$\mathbb{Q}_{\ell}\text{-}$ versus $\mathbb{F}_{\ell}\text{-}\text{coefficients}$ in the grothendieck-serre/tate conjectures

ANNA CADORET, CHUN YIN HUI AND AKIO TAMAGAWA

In honor of Moshe Jarden's 80th birthday

ABSTRACT. We investigate the relation between the Grothendieck-Serre/Tate (G-S/T for short) conjectures with \mathbb{Q}_{ℓ} - and \mathbb{F}_{ℓ} -coefficients for $\ell \gg 0$ going through their ultraproduct formulations. Our main result roughly asserts that the G-S/T conjecture with \mathbb{F}_{ℓ} -coefficients for $\ell \gg 0$ always implies the G-S/T conjecture with \mathbb{Q}_{ℓ} -coefficients for $\ell \gg 0$ and that the converse implication holds at least in characteristic p > 0. In characteristic p > 0, this completes partly the motivic picture predicting that the G-S/T conjecture should be independent of the field of coefficients. As a concrete application of our result, we obtain that over an arbitrary finitely generated fields of characteristic p > 0, the Tate conjecture with \mathbb{Q}_{ℓ} -coefficients for divisors and some $\ell \neq p$ is equivalent to the finiteness of the Galois-fixed part of the prime-to-p torsion subgroup of the geometric Brauer group. This generalizes a well-known theorem of Tate over finite fields.

2020 Mathematics Subject Classification. Primary: 14F20; Secondary: 20G35, 14C25.

1. INTRODUCTION

Let K be a field of characteristic $p \ge 0$. Fix an algebraic closure \overline{K} ; write $\pi_1(K) := \pi_1(\operatorname{Spec}(K), \operatorname{Spec}(\overline{K}))(= \operatorname{Aut}(\overline{K}/K))$ for the absolute Galois group of K. A variety over K (or a K-variety) means a scheme separated and of finite type over K. Let $\operatorname{SmP}(K)$ denote the symmetric monoidal category of smooth projective varieties over K.

1.1. Conjectures for realization functors. For $X \in \text{SmP}(K)$, let $CH^w(X)$ denote the Chow group of codimension w cycles (modulo rational equivalence) and $CH(X) := \bigoplus_{w \ge 0} CH^w(X)$ the \mathbb{Z} -graded Chow ring.

Let CHM(K) denote the category of Chow motives over K with \mathbb{Q} -coefficients and $SmP(K)^{op} \rightarrow CHM(K)$ the canonical functor [A04, 4.1.3]; fix a Weil cohomology $H : CHM(K) \otimes C_H \rightarrow \mathcal{T}_H$ with field of coefficients C_H and enriched Tannakian target category \mathcal{T}_H - See [A04, 3.3, 4.2.5, 7.1]. For $X \in SmP(K)$, let $G_H(X)$ denote the Tannakian group of the Tannakian subcategory $\langle H(X) \rangle$ generated by H(X) in \mathcal{T}_H . The following unifying conjecture is at the heart of the philosophy of pure motives.

1.1.1. Conjecture. For every $X \in \text{SmP}(K)$,

- (1) (Semisimplicity) H(X) is semisimple equivalently $G_H(X)$ is a reductive algebraic group over C_H ;
- (2) (Fullness) The image of the cycle class map $[-]_H : CH(X) \otimes C_H \to \bigoplus_{w \ge 0} \operatorname{H}^{2w}(X)(w)$ is the subspace of $G_H(X)$ -invariant classes.

The most standard avatars of Conjecture 1.1.1 are (for $K = \mathbb{C}$) the Hodge conjecture ([H52], [A04, 7.2]) for singular cohomology with enriched Tannakian target category the category of Q-Hodge structures (so that $C_H = \mathbb{Q}$) and (for K finitely generated over its prime field) the Grothendieck-Serre/Tate (G-S/T for short) conjecture ([T65], [A04, 7.3]) for ℓ -adic cohomology ($\ell \neq p$) with enriched Tannakian target category the category of finite-dimensional \mathbb{Q}_{ℓ} -vector spaces endowed with a continuous action of $\pi_1(K)$ (so that $C_H = \mathbb{Q}_{\ell}$). The fullness part of Conjecture 1.1.1 for H implies the standard conjecture of Lefschetz type [A04, 5.2.4] for H. If p = 0 this is already enough to imply all the standard conjectures for H [A04, 5.4.2.2]. If p > 0, combined with the semisimplicity part of Conjecture 1.1.1 for H, this also implies all the standard conjectures for H (except possibly the standard conjecture of Hodge type) [A04, 7.1.1.1]. In particular, Conjecture 1.1.1 for H implies that numerical and H-homological equivalences coincide so that, after modifying the commutativity constraint, the category of numerical motives becomes a semisimple Tannakian category over Q. Let Q_X be any finite field extension of Q neutralizing the Tannakian subcategory $\langle X \rangle$ generated by the numerical motive X in the category of numerical motives (with modified commutativity constraint) [DM82, Rem. 3.10], let $H : \langle X \otimes Q_X \rangle \to Vect_{Q_X}$ be a fiber functor and let G(X) denote the corresponding Tannakian group; this is a reductive group over Q_X acting faithfully on the finite-dimensional Q_X -vector space H(X). Assume Conjecture 1.1.1 holds for another Weil cohomology $H' : CHM(K) \otimes C_{H'} \to \mathcal{T}_{H'}$. Then the general formalism of Tannakian categories implies the following.

1.1.2. Conjecture. For every $X \in \text{SmP}(K)$ and embedding of Q_X in $\overline{C}_{H'}$, one has $G(X) \times_{Q_X} \overline{C}_{H'} \simeq G_{H'}(X) \times_{C_{H'}} \overline{C}_{H'}$ acting on $H(X) \otimes_{Q_X} \overline{C}_{H'} \simeq H'(X) \otimes_{C_{H'}} \overline{C}_{H'}$.

When K has characteristic 0, one expects $Q_X = \mathbb{Q}$ and the isomorphisms of Conjecture 1.1.2 to hold over $C_{H'}$. When K has characteristic p > 0, as Serre noticed, this cannot always hold [Gr68, §1.7].

1.2. Realization functors arising from étale cohomology. Let \mathcal{L} denote the set of all primes $\neq p$ and let \mathcal{U} denote the set of all non-principal ultrafilters on \mathcal{L} . For $\ell \in \mathcal{L}$ let \mathbb{F}_{ℓ} denote the finite field with ℓ elements and \mathbb{Q}_{ℓ} the completion of \mathbb{Q} at ℓ . For $\mathfrak{u} \in \mathcal{U}$ let $\mathbb{Q}_{\mathfrak{u}}$ (resp. $\mathbb{Q}_{\mathfrak{u}}$) denote the residue field of the maximal ideal of $\underline{\mathbb{F}} := \prod_{\ell \in \mathcal{L}} \mathbb{F}_{\ell}$ (resp. $\underline{\mathbb{Q}} := \prod_{\ell \in \mathcal{L}} \mathbb{Q}_{\ell}$) corresponding to \mathfrak{u} (See Section 8 for details about ultraproducts).

The G-S/T conjecture is the incarnation of Conjecture 1.1.1 for the Weil cohomologies derived from étale cohomology.

1.2.1. These are built from the following cohomology groups:

- For every $\ell \in \mathcal{L}$, \mathbb{Q}_{ℓ} -cohomology $\mathrm{H}^{w}(X_{\overline{K}}, \mathbb{Q}_{\ell}) := (\lim_{\longleftarrow} \mathrm{H}^{w}(X_{\overline{K}}, \mathbb{Z}/\ell^{n})) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell};$
- For every $\mathfrak{u} \in \mathcal{U}$, $\mathbb{Q}_{\mathfrak{u}}$ -cohomology $\operatorname{H}^{w}(X_{\overline{K}}, \mathbb{Q}_{\mathfrak{u}}) := \stackrel{n}{=} (\prod_{\ell \in \mathcal{L}} \operatorname{H}^{w}(X_{\overline{K}}, \mathbb{F}_{\ell}) \otimes_{\underline{\mathbb{F}}} \mathbb{Q}_{\mathfrak{u}};$ $\mathbb{Q}_{\mathfrak{u}}$ -cohomology $\operatorname{H}^{w}(X_{\overline{K}}, \mathbb{Q}_{\mathfrak{u}}) := (\prod_{\ell \in \mathcal{L}} \operatorname{H}^{w}(X_{\overline{K}}, \mathbb{Q}_{\ell})) \otimes_{\underline{\mathbb{Q}}} \mathbb{Q}_{\mathfrak{u}}.$

The following diagram summarizes the relation between the various coefficients:

$$\mathbb{Q}_{\ell} \underbrace{\ll}_{\mathbb{Q}} \underbrace{\mathbb{Q}}_{\mathfrak{q}} \underbrace{\mathbb{Q}} \underbrace$$

From now on, assume the base field K is finitely generated. Let C denote any of \mathbb{Q}_{ℓ} , $\mathbb{Q}_{\mathfrak{u}}$, $\mathbb{Q}_{\mathfrak{u}}$, $\mathbb{Q}_{\mathfrak{u}}$ and write $H_C(X) := H(X_{\overline{K}}, C)$. The Tannakian target category \mathcal{T}_{H_C} is the category of finite-dimensional continuous C-representations of $\pi_1(K)$ (as usual, \mathbb{F}_{ℓ} is equipped with the discrete topology, \mathbb{Q}_{ℓ} with the ℓ -adic topology, $\underline{\mathbb{F}}$, $\underline{\mathbb{Q}}$ with the product topology and $\mathbb{Q}_{\mathfrak{u}}$, $\mathbb{Q}_{\mathfrak{u}}$ with the quotient topology of the product topology on $\underline{\mathbb{F}}$, $\underline{\mathbb{Q}}$). For $X \in \mathrm{SmP}(K)$ the group $G_{H_C}(X)$ is the Zariski-closure of the image of $\pi_1(K)$ acting on $H_C(X)$.

1.2.2. The G-S/T conjecture. For an integer $w \ge 0$ and $X \in \text{SmP}(K)$, consider the following assertions¹.

 $\begin{array}{ll} (\mathrm{S},\,C,\,\frac{w}{2},\,X) & \text{The action of } \pi_1(K) \text{ on } \mathrm{H}^w(X_{\overline{K}},C) \text{ is semisimple.} \\ (\mathrm{wS},\,C,\,w,\,X) & \text{The inclusion } \mathrm{H}^{2w}(X_{\overline{K}},C(w))^{\pi_1(K)} \hookrightarrow \mathrm{H}^{2w}(X_{\overline{K}},C(w)) \text{ splits } \pi_1(K) \text{-equivariantly.} \\ (\mathrm{wS}',\,C,\,w,\,X) & \text{The canonical morphism } c_w:\mathrm{H}^{2w}(X_{\overline{K}},C(w))^{\pi_1(K)} \to \mathrm{H}^{2w}(X_{\overline{K}},C(w))_{\pi_1(K)} \text{ induced} \\ & \text{by the identity is an isomorphism.} \end{array}$

$$\begin{array}{ll} (\mathrm{F},\,C,\,w,\,X) & \quad \mathrm{The\ cycle\ map\ }[-]:CH^w(X)\otimes C\to\mathrm{H}^{2w}(X_{\overline{K}},C(w))^{\pi_1(K)} \text{ is surjective.} \\ (\mathrm{sF},\,C,\,w,\,X) & \quad \mathrm{The\ cycle\ map\ }[-]:CH^w(X_{\overline{K}})\otimes C\to \varinjlim_{K'/K\ \mathrm{finite}}\mathrm{H}^{2w}(X_{\overline{K}},C(w))^{\pi_1(K')} \text{ is surjective.} \end{array}$$

Apart from sF, the above assertions also make sense with C replaced by \mathbb{F}_{ℓ} , $\ell \in \mathcal{L}$; we will use the corresponding notation.

¹S stands for 'semisimplicity', wS for 'weak semisimplicity', F for 'Fullness' and sF for 'stabilized Fullness'.

With this notation, the classical ([T66], where it is only formulated for $C = \mathbb{Q}_{\ell}$) G-S/T conjecture (= Conjecture 1.1.1) for C asserts that (S, C, $\frac{w}{2}$, X) and (F, C, w, X) hold for every $X \in \text{SmP}(K)$ and integer $w \ge 0$.

1.2.3. Known results. The G-S/T conjecture is widely open. If p > 0 and K is finite (resp. p > 0, resp. p = 0), Tate [T66] (resp. Zarhin [Z75], [Z77], Mori [Mo77], resp. Faltings [FW84]) proved (S, $\mathbb{F}_{\ell}, \frac{1}{2}, X$), $\ell \gg 0$ and (S, $\mathbb{Q}_{\ell}, \frac{1}{2}, X$) for X arbitrary and (F, $\mathbb{F}_{\ell}, 1, X$), (S, $\mathbb{F}_{\ell}, \frac{w}{2}, X$), $\ell \gg 0$ and (F, $\mathbb{Q}_{\ell}, 1, X$), (S, $\mathbb{Q}_{\ell}, \frac{w}{2}, X$) for X an abelian variety. Their proofs for $\mathbb{F}_{\ell}, \ell \gg 0$ mimic their proofs for \mathbb{Q}_{ℓ} ; they do not deduce one of the statements from the other.

By works of several authors ([N83], [NO85], [Ma14], [Cha13], [MP15], [KMP16], [MP20], [I18]), (F, \mathbb{Q}_{ℓ} , w, X), (S, $\mathbb{Q}_{\ell}, \frac{w}{2}, X$) are now established for X a K3 surface. For K3 surfaces, (F, \mathbb{F}_{ℓ}, w, X), $\ell \gg 0$ and (S, $\mathbb{F}_{\ell}, \frac{w}{2}, X$), $\ell \gg 0$ hold as well. This is due to Skorobogatov-Zarhin if $p \ge 3$ ([SkZ15]), Ito if p = 2 [I18] and Skorobogatov-Zarhin ([SkZ08]). To our knowledge, these are the only instances where (F, \mathbb{F}_{ℓ}, w, X), $\ell \gg 0$ and (S, $\mathbb{F}_{\ell}, \frac{w}{2}, X$), $\ell \gg 0$ are deduced directly from (F, \mathbb{Q}_{ℓ}, w, X), $\ell \gg 0$ and (S, $\mathbb{Q}_{\ell}, \frac{w}{2}, X$) (and not by mimicking or adjusting the proof for \mathbb{Q}_{ℓ} -coefficients to \mathbb{F}_{ℓ} -coefficients). The arguments of these authors, however, rely on specific features of K3 surfaces, in particular the Kuga-Satake construction².

