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Abstract

The optimal transport (OT) problem is reduced to a linear programming (LP) problem through

discretization. In this paper, we introduced the random block coordinate descent (RBCD) methods

to directly solve this LP. In each iteration, we restrict the potential large-scale optimization problem

to small LP subproblems constructed via randomly chosen working sets. Using an expected Gauss-

Southwell-q rule to select these working sets, we equip a vanilla version (RBCD0) with almost sure

convergence and linear convergence rate in expectation to solve a general LP problem. By further

exploring the special structure of constraints in the OT problems and leveraging the theory of linear

systems, we proposed several approaches to refine the random working set selection and accelerate the

vanilla method. Preliminary numerical experiments verify the acceleration effects, solution sparsity

and demonstrate several merits of an accelerated random block coordinate descent (ARBCD) over

the Sinkhorn’s algorithm when seeking highly accurate solutions.

AMS subject classification: 65C35, 68W20, 90C08, 90C25.

Keywords: Optimal transport, deep particle method, convex optimization, random block coordinate

descent, convergence analysis.

1 Introduction

Background and motivation The optimal transport problem was first introduced by Monge in 1781,

which aims to find the most cost-efficient way to transport mass from a set of sources to a set of sinks.

Later, the theory was modernized and revolutionized by Kantorovich in 1942, who found a key link

between optimal transport and linear programming. In recent years, optimal transport has become a

popular and powerful tool in data science, especially in image processing, machine learning, and deep

learning areas, where it provides a very natural way to compare and interpolate probability distributions.

For instance, in generative models [2, 20, 46], a natural penalty function is the distance between the data

and the generated distribution. The transport plan, which minimizes the transportation cost, provides

solutions to image registration [16] and seamless copy [31]. Apart from data science, in the past three

decades, there has been an explosion of research interest in the optimal transport because of the deep

connections between the optimal transport problems with quadratic cost functions and a diverse class

of partial differential equations (PDEs) arising in statistical mechanics and fluid mechanics; see e.g.

[8, 5, 29, 19, 45] for just a few of the most prominent results and references therein.

Inspired by this research progress, we have developed efficient numerical methods for solving multi-

scale PDE problems using the optimal transport approach. Specifically, in our recent paper, we proposed

a deep particle method to learn and compute invariant measures of parameterized stochastic dynamical

systems [46]. To achieve this goal, we develop a deep neural network (DNN) to map a uniform distribution

(source) to an invariant measure (target), where the Péclet number is an input parameter for the DNN.
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The network is trained by minimizing the 2-Wasserstein distance (2-WD) between the measure of network

output µ and target measure ν. We consider a discrete version of 2-WD for finitely many samples of µ

and ν, which involves a linear program (LP) optimizing over doubly stochastic matrices [39].

Directly solving the LP by the interior point method [47] is too costly. Motivated by the domain

decomposition method [41] in scientific computing, which solves partial differential equations using sub-

routines that solve problems on subdomains and has the advantage of saving memory (i.e., using the

same computational resource, it can compute a larger problem), we devised a mini-batch interior point

method by sampling smaller sub-matrices while preserving row and column sums. This turns out to

be very efficient and integrated well with the stochastic gradient descent (SGD) method for the entire

network training. However, we did not get the convergence analysis for this mini-batch interior point

method in [46].

The aim of this paper is twofold. First, we want to equip the mini-batch interior point method in

[46] with rigorous convergence analysis after minimal modification. Second, we desire to improve the

mini-batch selection strategy and achieve a better and more robust performance in computing optimal

transport problems. We realize that the mini-batch interior point method coincides with the random

block coordinate descent (RBCD) method in optimization terminology. In particular, it applies the block

coordinate descent (BCD) method to the LP problem directly, selects the working set randomly, and

solves the subproblems using the primal-dual interior-point method [47] or any efficient linear program-

ming solver. Encouraged by the proved efficiency of this approach, we will develop theoretical results on

solving LP with RBCD methods and investigate various ways to choose working sets.

Theorectical contributions In this work, we first propose an expected Gauss-Southwell-q rule to

guide selection of the working set. It enables almost sure convergence and linear convergence rate in

expectation to solve a general LP. Based on this rule, we design a vanilla RBCD method - RBCD0,

which chooses the working set with full randomness. Then we explore the special linear system in the

LP formulation of OT. We characterize all the elementary vectors of the null space and provides a plan

to find conformal realization of any given vector in the null space with low computational cost. Based

on these findings, we propose various approaches to refine the working set selection and improve the

performance of RBCD0. A better estimation of the constant in the linear convergence rate is shown.

Moreover, we incorporate an acceleration technique inspired by the momentum concept.

Numerical experiments We conduct numerical experiments to illustrate the performance of the pro-

posed methods. Synthetic data sets and invariant measures generated from IPM methods are utilized to

create distributions ranging from 1D to 3D. First, we compare among different RBCD methods proposed

in this article: we demonstrate the benefits by refining working set selection and verify the effect of an

acceleration technique. We also illustrate the gap between theory and practice regarding convergence

rate and sparse solutions generated by the proposed RBCD methods. Second, we compare the one with

the best performance, ARBCD, with the Sinkhorn’s algorithm. Preliminary numerical experiments

show that ARBCD outperforms the Sinkhorn’s algorithm in computation time when seeking solutions

with relatively high accuracy.

Previous research on (R)BCD BCD and RBCD are well-studied for essentially unconstrained

smooth optimization (sometimes allow separable constraints or nonsmooth objective functions): [4, 15,

40] investigate BCD with cyclic coordinate search; [28, 24, 35] study RBCD to address problems with pos-

sibly nonsmooth separable objective functions; other related works include theoretical speedup of RBCD

([36, 25]), second-order sketching ([34, 6]). However, much less is known for their convergence properties

when applied to problems with nonseparable nonsmooth functions as summands or coupled constraints.

To our best knowledge, no one has ever considered using the RBCD to solve general LP before and

the related theoretical guarantees are absent. In [26], the authors studied the RBCD method to tackle

problems with a convex smooth objective and coupled linear equality constraints x1 +x2 + . . .+xN = 0;

a similar algorithm named random sketch descent method [27] is investigated to solve problems with

general smooth objective and general coupled linear equality constraints Ax = b. However, after adding

the simple bound constraints x ≥ 0, the analysis in either [26, 27] may not work anymore, nor can it
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be easily generalized. Beck [3] studied a greedy coordinate descent method but focus on a single linear

equality constraint and bound constraints. In Paul Tseng and his collaborators’ work [42, 43, 44], a

block coordinate gradient descent method is proposed to solve linearly constrained optimization prob-

lems including general LP. In these works, a Gauss-Southwell-q rule is proposed to guide the selection

of the working set in each iteration. Therefore, the working set selected in a deterministic fashion can

only be decided after solving a quadratic program with a similar problem size as the original one. In

contrast, the mini-batch interior point/RBCD method we propose chooses the working set with ran-

domness and low computational cost. Another line of research to deal with separable functions, linear

coupled constraints and other additional separable constraints considers the alternating direction method

of multipliers (ADMM) [9, 17, 48, 49], which updates blocks of primal variables in Gauss-Seidal fashion

and also involves multipliers update.

