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Abstract

Let M be a Carathéodory hyperbolic complex manifold. We show that M supports a real-analytic
bounded strictly plurisubharmonic function. If M is also complete Kähler, we show that M admits
the Bergman metric. When M is strongly Carathéodory hyperbolic and is the universal covering of
a quasi-projective manifold X, the Bergman metric can be estimated in terms of a Poincaré type
metric on X. It is also proved that any quasi-projective (resp. projective) subvariety of X is of
log-general type (resp. general type), a result consistent with a conjecture of Lang.

Introduction

Invariant pseudo-metrics are important tools for studying complex manifolds. When the pseudo-
metrics are nondegenerate, i.e. they actually define metrics, the underlying complex manifolds usually
possess very interesting properties. As a generalization of the Poincaré metric on the unit disk ∆ ⊂ C,
for any complex manifold X, one can define the infinitesimal Kobayashi-Royden pseudo-metric

KX(v) := inf{λ > 0 | ∃f : ∆ → X, f(0) = p, λf ′(0) = v}, v ∈ TpX,

which is integrated to a pseudo-distance

dK,X(p, q) := inf{
∫
γ
KX(γ

′(t))dt | γ is a piecewise smooth courve joining p to q}.

A complex manifold X is said to be Kobayashi hyperbolic if dK,X is nondegenerate.
Another important invariant pseudo-metric is the Bergman pseudo-metric BX , which is constructed

by considering square-integrable holomorphic top forms (see §1.4 for a brief review of the construction
in the Kähler case). In this article, BX will be closely related to our main focuses, the infinitesimal
Carathéodory pseudo-metric EX and the Carathéodory pesudo-distance dC,X . They are in some sense
dual to KX and dK,X respectively. For any bounded domain Ω ⊂ Cn, the pseudo-metrics KΩ,BΩ, EΩ

are always nondegenerate. For arbitrary complex manifolds, they are only pseudo-metrics and many
properties among the three metrics known for bounded domains are not clear for complex manifolds.
For the constructions and basic properties of these metrics, see for example [20].

We say that a complex manifold X is Carathéodory hyperbolic if the infinitesimal Carathéodory
pseudo-metric EX is nondegenerate. Following from definition, such manifolds are noncompact (see
§1.2 for definition and its related notions). Our first result is

Theorem 0.1. Any Carathédory hyperbolic complex manifold admits a bounded real-analytic strictly
plurisubharmonic function.

∗The second author was partially supported by a grant from the National Science Foundation
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A result of similar nature may be known among experts, but since we cannot locate a precise reference
and the result is to be used later in the paper, we provide a detailed proof here. If furthermore the
Carathéodory pseudo-distance is nondegenerate and complete, which we named strongly Carathéodory
hyperbolic (Definition 1.2), we obtain from Theorem 0.1 that the manifold is Stein (Corollary 1.5).

Now suppose the Carathéodory hyperbolic complex manifold can be given a complete Kähler
metric, we can deduce from Theorem 0.1 and the method of L2-estimates that

Theorem 0.2. For any Carathéodory hyperbolic complete Kähler manifold, the Bergman pseudo-
metric is nondegenerate.

In fact, once we have the existence of a smooth bounded plurisubharmonic exhaustion function, The-
orem 0.2 follows from L2-estimates as given in the proof of [36, Corollary 1 (a)], [35, Theorem 1] and
[6, Proposition 2.3]. To be more self-contained, we will add the details (Proposition 1.7) in this article.
Theorem 0.2 allows us to remove a nondegeneracy assumption in a classical comparison theorem be-
tween infinitesimal Carathéodory metric and Bergman metric for Carathéodory hyperbolic complete
Kähler manifolds (Corollary 1.11). We expect this to be useful for studying some unbounded domains.

We continue to look at projective and, more generally, quasi-projective manifolds whose universal
covers are Carathéodory hyperbolic. Our main motivation is the following well-known question from
complex hyperbolicity:

Conjecture 0.3 (Lang [21]). A projective variety X is Kobayashi hyperbolic if and only if all subva-
rieties of X (including X itself) are of general type.

Lang’s Conjecture 0.3 speculates that there are intimate relationships between the analytic notion
of Kobayashi metric and the complex differential and algebro-geometric notion of general type. Al-
though Conjecture 0.3 is largely open, it is believed that the necessity condition for all subvarieties to
be of general type is guaranteed by various analytic or differential geometric hyperbolicity conditions.
It is well-known that Carathéodory hyperbolic implies Kobayashi hyperbolic. In this spirit, we are
going to consider Carathéodory metric instead of Kobayashi metric. We first establish

Theorem 0.4. Let X be a compact Kähler manifold whose universal cover is Carathédory hyperbolic.
Then all subvarieties of X (including X itself) are projective varieties of general type.

In fact, our main interest here is how Lang’s Conjecture 0.3 could be generalized to quasi-projective
manifolds. As is already pointed out in [21], it is natural to consider various notions of hyperbolicity
modulo a subset, i.e. those conditions are satisfied outside certain exceptional subsets. For quasi-
projective manifolds, a first candidate for such subset would be the compactifying divisor of a given
projective compactification. This points to the study of variety of log-general types. We refer to,
for example, the monograph [32], the recent surveys [2, 16] and references therein for some account
of this rich subject, especially the connections to arithmetic. For quasi-projective manifolds, an im-
mediate modification should be the replacement of the notion of general type by log-general type.
While subvarieties of projective manifolds are automatically projective, there are examples of quasi-
projective manifolds that contain analytic subvarieties which are not quasi-projective (Proposition
2.2). Therefore, we propose the following analogue of Conjecture 0.3:

Conjecture 0.5. A quasi-projective variety X is Kobayashi hyperbolic if and only if all quasi-projective
subvarieties of X are of log-general type and all projective subvarieties are of general type.