Eventually, formal arguments allow to deduce a few other cases from the above ones - See e.g. [T94, Thm. 5.2].

1.3. When p = 0 and K is embedded into \mathbb{C} , the existence of comparison isomorphisms between étale and singular cohomologies (See *e.g.* [A04, 3.4.2]) implies that $H_{\mathbb{Q}_{\dagger}}$ -homological equivalence is independent of $\dagger \in \mathcal{L} \cup \mathcal{U}$, which ensures that Conjecture 1.1.2 for the $H_{\mathbb{Q}_{\dagger}}$, $\dagger \in \mathcal{L} \cup \mathcal{U}$ and Conjecture 1.1.1 for one single $H_{\mathbb{Q}_{\dagger}}$, $\dagger \in \mathcal{L} \cup \mathcal{U}$ imply Conjecture 1.1.1 for every $H_{\mathbb{Q}_{\dagger}}$, $\dagger \in \mathcal{L} \cup \mathcal{U}$. But, unfortunately, very little is known about Conjecture 1.1.2 when p = 0. In contrast, when p > 0, and modulo the semisimplicity part of Conjecture 1.1.1, Conjecture 1.1.2 essentially boils down to the Langlands correspondence [L02], [Chi04], [CZ21]. However, in this case, the lack of comparison isomorphisms between the $H_{\mathbb{Q}_{\dagger}}$, $\dagger \in \mathcal{L} \cup \mathcal{U}$ makes it unclear whether Conjecture 1.1.1 for one single $H_{\mathbb{Q}_{\dagger}}$, $\dagger \in \mathcal{L} \cup \mathcal{U}$ implies Conjecture 1.1.1 for every $H_{\mathbb{Q}_{\dagger}}$, $\dagger \in \mathcal{L} \cup \mathcal{U}$.

Let $\mathfrak{u} \in \mathcal{U}$. The aim of this note is to study a related but easier version of the above problem, namely to relate Conjecture 1.1.1 (in our case, the G-S/T conjecture) for $H_{\mathbb{Q}_{\ell}}$, $\ell \in S$ for some $S \in \mathfrak{u}$, for $H_{\mathbb{Q}_{\mathfrak{u}}}$ and for $H_{\mathbb{Q}_{\mathfrak{u}}}$. One motivation is to give conceptual and completely general (*i.e.* working for arbitrary smooth projective varieties) proofs of results like the above mentioned results of Skorobogatov-Zarhin and Ito for K3 surfaces. Another motivation is that we may hope that some new cases of the G-S/T conjecture could be proved more easily for $\mathbb{Q}_{\mathfrak{u}}$ -coefficients and then transferred to $\mathbb{Q}_{\mathfrak{u}}$ - hence \mathbb{Q}_{ℓ} -coefficients.

Assume p > 0. Let C denote any of \mathbb{Q}_{ℓ} , $\mathbb{Q}_{\mathfrak{u}}$ or $\mathbb{Q}_{\mathfrak{u}}$. For any integer $w \ge 0$, v and $X \in \mathrm{SmP}(K)$, let $G_C(X)$ denote the Zariski closure of the image of $\pi_1(K)$ acting on $\mathrm{H}^w(X_{\overline{K}}, C(v))$. Before considering Conjecture 1.1.1, we prove the following variant of Conjecture 1.1.2 for the group of connected components.

1.3.1. **Theorem.** For every $X \in \text{SmP}(K)$ the kernel of the canonical map $\pi_1(K) \to \pi_0(G_C(X))$ is independent of $C = \mathbb{Q}_{\ell}, \mathbb{Q}_{\mathfrak{u}}, \mathbb{Q}_{\mathfrak{u}}$.

For $C = \mathbb{Q}_{\ell}$, Theorem 1.3.1 is due to Serre [S00, p. 15 sqq] but Serre's arguments do not transfer as they are to $C = \mathbb{Q}_{\mathfrak{u}}$ or $\mathbb{Q}_{\mathfrak{u}}$. Instead, we follow the argument of [LaP95, Prop. 2.2] and give a uniform proof of Theorem 1.3.1 (which for $C = \mathbb{Q}_{\mathfrak{u}}$, relies on the results of [CHT17]).

When $G_C(X)$ is connected for one of (equivalently every) $C = \mathbb{Q}_{\ell}$, $\mathbb{Q}_{\mathfrak{u}}$, $\mathbb{Q}_{\mathfrak{u}}$, one says that X has connected monodromy in degrees (w, v). Under the connected monodromy assumption in degrees (2w, w),

²The restriction $p \ge 3$ in [SkZ15] is related to the fact that the Kuga-Satake construction was not available for p = 2 at the time of [SkZ15]. This missing ingredient was developed by Kim and Madapusi Pera in [KMP16]. Building on [KMP16] and the method of [SkZ15], Ito extended Skorobogatov-Zarhin's result to the p = 2 case.

 $\mathrm{H}^{2w}(X_{\overline{K}}, C(w))^{\pi_1(K)} = \mathrm{H}^{2w}(X_{\overline{K}}, C(w))^{\pi_1(K')}$ for every finite field extension K'/K and the G-S/T conjecture for X and $X' := X \times_K K'$ become equivalent - See Lemma 4.2.

Our second main result is the following statements.

1.3.2. **Proposition.** For every $X \in \text{SmP}(K)$, equidimensional of dimension d, and $\mathfrak{u} \in \mathcal{U}$, the following hold.

(1) (F, $\mathbb{Q}_{\mathfrak{u}}$, d, X^2) + (S, $\mathbb{Q}_{\mathfrak{u}}$, $\frac{w}{2}$, X) \Longrightarrow (S, $\mathbb{Q}_{\mathfrak{u}}$, $\frac{w}{2}$, X); (2) (F, $\mathbb{Q}_{\mathfrak{u}}$, d, X^2) + (F, $\mathbb{Q}_{\mathfrak{u}}$, w, X) + (wS, $\mathbb{Q}_{\mathfrak{u}}$, w, X) \Longrightarrow (wS, $\mathbb{Q}_{\mathfrak{u}}$, w, X).

1.3.3. **Theorem.** Assume p > 0. For every $X \in \text{SmP}(K)$, equidimensional of dimension d, and $\mathfrak{u} \in \mathcal{U}$, the following hold.

(1) (wS, $\mathbb{Q}_{\mathfrak{u}}, w, X$) \Longrightarrow (wS, $\mathbb{Q}_{\mathfrak{u}}, w, X$);

(2) (S, $\mathbb{Q}_{\mathfrak{u}}, \frac{w}{2}, X$) \Longrightarrow (S, $\mathbb{Q}_{\mathfrak{u}}, \frac{w}{2}, X$); (3) (F, $\mathbb{Q}_{\mathfrak{u}}, i, X$), $i = w, d - w + (wS, \mathbb{Q}_{\mathfrak{u}}, w, X) \Longrightarrow$ (F, $\mathbb{Q}_{\mathfrak{u}}, i, X$), i = w, d - w (+ (wS, $\mathbb{Q}_{\mathfrak{u}}, w, X$)).

Proposition 1.3.2 and Theorem 1.3.3 imply formally (See Lemma 4.1) the following.

1.3.4. Corollary. For every $X \in \text{SmP}(K)$, equidimensional of dimension d,

(1) (F, \mathbb{F}_{ℓ} , d, X^2) + (S, \mathbb{F}_{ℓ} , $\frac{w}{2}$, X), $\ell \gg 0 \Longrightarrow$ (S, \mathbb{Q}_{ℓ} , $\frac{w}{2}$, X), $\ell \gg 0$;

(2) (F, \mathbb{F}_{ℓ} , d, X^2) + (F, \mathbb{F}_{ℓ} , w, X) + (wS, \mathbb{F}_{ℓ} , w, X), $\ell \gg 0 \Longrightarrow$ (wS, \mathbb{Q}_{ℓ} , w, X), $\ell \gg 0$.

Assume p > 0. Then

- (3) (wS, \mathbb{Q}_{ℓ}, w, X), $\ell \gg 0 \Longrightarrow$ (wS, \mathbb{F}_{ℓ}, w, X), $\ell \gg 0$;
- $\begin{array}{l} (4) & (\mathbf{S}, \mathbb{Q}_{\ell}, \frac{w}{2}, X), \ell \gg 0 \Longrightarrow (\mathbf{S}, \mathbb{F}_{\ell}, \frac{w}{2}, X), \ell \gg 0; \\ (5) & (\mathbf{F}, \mathbb{Q}_{\ell}, i, X), i = w, d w + (\mathbf{wS}, \mathbb{Q}_{\ell}, w, X), \ell \gg 0 \Longrightarrow (\mathbf{F}, \mathbb{F}_{\ell}, i, X), i = w, d w \ (+ \ (\mathbf{wS}, \mathbb{F}_{\ell}, w, X), \ell \gg 0) \end{array}$ $X)), \ell \gg 0.$

1.3.5. For divisors, Theorem 1.3.3, Corollary 1.3.4 (3)-(5) yield [T94, Prop. 5.1] that for every $X \in$ $\operatorname{SmP}(K),$

- (1) (F, $\mathbb{Q}_{\mathfrak{u}}, 1, X$) \Longrightarrow (F, $\mathbb{Q}_{\mathfrak{u}}, 1, X$) + (wS, $\mathbb{Q}_{\mathfrak{u}}, 1, X$);
- (2) (F, \mathbb{Q}_{ℓ} , 1, X), $\ell \gg 0 \Longrightarrow$ (F, \mathbb{F}_{ℓ} , 1, X) + (wS, \mathbb{F}_{ℓ} , 1, X), $\ell \gg 0$.

In particular, for X an abelian variety or a K3 surface one can directly deduce (F, \mathbb{F}_{ℓ} , 1, X) + (wS, \mathbb{F}_{ℓ} , 1, X), $\ell \gg 0$ from (F, \mathbb{Q}_{ℓ} , 1, X) (See Subsection 1.2.3) without resorting to any specific arithmeticogeometric features of X as in [SkZ15] or [I18].

1.3.6. **Remark.** The implication (F, \mathbb{F}_{ℓ} , w, X) \Longrightarrow (F, \mathbb{Q}_{ℓ} , w, X) always holds for $\ell \gg 0$ (hence the implication (F, $\mathbb{Q}_{\mathfrak{u}}, w, X$) \Longrightarrow (F, $\mathbb{Q}_{\mathfrak{u}}, w, X$)). This follows from Nakayama's lemma and the fact that $\mathrm{H}^{2w}(X_{\overline{K}},\mathbb{Z}_{\ell})$ is torsion-free for $\ell \gg 0$ ([G83] - See Fact 2.2). More precisely, we have the commutative diagram

where the bottom arrow is injective for $\ell \gg 0$. So if the left vertical arrow is surjective, the bottom arrow is an isomorphism hence the diagonal arrow is surjective.

1.4. Divisors and finiteness of Brauer groups. Let $X \in \text{SmP}(K)$ with connected monodromy in degrees (2,1). Then (F, \mathbb{Q}_{ℓ} , 1, X) is equivalent to the finiteness of the ℓ -primary $\pi_1(K)$ -invariant part $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[\ell^{\infty}]$ of the Brauer group of $X_{\overline{K}}$ (e.g. [CCh20, Prop. 2.1.1] and the references therein). One has the following strengthening.

Corollary. Assume p > 0. Then for every $X \in \text{SmP}(K)$ the following assertions are equivalent

- (1) (F, \mathbb{Q}_{ℓ} , 1, X), for some $\ell \neq p$;
- (2) (F, \mathbb{Q}_{ℓ} , 1, X), for every $\ell \neq p$;

(3) $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[p']$ is finite,

(where $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[p']$ denotes the prime-to-*p* part of $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}$).

When K is finite, Corollary 1.4 was proved by Tate [T94, Prop. 4.3]. In this setting, it is even known that (F, \mathbb{Q}_{ℓ} , 1, X) is independent of $\ell \neq p$ and implies that Br(X) is finite (See the references in the proof of [T94, Prop. 4.3]). That the equivalence (1) \Leftrightarrow (2) holds in general was pointed out to us by Yanshuai Qin. This is essentially the same argument as in the finite field case and relies on [T94, Prop. 2.9]. Though it is well-known to experts (see *e.g.* [P15, §7] or [Q20, Cor. 1.7]), for completeness we briefly recall the proof in Subsection 7.1. The delicate implication is (2) \Rightarrow (3), which requires Corollary 1.3.4 (3). Establishing (3) when X is a K3 surface was the main motivation of Skorobogatov-Zarhin and Ito in [SkZ15], [I18].

1.5. The proof of Theorem 1.3.1 is carried out in Section 3, the proof of Proposition 1.3.2 in Section 5 and the proof of Theorem 1.3.3 in Section 6. The proof of Proposition 1.3.2 is formal; this is why it also holds for p = 0. The proofs of Theorem 1.3.1 and Theorem 1.3.3 rely on deeper arithmetico-geometric inputs which, for the convenience of the reader, are summarized in Section 2; the assumption that p > 0is crucial. Eventually, the proof of Corollary 1.4 is carried out in Section 7. In Section 8, we gathered basic properties of ultraproducts of fields.

Acknowledgments: The first author was partly funded by the ANR project ECOVA, ANR-15-CE40-0002-01, the CNRS-JSPS project ASPIC and is supported by the Institut Universitaire de France. This project was initiated while the first and second authors were visiting the third author at RIMS; they want to thank RIMS for providing remarkable working conditions. The third author was partly supported by JSPS KAKENHI Grant Numbers 15H03609, 20H01796.

2. ÉTALE COHOMOLOGY

Let K be a finitely generated field of characteristic $p \ge 0$ and let $X \in \text{SmP}(K)$. Let k denote the algebraic closure of the prime field of K in K.