Existing algorithms for OT Encouraged by the success in applying the Sinkhorn’s algorithm to the

dual of entropy regularized OT [10], researchers conducted extensive studies along this line, including

other types of regularization [7][12], acceleration [14][22] and numerical stability [38]. Other works

significantly different from the entropy regularization framework include [21], which consider computing

Schrödinger bridge problem (in fact equivalent to OT with fisher information regularization), and [13], a

multiscale strategy suitable for OT between points intrinsically on low dimensional spaces. RBCD in this

study is a regularization-free method. Therefore, it does not need to deal with inaccurate solution and

numerical stability issues introduced by the regularization term. Moreover, each subproblem in RBCD

is a small-size LP and allows flexible choices for resolution.

Organization The rest of the paper is organized as follows. In Section 2, we review the basic idea of

optimal transport and Wasserstein distance. In Section 3, we introduce the expected Gauss-Southwell-q

rule and a vanilla RBCD (RBCD0) for computing general LP problems. In Section 4, we explore the

property of the linear system in OT and propose several approaches to refine and accelerate RBCD0.

In Section 5, numerical results are presented to demonstrate the performance of our methods. Finally,

concluding remarks are made in Section 6.

Notation. For any matrix X, denote X(i, j) as its element in ith column and jth row, denote X(:, j)

as its jth row vector. For a vector v, we usually use superscripts to denote its copies (e.g., vk in kth

iteration of an algorithm) and use subscripts to denote its components (e.g., vi); for a scalar, we usually

use subscripts to denote its copies. Occasional inconsistent cases will be declared in context. mod(k,n)

means k modulo n. For any vector v, supp(v) , {i ∈ {1, . . . ,n} | vi 6= 0}. Given a matrix X ∈ Rn×n, we

define its vectorization as follows,

vec(X) , (X(:, 1)T,X(:, 2)T, ...,X(:,n)T)T.

For any positive integer k ≥ 2, denote [1, k] , {1, ..., k}.

2 Optimal transport problems and Wasserstein distance

The Kantorovich formulation of optimal transport can be described as follows,

inf
γ∈Γ(µ,ν)

∫
X×Y

C(x, y) dγ(x, y) (1)

where Γ(µ, ν) is the set of all measures on X × Y whose marginal distribution on X is µ and marginal

distribution on Y is ν, C(x, y) is the transportation cost. In this article, we refer to the Kantorovich

formulation when we mention optimal transport.

Wasserstein distances are metrics on probability distributions inspired by the problem of optimal

mass transport. They measure the minimal effort required to reconfigure the probability mass of one

distribution in order to recover the other distribution. They are ubiquitous in mathematics, especially in

fluid mechanics, PDEs, optimal transport, and probability theory [45]. One can define the p-Wasserstein

distance between probability measures µ and ν on a metric space Y with distance function dist by
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Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Y×Y

dist(ỹ, y)p dγ(ỹ, y)

)1/p

(2)

where Γ(µ, ν) is the set of probability measures γ on Y ×Y satisfying γ(A×Y ) = µ(A) and γ(Y ×B) =

ν(B) for all Borel subsets A,B ⊂ Y . Elements γ ∈ Γ(µ, ν) are called couplings of the measures µ and

ν, i.e., joint distributions on Y × Y with marginals µ and ν on each axis. p-Wasserstein distance is a

special case of optimal transport when X = Y and the cost function c(ỹ, y) = dist(ỹ, y)p.

In the discrete case, the definition (2) has a simple intuitive interpretation: given a γ ∈ Γ(µ, ν)

and any pair of locations (ỹ, y), the value of γ(ỹ, y) tells us what proportion of µ mass at ỹ should be

transferred to y, in order to reconfigure µ into ν. Computing the effort of moving a unit of mass from ỹ

to y by dist(ỹ, y)p yields the interpretation of Wp(µ, ν) as the minimal effort required to reconfigure µ

mass distribution into that of ν.

In a practical setting [32], referred to as a point cloud, the closed-form solution of µ and ν may

be unknown, instead only n independent and identically distributed (i.i.d.) samples of µ and n i.i.d.

samples of ν are available. We approximate the probability measures µ and ν by empirical distribution

functions:

µ =
1

n

n∑
i=1

δỹi and ν =
1

n

n∑
j=1

δyj , (3)

where δx is the dirac measure. Any element in Γ(µ, ν) can clearly be represented by a transition matrix,

denoted as γ = (γi,j)i,j satisfying:

γi,j ≥ 0; ∀j,
n∑
i=1

γi,j =
1

n
; ∀i,

n∑
j=1

γi,j =
1

n
. (4)

Then γi,j means the mass of ỹi that is transferring to yj .

We denote all matrices in Rn×n satisfying (4) as Γn, then (2) becomes

Ŵ (f) :=

 inf
γ∈Γn

n,n∑
i,j=1

dist(ỹi, yj)pγi,j

1/p

. (5)

Remark. Γn is in fact the set of n× n doubly stochastic matrix [39] divided by n.

Another practical setting, which is commonly used in fields of computer vision [30, 23], is to compute

Wasserstein distance between two histograms. To compare two grey-scale figure (2D, size n0 × n0), we

first normalize the grey-scale such that the values of cells of each picture sum to one. We denote centers

of the cell as {yi}ni=1 and {ỹi}ni=1, then we can use two probability measures to represent the two figures:

µ =

n∑
i=1

r1,iδỹi and ν =

n∑
j=1

r2,jδyj ,

where r1,i, r2,j ≥ 0,∀1 ≤ i, j ≤ n,
n∑
i=1

r1,i =
n∑
j=1

r2,j = 1. The discrete Wasserstein distance (5) keeps the

same form while the transition matrix follows different constraint:

γi,j ≥ 0; ∀j,
n∑
i=1

γi,j = r2,j ; ∀i,
n∑
j=1

γi,j = r1,i. (6)

Note that in both setting, the computation of Wasserstein distance is reduced to an LP, i.e.,

min
∑

1≤i,j≤n
Ci,jγi,j

subject to
n∑
j=1

γi,j = r1,i,
n∑
j=1

γi,j = r2,i, γi,j ≥ 0,
(7)
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where r1 , (r1,1, ..., r1,n)T and r2 , (r2,1, ..., r2,n)T are two probability distributions, and Ci,j =

dist(x̃i, xj)p. More generally, we can let r1 and r2 be two nonnegative vectors and Ci,j = C(ỹi, yj)

be any appropriate transportation cost from ỹi to yj , so (7) also captures the discrete OT.

However when the number of particles n becomes large, the number of variables (entries of γ) scales

like n2, which leads to costly computation. Therefore, we will discuss random block coordinate descent

methods to keep the computational workload in each iteration reasonable.

3 Random block coordinate descent for standard LP

In this section, we first generalize the LP problem (7) to a more general one (see Eq.(8)). Then we

propose a random block coordinate descent algorithm for resolution. Its almost sure convergence and

linear convergence rate in expectation are analyzed.

