−e) = `eA(1−e) hence, by Nakayama’s
lemma, eA(1− e) = 0. Similarly (1− e)Ae = 0. Hence for every a ∈ A,

ea = ea(e+ (1− e)) = eae = (e+ (1− e))ae = ae.

This shows CIdem(A) � CIdem(A⊗ F`). Let e, e′ ∈ CIdem(A) such that e = e′ that is, e− e′ ∈ `A.

Since [e, e′] = 0, the preliminary observation shows that e− e′ = e`
n − e′`n ∈ `n+1A, n ≥ 0 hence e = e′.

This shows CIdem(A)→̃CIdem(A⊗ F`).
�

5.3.2. From (5.1.1) one has EndΠ(HZ`) ⊗ F` = EndΠ(HF`), ` ∈ L. On the other hand, (F, Qu, w, X),
(wS, Qu, w, X) ensure that up to replacing L by a subset in u, one also has (F, F`, w, X), (wS, F`, w,
X), (wS’ , F`, w, X), ` ∈ L (Lemma 4.1 (2), Lemma 4.3 (2)). Using (5.1.1) one can apply Lemma 5.3.1
to A = EndΠ(HZ`). Write M0 := HΠ

F` , M1 := ker(HF` → HF`Π). Then, by (wS’ , F`, w, X), one has
the canonical decomposition HF` = M1 ⊕M0 as Π-modules. By definition of M0, M1, any element in
EndΠ(HF`) stabilizes both M0 and M1 hence the elements ei : HF` �Mi ↪→ HF` (obtained by composing
the canonical projection followed by the canonical injection), i = 1, 2 are in CIdem(EndΠ(HF`)). From

Lemma 5.3.1, e0, e1 lift uniquely to ẽ0, ẽ1 ∈ CIdem(EndΠ(HZ`)) with Id = ẽ0 + ẽ1. Let M̃1−i := ker(ẽi),

i = 0, 1. Then HZ` = M̃1 ⊕ M̃0 with M̃i ⊗ F` = Mi, i = 0, 1. It remains to check that M̃0 = HΠ
Z` .
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Since M̃0 ⊗ F` = M0(= HΠ
F`) = HΠ

Z` ⊗ F`, by Nakayama’s lemma, it is enough to show that HΠ
Z` ⊂ M̃0.

Since HΠ
Z` = (HΠ

Z` ∩ M̃0) ⊕ (HΠ
Z` ∩ M̃1), this is equivalent to HΠ

Z` ∩ M̃1 = 0. Let h ∈ HΠ
Z` ∩ M̃1. Then

h mod ` ∈ HΠ
F` ∩M1 = 0 that is HΠ

Z` ∩ M̃1 ⊂ `HZ` . But as HZ`/(H
Π
Z` ∩ M̃1) ↪→ (HZ`/H

Π
Z`) × M̃0 is

torsion-free (equivalently, HΠ
Z` ∩ M̃1 ⊂ HZ` is a Z`-direct summand), (`HZ`)∩ (HΠ

Z` ∩ M̃1) = `(HΠ
Z` ∩ M̃1).

As a result, HΠ
Z` ∩ M̃1 = `(HΠ

Z` ∩ M̃1) which, by Nakayama’s lemma, forces HΠ
Z` ∩ M̃1 = 0.

6. Proof of Theorem 1.3.3

Let K be a finitely generated field of characteristic p > 0 and let X ∈ SmP(K). We retain the notation
of 2.1. Set Π := π1(Sk), Π := π1(S). Again, to prove Theorem 1.3.3 one may freely replace L by a subset

in u; in particular one may assume H0(Xη, R∗f∗Z`) ⊗ F`→̃H0(Xη, R∗f∗F`), ` ∈ L (Fact 2.2 (1)). From
Lemma 4.1, it is enough to show

(1’) For `� 0, (wS, Q`, w, X) =⇒ (wS, F`, w, X)
(2’) For `� 0, (S, Q`,

w
2 , X) =⇒ (S, F`, w

2 , X)
(3’) For `� 0, (F, Q`, i, X), i = w, d− w + (wS, Q`, w, X) =⇒ (F, F`, i, X), i = w, d− w + (wS, F`, w, X)

6.1. Proof of (1’). For C = Q`,F`, write HC := H2w(XK , C(w)) and consider the following seemingly
weak variant of (wS, C, w, X).