Similar to the compact case, we are going to deduce our main result
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Theorem 0.6 (Main Theorem). Let X be a quasi-projective manifold whose universal covering is
strongly Carathéodory hyperbolic. Then all quasi-projective subvarieties of X (including X itself) are
of log-general type and all projective subvarieties are of general type.

As in the proof of Theorem 0.4, we consider the Bergman metric on the universal covering obtained
from Theorem 0.2, which descends to a Hermitian metric on KX with constant negative Ricci cur-
vature. Crucial to us is the observation that this Hermitian metric can be estimated and compared
with a Poincaré type metric that is naturally defined for any quasi-projective manifold. We will show
that such estimate can be obtained if the universal covering supports a bounded plurisubharmonic ex-
haustion function (Proposition 2.4), which is a consequence of being strongly Carathéodory hyperbolic
(Proposition 1.5). Such estimates are also of interest in their own right.

We briefly outline some major techniques in this article. The machinery includes the method of
L2-estimates of ∂, the construction of appropriate weight functions and the utilization of the Bergman
metrics. There are two main ingredients. The first is the construction of a bounded strictly plurisub-
harmonic function (Theorem 0.1). The second is the estimates and construction of an appropriate
Hermitian metric for the canonical line bundle on the regular part of a possibly singular quasi-projective
subvariety of the ambient manifold so that enough log-canonical sections on a compactification can be
guaranteed.

The existence of a bounded strictly plurisubharmonic function proved here depends on the proper-
ties of the Carathédory metric and distances. Earlier some geometric consequences of the existence of
a bounded plurisubharmonic function have been given in [35, Theorem 4] and [36, Corollary 1]. The
paper here gives further geometric applications.

When combined with the method of L2-estimates, it is shown that the L2-holomorphic sections of
the canonical bundle KM of a Carathédory hyperbolic complete Kähler manifold M separate points
and generate jets of KM (Proposition 1.7). The same strategy can be applied to pluricanonical
bundles qKM for any q > 0 (Lemma 1.8). Now suppose X is a compact Kähler manifold with
Carathéodory hyperbolic universal cover M . Then the Bergman metric on M is well-defined and
descends to X, forming a complete Kähler metric of strictly negative Ricci curvature. By Kodaira’s
embedding theorem, KX is ample. Thus X is of general type. For a subvariety Z ⊂ X, one needs
to show that a resolution Z̃ → Z is of general type. Let Y be an irreducible component of the pull-
back of Z to M . Since M is Carathéodory hyperbolic, it has a bounded strictly plurisubharmonic
function φ. One can pull-back the restriction φ|Y from Y to its resolution Ỹ → Y , but it is strictly
plurisubharmonic only outside the inverse image of the singular set of Ỹ . Thus one cannot simply
repeat the argument for X. For this, we supply an argument using Poincaré series to show that Z̃ must
be of general type. Alternatively, the reader will observe that the following more elaborate argument
for the quasi-projective setting works for the projective setting as well.

When X is a quasi-projective manifold, to prove that X is of log-general type, one needs to show
that there is a compactification X ⊃ X such that KX +[D] is big, where D = X−X can be chosen to
be a divisor of simple normal crossing. To do this, we will use a technique of Mok [23], which requires
positivity and a uniform bound of the curvature of KX with respect to some Hermitian metric. We
construct such metric out of the Bergman kernel on its universal cover M and the natural metric of
Poincaré type on X. Here the bounded geometry of a Poincaré type metric will play an essential role.
For quasi-projective subvarieties Z ⊂ X, we have similar difficulties as in the compact case that the
bounded strictly plurisubharmonic on M does not pull-back to a strictly plurisubharmonic function
on all of the cover Ỹ → Z̃ for the resolution Z̃ → Z. The key observation is that although we only
get some ψ that is strictly plurisubharmonic on Ỹ − B for some subset B ⊂ Ỹ , the estimates of the
Poincaré metric by the Bergman metric constructed from ψ (Proposition 2.4) will allow us to obtain
the desired curvature bound on K

Z̃−A for some subset A ⊂ Z̃. We show that this is sufficient for us
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to apply Mok’s technique [23] to conclude that the space of L2-holomorphic sections of K
Z̃−A is of

the desired growth. By combining these with an estimate near the boundary, we show that those L2

sections extend to boundary, hence concluding Theorem 0.6. Note that we need the exhaustion coming
from strongly Carathéodory hyperbolicity to obtain the estimates of Bergman metric with respect to
the pull-back Poincaré type metric on universal cover.

We mention some previous works closely related to us. They focus exclusively on compact manifold
quotients of the form X = M/Γ. In [33], M is a Carathéodory hyperbolic complex manifold. It is
shown that one can construct an invariant volume form vC,M on M , which descends to X to give a
smooth Hermitian metric with negative Ricci curvature on X. The volume form vC,M is in general
only a pseudo-volume form. Nowadays, a complex manifold with nondegenerate vC,M is usually
said to be Carathéodory measure hyperbolic, cf. [8]. In [18], assuming M is Carathéodory measure
hyperbolic, it is shown that there is a smooth bounded plurisubharmonic function on M which is
strictly plurisubharmonic outside the set of degeneracy of vC,M . Combining with [6, Proposition 2.3]
(which is the same as Theorem 0.2) and [4], this implies the positivity and some explicit volume
estimates of KX in terms of the volume form on X obtained by descending vC,M . Similar estimates
are shown to hold in [25] for all subvarieties of X in the setting of [18], thus solving the conjecture
of Kikuta in [19]. Note also that these volume estimates implies the bigness of the corresponding
canonical bundles, hence showing that all subvarieties of the compact manifold X are of general type.
The compactness is essential in the techniques of Wu [33], Kikuta [18, 19] and Ng [25]. For quasi-
projective case, we believe that an analysis in analogues to Proposition 2.4 near the boundary is
necessary.
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1 Carathéodory hyperbolicity and geometric consequences