We consider the following standard LP problem:

min
x∈RN

cTx

subject to Ax = b, x ≥ 0,
(8)

where A ∈ RM×N , b ∈ RM , c ∈ RN , hence M is the number of constraint and N is the total degree of

freedom. Suppose that N , {1, . . . , N} and denote X , {x ∈ RN | Ax = b, x ≥ 0} as the feasible set.

Assume that (8) is finite and has an optimal solution. For any x ∈ X and I ⊆ N , denote

D(x; I) , argmind∈RN

{
cT d | x+ d ≥ 0, Ad = 0, di = 0,∀i ∈ N \ I

}
. (9)

q(x; I) , min
d∈RN

{
cT d | x+ d ≥ 0, Ad = 0, di = 0,∀i ∈ N \ I

}
. (10)

Namely, D(x; I) is the optimal solution set of the linear program in (9) and q(x; I) is the optimal function

value. We have that q(x; I) = cT d for any d ∈ D(x; I). Denote X ∗ as the optimal solution set of (8).

Then the following equations hold for any x ∈ X :

X ∗ = x+D(x;N ), (11)

q(x;N ) = cTx∗ − cTx, ∀x∗ ∈ X ∗. (12)

Consider the block coordinate descent (BCD) method for (8):

find dk ∈ D(xk, Ik),

xk+1 := xk + dk,
(13)

where Ik ⊂ N is the working set chosen at iteration k. Next we describe several approaches to select

the working set Ik.

Gauss-Southwell-q rule Motivated by the Gauss-Southwell-q rule introduced in [43], we desire to

select Ik such that

q(xk; Ik) ≤ vq(xk;N ), (14)

for some constant v ∈ (0, 1]. Note that by (12), we have

q(xk;N ) = cT (x∗ − xk), (15)

where x∗ is an optimal solution of (8). Therefore, (10)-(15) imply that

cT dk ≤ vcT (x∗ − xk)

(13)
=⇒ cT (xk+1 − xk) ≤ vcT (x∗ − xk)

=⇒ cT (xk+1 − x∗) ≤ (1− v)cT (xk − x∗). (16)
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(16) indicates that the gap of function value decays exponentially with rate 1− v, as long as we choose

Ik according to the Gauss-Southwell-q rule (14) at each iteration k. A trivial choice of Ik to satisfy (14)

is N and v = 1. However, this choice results in a potential large-scale subproblem in BCD method (13),

contradicting the purpose of using BCD. Instead, we should set an upper bound on the cardinality of

Ik, namely, a reasonable batchsize to balance the computational effort in each iteration and covergence

performance of BCD. Next we discuss the existence of such an Ik given an upper bound l on |Ik|, which

necessitates the following concept.

Definition 1. A vector d̄ ∈ RN is conformal to d ∈ RN if

supp(d̄) ⊆ supp(d), d̄idi ≥ 0,∀i ∈ N .

The following Theorem confirms the existence of such an Ik that satisfies (14), the proof of which

follows closely to [42, Proposition 6.1] and can be found in the appendix.

Theorem 1. Given any x ∈ X , l ∈ {rank(A) + 1, . . . , N} and d ∈ D(x;N ). There exist a set I ∈ N
satisfying |I| ≤ l and a vector d̄ ∈ null(A) conformal to d such that

I = supp(d̄). (17)

q(x; I) ≤ 1

N − l + 1
q(x;N ). (18)

Proof. If d = 0, then let d̄ = 0 and I = ∅. We have q(x; I) = q(x;N ) = 0. Therefore, both (17) and

(18) are satisfied. If d 6= 0 and |supp(d)| ≤ l, then let d̄ = d. Thus, I = supp(d̄) satisfies |I| ≤ l and

q(x; I) = q(x;N ). If |supp(d)| > l, then similar to the discussion in [42, Proposition 6.1], we have that

d = d(1) + . . .+ d(r),

for some r ≤ |supp(d)| − l + 1 and some nonzero d(s) ∈ null(A) conformal to d with |supp(d(s))| ≤ l,

s = 1, ..., r. Since |supp(d)| ≤ N, we have r ≤ N − l + 1. Since Ad(s) = 0 and xi + d
(s)
i ≥ xi + di ≥

0,∀s = 1, ..., r and ∀i ∈ {i | di < 0}, we have that x+ d(s) ∈ X ,∀s = 1, ..., r. Therefore,

q(x;N ) = cT d =

r∑
s=1

cT d(s) ≥ r min
s=1,...,r

{cT d(s)}.

Denote s̄ ∈ argmins=1,...,r{cT d(s)} and let I = supp(d(s̄)), then |I| ≤ l and

q(x;N ) ≥ rcT d(s̄) ≥ rq(x; I) ≥ (N − l + 1)q(x; I).

Therefore (17) and (18) hold for this I and d̄ = d(s̄).

However, it is not clear how to identify the set I described in Theorem 1 with little computational

effort for a general A. Therefore, we introduced the following.

Expected Gauss-Southwell-q rule We introduce randomness in the selection of Ik to reduce the

potential computation burden in identifying an Ik that satisfies (14). Consider an expected Gauss-

Southwell-q rule:

E[q(xk; Ik) | Fk] ≤ vq(xk;N ), (19)

where v ∈ (0, 1] is a constant, and Fk , {x0, . . . , xk} denotes the history of the algorithm. Therefore,

using the notations of LP (8) and BCD method (13):

(10)(15)(19) =⇒ E[cT dk | Fk] ≤ vcT (x∗ − xk)

=⇒ E[cT (xk+1 − xk) | Fk] ≤ vcT (x∗ − xk)

=⇒ E[cT (xk+1 − x∗) | Fk]− cT (xk − x∗) ≤ vcT (x∗ − xk)
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=⇒ E[cT (xk+1 − x∗) | Fk] ≤ (1− v)cT (xk − x∗), (20)

where x∗ is an optimal solution of (8). According to [33, Lemma 10, page 49], cT (xk − x∗)→ 0 almost

surely. Moreover, if we take expectations on both sides of (20),

E[cT (xk+1 − x∗)] ≤ (1− v)E[cT (xk − x∗)]
=⇒ E[cT (xk − x∗)] ≤ (1− v)kE[cT (x0 − x∗)].

i.e., the expectation of function value gap converges to 0 exponentially with rate 1− v.

Vanilla random block coordinate descent Based on the expected Gauss-Southwell-q rule, we

formally propose a vanilla random block coordinate descent (RBCD0) algorithm (Algorithm 1) to solve

the LP (8). Specifically, we choose the working set Ik with full randomness, that is, randomly choose an

index set of cardinality l out of N . Then with probability at least 1

(N
l )

, the index set will be the same as

or cover the working set suggested by Theorem 1. As a result, (19) will be satisfied with v ≥ 1

(N
l )(N−l+1)

.

Algorithm 1 Vanilla random block coordinate descent (RBCD0)

(Initialization) Choose feasible x0 ∈ RN and the batch size l > 0.

for k = 0, 1, 2, . . . do

Step 1. Choose Ik uniformly randomly from N with |Ik| = l.

Step 2. Find dk ∈ D(xk; Ik).