(wS”, C, w, X) The inclusion HΠ
C ↪→ HΠ

C splits π1(k)-equivariantly.

Recall the definition of δC(1) at the end of Paragraph 2.4; by definition this is the dimension of the

generalized eigenspace HΠ
C{1} := ∪n≥1 ker((Id− ϕ)n|HΠ

C) attached to 1 so that

(6.1.1) (wS”, C, w, X) ⇔ δC(1) = dim(HΠ
C) ⇔ δC(1) ≤ dim(HΠ

C)

(where the last equivalence follows from the fact that δC(1) ≥ dim(HΠ
C) always holds). One also has

6.1.2 Lemma. (wS, Q`, w, X) ⇔ (wS”, Q`, w, X) and (wS, F`, w, X) ⇔ (wS”, F`, w, X), `� 0.

Proof. The implications⇒ are straightforward. For the converse implications, from Fact 2.3 the canonical

Π-equivariant morphism HΠ
C → HC Π is an isomorphism. So, setting N := ker(HC → HC Π), one obtains

a direct sum decomposition as Π-modules HC = HΠ
C ⊕N . �

6.1.3 From 6.1, it is enough to show

(1”) For `� 0, δQ`(1) ≤ dim(HΠ
Q`) =⇒ δF`(1) ≤ dim(HΠ

F`).

From the last paragraph of 2.4, δQ`(1) = δF`(1) for `( 6= p)� 0 so that (1”) follows from

dim(HΠ
F`) ≤ δF`(1) = δQ`(1) ≤ dim(HΠ

Q`) ≤ dim(HΠ
F`).

6.2. Proof of (2’). This is proved in [CHT17, §11]. We give here a more elementary argument, which
avoids Larsen-Pink’s theory of regular semisimple Frobenii. For C = F`,Q`,Z`, write HC := Hw(XK , C).

Also, let Π` and Π` denote the image of Π and Π acting on HZ` respectively.

We begin with the following Lemma. Recall that (S, Q`,
w
2 , X), (S, Qu,

w
2 , X) hence - as this holds for

every u ∈ U (8.4.5 for P the property of acting semisimply) - (S, F`, w
2 , X) for ` � 0 are insensitive to

finite field extensions of K (Lemma 4.2 (1)).

Lemma. After replacing K by a finite field extension, there exists a monic polynomial P ∈ Q[T ] and for
every ` 6= p a semisimple element φ` ∈ Π` such that, for `� 0, Π` is generated by Π` and φ`, and φ` has
characteristic polynomial P .

Proof. Let GZ` , GZ` denote respectively the Zariski closure of Π`, Π` in GL(HZ`). After possibly replacing
S by a connected étale cover, one may assume GQ` is connected for every ` ∈ L (Theorem 1.3.1). One
may also assume S carries a k-point s ∈ S(k). Let ϕ` denote the image of the geometric Frobenius ϕs
acting on HZ` ; recall that its characteristic polynomial Ps is in Q[T ] and independent of ` ( [D80]). Write



Q`- VERSUS F`-COEFFICIENTS IN THE GROTHENDIECK-SERRE/TATE CONJECTURES 11

ϕ` = ϕss` ϕ
u
` for the multiplicative Jordan decomposition of ϕ` in GQ` . There exists polynomials P ss, P u

in Q[T ] and independent of ` such that ϕss` = P ss(ϕ`), ϕ
u
` = P u(ϕ`). Let FZ` , F

ss
Z` , F

u
Z` denote the Zariski

closure in GZ` of the subgroup generated by ϕ`, ϕ
ss
` and ϕu` respectively. Then FZ` = FssZ`F

u
Z` . Since

GQ`/GQ` is connected, abelian, reductive3, it is a torus. Hence FuQ` ⊂ GQ` . In particular, ϕu` ∈ G(Q`).