1.1 Poincaré distance on unit disk

Let ∆ be the unit disk on complex plane. For z ∈ ∆ and a holomorphic vector v ∈ Tz∆, the
(infinitesimal) Poincaré metric is defined by

ds2∆ =
dz ⊗ dz

(1− |z|2)2

with the induced norm

∥v∥P :=
|v|

1− |z|2
,
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where v is identified to a complex number via Tz∆ ∼= C. Note that ∥v∥P > 0 if and only if |v| > 0. By
integrating over the line segment joining 0 and z with respect to ds2∆, we obtain the Poincaré distance
ℓP (0, z) between 0 and z ∈ ∆, which is given by

ℓP (z) := ℓP (0, z) =
1

2
log

1 + |z|
1− |z|

=
1

2
log

(1 + |z|)2

1− |z|2
.

1.2 Carathéodory metric and distance

Let M be a complex manifold. Denote by Hol(M,∆) the set of holomorphic maps from M to ∆. The
infinitesimal Carathéodory pesudo-metric on M is defined by

EM (x, v) := sup{∥dfx(v)∥P | f ∈ Hol(M,∆), f(x) = 0}, x ∈M, v ∈ TxM. (1)

Note that EM ≥ 0 in general. If the set of bounded nonconstant holomorphic functions on M is
nonempty, then from normal family argument (cf. [20, Chapter 4.2]), EM (x, v) is realized by some
holomorphic mapping fx.v ∈ Hol(M,∆) for any given x ∈M and v ∈ TxM .

Definition 1.1. Let M be a complex manifold. We say that EM is nondegenerate at x ∈ M if
EM (x, v) > 0 for every v ∈ TxM−{0}. M is said to be Carathéodory hyperbolic if EM is nondegenerate
for all x ∈M . In this case, EM is simply called the infinitesimal Carathéodory metric of M .

Remark. 1. By definition, if M has no nonconstant bounded holomorphic functions, then M is
not Carathéodory hyperbolic. Thus a Carathéodory hyperbolic complex manifold is necessarily
noncompact.

2. We will be interested in complex manifolds X whose universal covering X̃ is Carathéodory hy-
perbolic. As E

X̃
is invariant under biholomorphism, we may in principle say that a complex

manifold X is ‘Carathéodory hyperbolic’ if the E
X̃

is nondegenerate. However this notion should
not be confused with the statement that the infinitesimal Carathéodory pseudo-metric EX on X
is nondegenerate, since there could be no nonconstant bounded holomorphic functions on X.

Our notion of Carathéodory hyperbolicity in Definition 1.1 may not be the conventional one, such
as that in [20]. Recall that

dC,M (p, q) := sup{ℓP (f(p), f(q)) | f ∈ Hol(M,∆)}, p, q ∈M, (2)

defines the Carathéodory pseudo-distance on M . It is said to be nondegenerate if dC,M (p, q) > 0
whenever p ̸= q. In [20, p. 174], Kobayashi defined for a complex spaceM to be ‘Carathéodory hyper-
bolic’, or ‘C-hyperbolic’ based on the nondegeneracy of dC,M instead of the infinitesimal Carathéodory
pseudo-metric EM . In general, the nondegeneracy of dC,M and EM are not necessarily equivalent.

Definition 1.2. A complex manifoldM is said to be strongly Carathéodory hyperbolic if it is Carathéodory
hyperbolic and dC,M is complete nondegenerate.

There are a lot of interesting examples of strongly Carathéodory hyperbolic manifolds. They
include bounded symmetric domains, Teichüller space Tg,n of hyperbolic Riemann surfaces with genus
g and n-punctures, and more generally all bounded domains in Cn. Some unbounded domains are
also known to be strongly Carathéodory hyperbolic, cf. [1]. On the other hand, we will show that
strongly Carathéodory hyperbolic implies Stein, see Corollary 1.5.
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1.3 Bounded plurisubharmonic function

Theorem 1.3 (= Theorem 0.1). Let M be a Carathédory hyperbolic complex manifold. Then there
exists a bounded real-analytic strictly plurisubharmonic function φ on M .

Proof. Assume there is a countable family {fj}j∈J ⊂ Hol(M,∆) such that for each x ∈M ,

(♯): there exist n = dimM members {h1, . . . , hn} ⊂ {fj}j∈J (depending on x) so that
the Jacobian determinant of (h1, . . . , hn) at x is nondegenerate.

Since |fj | < 1 for all j ∈ J , we can find {αj ∈ R>0 : j ∈ J} such that the sum

φ(x) :=
∑
j∈J

α2
j |fj(x)|2 < 1

for any x ∈ M . It follows that φ converges uniformly on compact subsets of M to a bounded real-
analytic function on M . Then

√
−1∂∂φ =

∑
j∈J

α2
j

√
−1∂fj ∧ ∂ fj .

By Cauchy’s estimates,
√
−1∂∂φ converges uniformly on compact subsets of M . Now by (♯), φ is

strictly plurisubharmonic onM . Thus it suffices to construct a countable family {fj}j∈J ⊂ Hol(M,∆)
such that (♯) holds for every x ∈M .

Let x ∈ M be fixed. Since M is Carathéodory hyperbolic, there exists bounded holomorphic
functions f1,1, . . . , f1,n ∈ Hol(M,∆) such that the Jacobian determinant det Jac fx of the holomor-
phic map fx := (f11, . . . , f1n) : M → Bn is nondegenerate at x. Thus for any β1, . . . , βn ∈ R>0,
(
√
−1∂∂

∑n
j=1 β

2
j |f1j |2)(x) > 0.

Let
Vx = {y ∈M : (det Jac fx)(y)) = 0}.