Step 3. xk+1 := xk + dk.

end for

Therefore, according to the previous discussions, Algorithm 1 generates a sequence {xk} such that the

value of cTxk converges to the optimal with probability 1. Moreover, the expectation of the optimality

gap converges to 0 exponentially. Note that 1

(N
l )(N−l+1)

is only a loose lower bound of v. It can be

very small when N grows large because of the binomial coefficient
(
N
l

)
. However, in the numerical

experiments (c.f. Sec. 5), this lower bound is rarely met. In the following subsection, we will discuss

further improvement of this bound given the specific structure of OT.

4 Random block coordinate descent and optimal transport

Denote the cost matrix C , (Ci,j)i,j in (7). Then calculating the OT between two measures with finite

support (problem (7)) is a special case of (8), where c = vec(C), and N = n2. The constraint matrix A

has the following structure:

A ,


In In . . . In
1Tn

1Tn
. . .

1Tn


︸ ︷︷ ︸

n blocks

, (21)

where In is an n × n identity matrix, 1n is an n dimensional vector of all 1’s (then M = 2n). Right

hand side b in (8) has the form b , ((r1)T , (r2)T )T , where r1, r2 ∈ Rn+ can be two discrete probability

distributions. Next, we discuss the property of matrix A and null(A).

Property of matrix A A nonzero d ∈ RN is an elementary vector of null(A) if d ∈ null(A) and there

is no nonzero d′ ∈ null(A) that is conformal to d and supp(d′) 6= supp(d). According to the definition

in (21), we say that a nonzero matrix X is an elementary matrix of null(A) if vec(X) is an elementary
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vector of null(A). For simplicity, a matrix M1 being conformal to M2 means vec(M1) being conformal

to vec(M2) for the rest of this paper. Now we define a set EA:

X ∈ EA ⊆ Rn×n ⇐⇒ X 6= 0, and after row and column permutations, X is

a multiple of one of the following matrices:

E2 =


1 −1

−1 1

0
. . .

0


n×n

, E3 =



1 −1

−1 1

−1 1

0
. . .

0


n×n

, ...,

En−1 =



1 −1

−1 1

−1 1
. . .

−1 1

0


n×n

, En =


1 −1

−1 1

−1 1
. . .

−1 1


n×n

.

Lemma 2. Every matrix in EA is an elementary matrix of null(A).

Theorem 3. Given any D ∈ Rn×n, if vec(D) ∈ null(A), then D has a conformal realization [37, Section

10B], namely:

D = D(1) +D(2) + . . .+D(s), (22)

where D(1), . . . , D(s) are elementary matrices of null(A) and D(i) is conformal to D, for all i = 1, . . . , s.

In particular, D(i) ∈ EA, ∀i = 1, ..., s. Therefore, EA includes all the elementary matrices of null(A).

Proof. First, we show that for any nonzero D such that vec(D) ∈ null(A), there exists X ∈ EA such that

X is conformal to D. We prove this by contradiction and induction.

Suppose that noX ∈ EA is conformal toD. Note that vec(D) ∈ null(A) is equivalent to
∑m
i=1D(i, j̄) =∑n

j=1D(̄i, j) = 0,∀ī, j̄. WLOG, suppose that D(1, 1) 6= 0 since we can permute row/column to let

D(1, 1) 6= 0. Further, suppose that D(1, 1) > 0 since we can otherwise prove the same statement for −D.

Since vec(D) ∈ null(A), the first column of D must have one negative element. Suppose D(2, 1) < 0

WLOG. The second row of D must have one positive element, so suppose D(2, 2) > 0 WLOG. Since no

X ∈ EA is conformal to D, we must have D(1, 2) ≥ 0. Therefore, the 2× 2 principal matrix of D has the

following sign arrangement (after appropriate row/column permutations),(
+ +/0

− +

)
,

where we use +, +/0, −, and −/0 to indicate that the corresponding entry is positive, nonnegative,

negative, and nonpositive respectively. If n = 2, then the above pattern is impossible, leading to a

contradiction. Suppose that n ≥ 3. For math induction, we assume that after appropriate row/column

permutations, the k × k principal matrix of D has the following sign arrangement (2 ≤ k ≤ n− 1),

+ +/0 +/0 . . . +/0

− + +/0
. . .

...

−/0 − +
.. . +/0

...
. . .

. . .
. . . +/0

−/0 . . . −/0 − +


, (23)

i.e., D(i, j) ≥ 0, ∀i ≤ j ≤ k; Dij ≤ 0, ∀j < i ≤ k; D(i, i) > 0, ∀1 ≤ i ≤ k; D(i+ 1, i) < 0, ∀1 ≤ i ≤ k− 1.
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kth column of D needs to have at least one negative element, so suppose D(k + 1, k) < 0 WLOG.

No X ∈ EA is conformal to D, so D(k+ 1, i) ≤ 0, ∀i = 1, ..., k− 1. Otherwise, let i0 be the largest index

1, · · · , k − 1 such that D(k + 1, i0) > 0. Then the submatrix D(i0 + 1 : k + 1, i0 : k) takes the form,

− + +/0 . . . +/0

−/0 − +
.. .

...
...

. . .
. . .

. . . +/0

−/0 . . . −/0 − +

+ −/0 . . . −/0 −

 . (24)

Moving the first column of (24) to the last (i.e., for D, move the i0th column and insert it between k

and k + 1th column) and shift the resulting submatrix to the upper left corner through permutation

operations, we can see Ek−i0+1 is conformal to it.

(k+1)th row of D needs to have at least one positive element, so suppose D(k+1, k+1) > 0 WLOG.

Similar argument shows if there is no X ∈ EA is conformal to D, so D(i, k + 1) ≥ 0, ∀i = 1, ..., k.

Therefore, the (k+ 1)× (k+ 1) principal matrix of D has exactly the same sign pattern as indicated

by (23), after appropriate row/column permutations. Note that this is true when k+1 = n. However, D

itself cannot have the sign pattern as (23) after row/column permutations since the summation of each

column/row of D is 0. Contradiction.

Suppose that X(1) ∈ EA and X(1) is conformal to D. Then X(1) can be scaled properly by α1 > 0

such that |supp(D−α1X(1))| < |supp(D)| and D−α1X
(1) is conformal to D. Denote D(1) , α1X

(1) and

D̄(1) = D−D(1). D̄(1) is the new D and we repeat this process. Eventually, we have that the conformal

realization (22) holds since |supp(D)| ≤ n2. If D is an elementary matrix, by the conformal realization

of D as in (22), D must have the same support with all D(i) ∈ EA, i = 1, ..., s. Therefore, by definition

of EA, D must be a multiple of the special matrix in the description of EA after a certain row/column

permutation, and itself is in EA. Thus EA describes all the elementary matrices of null(A).

Remark. For a given D such that vec(D) ∈ null(A), a simple algorithm following the proof in Theorem 3

to find an elementary matrix X of D 6= 0 will cost at most O(n2) operations. Select appropriate α > 0

such that D − αX is conformal to D and |supp(D − αX)| < |supp(D)|. Repeat this process and we can

find the conformal realization in supp(D) ≤ n2 steps. Therefore, the total operation to find the conformal

realization is O(n4). In contrast, the approach proposed by [44] finds a conformal realization with support

cardinality less than l (usually l is much smaller than n2) is O(n3(n2 − l)2).