But, actually, ϕu` ∈ G(Z`) for `� 0. Indeed, ϕu` = P u(ϕ`) is in EndZ`(HZ`) for `� 0 since P u is in Q[T ]

and independent of `. Also det(ϕu` ) = 1 ∈ Z×` shows that ϕu` ∈ G(Q`) ∩ GL(HZ`). It only remains to

check that G(Q`) ∩GL(HZ`) = G(Z`). The inclusion G(Q`) ∩GL(HZ`) ⊃ G(Z`) is straightforward. The

converse inclusion is the valuative criterion of properness for the closed immersion GZ` ↪→ GL(HZ`):

GZ`
� � // GL(HZ`)

Q`

OO

// Z`

OOdd
.

From [CHT17, Thm. (7.3.2)], there exists an integer N ≥ 1 independent of ` such that (ϕu` )N ∈ Π`. But,

then, (ϕss` )N = ϕN` (ϕu` )−N ∈ Π`; after replacing k by its degree-N field extension, we may assume N = 1.
Then φ` = ϕss` works. �

We can now conclude the proof. The fact that φ` acts semisimply on HQ` is equivalent to the fact that
the minimal polynomial Q` of φ` is separable. Since P is in Q[T ] and independent of `, Q := Q` is in
Q[T ] and independent of ` as well. And since one assumes HZ` is torsion free, the minimal polynomial of
φ` acting on HF` is the reduction modulo-` of Q for `� 0; in particular, it is again separable for `� 0.
This shows that φ` acts semisimply on HF` for ` � 0 hence that its image in GL(HF`) is of prime-to-`
order. Thus (S, F`, w

2 , X) follows from Fact 2.3 (2) and [S94a, Lem. 5(b)].

6.3. Proof of (3’). One retains the notation of Subsection 6.1. Since we may assume `� 0, (F, Q`, i,
X), i = w, d− w + (wS, Q`, w, X) imply that the canonical morphism Zw(X)⊗ Z` → HΠ

Z` is surjective
( [MiR04, Lem. 3.1]) and, in particular, that the morphism Zw(X)⊗Z` → HZ` has torsion-free cokernel.

This and the fact that one assumes HZ` is torsion free show that the images of Zw(X) ⊗ C → HΠ
C for

C = Q`,F`,Z` have the same rank - say δ. As a result

(F, X, Q`, w) ⇔ δ = dim(HΠ
Q`)

(F, X, F`, w) ⇔ δ = dim(HΠ
F`)

Thus the conclusion follows from the implications:

δQ`(1) = dim(HΠ
Q`)

6.1⇔ (wS, Q`, w, X)
(1′)⇒ (wS, F`, w, X)

6.1⇔ δF`(1) = dim(HΠ
F`).

and the fact that for `� 0, δQ`(1) = δF`(1) (see the last paragraph of 2.4).

7. Proof of Corollary 1.4

Assume p > 0 and let X ∈ SmP(K) with dimension d. Let Br(XK) := H2(XK ,Gm) denote the Brauer
group of XK . For a prime ` 6= p and integer n ≥ 1, let Br(XK)[`n] ⊂ Br(XK) denote the kernel of the
multiplication-by-`n map,

T`(Br(XK)) := lim
←−

Br(XK)[`n], V`(Br(XK))[`n]) := T`(Br(XK))[`n])⊗Q`.

Recall the following elementary observation.

Lemma. For every ` 6= p, Br(XK)π1(K)[`∞] is finite ⇔ V`(Br(XK))π1(K) = 0.

Proof. As Br(XK)π1(K)[`n] is finite, n ≥ 0 one has the following equivalences

Br(XK)π1(K)[`∞] is infinite

⇐⇒ Br(XK)π1(K) contains an element of order exactly `n for every n ≥ 1
(1)⇐⇒ T`(Br(XK))π1(K) 6= 0
(2)⇐⇒ V`(Br(XK))π1(K) 6= 0,

3This is where we use (S, Q`, w
2

, X).
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where
(1)

=⇒ follows from the fact a projective system of non-empty finite sets is non-empty and
(2)