2.1. Convention. In several places, we will fix a smooth projective model $f : \mathcal{X} \to \mathcal{S}$ of $X \to \operatorname{Spec}(K)$ with \mathcal{S} a smooth separated and geometrically connected scheme over k with generic point η and set of closed points $|\mathcal{S}|$. In particular, for every geometric point \overline{s} over a point $s \in \mathcal{S}$, locally constant constructible \mathbb{Z}_{ℓ} -sheaf \mathcal{F} ($\ell \neq p$) and up to choosing étale paths from \overline{s} to $\overline{\eta}$, one gets canonical equivariant isomorphisms

$$(R^*f_*\mathcal{F}(v))_{\overline{s}} \xrightarrow{\simeq} (R^*f_*\mathcal{F}(v))_{\overline{\eta}} = H^w(\mathcal{X}_{\overline{\eta}}, \mathcal{F}) = H^w(X_{\overline{K}}, \mathcal{F})$$

$$($$

$$($$

$$($$

$$\pi_1(s, \overline{s}) \longrightarrow \pi_1(\mathcal{S}, \overline{s}) \xrightarrow{\simeq} \pi_1(\mathcal{S}, \overline{\eta}) \nleftrightarrow \pi_1(\mathcal{I}, \overline{\eta}) = \pi_1(K).$$

When p > 0 (so that k is a finite field) and $s \in |\mathcal{S}|$, let $\varphi_s \in \pi_1(s)$ denote the geometric Frobenius, which we identify with its image (well-defined up to conjugacy if we ignore base points, which we will do most of the time) in $\pi_1(\mathcal{S}, \bar{s}) \to \pi_1(\mathcal{S}, \bar{\eta})$.

Assume p > 0. Fix integers $w \ge 0$, v. The following are consequences of the theory of Frobenius weights developed by Deligne in [D80].

2.2. Fact.

- (1) ([G83]) The \mathbb{Z}_{ℓ} -local systems $R^w f_* \mathbb{Z}_{\ell}(v)$ are torsion-free (of finite constant rank) for $\ell(\neq p) \gg 0$. In particular, for every geometric point \overline{s} on \mathcal{S} , $(R^* f_* \mathbb{Z}_{\ell}(v))_{\overline{s}} \otimes \mathbb{F}_{\ell} \xrightarrow{\sim} (R^w f_* \mathbb{F}_{\ell}(v))_{\overline{s}}, \ \ell(\neq p) \gg 0$;
- (2) ([CHT17, Thm. 1.3]) $\mathrm{H}^{0}(\mathcal{S}_{\overline{k}}, R^{w}f_{*}\mathbb{Z}_{\ell}(v)) \otimes \mathbb{F}_{\ell} \xrightarrow{\sim} \mathrm{H}^{0}(\mathcal{S}_{\overline{k}}, R^{w}f_{*}\mathbb{F}_{\ell}(v)), \ \ell(\neq p) \gg 0.$

2.3. Fact.

- (1) ([D80, 3.4.1 (iii)]) $R^w f_* \mathbb{Q}_{\ell}(v)|_{\mathcal{S}_{\overline{k}}}$ is a semisimple \mathbb{Q}_{ℓ} -local system on $\mathcal{S}_{\overline{k}}, \ell \neq p$;
- (2) ([CHT17, Thm. 1.1]) $R^w f_* \mathbb{F}_{\ell}(v)|_{\mathcal{S}_{\overline{k}}}$ is a semisimple \mathbb{F}_{ℓ} -local system on $\mathcal{S}_{\overline{k}}$ for $\ell(\neq p) \gg 0$.

2.4. **Fact.**

- (1) ([D80, Cor. 3.2.9]) For every closed point $s \in |\mathcal{S}|$ the characteristic polynomial $P_s := \det(IdT \varphi_s|(R^w f_*\mathbb{Q}_{\ell}(v))_{\overline{s}})$ of the geometric Frobenius $\varphi_s \in \pi_1(s)$ is in $\mathbb{Z}[1/p][T]$, independent of $\ell(\neq p)$;
- (2) (e.g. [LaP95, (proof of) Prop. 2.1]) The characteristic polynomial $P := \det(IdT \varphi | \mathrm{H}^{0}(\mathcal{S}_{\overline{k}}, R^{w}f_{*}\mathbb{Q}_{\ell}(v)))$ of the geometric Frobenius $\varphi \in \pi_{1}(k)$ is in $\mathbb{Z}[1/p][T]$ and independent of ℓ .

From Fact 2.2 (1), Fact 2.4 (1) implies that, for $\ell \neq p \gg 0$, the reduction modulo ℓ of $P_s \in \mathbb{Z}[1/p][T]$ coincides with the characteristic polynomial $P_{s,\mathbb{F}_{\ell}} := \det(IdT - \varphi_s|(R^w f_*\mathbb{F}_{\ell}(v))_{\overline{s}}) \in \mathbb{F}_{\ell}[T]$. In turn, this implies that $P_s \in \mathbb{Z}[1/p][T]$ coincides with the characteristic polynomial $\det(IdT - \varphi_s|\mathbf{H}^w(\mathcal{X}_{\overline{s}}, \mathbb{Q}_{\mathfrak{u}}(v))),$ $\mathfrak{u} \in \mathcal{U}$. (It also directly follows from Fact 2.2 (1) that $P_s \in \mathbb{Z}[1/p][T]$ coincides with the characteristic polynomial $\det(IdT - \varphi_s|\mathbf{H}^w(\mathcal{X}_{\overline{s}}, \mathbb{Q}_{\mathfrak{u}}(v))), \mathfrak{u} \in \mathcal{U})$.

From Fact 2.2 (2), Fact 2.4 (2) implies that, for $\ell(\neq p) \gg 0$, the reduction modulo ℓ of $P \in \mathbb{Z}[1/p][T]$ coincides with the characteristic polynomial $P_{\mathbb{F}_{\ell}} := \det(IdT - \varphi | \mathrm{H}^{0}(\mathcal{S}_{\overline{k}}, R^{w}f_{*}\mathbb{F}_{\ell}(v))) \in \mathbb{F}_{\ell}[T]$. In particular, if $\delta_{\mathbb{Q}_{\ell}}(1)$ (resp. $\delta_{\mathbb{F}_{\ell}}(1)$) denotes the multiplicity of 1 as a root of P (resp. $P_{\mathbb{F}_{\ell}}$), $\delta_{\mathbb{Q}_{\ell}}(1)$ is independent of ℓ and one $\delta_{\mathbb{Q}_{\ell}}(1) = \delta_{\mathbb{F}_{\ell}}(1)$ for $\ell(\neq p) \gg 0$.

2.5. Let $\overline{\Pi}$ (resp. Π) denote the image of $\pi_1(\mathcal{S}_{\overline{k}})$ (resp. $\pi_1(\mathcal{S})$) acting on $\prod_{\ell \in \mathcal{L}} (R^w f_* \mathbb{F}_\ell(v))_{\overline{s}}$. Then,

Fact. ([CT19, §3.1]) $\overline{\Pi}$ (hence Π) is a topologically finitely generated profinite group.

Let $\Pi_{\mathbb{Q}_{\mathfrak{u}}}$ denote the image of $\pi_1(\mathcal{S})$ acting on $\mathrm{H}^w(\mathcal{X}_{\overline{\eta}}, \mathbb{Q}_{\mathfrak{u}}(v))$. Fact 2.5 has the following (non-trivial!) consequence

Corollary. For every finite index subgroup $\Pi'_{\mathbb{Q}_{\mathfrak{u}}} \subset \Pi_{\mathbb{Q}_{\mathfrak{u}}}$ there exists a connected étale cover $\mathcal{S}' \to \mathcal{S}$ such that $\Pi'_{\mathbb{Q}_{\mathfrak{u}}}$ coincides with the image of $\pi_1(\mathcal{S}')$ acting on $\mathrm{H}^w(\mathcal{X}_{\overline{\eta}}, \mathbb{Q}_{\mathfrak{u}}(v)))$.

Proof. From Fact 2.5, Π is a topologically finitely generated profinite group. As the inverse image $\Pi' \subset \Pi$ of $\Pi'_{\mathbb{Q}_{\mathfrak{u}}}$ in Π is again of finite index it follows from [NS07a, Thm. 1.1] (which relies on [NS07b]) that Π' is automatically open in Π hence corresponds to a connected étale cover $\mathcal{S}' \to \mathcal{S}$.

The fact that $\overline{\Pi}$ is topologically finitely generated also ensures (Lemma 8.4.2)

$$\mathrm{H}^{w}(\mathcal{X}_{\overline{\eta}}, \mathbb{Q}_{\mathfrak{u}}(v))^{\pi_{1}(\mathcal{S}_{\overline{k}})} = (\prod_{\ell \in \mathcal{L}} \mathrm{H}^{w}(\mathcal{X}_{\overline{\eta}}, \mathbb{F}_{\ell}(v))^{\pi_{1}(\mathcal{S}_{\overline{k}})}) \otimes \mathbb{Q}_{\mathfrak{u}} = (\prod_{\ell \in \mathcal{L}} \mathrm{H}^{0}(\mathcal{S}_{\overline{\eta}}, R^{w}f_{*}\mathbb{F}_{\ell}(v)) \otimes \mathbb{Q}_{\mathfrak{u}}$$

so that, from Fact 2.2 (2) and Fact 2.4 (2), $P \in \mathbb{Q}[T]$ coincides with the characteristic polynomial $\det(IdT - \varphi | \mathrm{H}^w(\mathcal{X}_{\overline{s}}, \mathbb{Q}_{\mathfrak{u}}(v))^{\pi_1(\mathcal{S}_{\overline{k}})}), \mathfrak{u} \in \mathcal{U}.$

(From Fact 2.4 (2) and [B96, 6.3.1, 6.3.2], similar results hold for \mathbb{Q}_{u} -coefficients).

3. Proof of Theorem 1.3.1

Let K be a finitely generated field of characteristic p > 0 and let $X \in \text{SmP}(K)$. We retain the notation of 2.1. For $C = \mathbb{Q}_{\mathfrak{u}}, \mathbb{Q}_{\ell}, \mathbb{Q}_{\mathfrak{u}}$, set $\mathcal{H}_{C} := \mathcal{H}^{w}(X_{\overline{K}}, C(v))$ and let $G_{C} \subset \mathrm{GL}(\mathcal{H}_{C})$ denote the Zariski-closure of the image Π_{C} of $\pi_{1}(K)$ acting on \mathcal{H}_{C} .

Let C_1, C_2 be any fields of the form $\mathbb{Q}_{\ell}, \mathbb{Q}_{u}$ or \mathbb{Q}_{u} . Since $\pi_1(S)$ -semisimplification does not change the kernel of $\pi_1(S) \twoheadrightarrow \pi_0(G_{C_i})$, one may assume H_{C_i} is a semisimple Π_{C_i} -module. Note also that $\pi_1(S)$ -semisimplification does not affect the action of $\pi_1(S_{\overline{k}})$ on H_{C_i} by Fact 2.3 (and Lemma 8.4.5 if $C_i = \mathbb{Q}_u$ or \mathbb{Q}_u). As $\pi_1(S)$ acts on H_{C_i} through a topologically finitely generated quotient, the kernel of $\pi_1(S) \twoheadrightarrow \pi_0(G_{C_1})$ is an (a normal) open subgroup of $\pi_1(S)$ ([NS07a], [NS07b]) so that, up to replacing Sby the corresponding étale (Galois) cover, one may assume G_{C_1} is connected that is, equivalently ([D82, Prop. 3.1 (a), (c)]), for every finite index subgroup $U \subset \pi_1(S)$ and integers $m, n \ge 0$, $dim((H_{C_1}^{\otimes m} \otimes H_{C_1}^{\vee \otimes n})^{\pi_1(S)})$. One has to show that this implies that for every finite index subgroup $U \subset \pi_1(S)$ and integers $m, n \ge 0$, $dim((H_{C_2}^{\otimes m} \otimes H_{C_2}^{\vee \otimes n})^U) = dim((H_{C_2}^{\otimes m} \otimes H_{C_1}^{\vee \otimes n})^{\pi_1(S)})$ [LaP95, Lemma 2.3]. Again, since $\pi_1(S)$ acts on H_{C_i} through a topologically finitely generated quotient, one may restrict to open subgroups $U \subset \pi_1(S)$. That is, equivalently, one has to show that for every connected étale cover $S' \to S$ and integers $m, n \geq 0$, $dim((H_{C_2}^{\otimes m} \otimes H_{C_2}^{\vee \otimes n})^{\pi_1(S')}) = dim((H_{C_2}^{\otimes m} \otimes H_{C_2}^{\vee \otimes n})^{\pi_1(S)})$. But recall that $H_{C_i} = \mathrm{H}^w(\mathcal{X}_{\overline{\eta}}, C_i(v))$ so that, by Kunneth formula, $H_{C_i}^{\otimes m} \otimes H_{C_i}^{\vee \otimes n}$ is a direct factor of $\mathrm{H}^{mw+n(2d-w)}(\mathcal{X}_{\overline{\eta}}^{m+n}, C_i(n(d-v)))$. In other words, replacing $\mathcal{X} \to S$ with the the m + nth fibered power $\mathcal{X}^{m+n} = \mathcal{X} \times_S \times \cdots \times_S \mathcal{X} \to S$ (and the Tate twists -(v) with -(n(d-v))), it is enough to show that for every connected étale cover $S' \to S$, $dim((H_{C_2})^{\pi_1(S')}) = dim((H_{C_2})^{\pi_1(S)})$. But as, by assumption, $dim(H_{C_1}^{\pi_1(S')}) = dim(H_{C_1}^{\pi_1(S)})$, it is actually enough to show that for every connected étale cover $S' \to S$, $dim((H_{C_2})^{\pi_1(S')}) = dim((H_{C_1})^{\pi_1(S')})$. Write S := S' to simplify. As H_{C_i} is a semisimple Π_{C_i} -module (and using Lemma 8.4.2 for $C_i = \mathbb{Q}_{\mathfrak{u}}$ or $\mathbb{Q}_{\mathfrak{u}}$), $dim((H_{C_i})^{\pi_1(S)})$ is the multiplicity of 1 as an eigenvalue of the Frobenius $\varphi \in \pi_1(k) \simeq \pi_1(S)/\pi_1(S_{\overline{k}})$ acting on $(H_{C_i})^{\pi_1(S_{\overline{k}})}$. So the assertion follows from the last paragraph of Subsection 2.5.

4. PRELIMINARY OBSERVATIONS

Let $X \in \text{SmP}(K)$. We begin by the following elementary observations, which follow from the formal properties of ultraproducts.