Since Vx ⊂ M is an analytic subvariety, it has at most countably many irreducible components and
each of them has dimension ≤ n − 1. Name the fx constructed above as f1. Let V0 ⊂ Vx be an
irreducible component and w ∈ V0 be a fixed smooth point. Repeat the above argument with x
replaced by w. We get another holomorphic map f2 := fw :M → Bn, such that there exist β1, β2 > 0
with det Jac(β1f1 + β2f2) is nondegenerate on (M − Vx) ∪ (Vx − Vw). Note that the dimension of
any irreducible component of Vx ∩ Vw is ≤ n − 2. Repeat the above argument for each irreducible
component Vi of V (I ⊂ N) , we obtain a countable family {fi = (fi1, . . . , fin)}i∈I ⊂ Hol(M,Bn),
where fij ∈ Hol(M,∆) for all i ∈ I and j = 1, . . . , n. For the family {fij}, we see that (♯) holds
outside a subvariety S ⊂M whose countably many irreducible components are of dimension ≤ n− 2.
Now by induction, we can enlarge the family {fij} to a countable family, which we denote without
loss of generality by {fj}j∈J ⊂ Hol(M,∆), such that (♯) holds for any x ∈M .

Recall that a complex space is Stein if and only if it admits a continuous strictly plurisubharmonic
exhaustion function ([9, 24]). From Theorem 0.1, we have

Corollary 1.4. Strongly Carathéodory hyperbolic complex manifolds are Stein.

Proof. Let x0 ∈ M be fixed. Given x ∈ M , recall from definition that dC,M (x0, x) = suph ℓP (h(x))
among all holomorphic map h : M → ∆ such that h(x0) = 0. Note that ℓP (0) = 0. For z ∈ ∆− {0},
we have ℓP (z) > 0 and

√
−1∂∂ℓP (z) =

1 + |z|2

4(1− |z|2)2|z|
|dz|2

>

∣∣∣∣ |z|
2z(1− |z|2)

∣∣∣∣2|dz|2 = √
−1∂ℓP ∧ ∂ℓP (z),
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which implies that

√
−1∂∂ℓ2P (z) = 2

√
−1∂ℓP ∧ ∂ℓP (z) + 2ℓP (z)

√
−1∂∂ℓP (z)

> (2 + 2ℓP (z))
√
−1∂ℓP ∧ ∂ℓP (z).

So ℓ2P satisfies the Sub-Mean-Value Property and thus is subharmonic. It follows that dx0(x) :=
(dC,M (x0, x))

2 = suph ℓ
2
P (h(x)) is a plurisubharmonic function on M . Now dC,M is complete implies

dx0 is an unbounded exhaustion. We can approximate dx0 by smooth ones by standard methods. Hence
there a smooth plurisubharmonic exhaustion d′x0 . Let φ be given by Theorem 1.3. Then ρ := φ+ d′x0
is as desired.

We recall that a complex manifold is said to be hyperconvex if it admits a plurisubharmonic
exhaustion function which is bounded from above. The following result will be used in next section.

Proposition 1.5. Strongly Carathéodory hyperbolic complex manifolds are hyperconvex.

Proof. Let M be a strongly Carathéodory hyperbolic complex manifold. Fix a point p ∈ M . Define
the family F = {f ∈ Hol(M,∆) : f(p) = 0}.

For each h ∈ F , h∗ℓP is plurisubharmonic on M with poles at the zero locus of h. Let a > 0 be
sufficiently small so that the disk ∆(0, 2a) ⊂ ∆. Let ρa be a cutoff function on ∆, where ρa ≡ 1 on
h(M)−∆(0, 2a) and ≡ 0 on ∆(0, a). Then there is λ > 0 such that

h∗(λ|z|2 + ρa(z)ℓP (z)) (3)

is strictly plurisubharmonic on M .
For each h ∈ F , choose a > 0 small enough and λ > 0 large enough so that (3) is plurisubharmonic.

Define
lh,p(x) := {λ · (h∗|z|2)(x) + h∗

(
ρaℓP

)
(x)}, x ∈M. (4)

The function lh,p(x) is clearly plurisubharmonic. For ϵ > 0, define

φp(x) := sup
h∈F

tanh(ϵlh,p(x)), x ∈M.

We claim that one can find sufficiently small ϵ > 0 so that the bounded smooth function lh,p is
plurisubharmonic. Write l = lh,p(x). From direct computation, we get

√
−1∂∂ tanh ϵl =

4

(e2ϵl + 1)3

[
e4ϵl(

√
−1ϵ∂∂l − 2

√
−1ϵ2∂l ∧ ∂l) + e2ϵl(

√
−1ϵ∂∂l + 2

√
−1ϵ2∂l ∧ ∂l)

]
(5)

as a current. We can choose λ = C
a2

for some constant C > 0 and sufficiently small constant a > 0 to
make sure that l is plurisubharmonic. For this purpose, we first check the computations for l1 := λ|h|2.
Now

√
−1ϵ∂∂l1 − 4

√
−1ϵ2∂l1 ∧ ∂l1 = ϵλ(1− 4ϵλ|h|2)

√
−1dh ∧ dh

≥ ϵ
C

a2
(1− 4ϵ

C

a2
)
√
−1dh ∧ dh,

which is ≥ 0 by choosing ϵ < a2

4C . It follows from the definition in (4) that the numerator of (5) is at
least e4ϵl(

√
−1ϵ(12∂∂l1 + A(ρ′a, ρ

′′
a))) for some expressions A in first and second derivatives of ρa with

bounded constants. By choosing a sufficiently small, the above expression is ≥ 0 and hence tanh ϵl is
plurisubharmonic. Therefore φp(x) is a bounded plurisubharmonic function on M .
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It remains to show that φp is an exhaustion function on M . We have φp(M) ⊂ [0, 1). Let
{qn} ⊂ M be a divergent sequence. Since dC,M is nondegenerate and complete, dC,M induces the
complex topology of M (cf. [20, Proposition 4.1.2]). We have dC,M (p, qn) → ∞ as n → ∞ for any
fixed p ∈M . Apply Arzela-Ascoli Theorem to each dC,M (p, qn), we obtain a sequence {hn} ⊂ F such
that

ℓP (hn(qn)) = ℓP (0, hn(qn)) = dC,M (p, qn) → ∞, as n→ ∞.