Working set selection By analyzing the structure of elementary matrices of null(A), we will have a

better idea of potential directions along which the transport cost is minimized by a large amount. This

is supported by the following theorem, where we continue using notations introduced in Section 3.

Theorem 4. Consider the linear program (8) where A ∈ RM×N and b ∈ RM are defined as in (21) (M =

2n, N = n2). Given any X ∈ Rn×n and D ∈ Rn×n such that vec(X) ∈ X , and vec(D) ∈ D(vec(X);N ).

There exists an elementary matrix D̄ of null(A) conformal to D such that for any set I ∈ N satisfying

I ⊇ supp(vec(D̄)),

We have

q(vec(X); I) ≤
(

1

n2 − 3

)
q(vec(X);N ). (25)

Proof. Since vec(D) ∈ D(vec(X);N ), vec(D) ∈ null(A). Then based on Theorem 3, we have the conformal

realization:

D = D(1) +D(2) + ...+D(s).

9



Moreover, proof of Theorem 3 indicates that we can construct this realization with s ≤ n2 − 3, because

the support of D(i) has cardinality at least 4. Then similar to discussion in Theorem 1, we may find

s̄ ∈ {1, . . . , s} such that D̄ = D(s̄), I ⊇ supp(vec(D(s̄))), and

q(vec(X);N ) ≥ (n2 − 3)q(vec(X); I).

Now we discuss two approaches to carefully select the support set Ik at iteration k of the block

coordinate descent method (13):

1. Diagonal band. Given 3 ≤ p < n, denote

G ,

{
(i, j) ∈ Z2

∣∣∣ i ∈ [j, j + p− 1] if j ∈ [1, n− p+ 1]

i ∈ [1, ..., j + p− n− 1] ∪ [j, n] if j ∈ [n− p+ 2, n]

}
,

and construct matrix G ∈ Rn×n such that

G(i, j) =

{
1, if (i, j) ∈ G,
0, otherwise.

(26)

Therefore, G has the following structure:

p




1 1 . . . 1
... 1

. . .
...

1
...

. . . 1

1 1 1

1
. . .

... 1
. . . 1

...
. . .

1 1 . . . 1


n×n

 (p− 1)

It is like a band of width p across the diagonal, hence the name. Then we may construct D̄k ∈ Rn×n
and Ik as follows:

Obtain D̄k by uniformly randomly permuting all columns and rows of G.

Let Ik , supp(vec(D̄k)).
(27)

Note that |Ik| = np.

2. Submatrix. Given m < n, obtain D̄k and Ik such that

Uniformly randomly pick two sets of m different numbers out of {1, ...n}:
i1, ..., im and j1, ..., jm.

Let D̄k(i, j) =

{
1 if i ∈ {i1, ..., im} and j ∈ {j1, ..., jm},
0 otherwise.

Let Ik , supp(vec(D̄k)).

(28)

In this case, the support of D̄k is a submatrix of size m×m. Therefore, Ik = m2.

Next we discuss two random block coordinate descent algorithms to solve (8)(21) whose working set

selections are based on the two approaches discussed above.
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Algorithm 2 Random block coordinate descent - diagonal band (RBCD-DB)

(Initialization) Choose feasible X0 ∈ Rn×n and band width p ∈ [3, n]. Let x0 = vec(X0).

for k = 0, 1, 2, . . . do

Step 1. Choose Ik according to (27).

Step 2. Find dk ∈ D(xk; Ik).

Step 3. xk+1 := xk + dk.

end for

The following result describes the convergence property of Algorithm 2.

Theorem 5. Consider (8)(21). Then sequence {xk} and {Ik} generated by Algorithm 2 satisfies the

expected Gauss-Southwell-q rule (19), i.e.,

E[q(xk; Ik) | Fk] ≤ vq(xk;N ),

with v ≥ n(p−2)
(n2−3)(n!)2 . Therefore, cT (xk − x∗) → 0 almost surely and E[cT (xk − x∗)] converges to 0

exponentially with rate 1− v.

Proof. Given xk, Theorem 4 guarantees that there exists Dk ∈ EA such that if Ik ⊇ supp(vec(Dk)), then

(25) holds for I = Ik and vec(X) = xk, i.e.,

q(xk; Ik) ≤
(

1

n2 − 3

)
q(xk;N ). (29)

Next, we will estimate the probability that Ik ⊇ supp(vec(Dk)) holds.

Suppose that after row/column permutations and scaling of Dk, we obtain Et, 2 ≤ t ≤ n. Then after

appropriate row and column swapping, Dk can be written as

t





0

∗ ∗
∗ ∗

∗
. . .

∗ ∗
. . . ∗

∗ ∗ 0
. . .

0


n×n

. (30)

That is, elements (2, 1) and (3, 1) are nonzeros; elements (j, j) and (mod(j + 2,n), j) are nonzeros, for all

j = 2, ..., t−1; elements (t, t) and (mod(t + 1,n), t) are nonzeros; all other elements are zeros. Obviously,

support of this matrix is covered by the support of G in (26). Moreover, by moving the whole support in

matrix (30) downwards or to the bottom right corner, we can create at least n(p− 2)− 1 more different

matrices whose support are all covered by G. These n(p − 2) matrices can be obtained by permuting

rows and columns of Dk in n(p − 2) different ways. Therefore, the probability that Ik will cover the

support of Dk is at least n(p−2)
(n!)2 , and we have that

E[q(xk; Ik) | xk] =
∑

supp(vec(Dk))⊆I

q(xk; I)P (Ik = I) +
∑

supp(vec(Dk))*I

q(xk; I)P (Ik = I)

≤
(

1

n2 − 3

)
q(xk;N )P (supp(vec(Dk)) ⊆ Ik) + 0

≤
(

n(p− 2)

(n2 − 3)(n!)2

)
q(xk;N )

Therefore, the expected Gauss-Southwell-q rule (19) holds with v at least n(p−2)
(n2−3)(n!)2 .
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Remark. It can be shown that if n is large enough and p is chosen between O(log(n)) and O(n), then

the lower bound for constant v derived in Theorem 5 is better than the one estimated for Algorithm 1,

i.e., 1

(N
l )(N−l+1)

. In fact, we have the following results.

Lemma 6. Suppose that K̄ ≥ 2 and η > 0 satisfies

2K̄ − 3

2(K̄ − 1)
+ log

(
K̄

2

)
> 2/η,

and n satisfies

n ≥ 4(
2K̄−3

2(K̄−1)
+ log

(
K̄
2

))
η − 2

,
n

log(n)
≥ ηK̄.

Then for any p ∈ [η log(n), n
K̄

], and p ≥ 3, we have n(p−2)
(n2−3)(n!)2 ≥ 1

(n2

np)(n2−np+1)
.

Proof. See Appendix.

Let n ≥ 30, η = 1, K̄ = 8. Then according to Lemma 6, for log(n) ≤ p ≤ n/8, the lower bound n(p−2)
(n2−3)(n!)2

is larger. We believe that this is a fairly reasonable range of p when n grows large. This lower bound is

improved because we have knowledge of the structure of the elementary matrix when solving OT.