=⇒ follows
from the fact T`(Br(XK)) is torsion-free. �

7.1. Proof of (1) ⇒ (2). We retain, again, the notation of 2.1. Let ρ(X) denote the rank of the Néron-
Severi group NS(X) of X. For divisors, numerical and algebraic equivalences coincide (e.g. [Gr71, XIII,
Thm. 4.6]); in particular (F, Q`, 1, X) is equivalent to each of the assertions (a) - (d) in [T94, Prop.
2.9]. From [T94, Prop. 2.9 (a)],

ρ(X) = dim(H2(XK ,Q`(w))π1(K))(= dim(H2(Xη,Q`(w))π1(S)))

while, from [T94, Prop. 2.9 (c)], (S, Q`, 1, X) holds so that ρ(X) = δQ`(1). As P is in Z[1/p][T ] and
independent of ` 6= p (Fact 2.4 (2)), for every other prime `′ 6= p, one has

ρ(X) = δQ`(1) = δQ`′ (1) ≥ dim(H2(Xη,Q`′(w))π1(S)) ≥ ρ(X).

So that [T94, Prop. 2.9 (a)] holds for `′ as well and (F, Q`′ , 1, X) follows from the implication (a) ⇒ (b)
in [T94, Prop. 2.9].

7.2. Proof of (2) ⇒ (3). From [T94, Prop. (5.1)] and Lemma 4.3, for every ` 6= p, (F, Q`, 1, X) implies
(wS, Q`, 1, X). Whence, in particular, split short exact sequences of π1(K)-modules

0→ H2(XK ,Q`(1))π1(K) → H2(XK ,Q`(1))→ V`(Br(XK))→ 0, ` 6= p,

which shows V`(Br(XK))π1(K) = 0, ` 6= p. From the above preliminary Lemma, this is equivalent to the

finiteness of Br(XK)π1(K)[`∞] for ` 6= p. So, to prove (3), it is enough to show

(7.2.1) Br(XK)π1(K)[`] = 0, `� 0.

From [T94, Prop. (5.1)] and 6 (3’), (2) implies (F, F`, 1, X) for `� 0 whence the short exact sequences

(7.2.2) 0→ H2(XK ,F`(1))G → H2(XK ,F`(1))→ Br(XK)[`]→ 0, `� 0.

On the other hand, from [T94, Prop. (5.1)], (2) also implies (wS’, Q`, 1, X) hence, by Lemma 4.3 (1),
(wS, Q`, 1, X) which, in turn, by 6 (1’), implies (wS, F`, 1, X) for ` � 0. This shows (7.2.2) splits
π1(K)-equivariantly for `� 0, whence (7.2.1).

7.3. Proof of (3) ⇒ (2). From the above preliminary observation the finiteness of Br(XK)π1(K)[p′]

implies V`(Br(XK))π1(K) = 0, ` 6= p so that taking π1(K)-invariants in the short exact sequences

0→ NS(XK)⊗Q` → H2(XK ,Q`(1))→ V`(Br(XK))→ 0, ` 6= p

(where NS(XK) denotes the Néron-Severi group of XK) one gets

(NS(XK)⊗Q`)
π1(K)→̃H2(XK ,Q`(1))π1(K).

On the other hand, let Kperf := Kπ1(K) denote the perfect closure of K and write Xperf := X×KKperf .
Then

(CH1(XK)⊗Q`)
π1(K) = CH1(Xperf )⊗Q`←̃CH1(X)⊗Q`

(note that, in general, the cokernel of CH1(X) → CH1(Xperf ) is of p-primary torsion). Since π1(K)
acts through a finite quotient - hence semisimply - on every finite-dimensional Q`-vector subspace of
CH1(XK)⊗Q`, the morphism (CH1(XK)⊗Q`)

π1(K) → (NS(XK)⊗Q`)
π1(K) is surjective, which yields

the surjectivity of

[−] : CH1(X)⊗Q`→̃(CH1(XK)⊗Q`)
π1(K) � (NS(XK)⊗Q`)

π1(K)→̃H2(XK ,Q`(1))π1(K), ` 6= p

8. Appendix: Basic properties of ultraproducts of fields

Let L be an infinite set. For a subset S ⊂ L, write 1S : L → {0, 1} for the characteristic function of S.