Then for each n,

λ(h∗n|z|2)(qn) + h∗n(ρaℓP )(qn) = λ|hn(qn)|2 + ρa(hn(qn))ℓP (hn(qn)) ≤ lp(qn).

The above inequality forces φp(qn) → 1 as n→ ∞.

We remark that the exhaustion function obtained can be chosen to be smooth after regularization
by techniques in several complex variables, such as the one given in [26], or [17, Proposition 1.2].

1.4 L2-theory and Bergman metrics

In the following, we consider complex manifolds that are equipped with Kähler metrics.

Theorem 1.6 (Andreotti-Vesentini [3] and Hörmander [14]). Let (M, g) be a complete Kähler manifold
with Kähler form ω and Ricci form Ric(ω). Let (L, h) → M be a Hermitian holomorphic line bundle
with curvature form Θ(L, h). Write dVg as the volume form on M induced by g and ∥ ·∥ as the natural
norm induced by h and g. Suppose ψ is a smooth function onM and c is a positive continuous function
on M such that

Θ(L, h) + Ric(ω) +
√
−1∂∂ψ ≥ c ω

everywhere onM . Let f be a ∂-closed square integrable L-valued (0, 1)-form onM such that
∫
M

∥f∥2
c e−ψdVg <

∞.
Then there exists a section u of L solving the inhomogeneous problem ∂u = f with the estimate∫

M
∥u∥2e−ψdVg ≤

∫
M

∥f∥2

c
e−ψdVg <∞.

Furthermore, u is smooth whenever f is.

Proposition 1.7. Let (M, g) be a complete Kähler manifold. Suppose M is Carathéodory hyperbolic.
Then the L2-holomorphic sections of the canonical bundle KM separate points and generate jets of
KM of any orders.

Proof. Base-point freeness and generation of jets:
Let p ∈ M . Given some integer j > 0. We want to show that there is a L2-holomorphic section σ ∈
H0
L2(M,KM ) such that the jets of order j for σ is nonvanishing at p. Consider a small neighbourhood

U ⊂ M of p. Let z = (z1, . . . , zn) ∈ U be the local coordinates so that p = 0. Let χ be a smooth
cutoff function supported in a relatively compact neighbourhood U0 ⊂ U of p.

Let φ be given as in Theorem 1.3. Define

ψ(z) := αφ(z) + χ(z) log |z|2n+k,

where a constant α > 0 and an integer k ≥ 0 are to be chosen later. Then ψ defines a smooth function
on M . Let ω be the Kähler form associated to the complete Kähler metric g. Note that on M ,
Θ(KM , g) = −Ric(ω), so

(∗) : Θ(KM , g) + Ric(ω) +
√
−1∂∂ψ =

√
−1∂∂ψ

= α
√
−1∂∂φ+ (2n+ k)

√
−1∂∂(χ log |z|).

8
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The term
√
−1∂∂(χ log |z|) is positive on U0 ⊂ U , vanishes on M − U , and has uniformly bounded

negativity in U −U0. Since φ is strictly plurisubharmonic on M , these exists a sufficiently large α > 0
such that

α
√
−1∂∂φ+ (2n+ k)

√
−1∂∂(χ log |z|) ≥ ϵ ω

for some ϵ > 0. Let v ∈ Γ(U,KM |U ) be a basis. Then η := χv defines via extension by zero a smooth
section of KM . Note that ∂η ≡ 0 on U0∪ (M −U). So supp(∂η) ⊂ U −U0 is compact. Since e−ψ|U−U0

is smooth, ∫
M

∥∂η∥2

ϵ
e−ψdVg <∞.

By Theorem 1.6, there exists a solution u to the equation ∂u = ∂η such that∫
M

∥u∥2e−ψdVg ≤
∫
M

∥∂η∥2

ϵ
e−ψdVg <∞. (6)

Then on U0, there exists a constant C > 0 such that,

e−ψdVg = Ce−αφ · 1

|z|2n+k
dVe = Ce−αφ · 1

r2n+k
r2n−1dS = Ce−αφ · 1

rk+1
dS, (7)

where dVe is the local Euclidean volume form, r = |z| is the polar radius and dS is the volume form
of unit sphere. Since φ is bounded on M , it follows from the estimates (6) and (7) that u vanishes at
p = 0 to the prescribed order j ≥ 0 by choosing k = j − 1 and α > 0 sufficiently large.

Now let σ := η − u. Then σ(p) = η(p) ̸= 0 and ∂σ = 0. Hence σ is a nontrivial holomorphic

section of KM nonvanishing at p. Moreover, σ is L2 with respect to e−ψ = e−αφeχ log |z|2n+k
, which is

bounded from below on M . Thus σ is also L2 with respect to the background Kähler metric g. This
shows that the L2-holomorphic sections of KM is base-point free. Similarly, if we replace η = χv by
η = zi1 . . . zisχv, the above argument with minor modifications also implies that the L2-holomorphic
sections of KM generates jets of any given order.

Separation of points:
Let p, q ∈ M be a pair of distinct points. To show that the L2-holomorphic sections of KM separate
points onM , we have to construct η, σ ∈ H0

L2(M,KM ) such that η(p) ̸= 0 and η(q) = 0 while σ(p) = 0
and σ(q) ̸= 0. In the argument for the generation of jets, η is obtained as desired. If U ⊂M is small
neighborhood of p so that q /∈ U , then we can find a neighborhood V of q that is disjoint from U .
The argument for the pair (U, p) can be applied to the pair (V, q) to obtain another L2-holomorphic
sections σ of KM as desired. If q ∈ U , then take p = 0, q = z(q) ̸= 0 and replace ψ = αφ+χ log |z|2n+k
by ψ = αφ+ χ(log |z|2n+k + log |z − z(q)|2n+k). The rest of the argument is then similar.