- 4.1. Lemma. For $(?,??) = (S, \frac{w}{2})$, (wS, w), (wS', w), (F, w) we have
- (1) For every $\mathfrak{u} \in \mathcal{U}$, $(?, \mathbb{Q}_{\mathfrak{u}}, ??, X) \iff$ The set of all $\ell \in \mathcal{L}$ such that $(?, \mathbb{Q}_{\ell}, ??, X)$ holds is in \mathfrak{u} . In particular, $(?, \mathbb{Q}_{\ell}, ??, X)$, $\ell \gg 0 \iff (?, \mathbb{Q}_{\mathfrak{u}}, ??, X)$ for every ultrafilter $\mathfrak{u} \in \mathcal{U}$;
- (2) For every $\mathfrak{u} \in \mathcal{U}$, $(?, \mathbb{Q}_{\mathfrak{u}}, ??, X) \iff$ The set of all $\ell \in \mathcal{L}$ such that $(?, \mathbb{F}_{\ell}, ??, X)$ holds is in \mathfrak{u} . In particular, $(?, \mathbb{F}_{\ell}, ??, X), \ell \gg 0 \iff (?, \mathbb{Q}_{\mathfrak{u}}, ??, X)$ for every $\mathfrak{u} \in \mathcal{U}$.

Proof. For ? =F, see 8.3.3 (with P the property of being surjective) and 8.4.2 (which can be applied by ?? (2)). For ? =S, see 8.4.5 (with P the property of acting semisimply). For ? =wS, see 8.4.6. For ? =wS', see 8.4.2, 8.4.1 and 8.3.3 (with P the property of being an isomorphism). \Box

4.2. Let $C = \mathbb{Q}_{\ell}, \mathbb{Q}_{\mathfrak{u}}$ or $\mathbb{Q}_{\mathfrak{u}}$ and let K'/K be a finite field extension. Write $X' := X \times_K K'$. Then,

Lemma.

(1) (S, $C, \frac{w}{2}, X'$) \Leftrightarrow (S, $C, \frac{w}{2}, X$);

- (2) (sF, C, w, X') \Leftrightarrow (sF, C, w, X);
- (3) If K'/K is Galois, $(F, C, w, X') \Rightarrow (F, C, w, X)$.
- Assume furthermore X has connected monodromy in degrees (2w, w). Then,
- (4) (wS, C, w, X) \Leftrightarrow (wS, C, w, X');
- (5) The assertions (sF, C, w, X), (sF, C, w, X'), (F, C, w, X), (F, C, w, X') are all equivalent.

Proof. We show (3); the other assertions are purely group-theoretic and elementary. Let

$$\alpha \in \mathrm{H}^{2w}(X_{\overline{K}}, C(w))^{\pi_1(K)} \subset \mathrm{H}^{2w}(X_{\overline{K}}, C(w))^{\pi_1(K')}$$

Then, from (F, C, w, X'), one can write $\alpha = \sum_{1 \leq i \leq r} \lambda_i [Y'_i]$ with $\lambda_i \in C$ and $Y'_i \in Z^{\omega}(X')$ an integral cycle. But, then,

$$\alpha = \frac{1}{[K':K]} \sum_{1 \le i \le r} \lambda_i \sum_{\sigma \in Gal(K'/K)} \sigma[Y'_i] = \frac{1}{[K':K]} \sum_{1 \le i \le r} \lambda_i [\sum_{\sigma \in Gal(K'/K)} \sigma Y'_i].$$

The conclusion follows from the fact that $\sum_{\sigma \in Gal(K'/K)} \sigma Y'_i$ is in $Z^{\omega}(X')^{Gal(K'/K)} = Z^{\omega}(X)$.

4.3. Lemma. Assume p > 0. Then,

- (1) For $\ell \neq p$, (wS, \mathbb{Q}_{ℓ}, w, X) \iff (wS', \mathbb{Q}_{ℓ}, w, X);
- (2) For $\ell \gg 0$, (wS, \mathbb{F}_{ℓ} , w, X) \iff (wS', \mathbb{F}_{ℓ} , w, X).

Proof. Let $C = \mathbb{Q}_{\ell}$ or \mathbb{F}_{ℓ} . We retain the notation of 2.1. Write $H := H^{2w}(X, C(w))$ and $\overline{\Pi} := \pi_1(\mathcal{S}_{\overline{k}})$, $\Pi := \pi_1(\mathcal{S})$. The implication (wS', C, w, X) \Rightarrow (wS, C, w, X) is straightforward since the composition of $c_w^{-1} : H_{\Pi} \to H^{\Pi}$ with the canonical projection $H \to H_{\Pi}$ provides a Π -equivariant splitting of $H^{\Pi} \to H$. Conversely, let $\phi \in \Pi$ such that ϕ and $\overline{\Pi}$ generate Π . As $\overline{\Pi}$ acts semisimply on H (Fact 2.3) the canonical morphism $H^{\overline{\Pi}} \to H_{\overline{\Pi}}$ is an isomorphism. Assume (wS, C, w, X) and consider a Π -equivariant decomposition $H = H^{\Pi} \oplus M$; in particular $M^{\Pi} = 0$. Then it is enough to show that $0 = M_{\Pi} = (M_{\overline{\Pi}})_{\varphi} \tilde{\leftarrow} (M^{\overline{\Pi}})_{\varphi}$ but this follows from the exact sequence

$$0 \to M^{\Pi} = (M^{\overline{\Pi}})^{\varphi} \to M^{\overline{\Pi}} \stackrel{\varphi \to 1}{\to} M^{\overline{\Pi}} \to (M^{\overline{\Pi}})_{\varphi} \to 0.$$

5. Proof of Proposition 1.3.2

5.1. Let $X \in \text{SmP}(K)$ of dimension d. For $C = \mathbb{Q}_{\ell}, \mathbb{Z}_{\ell}, \mathbb{F}_{\ell}$ write $H_C := H^w(X_{\overline{K}}, C)$ and set $\Pi := \pi_1(K)$. To prove Proposition 1.3.2, one may freely replace \mathcal{L} by a subset in \mathfrak{u} ; in particular one may replace \mathcal{L} by a cofinite subset hence assume

(5.1.1)
$$\operatorname{H}_{\mathbb{Z}_{\ell}} \otimes \mathbb{F}_{\ell} = \operatorname{H}_{\mathbb{F}_{\ell}}, \ \ell \in \mathcal{L}$$

(Fact 2.2 (1) if p > 0; if p = 0, this follows from comparison between singular and \mathbb{Z}_{ℓ} -cohomology, using the fact that for every embedding $K \subset \mathbb{C}$, $\mathrm{H}_{\mathrm{sing}}(X(\mathbb{C}), \mathbb{Z})$ is a finitely generated \mathbb{Z} -module). By Künneth formula and Poincaré duality, (F, $\mathbb{Q}_{\mathfrak{u}}$, d, X^2) ensures that up to replacing \mathcal{L} by a subset in \mathfrak{u} one has

 $(5.1.2) \operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Z}_{\ell}}) \otimes \mathbb{F}_{\ell} = (\operatorname{H}_{\mathbb{Z}_{\ell}} \otimes \operatorname{H}_{\mathbb{Z}_{\ell}}^{\vee})^{\Pi} \otimes \mathbb{F}_{\ell} \tilde{\rightarrow} (\operatorname{H}_{\mathbb{F}_{\ell}} \otimes \operatorname{H}_{\mathbb{F}_{\ell}}^{\vee})^{\Pi} = \operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{F}_{\ell}}), \ \ell \in \mathcal{L}.$

5.2. Proof of Proposition 1.3.2 (1).

5.2.1. Let Q be a field and Γ a group. In this subsection, a Γ -module means a finite-dimensional Q-vector space endowed with an action of Γ by Q-linear automorphisms. For a Γ -module V, let V^{ss} denote the Γ -semisimplification of V.

Lemma. One has $\dim(\operatorname{End}_{\Gamma}(V)) \leq \dim(\operatorname{End}_{\Gamma}(V^{ss}))$ and $\dim(\operatorname{End}_{\Gamma}(V)) = \dim(\operatorname{End}_{\Gamma}(V^{ss}))$ if and only if V is a semisimple Γ -module.

Proof. Let $0 \to A \to V \to B \to 0$ be a short exact sequence of Γ -modules and W a Γ -module. Then

$$0 \longrightarrow \operatorname{Hom}_{\Gamma}(B, W) \longrightarrow \operatorname{Hom}_{\Gamma}(V, W) \longrightarrow \operatorname{Hom}_{\Gamma}(A, W)$$

and

$$0 \longrightarrow \operatorname{Hom}_{\Gamma}(W, A) \longrightarrow \operatorname{Hom}_{\Gamma}(W, V) \longrightarrow \operatorname{Hom}_{\Gamma}(W, B)$$

are exact and hence we obtain

$$\dim \operatorname{Hom}_{\Gamma}(V, W) \leq \dim \operatorname{Hom}_{\Gamma}(A \oplus B, W)$$

and

 $\dim \operatorname{Hom}_{\Gamma}(W, V) \leq \dim \operatorname{Hom}_{\Gamma}(W, A \oplus B).$

By taking W = V in the first inequality and $W = A \oplus B$ in the second, we obtain

 $\dim \operatorname{End}_{\Gamma}(V) \leq \dim \operatorname{End}_{\Gamma}(A \oplus B)$

and induction implies

(*) dim $\operatorname{End}_{\Gamma}(V) \leq \dim \operatorname{End}_{\Gamma}(V^{ss}).$

When (*) is an equality, V is semisimple. Indeed, all the inequalities become equalities. Hence, the sequence

 $0 \longrightarrow \operatorname{Hom}_{\Gamma}(A \oplus B, A) \longrightarrow \operatorname{Hom}_{\Gamma}(A \oplus B, V) \longrightarrow \operatorname{Hom}_{\Gamma}(A \oplus B, B) \longrightarrow 0$

and thus

 $0 \longrightarrow \operatorname{Hom}_{\Gamma}(B, A) \longrightarrow \operatorname{Hom}_{\Gamma}(B, V) \longrightarrow \operatorname{Hom}_{\Gamma}(B, B) \longrightarrow 0$

are exact, implying that $0 \to A \to V \to B \to 0$ splits.

5.2.2. From (5.1.1) and (5.1.2) dim(End_{II}(H_{Q_{\ell}})) = dim(End_{II}(H_{F_{\ell}})). On the other hand (S, Q_u, $\frac{w}{2}$, X) ensures that up to replacing \mathcal{L} by a subset in \mathfrak{u} one may assume (S, \mathbb{F}_{ℓ} , $\frac{w}{2}$, X), $\ell \in \mathcal{L}$ (See Lemma 4.1 (2)). Let $T_{\mathbb{Z}_{\ell}} \subset H^{ss}_{\mathbb{Q}_{\ell}}$ be any II-stable \mathbb{Z}_{ℓ} -lattice and set $T_{\mathbb{F}_{\ell}} := T_{\mathbb{Z}_{\ell}} \otimes \mathbb{F}_{\ell}$. Then since $T^{ss}_{\mathbb{F}_{\ell}}$ and $H_{\mathbb{F}_{\ell}}$ are semisimple II-modules with the same traces, they are isomorphic. Hence

$$\dim(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Q}_{\ell}}^{ss})) \geq \dim(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Q}_{\ell}})) = \dim(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{F}_{\ell}})) \\ = \dim(\operatorname{End}_{\Pi}(T_{\mathbb{F}_{\ell}}^{ss})) \geq \dim(\operatorname{End}_{\Pi}(T_{\mathbb{F}_{\ell}})) \geq \dim(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Q}_{\ell}}^{ss})),$$

where the first and second inequalities follow from Lemma 5.2.1 and the third inequality always holds. As a result, one obtains

 $\dim(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Q}_{\ell}})) = \dim(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Q}_{\ell}}^{ss})).$

The conclusion follows from the equality case in Lemma 5.2.1.

5.3. Proof of Proposition 1.3.2 (2).

5.3.1. Given a ring R, let Idem(R) and CIdem(R) denote respectively the idempotents and central idempotents in R.

Let A be a \mathbb{Z}_{ℓ} -algebra which, as a \mathbb{Z}_{ℓ} -module, is free of finite rank. The following lemma is possibly classical (see *e.g.* [Do72, Thm. 44.3 (2)] for the surjectivity part of the assertion) but for lack of a suitable complete reference and to keep the exposition self-contained, we include a proof.

Lemma. (Lifting idempotents) The reduction modulo- ℓ morphism $A \twoheadrightarrow A \otimes \mathbb{F}_{\ell}$ restricts to a surjective map $Idem(A) \twoheadrightarrow Idem(A \otimes \mathbb{F}_{\ell})$ and to a bijective map $CIdem(A) \widetilde{\to} CIdem(A \otimes \mathbb{F}_{\ell})$.

Proof. First, observe that for every $a, a' \in A$ such that [a, a'] = 0 and $a - a' \in \ell^N A$, we have $a^{\ell^n} - a'^{\ell^n} \in \ell^{N+n} A$. Indeed, write $a - a' = \ell^N b_0 \in \ell^N A$. Then, b_0 commutes with a, a' and one has

$$a^{\ell} - a^{\prime \ell} = \sum_{1 \le k \le \ell} \binom{\ell}{k} \ell^{Nk} a^{\prime \ell - k} b_0^k = \ell^{N+1} \sum_{1 \le k \le \ell} \binom{\ell}{k} \frac{\ell^{Nk}}{\ell^{N+1}} a^{\prime \ell - k} b_0^k = \ell^{N+1} b_1$$

The conclusion follows by straightforward induction.

- Let $\epsilon \in Idem(A \otimes \mathbb{F}_{\ell})$ and pick any $a \in A$ such that $\overline{a} = \epsilon$. By construction, $a^{\ell^m} - a \in \ell A$, $m \ge 0$ hence, from the preliminary observation,

$$a^{\ell^{n+p}} - a^{\ell^n} = (a^{\ell^p})^{\ell^n} - a^{\ell^n} \in \ell^{n+1}A, \ n \ge 0$$

hence $\{a^{\ell^n}\}_n$ is a Cauchy sequence. Set $e := \lim_{n \to \infty} a^{\ell^n}$. By construction, for $n \gg 0$ we have $\overline{e} = \overline{a}^{\ell^n} = \epsilon^{\ell^n} = \epsilon$. Furthermore, since $a^2 - a \in \ell A$, we get, again, $a^{2\ell^n} - a^{\ell^n} \in \ell^{n+1}A$, $n \ge 0$. Since $(-)^2 : A \to A$ is continuous, one gets $e^2 = e$. This shows $Idem(A) \to Idem(A \otimes \mathbb{F}_\ell)$.