As for the submatrix approach, we often find it quite efficient in numerical experiments. However,

its global convergence property is not guaranteed. In fact, there is a counterexample (see B). Therefore,

we design an algorithm that combines these two approaches together.

Algorithm 3 Random block coordinate descent - submatrix and diagonal Band (RBCD-SDB)

(Initialization) Choose feasible X0 ∈ Rn×n, submatrix row/column dimension m, band width p ∈
[3, n] and selection parameter s ∈ [0, 1]. Let x0 = vec(X0).

for k = 0, 1, 2, . . . do

Step 1. With probability s, choose Ik according to (28); otherwise, choose Ik according to (27).

Step 2. Find dk ∈ D(xk; Ik).

Step 3. xk+1 := xk + dk.

end for

The convergence of Algorithm 3 is guaranteed by the next theorem.

Theorem 7. Consider (8)(21). Then sequence {xk} and {Ik} generated by Algorithm 2 satisfies the

expected Gauss-Southwell-q rule (19), with v ≥ sn(p−2)
(n2−3)(n!)2 . Therefore, cT (xk − x∗) → 0 almost surely

and E[cT (xk − x∗)] converges to 0 exponentially with rate 1− v.

Proof. Given xk, Theorem 4 shows that there exists Dk ∈ EA such that if Ik ⊇ supp(vec(Dk)), then (25)

holds with I = Ik and vec(X) = xk. We estimate the probability that Ik ⊇ supp(vec(Dk)).

First, consider the case that after row/column permutations and scaling of Dk, we obtain Et, 2 ≤ t ≤
m. If Ik is chosen according to (27), then similar to discussion in Theorem 5, Ik will cover the support

of Dk with probability at least n(p−2)
(n!)2 . If Ik is chosen according to (28), then Ik will cover the support

of Dk with probability(
n−t
m−t

)2(
n
m

)2 =

(
(n− t)!/((m− t)!(n−m)!)

n!/(m!(n−m)!)

)2

=

(
m!/(m− t)!
n!/(n− t)!

)2

.

Therefore, in this case, the probability pt that Ik cover the support of Dk is:

pt ≥
sn(p− 2)

(n!)2
+ (1− s)

(
m!/(m− t)!
n!/(n− t)!

)2

.
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Then we consider the case that when we get Et, m + 1 ≤ t ≤ n after row/column permutations and

rescaling of Dk. In this case, if Ik is chosen according to (27), Ik will cover the support of Dk with

probability at least n(p−2)
(n!)2 ; if Ik is chosen according to (28), this probability is 0. Therefore, in this

case we have pt ≥ sn(p−2)
(n!)2 . In general, the probability that Ik cover the support of Dk is at least

min{pt} ≥ sn(p−2)
(n!)2 . Similar to discussion in Theorem 4, (19) will hold with v ≥ sn(p−2)

(n2−3)(n!)2 .

Accelerated random block coordinate descent Algorithm 4 is an accelerated random block coor-

dinate descent (ARBCD) algorithm. It selects the working set Ik in a different way from Algorithm 3

intermittently for acceleration. At times, we build Ik based on the iterates generated by the algorithm in

the past, i.e., xend−xstart. This vector reflects the progress achieved by running the RBCD-SDB for a

few iterations. It predicts the direction in which the algorithm potentially makes further improvements.

Such a choice is analogous to the momentum concept and often employed acceleration techniques in

optimization, such as in the heavy ball method and Nesterov acceleration. Algorithm 4 has a similar

convergence rate as Algorithm 4 (note that acceleration iteration happens occasionally). We will verify

its improved performance in numerical experiments.

Algorithm 4 Accelerated random block coordinate descent (ARBCD)

(Initialization) Choose feasible X0 ∈ Rn×n, submatrix row/column dimension m, band width p ∈
[3, n], selection parameter s ∈ [0, 1], and acceleration interval T . Let x0 = vec(X0), xstart = xend = x0.

Binary variable acc.

for k = 0, 1, 2, . . . do

Step 1. Choose Ik as following.

if mod(k + 1,T) 6= 0 or |supp(xend − xstart)| ≤ m2 then

acc = false. With probability s, choose Ik according to (28); otherwise, choose Ik according to

(27).

else

acc = true. Choose Ik uniformly randomly from supp(xend − xstart) so that |Ik| = m2.

end if

Step 2. Find dk ∈ D(xk; Ik).

Step 3. Update xk+1 := xk + dk;

Step 4. Update xend = xk+1.

if acc = true. then

Update xstart = xk+1.

end if

end for

5 Numerical experiments

In this section, we conduct numerical experiments on various examples of optimal transport problems.

First, we compare various random block coordinate descent methods with different working set selection

proposed in this article; then we compare the one with the best performance - ARBCD with Sinkhorn

and demonstrate several advantages of ARBCD.

5.1 Comparison between various random block coordinate descent methods
with different working set selection rules

In this subsection, we apply the proposed random block coordinate descent methods (Alg. 1 - Alg. 4)

to calculate the Wasserstein distance between three pairs of distributions. We compare these algorithms

to illustrate the difference between various working set selection rules. We also inspect the difference

between theoretical and actual convergence rates, as well as the solution sparsity.
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Experiment settings We compute the Wasserstein distance between a pair of 1-dim probability dis-

tributions (standard normal and uniform over [−1, 1]), a pair of 2-dim probability distributions (uniform

over [−π, π]2 and an empirical invariant measure obtained from IPM simulation of reaction-diffusion

particles in advection flows, detail configurations see [46], Section 4.2, 2D cellular flow, κ = 2−4), and a

pair of 3-dim distributions (uniform over [−1, 1]3 and 3 dimensional multivariate normal distribution).

When computing Wasserstein dist. between the pair of 1-dim probability distributions, we utilize their

histograms (c.f. Section 2): Let n = 1001. Centers of the cells are xi = x̃i = i−501
500 , i = 1, .., 1001;

Ci,j = dist(x̃i, xj)2, 1 ≤ i, j ≤ 1001; r1,i = φ(xi)∑1001
i=1 φ(xi)

, i = 1, ..., 1001, where φ(x) is the pdf of standard

normal; r2 = (1/1001, ..., 1/1001)T ∈ R1001. When calculating the Wasserstein dist. between the second

and third pairs, we apply the point cloud setting (c.f. Section 2): Let n = 1000. For each pair, use

i.i.d. samples {ỹi} and {yj}, 1 ≤ i, j ≤ 1000 to approximate the two continuous probability measure

respectively. Let Ci,j = dist(ỹi, yj)2 and r1 = r2 = (1/1000, ..., 1/1000)T ∈ R1000. Figure 1 captures

these three pairs of distributions. For all cases, we first use the linprog in Matlab to find a solution with

high precision (dual-simplex, constraint tolerance 1e-9, optimality tolerance 1e-10).

Figure 1: Three pairs of distributions
In 1-d case, we compare the histograms of two distributions; in 2-d and 3-d settings, we compare the samples/point

clouds of two distributions.

Methods We specify the settings of the four algorithms. All algorithms are started at the same feasible

x0 = vec(r1(r2)T) in each experiment. We solve the LP subproblems via linprog in Matlab with high

precision (dual-simplex, constraint tolerance 1e-9).