8.1. A filter on L is a family f of subsets of L such that (1) A,B ∈ f ⇒ A ∩B ∈ f;
(2) A ∈ f, A ⊂ B ⊂ L ⇒ B ∈ f;
(3) ∅ /∈ f

8.1.1. An ultrafilter is a filter u which is maximal for ⊂ among all filters that is such that for every filter
f on L, u ⊂ f ⇒ u = f. A filter u on L is an ultrafilter if and only if for every S ⊂ L either S ∈ u or
L \ S ∈ u.
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8.1.2. An ultrafilter u on L is either principal that is of the form u` := {S ⊂ L | ` ∈ S} for some ` ∈ L
or contains the filter f# := {S ⊂ L | |L \ S| < +∞} of cofinite subsets, and f# is the intersection of all
non-principal ultrafilters on L.

8.1.3. For every ` ∈ L fix a field F` and write F :=
∏
`∈L F`; note that F is 0-dimensional. For every

S ⊂ L, write eS := (1− 1S(`))` ∈ F for the corresponding idempotent. Filters on L are in bijection with
the ideals of F

Filters on L ←→ Ideals of F
f 7−→ 〈eS | S ∈ f〉

{S ∈ P(L) | eS ∈ i} ←−[ i

This bijection restricts to a bijection between ultrafilters on L and the prime (equivalently maximal)
spectrum of F

Ultrafilters on L ←→ Spec(F )
u 7−→ mu := 〈eS | S ∈ u〉

um := {S ∈ P(L) | eS ∈ m} ←−[ m

and, via this bijection, principal (prime) ideals corresponds to principal ultrafilters. In particular, 8.1.2
shows that the intersection of all non-principal maximal ideals in F is the ideal ⊕`∈LF` ⊂ F .

Let U denote the set of all non-principal ultrafilters on L.

8.1.4. For u ∈ U and an F -module M , write

Mu := M/muM = lim
−→
S∈u

(1− eS)M

(direct limit by reverse inclusion). For ` ∈ L, write M` := Mu` for its ‘`th component’.

Since for every S ∈ u the projection pS : F = eSF × (1− eS)F � F/eSF = (1− eS)F is flat and F → Fu

is the direct limit of the pS : F � F/eSF , one gets the following.

Lemma. For every ultrafilter u on L, the morphism F → Fu is flat.

8.2. A finitely generated F -module M is the direct product M =
∏
`∈LM` of its `th components if and

only if it is finitely presented. Write Mod/F for the full subcategory of the category of F -modules whose
objects are direct products M =

∏
`∈LM` of their components. One easily checks that Mod/F is an

abelian category. For M ∈ Mod/F , one has

M is finitely generated ⇔ M is finitely presented⇔ sup
`∈L

dimF`(M`) < +∞⇔ sup
u∈U

dimFu(Mu) < +∞

In particular, for M ∈ Mod/F finitely generated and
- (8.2.1) for N ⊂M an F -submodule, one has

N ∈ Mod/F ⇔ N is finitely generated⇔ N is finitely presented

- (8.2.2) for every F -module N and u ∈ U , the canonical morphism

HomF (M,N)⊗F Fu → HomFu(Mu, Nu)

is an isomorphism ( [Bo85, Chap. I, §2.10, Prop. 11], using 8.1.4).

8.2.1. The full subcategory of finitely generated F -modules in Mod/F is an abelian subcategory of Mod/F ,
stable under taking internal Hom and tensor products: for finitely generated M,N ∈ Mod/F , the canoni-
cal morphisms HomF (M,N)→

∏
`∈LHomF`(M`, N`) and M⊗F N →

∏
`∈LM`⊗F`N` are isomorphisms.

8.3. For every u ∈ U ,

8.3.1. Lemma. Let M ∈ Mod/F be finitely generated and let N• : N0 = Mu ⊃ N1 ⊃ · · · ⊃ Nr ⊃ Nr+1 = 0
be a finite filtration by Fu-submodules. Then there exists a filtration N• : N0 = M ⊃ N1 ⊃ · · · ⊃ N r ⊃
N r+1 = 0 in Mod/F such that N•,u = N•.