- Let $e \in Idem(A)$ such that $\overline{e} \in CIdem(A \otimes \mathbb{F}_{\ell})$. Then $\overline{e}(A \otimes \mathbb{F}_{\ell})(1 - \overline{e}) = 0$ forces

$$eA(1-e) \subset \ell A = e\ell Ae \oplus (1-e)\ell Ae \oplus e\ell A(1-e) \oplus (1-e)\ell A(1-e).$$

Multiplying by e on the left and 1-e on the right, one gets $eA(1-e) = \ell eA(1-e)$ hence, by Nakayama's lemma, eA(1-e) = 0. Similarly (1-e)Ae = 0. Hence for every $a \in A$,

$$ea = ea(e + (1 - e)) = eae = (e + (1 - e))ae = ae$$

This shows $CIdem(A) \rightarrow CIdem(A \otimes \mathbb{F}_{\ell})$. Let $e, e' \in CIdem(A)$ such that $\overline{e} = \overline{e}'$ that is, $e - e' \in \ell A$. Since [e, e'] = 0, the preliminary observation shows that $e - e' = e^{\ell^n} - e^{\ell^n} \in \ell^{n+1}A$, $n \ge 0$ hence e = e'. This shows $CIdem(A) \xrightarrow{\sim} CIdem(A \otimes \mathbb{F}_{\ell})$.

5.3.2. From (5.1.1) one has $\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{Z}_{\ell}}) \otimes \mathbb{F}_{\ell} = \operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{F}_{\ell}}), \ \ell \in \mathcal{L}$. On the other hand, (F, $\mathbb{Q}_{\mathfrak{u}}, w, X$), (wS, $\mathbb{Q}_{\mathfrak{u}}, w, X$) ensure that up to replacing \mathcal{L} by a subset in \mathfrak{u} , one also has (F, \mathbb{F}_{ℓ}, w, X), (wS, \mathbb{F}_{ℓ}, w, X), (wS', \mathbb{F}_{ℓ}, w, X), one has the canonical decomposition $H_{\mathbb{F}_{\ell}} = M_1 \oplus M_0$ as Π -modules. By definition of M_0, M_1 , any element in $\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{F}_{\ell}})$ stabilizes both M_0 and M_1 hence the elements $e_i : \operatorname{H}_{\mathbb{F}_{\ell}} \to M_i \hookrightarrow \operatorname{H}_{\mathbb{F}_{\ell}}$ (obtained by composing the canonical projection followed by the canonical injection), i = 1, 2 are in $CIdem(\operatorname{End}_{\Pi}(\operatorname{H}_{\mathbb{F}_{\ell}}))$. From Lemma 5.3.1, e_0, e_1 lift uniquely to $\tilde{e}_0, \tilde{e}_1 \in CIdem(\operatorname{End}_{\Pi}(H_{\mathbb{Z}_{\ell}}))$ with $Id = \tilde{e}_0 + \tilde{e}_1$. Let $\tilde{M}_{1-i} := \ker(\tilde{e}_i)$, i = 0, 1. Then $H_{\mathbb{Z}_{\ell}} = \tilde{M}_1 \oplus \tilde{M}_0$ with $\tilde{M}_i \otimes \mathbb{F}_{\ell} = M_i, i = 0, 1$. It remains to check that $\tilde{M}_0 = \operatorname{H}_{\mathbb{Z}_{\ell}}^{\Pi}$.

Since $\tilde{M}_0 \otimes \mathbb{F}_{\ell} = M_0(= \mathbb{H}_{\mathbb{F}_{\ell}}^{\Pi}) = \mathbb{H}_{\mathbb{Z}_{\ell}}^{\Pi} \otimes \mathbb{F}_{\ell}$, by Nakayama's lemma, it is enough to show that $\mathbb{H}_{\mathbb{Z}_{\ell}}^{\Pi} \subset \tilde{M}_0$. Since $\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} = (\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{0}) \oplus (\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1})$, this is equivalent to $\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1} = 0$. Let $h \in \mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1}$. Then $h \mod \tilde{\ell} \in \mathrm{H}_{\mathbb{F}_{\ell}}^{\Pi} \cap M_{1} = 0 \text{ that is } \mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1} \subset \ell H_{\mathbb{Z}_{\ell}}. \text{ But as } \mathrm{H}_{\mathbb{Z}_{\ell}}/(H_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1}) \hookrightarrow (\mathrm{H}_{\mathbb{Z}_{\ell}}/\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi}) \times \tilde{M}_{0} \text{ is } \tilde{\mathrm{H}}_{\mathbb{Z}_{\ell}}$ torsion-free (equivalently, $\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1} \subset \mathrm{H}_{\mathbb{Z}_{\ell}}$ is a \mathbb{Z}_{ℓ} -direct summand), $(\ell \mathrm{H}_{\mathbb{Z}_{\ell}}) \cap (\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1}) = \ell(\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1}).$ As a result, $\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1} = \ell(\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1})$ which, by Nakayama's lemma, forces $\mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi} \cap \tilde{M}_{1} = 0$.

6. Proof of Theorem 1.3.3

Let K be a finitely generated field of characteristic p > 0 and let $X \in \text{SmP}(K)$. We retain the notation of 2.1. Set $\overline{\Pi} := \pi_1(\mathcal{S}_{\overline{k}}), \Pi := \pi_1(\mathcal{S})$. Again, to prove Theorem 1.3.3 one may freely replace \mathcal{L} by a subset in \mathfrak{u} ; in particular one may assume $\mathrm{H}^{0}(\mathcal{X}_{\overline{\eta}}, R^{*}f_{*}\mathbb{Z}_{\ell}) \otimes \mathbb{F}_{\ell} \xrightarrow{\sim} \mathrm{H}^{0}(\mathcal{X}_{\overline{\eta}}, R^{*}f_{*}\mathbb{F}_{\ell}), \ \ell \in \mathcal{L}$ (Fact 2.2 (1)). From Lemma 4.1, it is enough to show

- (1) For $\ell \gg 0$, (wS, \mathbb{Q}_{ℓ} , w, X) \Longrightarrow (wS, \mathbb{F}_{ℓ} , w, X)
- (2') For $\ell \gg 0$, (S, $\mathbb{Q}_{\ell}, \frac{w}{2}, X$) \Longrightarrow (S, $\mathbb{F}_{\ell}, \frac{w}{2}, X$) (3') For $\ell \gg 0$, (F, \mathbb{Q}_{ℓ}, i, X), $i = w, d w + (wS, \mathbb{Q}_{\ell}, w, X) \Longrightarrow$ (F, \mathbb{F}_{ℓ}, i, X), $i = w, d w + (wS, \mathbb{F}_{\ell}, w, X)$

6.1. Proof of (1'). For $C = \mathbb{Q}_{\ell}, \mathbb{F}_{\ell}$, write $H_C := H^{2w}(X_{\overline{K}}, C(w))$ and consider the following seemingly weak variant of (wS, C, w, X).

(wS", C, w, X) The inclusion $\mathrm{H}^{\Pi}_{C} \hookrightarrow \mathrm{H}^{\overline{\Pi}}_{C}$ splits $\pi_{1}(k)$ -equivariantly.

Recall the definition of $\delta_C(1)$ at the end of Paragraph 2.4; by definition this is the dimension of the generalized eigenspace $\mathrm{H}_{C}^{\overline{\Pi}}\{1\} := \bigcup_{n \geq 1} \ker((Id - \varphi)^{n} | \mathrm{H}_{C}^{\overline{\Pi}})$ attached to 1 so that

(6.1.1) (wS", C, w, X) $\Leftrightarrow \delta_C(1) = \dim(\mathbf{H}_C^{\Pi}) \Leftrightarrow \delta_C(1) \leq \dim(\mathbf{H}_C^{\Pi})$

(where the last equivalence follows from the fact that $\delta_C(1) \geq \dim(\mathbf{H}_C^{\Pi})$ always holds). One also has

6.1.2 Lemma. (wS, \mathbb{Q}_{ℓ} , w, X) \Leftrightarrow (wS", \mathbb{Q}_{ℓ} , w, X) and (wS, \mathbb{F}_{ℓ} , w, X) \Leftrightarrow (wS", \mathbb{F}_{ℓ} , w, X), $\ell \gg 0$.

Proof. The implications \Rightarrow are straightforward. For the converse implications, from Fact 2.3 the canonical Π -equivariant morphism $\mathrm{H}_{C}^{\overline{\Pi}} \to \mathrm{H}_{C \overline{\Pi}}$ is an isomorphism. So, setting $N := \mathrm{ker}(\mathrm{H}_{C} \to \mathrm{H}_{C \overline{\Pi}})$, one obtains a direct sum decomposition as Π -modules $\mathbf{H}_C = \mathbf{H}_C^{\Pi} \oplus N$.

6.1.3 From 6.1, it is enough to show

(1") For
$$\ell \gg 0$$
, $\delta_{\mathbb{Q}_{\ell}}(1) \leq \dim(\mathrm{H}_{\mathbb{Q}_{\ell}}^{\Pi}) \Longrightarrow \delta_{\mathbb{F}_{\ell}}(1) \leq \dim(\mathrm{H}_{\mathbb{F}_{\ell}}^{\Pi}).$

From the last paragraph of 2.4, $\delta_{\mathbb{Q}_{\ell}}(1) = \delta_{\mathbb{F}_{\ell}}(1)$ for $\ell(\neq p) \gg 0$ so that (1") follows from

 $\dim(\mathbf{H}_{\mathbb{F}_{\ell}}^{\Pi}) \leq \delta_{\mathbb{F}_{\ell}}(1) = \delta_{\mathbb{Q}_{\ell}}(1) \leq \dim(\mathbf{H}_{\mathbb{Q}_{\ell}}^{\Pi}) \leq \dim(\mathbf{H}_{\mathbb{F}_{\ell}}^{\Pi}).$

6.2. Proof of (2'). This is proved in [CHT17, §11]. We give here a more elementary argument, which avoids Larsen-Pink's theory of regular semisimple Frobenii. For $C = \mathbb{F}_{\ell}, \mathbb{Q}_{\ell}, \mathbb{Z}_{\ell}$, write $H_C := H^w(X_{\overline{K}}, C)$. Also, let $\overline{\Pi}_{\ell}$ and Π_{ℓ} denote the image of $\overline{\Pi}$ and Π acting on $H_{\mathbb{Z}_{\ell}}$ respectively.

We begin with the following Lemma. Recall that $(S, \mathbb{Q}_{\ell}, \frac{w}{2}, X)$, $(S, \mathbb{Q}_{\mathfrak{u}}, \frac{w}{2}, X)$ hence - as this holds for every $\mathfrak{u} \in \mathcal{U}$ (8.4.5 for P the property of acting semisimply) - $(S, \mathbb{F}_{\ell}, \frac{w}{2}, X)$ for $\ell \gg 0$ are insensitive to finite field extensions of K (Lemma 4.2 (1)).

Lemma. After replacing K by a finite field extension, there exists a monic polynomial $P \in \mathbb{Q}[T]$ and for every $\ell \neq p$ a semisimple element $\phi_{\ell} \in \Pi_{\ell}$ such that, for $\ell \gg 0$, Π_{ℓ} is generated by Π_{ℓ} and ϕ_{ℓ} , and ϕ_{ℓ} has characteristic polynomial P.

Proof. Let $\overline{\mathfrak{G}}_{\mathbb{Z}_{\ell}}, \mathfrak{G}_{\mathbb{Z}_{\ell}}$ denote respectively the Zariski closure of $\overline{\Pi}_{\ell}, \Pi_{\ell}$ in $\mathrm{GL}(\mathrm{H}_{\mathbb{Z}_{\ell}})$. After possibly replacing \mathcal{S} by a connected étale cover, one may assume $\mathfrak{G}_{\mathbb{Q}_{\ell}}$ is connected for every $\ell \in \mathcal{L}$ (Theorem 1.3.1). One may also assume S carries a k-point $s \in S(k)$. Let φ_{ℓ} denote the image of the geometric Frobenius φ_s acting on $H_{\mathbb{Z}_{\ell}}$; recall that its characteristic polynomial P_s is in $\mathbb{Q}[T]$ and independent of ℓ ([D80]). Write

 $\varphi_{\ell} = \varphi_{\ell}^{ss} \varphi_{\ell}^{u}$ for the multiplicative Jordan decomposition of φ_{ℓ} in $\mathfrak{G}_{\mathbb{Q}_{\ell}}$. There exists polynomials P^{ss}, P^{u} in $\mathbb{Q}[T]$ and independent of ℓ such that $\varphi_{\ell}^{ss} = P^{ss}(\varphi_{\ell}), \varphi_{\ell}^{u} = P^{u}(\varphi_{\ell})$. Let $\mathfrak{F}_{\mathbb{Z}_{\ell}}, \mathfrak{F}_{\mathbb{Z}_{\ell}}^{ss}, \mathfrak{F}_{\mathbb{Z}_{\ell}}^{u}$ denote the Zariski closure in $\mathfrak{G}_{\mathbb{Z}_{\ell}}$ of the subgroup generated by $\varphi_{\ell}, \varphi_{\ell}^{ss}$ and φ_{ℓ}^{u} respectively. Then $\mathfrak{F}_{\mathbb{Z}_{\ell}} = \mathfrak{F}_{\mathbb{Z}_{\ell}}^{ss} \mathfrak{F}_{\mathbb{Z}_{\ell}}^{u}$. Since $\mathfrak{G}_{\mathbb{Q}_{\ell}}/\overline{\mathfrak{G}}_{\mathbb{Q}_{\ell}}$ is connected, abelian, reductive³, it is a torus. Hence $\mathfrak{F}_{\mathbb{Q}_{\ell}}^{u} \subset \overline{\mathfrak{G}}_{\mathbb{Q}_{\ell}}$. In particular, $\varphi_{\ell}^{u} \in \overline{\mathfrak{G}}(\mathbb{Q}_{\ell})$. But, actually, $\varphi_{\ell}^{u} \in \overline{\mathfrak{G}}(\mathbb{Z}_{\ell})$ for $\ell \gg 0$. Indeed, $\varphi_{\ell}^{u} = P^{u}(\varphi_{\ell})$ is in $\operatorname{End}_{\mathbb{Z}_{\ell}}(\operatorname{H}_{\mathbb{Z}_{\ell}})$ for $\ell \gg 0$ since P^{u} is in $\mathbb{Q}[T]$ and independent of ℓ . Also $\det(\varphi_{\ell}^{u}) = 1 \in \mathbb{Z}_{\ell}^{\times}$ shows that $\varphi_{\ell}^{u} \in \overline{\mathfrak{G}}(\mathbb{Q}_{\ell}) \cap \operatorname{GL}(H_{\mathbb{Z}_{\ell}})$. It only remains to check that $\overline{\mathfrak{G}}(\mathbb{Q}_{\ell}) \cap \operatorname{GL}(\operatorname{H}_{\mathbb{Z}_{\ell}}) = \overline{\mathfrak{G}}(\mathbb{Z}_{\ell})$. The inclusion $\overline{\mathfrak{G}}(\mathbb{Q}_{\ell}) \cap \operatorname{GL}(H_{\mathbb{Z}_{\ell}})$ is straightforward. The converse inclusion is the valuative criterion of properness for the closed immersion $\overline{\mathfrak{G}}_{\mathbb{Z}_{\ell}} \hookrightarrow \operatorname{GL}(\operatorname{H}_{\mathbb{Z}_{\ell}})$:

From [CHT17, Thm. (7.3.2)], there exists an integer $N \ge 1$ independent of ℓ such that $(\varphi_{\ell}^{u})^{N} \in \overline{\Pi}_{\ell}$. But, then, $(\varphi_{\ell}^{ss})^{N} = \varphi_{\ell}^{N} (\varphi_{\ell}^{u})^{-N} \in \Pi_{\ell}$; after replacing k by its degree-N field extension, we may assume N = 1. Then $\phi_{\ell} = \varphi_{\ell}^{ss}$ works. \Box

We can now conclude the proof. The fact that ϕ_{ℓ} acts semisimply on $\mathcal{H}_{\mathbb{Q}_{\ell}}$ is equivalent to the fact that the minimal polynomial Q_{ℓ} of ϕ_{ℓ} is separable. Since P is in $\mathbb{Q}[T]$ and independent of ℓ , $Q := Q_{\ell}$ is in $\mathbb{Q}[T]$ and independent of ℓ as well. And since one assumes $\mathcal{H}_{\mathbb{Z}_{\ell}}$ is torsion free, the minimal polynomial of ϕ_{ℓ} acting on $\mathcal{H}_{\mathbb{F}_{\ell}}$ is the reduction modulo- ℓ of Q for $\ell \gg 0$; in particular, it is again separable for $\ell \gg 0$. This shows that ϕ_{ℓ} acts semisimply on $\mathcal{H}_{\mathbb{F}_{\ell}}$ for $\ell \gg 0$ hence that its image in $\mathrm{GL}(\mathcal{H}_{\mathbb{F}_{\ell}})$ is of prime-to- ℓ order. Thus $(S, \mathbb{F}_{\ell}, \frac{w}{2}, X)$ follows from Fact 2.3 (2) and [S94a, Lem. 5(b)].

6.3. **Proof of (3').** One retains the notation of Subsection 6.1. Since we may assume $\ell \gg 0$, (F, \mathbb{Q}_{ℓ} , i, X), $i = w, d - w + (wS, \mathbb{Q}_{\ell}, w, X)$ imply that the canonical morphism $Z^w(X) \otimes \mathbb{Z}_{\ell} \to \mathrm{H}_{\mathbb{Z}_{\ell}}^{\Pi}$ is surjective ([MiR04, Lem. 3.1]) and, in particular, that the morphism $Z^w(X) \otimes \mathbb{Z}_{\ell} \to \mathrm{H}_{\mathbb{Z}_{\ell}}$ has torsion-free cokernel. This and the fact that one assumes $\mathrm{H}_{\mathbb{Z}_{\ell}}$ is torsion free show that the images of $Z^w(X) \otimes C \to \mathrm{H}_C^{\Pi}$ for $C = \mathbb{Q}_{\ell}, \mathbb{F}_{\ell}, \mathbb{Z}_{\ell}$ have the same rank - say δ . As a result

$$(\mathbf{F}, X, \mathbb{Q}_{\ell}, w) \Leftrightarrow \delta = \dim(\mathbf{H}_{\mathbb{Q}_{\ell}}^{\Pi}) (\mathbf{F}, X, \mathbb{F}_{\ell}, w) \Leftrightarrow \delta = \dim(\mathbf{H}_{\mathbb{F}_{\ell}}^{\Pi})$$

Thus the conclusion follows from the implications:

$$\delta_{\mathbb{Q}_{\ell}}(1) = \dim(\mathrm{H}_{\mathbb{Q}_{\ell}}^{\Pi}) \stackrel{\text{6.1}}{\Leftrightarrow} (\mathrm{wS}, \mathbb{Q}_{\ell}, w, X) \stackrel{(1')}{\Rightarrow} (\mathrm{wS}, \mathbb{F}_{\ell}, w, X) \stackrel{\text{6.1}}{\Leftrightarrow} \delta_{\mathbb{F}_{\ell}}(1) = \dim(\mathrm{H}_{\mathbb{F}_{\ell}}^{\Pi}).$$

and the fact that for $\ell \gg 0$, $\delta_{\mathbb{Q}_{\ell}}(1) = \delta_{\mathbb{F}_{\ell}}(1)$ (see the last paragraph of 2.4).

7. Proof of Corollary 1.4

Assume p > 0 and let $X \in \text{SmP}(K)$ with dimension d. Let $\text{Br}(X_{\overline{K}}) := \text{H}^2(X_{\overline{K}}, \mathbb{G}_m)$ denote the Brauer group of $X_{\overline{K}}$. For a prime $\ell \neq p$ and integer $n \geq 1$, let $\text{Br}(X_{\overline{K}})[\ell^n] \subset Br(X_{\overline{K}})$ denote the kernel of the multiplication-by- ℓ^n map,

$$T_{\ell}(\mathrm{Br}(X_{\overline{K}})) := \lim_{\longleftarrow} Br(X_{\overline{K}})[\ell^n], \ V_{\ell}(\mathrm{Br}(X_{\overline{K}}))[\ell^n]) := T_{\ell}(\mathrm{Br}(X_{\overline{K}}))[\ell^n]) \otimes \mathbb{Q}_{\ell}.$$

Recall the following elementary observation.

Lemma. For every $\ell \neq p$, $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[\ell^{\infty}]$ is finite $\Leftrightarrow V_{\ell}(\operatorname{Br}(X_{\overline{K}}))^{\pi_1(K)} = 0$.

Proof. As $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[\ell^n]$ is finite, $n \ge 0$ one has the following equivalences

 $\begin{array}{l} \operatorname{Br}(X_{\overline{K}})^{\pi_{1}(K)}[\ell^{\infty}] \text{ is infinite} \\ \Longleftrightarrow \operatorname{Br}(X_{\overline{K}})^{\pi_{1}(K)} \text{ contains an element of order exactly } \ell^{n} \text{ for every } n \geq 1 \\ \xleftarrow{(1)}{\longrightarrow} T_{\ell}(\operatorname{Br}(X_{\overline{K}}))^{\pi_{1}(K)} \neq 0 \\ \xleftarrow{(2)}{\longrightarrow} V_{\ell}(\operatorname{Br}(X_{\overline{K}}))^{\pi_{1}(K)} \neq 0, \end{array}$

³This is where we use (S, $\mathbb{Q}_{\ell}, \frac{w}{2}, X$).

where $\stackrel{(1)}{\Longrightarrow}$ follows from the fact a projective system of non-empty finite sets is non-empty and $\stackrel{(2)}{\Longrightarrow}$ follows from the fact $T_{\ell}(\operatorname{Br}(X_{\overline{K}}))$ is torsion-free.

7.1. **Proof of (1)** \Rightarrow (2). We retain, again, the notation of 2.1. Let $\rho(X)$ denote the rank of the Néron-Severi group NS(X) of X. For divisors, numerical and algebraic equivalences coincide (*e.g.* [Gr71, XIII, Thm. 4.6]); in particular (F, \mathbb{Q}_{ℓ} , 1, X) is equivalent to each of the assertions (a) - (d) in [T94, Prop. 2.9]. From [T94, Prop. 2.9 (a)],

$$\rho(X) = \dim(\mathrm{H}^2(X_{\overline{K}}, \mathbb{Q}_{\ell}(w))^{\pi_1(K)}) (= \dim(\mathrm{H}^2(\mathcal{X}_{\overline{\eta}}, \mathbb{Q}_{\ell}(w))^{\pi_1(\mathcal{S})}))$$

while, from [T94, Prop. 2.9 (c)], (S, \mathbb{Q}_{ℓ} , 1, X) holds so that $\rho(X) = \delta_{\mathbb{Q}_{\ell}}(1)$. As P is in $\mathbb{Z}[1/p][T]$ and independent of $\ell \neq p$ (Fact 2.4 (2)), for every other prime $\ell' \neq p$, one has

$$\rho(X) = \delta_{\mathbb{Q}_{\ell}}(1) = \delta_{\mathbb{Q}_{\ell'}}(1) \ge \dim(\mathrm{H}^2(\mathcal{X}_{\overline{\eta}}, \mathbb{Q}_{\ell'}(w))^{\pi_1(\mathcal{S})}) \ge \rho(X).$$

So that [T94, Prop. 2.9 (a)] holds for ℓ' as well and (F, $\mathbb{Q}_{\ell'}$, 1, X) follows from the implication (a) \Rightarrow (b) in [T94, Prop. 2.9].

7.2. **Proof of (2)** \Rightarrow (3). From [T94, Prop. (5.1)] and Lemma 4.3, for every $\ell \neq p$, (F, \mathbb{Q}_{ℓ} , 1, X) implies (wS, \mathbb{Q}_{ℓ} , 1, X). Whence, in particular, split short exact sequences of $\pi_1(K)$ -modules

$$0 \to \mathrm{H}^{2}(X_{\overline{K}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(K)} \to \mathrm{H}^{2}(X_{\overline{K}}, \mathbb{Q}_{\ell}(1)) \to V_{\ell}(\mathrm{Br}(X_{\overline{K}})) \to 0, \ \ell \neq p,$$

which shows $V_{\ell}(\operatorname{Br}(X_{\overline{K}}))^{\pi_1(K)} = 0, \ \ell \neq p$. From the above preliminary Lemma, this is equivalent to the finiteness of $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[\ell^{\infty}]$ for $\ell \neq p$. So, to prove (3), it is enough to show

(7.2.1)
$$\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[\ell] = 0, \ \ell \gg 0.$$

From [T94, Prop. (5.1)] and 6 (3'), (2) implies (F, \mathbb{F}_{ℓ} , 1, X) for $\ell \gg 0$ whence the short exact sequences

7.2.2)
$$0 \to \mathrm{H}^2(X_{\overline{K}}, \mathbb{F}_{\ell}(1))^G \to \mathrm{H}^2(X_{\overline{K}}, \mathbb{F}_{\ell}(1)) \to \mathrm{Br}(X_{\overline{K}})[\ell] \to 0, \ \ell \gg 0.$$

On the other hand, from [T94, Prop. (5.1)], (2) also implies (wS', \mathbb{Q}_{ℓ} , 1, X) hence, by Lemma 4.3 (1), (wS, \mathbb{Q}_{ℓ} , 1, X) which, in turn, by 6 (1'), implies (wS, \mathbb{F}_{ℓ} , 1, X) for $\ell \gg 0$. This shows (7.2.2) splits $\pi_1(K)$ -equivariantly for $\ell \gg 0$, whence (7.2.1).

7.3. **Proof of (3)** \Rightarrow (2). From the above preliminary observation the finiteness of $\operatorname{Br}(X_{\overline{K}})^{\pi_1(K)}[p']$ implies $V_{\ell}(\operatorname{Br}(X_{\overline{K}}))^{\pi_1(K)} = 0, \ \ell \neq p$ so that taking $\pi_1(K)$ -invariants in the short exact sequences

$$0 \to NS(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell} \to \mathrm{H}^{2}(X_{\overline{K}}, \mathbb{Q}_{\ell}(1)) \to V_{\ell}(\mathrm{Br}(X_{\overline{K}})) \to 0, \ \ell \neq p$$

(where $NS(X_{\overline{K}})$ denotes the Néron-Severi group of $X_{\overline{K}}$) one gets

$$(NS(X_{\overline{K}})\otimes \mathbb{Q}_{\ell})^{\pi_1(K)} \tilde{\to} \mathrm{H}^2(X_{\overline{K}}, \mathbb{Q}_{\ell}(1))^{\pi_1(K)}$$

On the other hand, let $K^{perf} := K^{\pi_1(K)}$ denote the perfect closure of K and write $X^{perf} := X \times_K K^{perf}$. Then

$$(CH^{1}(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell})^{\pi_{1}(K)} = CH^{1}(X^{perf}) \otimes \mathbb{Q}_{\ell} \tilde{\leftarrow} CH^{1}(X) \otimes \mathbb{Q}_{\ell}$$

(note that, in general, the cokernel of $CH^1(X) \to CH^1(X^{perf})$ is of *p*-primary torsion). Since $\pi_1(K)$ acts through a finite quotient - hence semisimply - on every finite-dimensional \mathbb{Q}_{ℓ} -vector subspace of $CH^1(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell}$, the morphism $(CH^1(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell})^{\pi_1(K)} \to (NS(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell})^{\pi_1(K)}$ is surjective, which yields the surjectivity of

$$[-]: CH^{1}(X) \otimes \mathbb{Q}_{\ell} \tilde{\to} (CH^{1}(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell})^{\pi_{1}(K)} \twoheadrightarrow (NS(X_{\overline{K}}) \otimes \mathbb{Q}_{\ell})^{\pi_{1}(K)} \tilde{\to} \mathrm{H}^{2}(X_{\overline{K}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(K)}, \ \ell \neq p$$

8. Appendix: Basic properties of ultraproducts of fields

Let \mathcal{L} be an infinite set. For a subset $S \subset \mathcal{L}$, write $\mathbf{1}_S : \mathcal{L} \to \{0,1\}$ for the characteristic function of S.

8.1. A filter on \mathcal{L} is a family \mathfrak{f} of subsets of \mathcal{L} such that (1) $A, B \in \mathfrak{f} \Rightarrow A \cap B \in \mathfrak{f};$ (2) $A \in \mathfrak{f}, A \subset B \subset \mathcal{L} \Rightarrow B \in \mathfrak{f};$ (3) $\emptyset \notin \mathfrak{f}$

8.1.1. An ultrafilter is a filter \mathfrak{u} which is maximal for \subset among all filters that is such that for every filter \mathfrak{f} on \mathcal{L} , $\mathfrak{u} \subset \mathfrak{f} \Rightarrow \mathfrak{u} = \mathfrak{f}$. A filter \mathfrak{u} on \mathcal{L} is an ultrafilter if and only if for every $S \subset \mathcal{L}$ either $S \in \mathfrak{u}$ or $\mathcal{L} \setminus S \in \mathfrak{u}$.