RBCD0. Algorithm 1: Vanilla random block coordinate descent. Let l = 1002. Stop the algorithm

after 5000 iterations.

RBCD-DB. Algorithm 2: Random block coordinate descent - diagonal band. Let p = b1002/nc. Stop

the algorithm after 5000 iterations.

RBCD-SDB. Algorithm 3: Random block coordinate descent - submatrix and diagonal band. Let

m = 100, p = bm2/nc and s = 0.1. Stop the algorithm after 5000 iterations.

ARBCD. Algorithm 4: Accelerated random block coordinate descent. Let m = 100, p = bm2/nc,
s = 0.1 and T = 10. Stop the algorithm after 5000 iterations. Note that the dimension of the subprob-

lem per iteration is 1002, 1/100 the size of the original one.
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Figure 2: Comparison of algorithms to compute Wasserstein distance I
X-axis is the wall-clock time in seconds. Y-axis is the optimality gap fk − f∗ = cT xk − cT x∗. This figure shows the

trajectory/progress of Alg. 1 - Alg. 4 when computing the Wasserstein distance between the three pairs of prob. in 1-d,
2-d, and 3-d respectively. Each algorithm is run 5 times and the curves showcase the average behavior.

Table 1: Data of RBCD0

1-d case 2-d case 3-d case

iter. f̄k − f∗ v̂ iter. f̄k − f∗ v̂ iter. f̄k − f∗ v̂

0 0.6237 N/A 0 9.3538 N/A 0 3.3456 N/A
1000 0.0083 4.3e-3 1000 0.6254 2.7e-3 1000 0.4746 2.0e-3
2000 0.0054 4.3e-4 2000 0.4773 2.7e-4 2000 0.3821 2.2e-4
3000 0.0045 1.8e-4 3000 0.4183 1.3e-4 3000 0.3438 1.1e-4
4000 0.0039 1.4e-4 4000 0.3846 8.3e-5 4000 0.3371 2.0e-5
5000 0.0036 8.0e-5 5000 0.3762 2.2e-5 5000 0.3350 6.2e-6

Interpretation of Figure 2 We can see from Figure 2 that different approaches to choosing the work-

ing set of the same size may significantly affect the performance of random BCD types of methods. Curves

of RBCD-DB are below those of RBCD0, showing that RBCD-DB has a better average performance.

The reason is that RBCD0 generates the working set with full randomness, while RBCD-DB takes the

structure of the elementary matrices into account. The latter makes an educated guess at the working

set that decreases the objective function by a large amount. The submatrix approach (28) works very

well in practice, and this is illustrated by the better performances of RBCD-SDB and ARBCD than

RBCD-DB. In the long run, ARBCD dominates RBCD-SDB, verifying the acceleration effect. Note

that the settings of algorithms are by default. We expect and observed similar behaviors of algorithms

when changing the algorithm settings. On the other hand, the curves in these numerical experiments

suggest sublinear convergence rates. Note that this observation does not contradict the theoretical linear

convergence rate as long as v is small enough. We will verify that the numerical experiments do not

violate the lower bounds we derived for the constant v in the linear convergence rates.

About Table 1 & 2 In these two tables we record the optimality gap f̄k − f∗ every 1000 iterations

for both RBCD0 and RBCD-DB. f̄k is the average function value at iteration k since we run the

algorithms repeatedly for 5 times. Column v̂ denotes the estimation of the constant v in the expected

Gauss-Southwell-q rule (19). It is calculated by the formula: v̂ = 1000
√
f̄k − f̄k−1000. Values of v̂ in both

Table 2: Data of RBCD-DB
1-d case 2-d case 3-d case

iter. f̄k − f∗ v̂ iter. f̄k − f∗ v̂ iter. f̄k − f∗ v̂

0 0.6237 N/A 0 9.3538 N/A 0 3.3456 N/A
1000 0.0130 3.9e-3 1000 0.6002 2.7e-3 1000 0.4601 2.0e-3
2000 0.0057 8.2e-4 2000 0.3920 4.3e-4 2000 0.3414 3.0e-4
3000 0.0036 4.6e-4 3000 0.3074 2.4e-4 3000 0.2878 1.7e-4
4000 0.0026 3.3e-4 4000 0.2592 1.7e-4 4000 0.2544 1.2e-4
5000 0.0020 2.6e-4 5000 0.2276 1.3e-4 5000 0.2316 9.4e-5

15



Table 1 & 2 are far larger than the lower bounds for v: 1

(N
l )(N−l+1)

and (n−1)(p−2)
(n2−3)(n!)2 , corresponding to

RBCD0 and RBCD-DB respectively, where N = n2. They also decrease as we run more iterations,

showing that the optimality gap shrinkage becomes less when the iterate is closer to the solution. We

intend to study this phenomenon in our future work.

Figure 3: Sparsity of solutions
Y-axis records ‖xk‖0, i.e., the number of nonzero elements in xk. This figure shows the sparsity of xk in RBCD-SDB
and ARBCD when computing the Wasserstein distance given the three pairs of probability distributions. Each curve

represents the average over 5 repetitions.

Sparse solutions We can observe from Figure 3 that the iterates in RBCD-SDB and ARBCD

become sparse quickly and stay that way. The reason is that the solutions of optimal transport problems

are usually sparse (for the point cloud setting, at least one of the optimal solutions satisfies ‖x∗‖ = n

because extreme points of LP in this setting are permutation matrices divided by n), and these two

algorithms can locate solutions with high accuracy relatively fast. Therefore, the storage need for these

two algorithms is reduced considerably after they are run for a while. In the point cloud setting,

storage complexity is typically expected to decrease from O(n2) to O(n) (note that the dimension of

the subproblem per iteration is typically chosen as O(n) because of the diagonal band approach with

p ≥ 3).

5.2 Comparison between ARBCD and Sinkhorn

In this subsection, we compare ARBCD with Sinkhorn and demonstrate several advantages ARBCD

has over Sinkhorn.

Experiment settings Same as in Subsection 5.1.

Methods Implementation of Sinkhorn and ARBCD are specified as follows.

Sinkhorn. The algorithm proposed in [10] to compute Wasserstein distance. Let γ be the coefficient

of the entropy term. We let γ = ε/(4 log n) as suggested in [11]. In 1-d case, we consider the settings

ε = 10−4, 10−3, 0.01, 0.1 and 1; in 2-d case, we let ε = 10, 100; in 3-d case, let ε = 1, 10 (in 2-d and 3-d

cases, smaller choices of ε cause numerical instability). The implementation follows Algorithm 1 in [11].

Iterations of Sinkhorn are projected onto the feasible region using a rounding procedure: Algorithm 2

in [1]. We stop Sinkhorn after 300000 (when n ≤ 201) or 100000 (when n ≥ 1000) iterations.

ARBCD. Algorithm 4: Accelerated random block coordinate descent. Let m = 40 when n ≤ 201

and m = 100 when n ≥ 1000. Let p = bm2/nc, s = 0.1 and T = 10. Stop the algorithm after 5000

iterations. To be fair, we also project the solution in each iteration onto the feasible region via the

rounding procedure.