Lemma 1.8. Let (M, g) be a complete Kähler manifold. Suppose M is Carathéodory hyperbolic. Then
for any integer q > 0, the L2-holomorphic sections of qKM separate points and generate jets of qKM

of any orders.

Proof. Write qKM = (q − 1)KM + KM . Let {si}∞i=1 be a unitary basis of the the L2-holomorphic
sections of KM . The Kähler metric g induces a metric on KM = det(T ∗

M ) = (det(TM ))−1, given by
(det g)−1 or V −1

g in local coordinates, where Vg is the coefficient of the volume form. Define

κ :=

(
1∑∞

i=1 |si|2

)q−1

· det g−1 := θ · det g−1,

9
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which can be viewed as the product of metric θ on (q − 1)KM with the metric g on KM . Since θ
is induced by the sum of squares of holomorphic sections, we have Θ((q − 1)KM , θ) ≥ 0 Thus the
curvature Θ(qKM , κ) ≥ Θ(KM , g), so that

(∗)q : Θ(qKM , κ) + Ric(ω) +
√
−1∂∂ψ ≥ Θ(KM , g) + Ric(ω) +

√
−1∂∂ψ.

Thus the argument in Proposition 1.7 for (KM , g) can be applied to (qKM , κ).

Bergman metric

Let (M, g) be a Kähler manifold. The space of holomorphic n-forms α onM such that |
∫
M α∧α| <∞

forms a separable complex Hilbert space W under the inner product (α, β) 7→ in
2

2n

∫
M α∧β. When KM

is equipped with the natural Hermitian metric induced by g, W is equal to the space H0
L2(M,KM ) of

L2-canonical sections with respect to g. The Bergman kernel on M is a sum BM :=
∑∞

j=1
in

2

2n sj ∧ sj ,
where sj is a unitary basis of H0

L2(M,KM ). The Bergman kernel BM is independent of the choice of

basis. Let k̃(x) := BM (x, x) be the trace. By abuse of notation, we also call k̃ the Bergman kernel on
M . Write sj = ŝjdz1 ∧ · · · ∧ dzn in local coordinates. We know that k̃(z) =

∑∞
j=1 |ŝj |2. Note that k̃

defines a (possibly singular) Hermitian metric on detTM = K∗
M . Write |sj |2g := (det g)−1|ŝj |2 locally.

Then k(x) :=
∑∞

i=1 |si|2g defines a function on M , which we call the Bergman function.
The Hessian of log k(x) in local coordinates around x gives rise to smooth Hermitian (1, 1)-form

that is only positive semi-definite in general. We call the corresponding pseudo-length function BM the
Bergman pseudo-metric. If BM (x, v) > 0 for any v ∈ TxM −{0}, then BM is said to be nondegenerate
at x. If BM is nondegenerate on all of M , then BM is called the Bergman metric.

It follows from Lemma 1.8 that

Theorem 1.9 (=Theorem 0.2). Let (M, g) be a complete Kähler manifold. SupposeM is Carathéodory
hyperbolic. Then the Bergman pseudo-metric BM is nondegenerate.

Note that infinitesimal Carathéodory pseudo-metric decreases under holomorphic maps, i.e. if
f : Y → X is a holomorphic map between complex spaces, then EX(f(p), (df)p(v)) ≤ EY (p, v) for any
p ∈ Y and v ∈ TpY . In particular,

Corollary 1.10. Let (X, g) be a complete Kähler manifold. Suppose there is a holomorphic covering
π : X ′ → X such that X ′ is Carathéodory hyperbolic. Then for any holomorphic covering π :M → X ′,
M is Carathéodory hyperbolic and the Bergman pseudo-metric BM is nondegenerate.

In Corollary 1.10, since k is invariant under the action of deck transformation, the Bergman metric
BM onM descends to a smooth Hermitian metric hX on X. However, it is not clear if hX is equivalent
to BX . In general, BX may even be degenerate.

For any complex manifold X, the classical comparison theorem between Carathéodory pseudo-
metric EX and the Bergman pseudo-metric BX says that if p ∈ X is a point such that the Bergman
kernel at p is nontrivial, then for any v ∈ TpX, EX(x, v) ≤ BX(x, v) ([11, 22] for domains ; [5, 12, 13]
for manifolds, cf. also [1] ). Under the assumption of Theorem 0.2, the nontriviality of Bergman kernel
is automatic:

Corollary 1.11. Let M be a complete Kähler manifold. Suppose M is Carathéodory hyperbolic. Then
for any v ∈ TxM , EM (x, v) ≤ BM (x, v).

If M has many nonconstant bounded holomorphic functions but do not have a priori complete
Kähler metrics, we may instead resort to the completeness of the Carathéodory distance by applying
Corollary 1.4:

10
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Corollary 1.12. Let M be a strongly Carathéodory hyperbolic complex manifold. Then the Bergman
pseudo-metric BM is nondegenerate and complete.

It is expected that Corollary 1.11 and 1.12 will be useful for the study of some unbounded domains
in view of [1]. For example, it is well-known that for every generalized analytic polyhedron P ⊂ Cn,
dC,P is nondegenerate and (P, dC,P ) is complete, cf. [20, Corollary 4.1.9].