8.1.2. An ultrafilter \mathfrak{u} on \mathcal{L} is either principal that is of the form $\mathfrak{u}_{\ell} := \{S \subset \mathcal{L} \mid \ell \in S\}$ for some $\ell \in \mathcal{L}$ or contains the filter $\mathfrak{f}^{\#} := \{S \subset \mathcal{L} \mid |\mathcal{L} \setminus S| < +\infty\}$ of cofinite subsets, and $\mathfrak{f}^{\#}$ is the intersection of all non-principal ultrafilters on \mathcal{L} .

8.1.3. For every $\ell \in \mathcal{L}$ fix a field F_{ℓ} and write $\underline{F} := \prod_{\ell \in \mathcal{L}} F_{\ell}$; note that \underline{F} is 0-dimensional. For every $S \subset \mathcal{L}$, write $e_S := (1 - \mathbf{1}_S(\ell))_{\ell} \in \underline{F}$ for the corresponding idempotent. Filters on \mathcal{L} are in bijection with the ideals of \underline{F}

Filters on
$$\mathcal{L}$$
 \longleftrightarrow Ideals of \underline{F}
 \mathfrak{f} \longmapsto $\langle e_S \mid S \in \mathfrak{f} \rangle$
 $\{S \in \mathcal{P}(\mathcal{L}) \mid e_S \in \mathfrak{i}\}$ \longleftrightarrow \mathfrak{i}

This bijection restricts to a bijection between ultrafilters on \mathcal{L} and the prime (equivalently maximal) spectrum of \underline{F}

$$\begin{array}{cccc} \text{Ultrafilters on } \mathcal{L} & \longleftrightarrow & \operatorname{Spec}(\underline{F}) \\ \mathfrak{u} & \longmapsto & \mathfrak{m}_{\mathfrak{u}} := \langle e_{S} \mid S \in \mathfrak{u} \rangle \\ \mathfrak{u}_{\mathfrak{m}} := \{ S \in \mathcal{P}(\mathcal{L}) \mid e_{S} \in \mathfrak{m} \} & \longleftrightarrow & \mathfrak{m} \end{array}$$

and, via this bijection, principal (prime) ideals corresponds to principal ultrafilters. In particular, 8.1.2 shows that the intersection of all non-principal maximal ideals in \underline{F} is the ideal $\bigoplus_{\ell \in \mathcal{L}} F_{\ell} \subset \underline{F}$.

Let \mathcal{U} denote the set of all *non-principal* ultrafilters on \mathcal{L} .

8.1.4. For $\mathfrak{u} \in \mathcal{U}$ and an <u>*F*</u>-module <u>*M*</u>, write

$$M_{\mathfrak{u}} := \underline{M} / \mathfrak{m}_{\mathfrak{u}} \underline{M} = \lim_{\substack{\longrightarrow\\S \in \mathfrak{u}}} (1 - e_S) \underline{M}$$

(direct limit by reverse inclusion). For $\ell \in \mathcal{L}$, write $M_{\ell} := M_{\mathfrak{u}_{\ell}}$ for its ' ℓ th component'.

Since for every $S \in \mathfrak{u}$ the projection $p_S : \underline{F} = e_S \underline{F} \times (1 - e_S) \underline{F} \twoheadrightarrow \underline{F}/e_S \underline{F} = (1 - e_S) \underline{F}$ is flat and $\underline{F} \to F_{\mathfrak{u}}$ is the direct limit of the $p_S : \underline{F} \twoheadrightarrow \underline{F}/e_S \underline{F}$, one gets the following.

Lemma. For every ultrafilter \mathfrak{u} on \mathcal{L} , the morphism $\underline{F} \to F_{\mathfrak{u}}$ is flat.

8.2. A finitely generated <u>F</u>-module <u>M</u> is the direct product $\underline{M} = \prod_{\ell \in \mathcal{L}} M_{\ell}$ of its ℓ th components if and only if it is finitely presented. Write $\operatorname{Mod}_{/\underline{F}}$ for the full subcategory of the category of <u>F</u>-modules whose objects are direct products $\underline{M} = \prod_{\ell \in \mathcal{L}} M_{\ell}$ of their components. One easily checks that $\operatorname{Mod}_{/\underline{F}}$ is an abelian category. For $\underline{M} \in \operatorname{Mod}_{/F}$, one has

 $\underline{M} \text{ is finitely generated } \Leftrightarrow \underline{M} \text{ is finitely presented } \Leftrightarrow \underset{\ell \in \mathcal{L}}{\operatorname{supdim}}_{F_{\ell}}(M_{\ell}) < +\infty \Leftrightarrow \underset{\mathfrak{u} \in \mathcal{U}}{\operatorname{supdim}}_{F_{\mathfrak{u}}}(M_{\mathfrak{u}}) < +\infty$

In particular, for $\underline{M} \in \text{Mod}_{/\underline{F}}$ finitely generated and - (8.2.1) for $\underline{N} \subset \underline{M}$ an \underline{F} -submodule, one has

 $\underline{N} \in \operatorname{Mod}_{/F} \Leftrightarrow \underline{N}$ is finitely generated $\Leftrightarrow \underline{N}$ is finitely presented

- (8.2.2) for every <u>F</u>-module <u>N</u> and $\mathfrak{u} \in \mathcal{U}$, the canonical morphism

$$\operatorname{Hom}_{F}(\underline{M},\underline{N})\otimes_{F}F_{\mathfrak{u}}\to\operatorname{Hom}_{F_{\mathfrak{u}}}(M_{\mathfrak{u}},N_{\mathfrak{u}})$$

is an isomorphism ([Bo85, Chap. I, §2.10, Prop. 11], using 8.1.4).

8.2.1. The full subcategory of finitely generated \underline{F} -modules in $\operatorname{Mod}_{/\underline{F}}$ is an abelian subcategory of $\operatorname{Mod}_{/\underline{F}}$, stable under taking internal Hom and tensor products: for finitely generated $\underline{M}, \underline{N} \in \operatorname{Mod}_{/\underline{F}}$, the canonical morphisms $\operatorname{Hom}_{\underline{F}}(\underline{M}, \underline{N}) \to \prod_{\ell \in \mathcal{L}} \operatorname{Hom}_{F_{\ell}}(M_{\ell}, N_{\ell})$ and $\underline{M} \otimes_{\underline{F}} \underline{N} \to \prod_{\ell \in \mathcal{L}} M_{\ell} \otimes_{F_{\ell}} N_{\ell}$ are isomorphisms.

8.3. For every $\mathfrak{u} \in \mathcal{U}$,

8.3.1. Lemma. Let $\underline{M} \in \operatorname{Mod}_{/\underline{F}}$ be finitely generated and let $N_{\bullet} : N_0 = M_{\mathfrak{u}} \supset N_1 \supset \cdots \supset N_r \supset N_{r+1} = 0$ be a finite filtration by $F_{\mathfrak{u}}$ -submodules. Then there exists a filtration $\underline{N}_{\bullet} : \underline{N}_0 = \underline{M} \supset \underline{N}_1 \supset \cdots \supset \underline{N}_r \supset \underline{N}_{r+1} = 0$ in $\operatorname{Mod}_{/\underline{F}}$ such that $N_{\bullet,\mathfrak{u}} = N_{\bullet}$.

Proof. One may assume r = 1; write $N := N_1$. Fix an $F_{\mathfrak{u}}$ -basis n_1, \ldots, n_r of N and lift it to a family $\underline{n}_1, \ldots, \underline{n}_r \in \underline{M}$. Then the <u>F</u>-submodule $\underline{N} = \sum_{1 \leq i \leq r} \underline{F} \ \underline{n}_i \subset \underline{M}$ is in $\operatorname{Mod}_{/\underline{F}}$ by (8.2.1).

8.3.2. Lemma. Let $\underline{M} \in Mod_{/F}$ and consider the following properties.

- $(8.3.2.1) M_{\mu} = 0;$

- (8.3.2.2) The set of $\ell \in \mathcal{L}$ such that $M_{\ell} = 0$ is in \mathfrak{u} .

Then $(8.3.2.2) \Rightarrow (8.3.2.1)$. If <u>M</u> is finitely generated, $(8.3.2.1) \Rightarrow (8.3.2.2)$.

Proof. $(8.3.2.2) \Rightarrow (8.3.2.1)$ is straightforward. Conversely, if $\mathfrak{m}_{\mathfrak{u}}\underline{M} = \underline{M}$ and \underline{M} is finitely generated with \underline{F} -generators $\underline{m}_1, \ldots, \underline{m}_r$ then for every $i = 1, \ldots, r$, there exists $S_i \in \mathfrak{u}$ such that $\underline{m}_i \in e_{S_i}\underline{M}$ hence $\underline{M} = e_S\underline{M}$ with $S = S_1 \cap \cdots \cap S_r \in \mathfrak{u}$.

8.3.3. Lemma. Let $\underline{\phi} : \underline{M} \to \underline{N}$ be a morphism in $\operatorname{Mod}_{/\underline{F}}$ and consider the following properties. - (8.3.3.1) $\phi_{\mathfrak{u}} : M_{\mathfrak{u}} \to N_{\mathfrak{u}}$ has P;

- (8.3.3.2) The set S of all $\ell \in \mathcal{L}$ such that $\phi_{\ell} : M_{\ell} \to N_{\ell}$ has P is in \mathfrak{u} ,

where P is one of the properties of being injective, surjective, an isomorphism. Then $(8.3.3.2) \Rightarrow (8.3.3.1)$. If the conditions below are satisfied, $(8.3.3.1) \Rightarrow (8.3.3.2)$.

P	Condition
Surjective	ϕ has finitely generated cokernel
Injective	$\overline{\phi}$ has finitely generated kernel
Isomorphism	$\mid \overline{\phi} ightarrow has finitely generated kernel and cokernel$

Proof. By right-exactness (resp. left-exactness - 8.1.4) of $-\bigotimes_{\underline{F}} \mathbb{Q}_{\mathfrak{u}}$, $\operatorname{coker}(\underline{\phi})_{\mathfrak{u}} = \operatorname{coker}(\phi_{\mathfrak{u}})$ (resp. $\operatorname{ker}(\underline{\phi})_{\mathfrak{u}} = \operatorname{ker}(\phi_{\mathfrak{u}})$). So the conclusion follows from 8.3.2.

8.4. Let $\underline{M} \in \operatorname{Mod}_{/F}$ and Π be a group acting on \underline{M} . For every $\mathfrak{u} \in \mathcal{U}$,

8.4.1. **Lemma.** $(M_{\mu})_{\Pi} = (\underline{M}_{\Pi})_{\mu}$.

Proof. This follows from the exact sequence $\underline{M}^{\oplus\Pi} \xrightarrow{\sum_{\pi \in \Pi} (Id-\pi)} \underline{M} \to \underline{M}_{\Pi} \to 0$, right-exactness of $-\otimes_{\underline{F}} F_{\mathfrak{u}}$ and the fact that tensor products commute with direct sums.

From now on, assume furthermore that $\underline{M} \in \operatorname{Mod}_{/\underline{F}}$ is finitely generated, that for every $\ell \in \mathcal{L}$, F_{ℓ} is a Hausdorff topological field, that Π is a topological group which acts continuously on \underline{M} for \underline{M} equipped with the product topology of the topologies of the M_{ℓ} (recall M_{ℓ} is a finitely generated F_{ℓ} -module) and that Π is topologically finitely generated with topological generators π_1, \ldots, π_s . Let $\Pi^{\circ} \subset \Pi$ denote the abstract group generated by π_1, \ldots, π_s .

8.4.2. Lemma. $(M_{\mathfrak{u}})^{\Pi} = (\underline{M}^{\Pi})_{\mathfrak{u}}.$

Proof. The exact sequence $0 \to \underline{M}^{\Pi} \to \underline{M} \xrightarrow{(Id-\pi_1,\dots,Id-\pi_s)} \underline{M}^s$, 8.1.4 and the fact that tensor products commute with finite direct products (=direct sums) yield $(\underline{M}^{\Pi})_{\mathfrak{u}} = (M_{\mathfrak{u}})^{\Pi^\circ}$. So the assertion follows from the obvious inclusions $(M_{\mathfrak{u}})^{\Pi} \supset (\underline{M}^{\Pi})_{\mathfrak{u}} = (M_{\mathfrak{u}})^{\Pi^\circ} \supset (M_{\mathfrak{u}})^{\Pi}$.

In particular, if $\underline{N} \in \text{Mod}_{/\underline{F}}$ is also finitely generated and equipped with a continuous action of Π , (8.2.2) and 8.4.2 yield

(8.4.2.1) $\operatorname{Hom}_{\Pi}(M_{\mathfrak{u}}, N_{\mathfrak{u}}) = \operatorname{Hom}_{\Pi}(\underline{M}, \underline{N})_{\mathfrak{u}}$

8.4.3. Lemma. For every finite filtration $\underline{N}_{\bullet}: \underline{N}_0 = \underline{M} \supset \underline{N}_1 \supset \cdots \supset \underline{N}_r \supset \underline{N}_{r+1} = 0$ in $\operatorname{Mod}_{/\underline{F}}$, map $\sigma: \{0, \ldots, r+1\} \rightarrow \{0, \ldots, r+1\}$ and subset $X \subset \underline{F}[\Pi]$, consider the following assertions. - $(8.4.3.1) XN_{i,\mathfrak{u}} \subset N_{\sigma(i),\mathfrak{u}}, i = 0, \ldots, r+1;$

- (8.4.3.2) The set of all $\ell \in \mathcal{L}$ such that $XN_{\ell,i} \subset N_{\ell,\sigma(i)}, i = 0, ..., r+1$ is in \mathfrak{u} . Then (8.4.3.2) \Rightarrow (8.4.3.1). If X is finite (8.4.3.1) \Rightarrow (8.4.3.2).