Proof. One may assume r = 1; write N := N1. Fix an Fu-basis n1, . . . , nr of N and lift it to a family
n1, . . . , nr ∈M . Then the F -submodule N =

∑
1≤i≤r F ni ⊂M is in Mod/F by (8.2.1). �
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8.3.2. Lemma. Let M ∈ Mod/F and consider the following properties.
- (8.3.2.1) Mu = 0;
- (8.3.2.2) The set of ` ∈ L such that M` = 0 is in u.
Then (8.3.2.2) ⇒ (8.3.2.1). If M is finitely generated, (8.3.2.1) ⇒ (8.3.2.2).

Proof. (8.3.2.2) ⇒ (8.3.2.1) is straightforward. Conversely, if muM = M and M is finitely generated
with F -generators m1, . . . ,mr then for every i = 1, . . . , r, there exists Si ∈ u such that mi ∈ eSiM hence
M = eSM with S = S1 ∩ · · · ∩ Sr ∈ u. �

8.3.3. Lemma. Let φ : M → N be a morphism in Mod/F and consider the following properties.
- (8.3.3.1) φu : Mu → Nu has P;
- (8.3.3.2) The set S of all ` ∈ L such that φ` : M` → N` has P is in u,
where P is one of the properties of being injective, surjective, an isomorphism. Then (8.3.3.2)⇒ (8.3.3.1).
If the conditions below are satisfied, (8.3.3.1) ⇒ (8.3.3.2).

P Condition
Surjective φ has finitely generated cokernel
Injective φ has finitely generated kernel
Isomorphism φ has finitely generated kernel and cokernel

Proof. By right-exactness (resp. left-exactness - 8.1.4) of −⊗FQu, coker(φ)u = coker(φu) (resp. ker(φ)u =
ker(φu)). So the conclusion follows from 8.3.2. �

8.4. Let M ∈ Mod/F and Π be a group acting on M . For every u ∈ U ,

8.4.1. Lemma. (Mu)Π = (MΠ)u.

Proof. This follows from the exact sequence M⊕Π
∑
π∈Π(Id−π)
−→ M →MΠ → 0, right-exactness of −⊗F Fu

and the fact that tensor products commute with direct sums. �

From now on, assume furthermore that M ∈ Mod/F is finitely generated, that for every ` ∈ L, F` is a
Hausdorff topological field, that Π is a topological group which acts continuously on M for M equipped
with the product topology of the topologies of the M` (recall M` is a finitely generated F`-module) and
that Π is topologically finitely generated with topological generators π1, . . . , πs. Let Π◦ ⊂ Π denote the
abstract group generated by π1, . . . , πs.

8.4.2. Lemma. (Mu)
Π = (MΠ)u.

Proof. The exact sequence 0 → MΠ → M
(Id−π1,...,Id−πs)−→ M s, 8.1.4 and the fact that tensor products

commute with finite direct products (=direct sums) yield (MΠ)u = (Mu)
Π◦ . So the assertion follows from

the obvious inclusions (Mu)
Π ⊃ (MΠ)u = (Mu)

Π◦ ⊃ (Mu)
Π. �

In particular, if N ∈ Mod/F is also finitely generated and equipped with a continuous action of Π, (8.2.2)
and 8.4.2 yield

(8.4.2.1) HomΠ(Mu, Nu) = HomΠ(M,N)u

8.4.3. Lemma. For every finite filtration N• : N0 = M ⊃ N1 ⊃ · · · ⊃ N r ⊃ N r+1 = 0 in Mod/F , map
σ : {0, . . . , r + 1} → {0, . . . , r + 1} and subset X ⊂ F [Π], consider the following assertions.
- (8.4.3.1) XNi,u ⊂ Nσ(i),u, i = 0, . . . , r + 1;
- (8.4.3.2) The set of all ` ∈ L such that XN`,i ⊂ N`,σ(i), i = 0, . . . , r + 1 is in u.
Then (8.4.3.2) ⇒ (8.4.3.1). If X is finite (8.4.3.1) ⇒ (8.4.3.2).