2 Hyperbolicity properties of subvarieties

2.1 Motivation from Kobayashi metric

For any complex manifoldM , one can define the Kobayashi pseudo-distance dK,M and the infinitesimal
Kobayashi(-Royden) pseudo-metricKM as in the introduction (cf. [20] for detailed definitions and basic
properties). In Lang’s original survey [21], a complex manifold M is said to be Kobayashi hyperbolic
if dK,M is nondegenerate. Note that dK,M is equal to the pseudo-distance dKM

obtained by integrating
KM . So one is also lead to the study of the KM when considering Conjecture 0.3 and 0.5.

In general, the infinitesimal Carathéodory pseudo-metric EM defines a continuous locally Lip-
schitz Finsler pesudo-metric with holomorphic sectional curvature ≤ −1 [20, p. 179-181]. If M
is Carathéodory hyperbolic, then M is Kobayashi hyperbolic and so are any manifold quotients
X = M/Γ. This shows that Carathéodory hyperbolicity is a stronger condition than Kobayashi
hyperbolicity. We are going to prove that Carathéodory hyperbolicity is enough to imply Theorem
0.4 and 0.6, which are motivated by Lang’s Conjecture 0.3 and its genearalization Conjecture 0.5
respectively.

2.2 Compact manifolds

Recall that a compact complex manifold Z is said to be of general type if the Kodaira dimension

κ(Z) = dimZ =: m, or equivalently lim supq→∞
dimH0(Z,Kq

Z)
qm > 0, i.e. KZ is big. In general, κ(Z) ≤

a(Z) ≤ dimZ = m, where a(Z) is the algebraic dimension of Z. A possibly singular projective
algebraic variety Z is said to be of general type if a smooth birational model Z̃ of Z is of general type,
(cf. [30]).

Proof of Theorem 0.4. We first show that X is of general type. In fact, we show that KX is even
ample. Let g be a complete Kähler metric on X. Write π : M → X be the universal covering. By
Theorem 0.1, there exists a bounded real-analytic strictly plurisubharmonic function φ on M . Note
that π∗g is a complete Kähler metric on M . By Theorem 1.9 the Bergman metric is nondegenerate
on M and descends to a complete Kähler metric of strictly negative Ricci curvature on X. Hence by
Kodaira’s embedding theorem, KX is ample. Alternatively, this follows from [10, Section 3.2] or the
proof of [37, Corollary 2] for the conclusion of general type.

Let Z ⊂ X be a subvariety of complex dimension m ⩽ n. Let Y be an irreducible component of
π−1(Z) on M . First consider the case that Z is smooth. Then the restriction of φ to Y gives rise to
a bounded strictly plurisubharmonic function. Hence the argument of the last paragraph implies that
KZ is ample and Z is of general type.

In case Z is singular, we need to show that Z̃ coming from a smooth resolution σ : Z̃ → Z of Z is
of general type. Note that Z is compact Kähler. The fibre product Ỹ induced by the covering map
π|Y : Y → Z and the resolution σ : Z̃ → Z give rise to a resolution of singularity τ : Ỹ → Y of Y , and
the covering map π′ : Ỹ → Z̃ so that π ◦ τ = σ ◦ π′.

The manifold Ỹ is Kähler. Let Y0 be the smooth locus of Y and SY be the singularity of Y . Note
that τ restricts to give a biholomorphic map Ỹ0 := Ỹ −τ−1(SY ) ∼= Y −SY = Y0. Then τ

∗◦(φ|Y ) = φ◦τ
is a bounded smooth plurisubharmonic function on Ỹ , which is not strictly plurisubharmonic at Ỹ −Ỹ0.

11
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The argument in the Proof of Proposition 1.7 implies that we are able to construct L2-holomorphic
sections of K

Ỹ
on Ỹ , which in fact separate points and generate jets on Ỹ0. We can now apply the

technique in [10, Section 3] to construct meromorphic functions f on Z̃ by quotients of Poincaré series
associated to pluricanonical line bundles of Ỹ . Recall that the Poincaré series associated to a L1

section F of qK
Ỹ

on Ỹ for q ⩾ 0 is defined by

PF (z) =
∑
γ∈Γ

γ∗F (z), (8)

where Γ is the deck transformation of Z̃ associated to the covering map π′ : Ỹ → Z̃. PF is invariant

under Γ and hence descends to give a holomorphic section of K
Z̃
on Z̃. The quotient

PF1
PF2

of two such

Poincaré series PF1 , PF2 of the same weight q gives rise to a meromorphic function f .
In the following, we apply the arguments from [10, Proposition 3.2.A, Corollary 3.2.B] to deduce

that the algebraic dimension of all such f on Z̃ is m. Since f comes from quotients of Poincaré series
which are pluricanonical sections on Z̃, for all q > 0 sufficiently large, the image of the meromorphic
map ΦqK

Z̃
defined by the sections of qK

Z̃
is a variety Wq of dimension κ(Z̃) (cf. [30, Chapter 5]),

and the field of meromorphic functions C(Wq) ⊂ C(Z̃). It follows that there is a compact subvariety

W ′
q ⊂ Z̃ corresponding to C(Wq). Note that there is actually no compact subvariety of dimension

greater than 0 on Y as φ is strictly plurisubharmonic. The only compact subvarieties on Ỹ are given
by the resolution of singularity of Y . On any relatively compact open subset U of Ỹ , there are
only a finite number of compact subvarieties of Ỹ contained in U . Suppose that κ(Z̃) = k < m.
Then the linear system ΦqK

Z̃
: Z̃ → Wq ⊂ Pd has fibers Ft, t ∈ Wq, of dimension m − k > 0,

where d = dimC(H
0(Z̃, qK

Z̃
)). Applying [10, Corollary 3.1.A], this implies ΦqK

Z̃
◦ π′ has generically

compact fibers and hence U contains infinitely many compact subvarieties of Ỹ if U is sufficiently
large, contradicting the earlier observation. We conclude that the Kodaira dimension κ(Z̃) = m and
hence Z is of general type.