Proof. $(8.4.3.2) \Rightarrow (8.4.3.1)$ is straightforward. For $(8.4.3.1) \Rightarrow (8.4.3.2)$, write $X = \{x_1, \ldots, x_t\}$. Then for every $i = 0, \ldots, r + 1$, one has $XN_{\ell,i} \subset N_{\ell,\sigma(i)}$ if and only if $(x_1, \ldots, x_t)(N_{\ell,i}) \subset N_{\ell,\sigma(i)}^t \subset M_{\ell}^t$. Let $\underline{n}_{i,1}, \ldots, \underline{n}_{i,t_i}$ be a set of \underline{F} -generators for \underline{N}_i (8.2.1). By (8.4.3.1), for every $1 \leq j \leq t_i$, there exists $S_{i,j} \in \mathfrak{u}$ such that $(x_1, \ldots, x_t)(\underline{n}_j) \in \underline{N}_{\sigma(i)}^t + e_{S_{i,j}}\underline{M}^t$. Hence $(x_1, \ldots, x_t)(\underline{N}_i) \subset \underline{N}_{\sigma(i)}^t + \sum_{1 \leq j \leq t_i} e_{S_{i,j}}\underline{M}^t \subset$ $\underline{N}_{\sigma(i)}^t + e_{S_i}\underline{M}^t$ with $S_i = S_{i,1} \cap \cdots \cap S_{i,t_i} \in \mathfrak{u}$. The set of $\ell \in \mathcal{L}$ satisfying (8.4.3.2) then contains $S_0 \cap \cdots \cap S_{r+1} \in \mathfrak{u}$

In particular,

- (8.4.3.3) ($\sigma = Id, X = \{\pi_1, \dots, \pi_s\}$) $N_{\bullet,\mathfrak{u}}$ is Π -stable if and only if the set of all $\ell \in \mathcal{L}$ such that $N_{\bullet,\ell}$ is Π -stable is in \mathfrak{u} .

- (8.4.3.4) $(\sigma(i) = i + 1, X = \{1 - \pi_1, \dots, 1 - \pi_s\}$ - See 8.3.1) Π acts unipotently on $M_{\mathfrak{u}}$ if and only if the set of all $\ell \in \mathcal{L}$ such that Π acts unipotently on M_{ℓ} is in \mathfrak{u} .

8.4.4. 8.3.1 and 8.4.3 imply that, every Π -submodule $N \subset M_{\mathfrak{u}}$ (hence resp. every Π -quotient $M_{\mathfrak{u}} \to N$) lifts to a Π -submodule $\underline{N} \subset \underline{M}$ (resp. a Π -quotient $\underline{M} \to \underline{N}$) in $\operatorname{Mod}_{/\underline{F}}$. From this, one immediately deduces that any Π -module N in the Tannakian category generated by the Π -module $M_{\mathfrak{u}}$ lifts to some \underline{N} in $\operatorname{Mod}_{/\underline{F}}$ which is a Π -subquotient of a Π -module of the form $\oplus_{(m,n)\in\mathbb{Z}_{\geq 0}^2}(\underline{M}^{\otimes m}\otimes \underline{\check{M}}^{\otimes n})^{\oplus\mu(m,n)}$ for some function $\mu:\mathbb{Z}_{\geq 0}^2 \to \mathbb{Z}_{\geq 0}$ with finite support.

8.4.5. Lemma. The following assertions are equivalent.

- (8.4.5.1) Π acting on $M_{\mathfrak{u}}$ has P;

- (8.4.5.2) The set S of all $\ell \in \mathcal{L}$ such that Π acting on M_{ℓ} has P is in \mathfrak{u} ,

where P is one of the properties of acting irreducibly or semisimply.

Proof. The assertion for P the property of acting irreducibly follows from 8.3.2 and 8.4.4. Let P be the property of acting semisimply and assume (8.4.5.2). Let $N \subset M_{\mathfrak{u}}$ be a Π -submodule. By 8.4.4, N lifts to an <u>F</u>-submodule <u>N</u> in Mod_{/F} which is Π -stable. As $S \in \mathfrak{u}$, one may take $N_{\ell} = 0$ for $\ell \in \mathcal{L} \setminus S$. By (8.4.5.2), the projection $\underline{M} \twoheadrightarrow \underline{M}/\underline{N}$ splits Π -equivariantly. The conclusion follows by applying $-\otimes_{\underline{F}} F_{\mathfrak{u}}$. Conversely, assume (8.4.5.1). If $S \notin \mathfrak{u}$ then $\mathcal{L} \setminus S \in \mathfrak{u}$ and for every $\ell \in \mathcal{L} \setminus S$ there exists a Π -submodule $N_{\ell} \subset M_{\ell}$ such that

$$Q_{\ell} := \operatorname{coker}(\operatorname{Hom}_{\Pi}(M_{\ell}/N_{\ell}, M_{\ell}) \xrightarrow{p_{\ell} \circ -} \operatorname{Hom}_{\Pi}(M_{\ell}/N_{\ell}, M_{\ell}/N_{\ell}))$$

is non-zero, where $p_{\ell}: M_{\ell} \to M_{\ell}/N_{\ell}$ is the canonical quotient morphism. In particular, $Q_{\mathfrak{u}} \neq 0$, where $\underline{Q} := \prod_{\ell \in \mathcal{L}} Q_{\ell}$. Write also $\underline{N} := \prod_{\ell \in \mathcal{L} \setminus S} N_{\ell}$ and let $\underline{p}: \underline{M} \to \underline{M}/\underline{N}$ denote the canonical quotient morphism. By right-exactness of $-\otimes_F F_{\mathfrak{u}}$, one obtains an exact sequence

$$\operatorname{Hom}_{\Pi}(\underline{M}/\underline{N},\underline{M})_{\mathfrak{u}} \xrightarrow{p_{\mathfrak{l}}} \operatorname{Hom}_{\Pi}(\underline{M}/\underline{N},\underline{M}/\underline{N})_{\mathfrak{u}} \to Q_{\mathfrak{u}} \to 0,$$

which, by (8.4.2.1), identifies with

$$\operatorname{Hom}_{\Pi}(M_{\mathfrak{u}}/N_{\mathfrak{u}}, M_{\mathfrak{u}}) \xrightarrow{p_{0-}} \operatorname{Hom}_{\Pi}(M_{\mathfrak{u}}/N_{\mathfrak{u}}, M_{\mathfrak{u}}/N_{\mathfrak{u}}) \to Q_{\mathfrak{u}} \to 0,$$

contradicting the fact that the morphism of Π -modules $N_{\mathfrak{u}} \hookrightarrow M_{\mathfrak{u}}$ splits Π -equivariantly by (8.4.5.1). \Box

The same arguments show the following.

8.4.6. Lemma. Let $\underline{N} \subset \underline{M}$ be an \underline{F} -submodule in $\operatorname{Mod}_{/\underline{F}}$ which is Π -stable. The following assertions are equivalent.

- (8.4.6.1) The inclusion $N_{\mathfrak{u}} \hookrightarrow M_{\mathfrak{u}}$ splits Π -equivariantly;
- (8.4.6.2) The set of all $\ell \in \mathcal{L}$ such that the inclusion $N_{\ell} \hookrightarrow M_{\ell}$ splits Π -equivariantly is in \mathfrak{u} .

References

- [A04] Y. ANDRÉ, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panorama et synthèse 17, S.M.F., 2004.
- [B96] P. BERTHELOT, Altération des variétés algébriques (d'après A.J. de Jong), Sém. Bourbaki 1995/1996 815, Astérisque 241, S.M.F., p. 273–311, 1997.

[Bo85] N. BOURBAKI, Algèbre commutative, Chapitres 1 à 4, Masson, Paris, 1985.

- [CCh20] A. CADORET and F. CHARLES, A remark on uniform boundedness for Brauer groups, Algebraic Geometry 7, p. 512–522, 2020.
- [CHT17] A. CADORET, C.Y. HUI and A. TAMAGAWA, Geometric monodromy semisimplicity and maximality, Annals of Math. 186, p. 205-236, 2017
- [CT19] A. CADORET and A. TAMAGAWA, On the geometric image of \mathbb{F}_{ℓ} -linear representations of étale fundamental groups, I.M.R.N. **2019**, p.2735–2762, 2019.
- [CZ21] A. CADORET and W. ZHENG, *Etale sheaves with ultraproduct coefficients and integral models in compatible systems*, in preparation.

[Cha13] F. CHARLES, The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194, p. 119–145, 2013.

[Chi04] C. W. CHIN, Independence of ℓ of monodromy groups, J.A.M.S. 17, p. 723–747, 2004.

- [D74] P. DELIGNE, La conjecture de Weil: I, Inst. Hautes Études Sci. Publ. Math. 43, p. 273–307, 1974.
- [D80] P. DELIGNE, La conjecture de Weil: II, Inst. Hautes Études Sci. Publ. Math. 52, p. 137–252, 1980.
- [D82] P. DELIGNE, Hodge Cycles on Abelian varieties, in Hoge cycles, motives and Shimura varieties, P. Deligne, J.S. Milne, A. Ogus and K-Y Shih eds, L.N.M. 900, 1982.

- [DM82] P. DELIGNE and J.S. MILNE, *Tannakian categories* in Hodge cycles, Motives and Shimura Varieties, L.N.M. 900, Springer-Verlag, p. 101-228, 1982.
- [Do72] L. DORNHOFF, Group representation theory, Part B Pure and Applied Math. 7, Dekker eds., 1972.
- [FW84] G. FALTINGS, G. WÜSTHOLZ (eds.), Rational Points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, 1984.
- [G83] O. GABBER, Sur la torsion dans la cohomologie l-adique d'une variété, C.R. Acad. Sci. Paris Ser. I Math. 297, p. 179–182, 1983.
- [Gr68] A. GROTHENDIECK, Crystals and the de Rham cohomology of schemes, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, p. 306–358, 1968.
- [Gr71] A. GROTHENDIECK et al., Théorie des intersections et théorème de Riemann-Roch (SGA 6), L.N.M. 225, Springer-Verlag, 1971.
- [H52] W. HODGE, The topological invariants of algebraic varieties, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), 1, p. 182–192, 1952.
- [118] K. ITO, Finiteness of Brauer groups of K3 surfaces in characteristic 2, Intl. J. Number Theory 14, p. 1813–1825, 2018.
- [KMP16] W. KIM and K. MADAPUSI PERA, 2-adic integral canonical models, Forum Math. Sigma 4, Paper No. e28, 34 pp., 2016.
- [L02] L. LAFFORGUE, Chtoucas de Drinfeld et correspondence de Langlands, Invent. Math. 147, p.1–241, 2002.
- [LaP90] M. Larsen and R. Pink, Determining representations from invariant dimensions, Invent. Math. 102, p. 377–398, 1990.
- [LaP92] M. LARSEN and R. PINK, On l-independence of algebraic monodromy groups in compatible systems of representations, Invent. Math. 107, p. 603–636, 1992.
- [LaP95] M. LARSEN and R. PINK, Abelian varieties, l-adic representations, and l-independence, Math. Ann. 302, p. 561–579, 1995.
- [MP15] K. MADAPUSI PERA, The Tate conjecture for K3 surfaces in odd characteristic, Invent. Math. 201, p. 625–668, 2015.
- [MP20] K. MADAPUSI PERA, Erratum to appendix to '2-adic integral canonical models', Forum Math. Sigma 8, Paper No. e14, 11 pp., 2020.
- [Ma14] D. MAULIK, Supersingular K3 surfaces for large primes, With an appendix by Andrew Snowden, Duke Math. J. 163, p. 2357-2425, 2014.
- [MiR04] J.S. MILNE and N. RAMACHANDRAN, Integral motives and special values of zeta functions, J. Amer. Math. Soc. 17, p. 499–555, 2004.
- [Mo77] S. MORI, On Tate conjecture concerning endomorphisms of abelian varieties, International symposium of Algebraic Geometry, Kyoto, 1977. p. 219–230, 1977.
- [NS07a] N. NIKOLOV and D. SEGAL, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. 165, p. 171–238, 2007.
- [NS07b] N. NIKOLOV and D. SEGAL, On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math. 165, p. 239–273, 2007.
- [N83] N.O. NYGAARD, The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math. 74, p. 213–237, 1983.
- [NO85] N.O. NYGAARD and A. OGUS, Tate's conjecture for K3 surfaces of finite height, Ann. Math. 122, p. 461–507, 1985.
- [P15] A. PAL, The p-adic monodromy group of abelian varieties over global function fields of characteristic p, Preprint 2015 available on arXiv:151203587.
- [Q20] Y. QIN, Comparison of different Tate conjectures, Preprint 2020 available on arXiv:2012.0133
- [S68] J.-P. SERRE, Corps locaux, Hermann, 1968.
- [S94a] J.-P. SERRE, Sur la semisimplicité des produits tensoriels de représentations de groupes, Inventiones Math. 116, p. 513–530, 1994.
- [S94b] J.-P. SERRE, Propriétés conjecturales des groupes de Galois motiviques et des représentations galoisiennes l-adiques, in Motives 1, Proc. of Symp. in Pure Math. 55, A.M.S., p.377–400, 1994.
- [S00] J.-P. SERRE, Lettres à Ken Ribet du 1/1/1981 et du 29/1/1981, Oeuvres. Collected papers. IV, 1985-1998, Springer, 2000.
- [SkZ08] A.N. SKOROBOGATOV and J.G. ZARHIN, A finiteness theorem for Brauer groups of abelian varieties and K3 surfaces, J. Alg. Geometry 17, p. 481–502, 2008.
- [SkZ15] A.N. SKOROBOGATOV and J.G. ZARHIN, A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic. IMRN 2015, p. 11404–11418, 2015.
- [T65] J. TATE, Algebraic cycles and poles of zeta functions, in O.F.G. Schilling (ed), Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), New York: Harper and Row, p. 93–110, 1965.
- [T66] J. TATE, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2, p. 134–144, 1966.
- [T94] J. TATE, Conjectures on algebraic cycles in l-adic cohomology, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., p. 71–83, 1994.
- [Z75] J.G. ZARHIN, Endomorphisms of abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39, p. 272–277, 1975.
- [Z77] J.G. ZARHIN, Endomorphisms of abelian varieties and points of finite order in characteristic p, Mat. Zametki 21, p. 737–744, 1977.

anna.cadoret@imj-prg.fr

IMJ-PRG – Sorbonne Université and IUF

chhui@maths.hku.hk Department of Mathematics - The University of Hong Kong tamagawa@kurims.kyoto-u.ac.jp

Research Institute for Mathematical Sciences – Kyoto University