Proof. (8.4.3.2) ⇒ (8.4.3.1) is straightforward. For (8.4.3.1) ⇒ (8.4.3.2), write X = {x1, . . . , xt}. Then
for every i = 0, . . . , r + 1, one has XN`,i ⊂ N`,σ(i) if and only if (x1, . . . , xt)(N`,i) ⊂ N t

`,σ(i) ⊂ M t
` . Let

ni,1, . . . , ni,ti be a set of F -generators for N i (8.2.1). By (8.4.3.1), for every 1 ≤ j ≤ ti, there exists

Si,j ∈ u such that (x1, . . . , xt)(nj) ∈ N t
σ(i) +eSi,jM

t. Hence (x1, . . . , xt)(N i) ⊂ N t
σ(i) +

∑
1≤j≤ti eSi,jM

t ⊂
N t
σ(i) + eSiM

t with Si = Si,1 ∩ · · · ∩ Si,ti ∈ u. The set of ` ∈ L satisfying (8.4.3.2) then contains

S0 ∩ · · · ∩ Sr+1 ∈ u �

In particular,
- (8.4.3.3) (σ = Id, X = {π1, . . . , πs}) N•,u is Π-stable if and only if the set of all ` ∈ L such that N•,` is

Π-stable is in u.
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- (8.4.3.4) (σ(i) = i + 1, X = {1 − π1, . . . , 1 − πs} - See 8.3.1) Π acts unipotently on Mu if and only if
the set of all ` ∈ L such that Π acts unipotently on M` is in u.

8.4.4. 8.3.1 and 8.4.3 imply that, every Π-submodule N ⊂ Mu (hence resp. every Π-quotient Mu � N)
lifts to a Π-submodule N ⊂ M (resp. a Π-quotient M � N) in Mod/F . From this, one immediately
deduces that any Π-module N in the Tannakian category generated by the Π-module Mu lifts to some

N in Mod/F which is a Π-subquotient of a Π-module of the form ⊕(m,n)∈Z2
≥0

(M⊗m ⊗ M̌⊗n)⊕µ(m,n) for

some function µ : Z2
≥0 → Z≥0 with finite support.

8.4.5. Lemma. The following assertions are equivalent.
- (8.4.5.1) Π acting on Mu has P;
- (8.4.5.2) The set S of all ` ∈ L such that Π acting on M` has P is in u,
where P is one of the properties of acting irreducibly or semisimply.

Proof. The assertion for P the property of acting irreducibly follows from 8.3.2 and 8.4.4. Let P be the
property of acting semisimply and assume (8.4.5.2). Let N ⊂ Mu be a Π-submodule. By 8.4.4, N lifts
to an F -submodule N in Mod/F which is Π-stable. As S ∈ u, one may take N` = 0 for ` ∈ L \ S. By
(8.4.5.2), the projection M �M/N splits Π-equivariantly. The conclusion follows by applying −⊗F Fu.
Conversely, assume (8.4.5.1). If S /∈ u then L \ S ∈ u and for every ` ∈ L \ S there exists a Π-submodule
N` ⊂M` such that

Q` := coker(HomΠ(M`/N`,M`)
p`◦−→ HomΠ(M`/N`,M`/N`))

is non-zero, where p` : M` → M`/N` is the canonical quotient morphism. In particular, Qu 6= 0, where
Q :=

∏
`∈LQ`. Write also N :=

∏
`∈L\S N` and let p : M → M/N denote the canonical quotient

morphism. By right-exactness of −⊗F Fu, one obtains an exact sequence

HomΠ(M/N,M)u
p◦−→ HomΠ(M/N,M/N)u → Qu → 0,

which, by (8.4.2.1), identifies with

HomΠ(Mu/Nu,Mu)
p◦−→ HomΠ(Mu/Nu,Mu/Nu)→ Qu → 0,

contradicting the fact that the morphism of Π-modules Nu ↪→Mu splits Π-equivariantly by (8.4.5.1). �

The same arguments show the following.

8.4.6. Lemma. Let N ⊂ M be an F -submodule in Mod/F which is Π-stable. The following assertions
are equivalent.
- (8.4.6.1) The inclusion Nu ↪→Mu splits Π-equivariantly;
- (8.4.6.2) The set of all ` ∈ L such that the inclusion N` ↪→M` splits Π-equivariantly is in u.
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179–182, 1983.
[Gr68] A. Grothendieck, Crystals and the de Rham cohomology of schemes, in Dix Exposés sur la Cohomologie des
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