Interpretation of Figure 4 We can observe the following from Figure 4: although Sinkhorn with

larger ε may converge fast, the solution accuracy is also lower. In fact, this is true for all the Sinkhorn-

based algorithms because the optimization problem is not exact - it has an extra entropy term. Therefore,

the larger γ or ε is chosen, the less accurate the solution becomes. On the other hand, when ε is set
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Figure 4: Comparison of algorithms to compute Wasserstein distance II
X-axis is the wall-clock time in seconds. Y-axis is the optimality gap fk − f∗ = cT xk − cT x∗. This figure shows the

trajectory/progress of Algorithm 4: ARBCD and Sinkhorn with different settings when computing the Wasserstein
distance between the three pairs of prob. in 1-d, 2-d, and 3-d respectively. ARBCD is run 5 times and the curves

showcase the average behavior.

smaller, the convergence of Sinkhorn may be quite slow, as is shown in the 1-d case. We also found

that if a small ε is chosen, there may exist numerical instability issues. This is why we cannot show

a curve with smaller ε in the 2-d and 3-d cases. This issue is also observed and mentioned in other

literature [14, 18]. For the 1-d case (n = 201), we further inspect the solution quality in Figure 5.

Transport plans in 1-d are given by different algorithms and we can see ARBCD recovers the optimal

transport plan most accurately. In conclusion, if relatively higher precision is desired, Sinkhorn may

not be a better choice than ARBCD to compute Wasserstein distance. Moreover, note that here we

solve the subproblems in ARBCD using Matlab built-in solver linprog, which is not really considered

the state-of-art. ARBCD can be faster if more efficient subproblem solvers are applied.

6 Conclusion

In this paper, we investigate RBCD to solve LP including OT problems. In particular, an expected

Gauss-Southwell-q rule is proposed to select the working set Ik at iteration k. It guarantees almost sure

convergence and linear convergence rate and is satisfied by all algorithms proposed in this work. We first

consider a vanilla RBCD named RBCD0 to address a general LP. Then by exploring the structure of

the matrix A in the linear system of OT, characterizing elementary matrices of null(A) and identifying

conformal realization of any matrix D ∈ null(A), we are able to refine the working set selection. We

employ two approaches - diagonal band and submatrix for constructing Ik and an acceleration technique

motivated by the momentum concept to enhance performance of RBCD0. In numerical experiments,

we compare all the proposed RBCD methods and verify the acceleration effects as well as sparsity of

solutions. We also illustrate the gap between theoretical convergence rate and the practical one. Last but

not least, we run ARBCD, the best among all others, against the Sinkhorn’s algorithm and showcase

its advantages in seeking relatively accurate solutions of the OT problems.
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Figure 5: Transport plan given by different algorithms (1-d case, n = 201)
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include 51 mass points). The overall transport plans from −1 to 1 are symmetric plots so we only show half of them due

to presentation clarity.
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A Proof of Lemma 6

Proof. Suppose that

log((n2)!/(n2 − np)!) ≥ 2 log(n!) + log(np)! (31)

Then

(n2)!/(n2 − np)!)/(np)! ≥ (n!)2

=⇒
(
n2

np

)
/(n!)2 ≥ 1

=⇒ (n2

np)
(n!)2 · n(p−2)(n2−np+1)

n2−3 ≥ 1

=⇒ n(p−2)
(n2−3)(n!)2 ≥ 1

(n2

np)(n2−np+1)
,
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where the third inequality holds because p ≤ n/2 and n ≥ pK̄ ≥ 6. So we only need to prove (31). Note

that

log
(n2)!

(n2 − np)!
=

n2∑
x=n2−np+1

log(x) ≥
∫ n2

n2−np
(log x)dx

= n2 log(n2)− n2 −
(
(n2 − np) log(n2 − np)− n2 + np

)
= n2 log(n2)− (n2 − np) log(n2 − np)− np
(p=n/K)

= 2np log n+
K − 1

K
· n2 · log

K

K − 1
− np

≥ 2np log n+
2K − 3

2K − 2
· np− np. (32)

The last inequality holds because log(1 + x) ≥ x − x2/2 for x ∈ (0, 1) and p = n/K. Meanwhile, right

hand side of (31) satisfies the following:

2 log(n!) + log(np)!

≤ 2(n+ 1) log(n+ 1)− 2n+ (np+ 1) log(np+ 1)− np
≤ 2(n+ 1)(log n+ log 2)− 2n+ (np+ 1)(log(np) + log 2)− np
= (np+ 2n+ 3) log n+ (np+ 1) log p+ 2(n+ 1) log 2− 2n− np+ (log 2)(np+ 1)

(p= n
K )

= 2np log n+ (2n+ 4) log n+ (log 4)n+ (log 2)np+ log 8− 2n− (1 + logK)np− logK

(K≥K̄≥2,n≥6)

≤ 2np log n+ (2n+ 4) log n+ (log 2)np− (1 + logK)np (33)

In order to show (31), we only need to confirm (33) ≤ (32). By observation, this is equivalent to(
2K−3
2K−2 + log

(
K
2

))
np ≥ (2n+ 4) log n

(p≥η logn,K̄≤K)⇐=
(

2K̄−3
2K̄−2

+ log
(
K̄
2

))
ηn ≥ 2n+ 4

⇐⇒ 4

( 2K̄−3
2K̄−2

+log( K̄
2 ))η−2

≤ n.

The last inequality is assumed.

B A counterexample of interest

Example 1. Consider LP problem (7) with n = 3, r1 = r2 = (1/3, 1/3, 1/3)T . Let

C =

(1 + ε1)2 (2− ε3)2 (1− ε2)2

(1− ε2)2 (1 + ε1)2 (2− ε3)2

(2− ε3)2 (1− ε2)2 (1 + ε1)2

 ,

where 0 < εi � 1, i = 1, 2, 3 such that 2(1 + ε1)2 < (1 − ε2)2 + (2 − ε3)2. It can be easily seen that

the optimal solution is γ∗ = 1
3

0 0 1

1 0 0

0 1 0

. Suppose that γ0 = 1
3

1 0 0

0 1 0

0 0 1

. If we use the submatrix

approach (28) with m = 2 (largest number less than n) to select a working set Ik, then the algorithm

will be stuck at γ0. It is not globally convergent. This cost matrix corresponds to the following case of

transporting a three-point distribution to another one:
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ỹ1

y1 ỹ2

y2

ỹ3
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Figure 6: A counterexample of interest

The dashed hexagon has an edge length 1. Transport point distribution ỹ1, ỹ2 and ỹ3 to that of y1, y2

and y3.
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[27] I. Necoara and M. Takáč, Randomized sketch descent methods for non-separable linearly con-

strained optimization, IMA Journal of Numerical Analysis, 41 (2021), pp. 1056–1092.

[28] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM

Journal on Optimization, 22 (2012), pp. 341–362.

[29] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Taylor &

Francis, (2001).

[30] S. Peleg, M. Werman, and H. Rom, A unified approach to the change of resolution: Space and

gray-level, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), pp. 739–742.

[31] M. Perrot, N. Courty, R. Flamary, and A. Habrard, Mapping estimation for discrete

optimal transport, Advances in Neural Information Processing Systems, 29 (2016).

21
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