2.3 Noncompact manifolds

2.3.1 Complete noncompact Kähler manifolds

In this section, we consider a noncompact complex manifold X. First we prove a result which is valid
for a general complete noncompact Kähler manifold related to the setting of the previous sections.

Theorem 2.1. Let X be a complete Kähler manifold. Assume that the universal covering M of X
is Carathéodory hyperbolic. Then for any subvariety Z ⊂ X, the algebraic dimension of the space of
meromorphic functions arising from quotients of L1 holomorphic sections of the pluricanonical line
bundle of Z is equal to dimC(Z).

Proof. Let Z ⊂ X be a subvariety. If Z is compact, then by Theorem 0.4, we are done. In the
following, we will assume Z to be noncompact. Let Y ⊂ M be an irreducible component of π−1(Z)
on M . In this case, the fundamental domain F of Z̃ in Ỹ is noncompact. We define in the same way
the Poincaré series as in (8) associated to F ∈ H0

L1(Ỹ ,K
q

Ỹ
). In the case that F is noncompact, we

know that the infinite sum converges on compacta on Ỹ (cf. [10]). Hence it gives rise to a Γ-invariant
holomorphic section PF of Kq

Ỹ
. Since

∥|PF |∥F =

∫
F
|PF | =

∫
F

∑
γ∈Γ

|γ∗F | ≤
∑
γ∈Γ

∫
F
|γ∗F | =

∫
Ỹ
|F | <∞,

12
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we conclude that PF descends to give a L1 holomorphic section of Kq

Z̃
on Z̃. Again, from the work

of [10] as in the proof of Theorem 0.4, we construct a lot of meromorphic functions on Z̃ by taking
quotients of two such Poincaré series. The same proof there shows that the algebraic dimension of all
such quotients is m.

In order to obtain an appropriate formulation of Lang’s Conjecture 0.3 in the setting of noncompact
manifold, we start with the following observation:

Proposition 2.2. There exist examples of Kobayashi hyperbolic quasi-projective manifold which con-
tains analytic but non-quasi-projective subvarieties.

Proof. From the results of [27, 28], there exists a smooth irreducible curve C ⊂ P 2
C of high degree

d such that M = P 2
C − C is Kobayashi hyperbolic. For d sufficiently large, the linear system ΦO(d)

associated to the powers of the hyperplane line bundle O(1) gives an embedding ΦO(d) : P
2
C → PnC for

some n = h0(P 2
C,O(d)) − 1 and mapping C to a hyperplane D in PnC . Identify M with ΦO(d)(M),

which is algebraic in Cn = PnC − D. Assume that D is defined by Zn+1 = 0 in the homogeneous
coordinates of PnC . Let zi =

Zi
Zn+1

be the coordinates on Cn = PnC − D. We can assume that the

projection ΦO(d)(M) → {z3 = · · · = zn = 0} ∼= C2 is a finite surjective mapping so that ΦO(d)(M) is
an algebraic surface sitting over C2.

Let f : Cn−1 → C be a transcendental function. Then the graph Gf of f lies in Cn is a tran-
scendental hypersurface in PnC , considered as the compactification of Cn after adding a divisor at ∞.
For instance, one can let Gf be given by z1 = ez2 . Then Y := Gf ∩M is a transcendental curve in
ΦO(d)(P

2
C), which is a compactification of M . Hence Y is not a quasi-projective subvariety of M while

M is Kobayashi hyperbolic.

In view of the above examples, an appropriate formulation of Lang’s Conjecture 0.3 for quasi-
projective manifolds should be stated in terms of log-general subvarieties and as in Conjecture 0.5.
Recall that a compact complex manifold X is of log-general type with respect to a divisor D ⊂ X
if KX + [D] is big. A possibly noncompact complex manifold X is said to be of log-general type if
there is a compactification X ⊃ X such that D := X −X is a divisor and KX + [D] is big. If X is

singular, then X is said to be of log-general type if there is a nonsingular model X̃ of X such that X̃
is of log-general type.

2.3.2 Quasi-projective manifolds

For the proof of Theorem 0.6, let us begin with some preparations. Let r > 0. Denote by ∆r ⊂ C
the disk of radius r, ∆∗ = ∆− {0} the punctured unit disk and ∆∗

r ⊂ C the punctured disk of radius
r. Two metrics g1, g2 are said to be quasi-isometric if there exists a positive constant c > 0 such
that 1

cg2 ≤ g1 ≤ cg2. We denote by g1 ∼ g2 and ω1 ∼ ω2 for the corresponding Kähler forms for the
quasi-isometric Kähler metrics.

In the rest of the article, X will always be a quasi-projective manifold. Thus we can write X =
X −D for some projective manifold X and D = D1 ∪ · · · ∪Ds is a divisor of X with components in
simple normal crossings.

Poincaré type metric and geometry of bounded type

For any x ∈ D ⊂ X, there is a neighborhood U ⊂ X of x in X with local coordinates (z1, . . . , zn) such
that U ∩D = {z1 · · · zk = 0} (1 ≤ k ≤ n) and the complement U := U −U ∩D ∼= (∆∗)k ×∆n−k. The
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Poincaré metric gP on U is defined by the associated Kähler form

ωP :=

√
−1dz1 ∧ dz1

|z1|2(log |z1|2)2
+ · · ·+

√
−1dzk ∧ dzk

|zk|2(log |zk|2)2
+
√
−1dzk+1 ∧ dzk+1 + · · ·+

√
−1dzn ∧ dzn

=
√
−1∂∂ψ′, (9)

where

ψ′ = (
k∏
i=1

log log(|zi|−2)) · (
n∏

j=k+1

|zj |2).

Let Ur ∼= (∆∗
r)
k × ∆n−k

r and ρ be a smooth cutoff function supported on U 3
4
and is identically 1 on

U 1
2
. Choose an arbitrary smooth Kähler metric ω0 on X. Let ω′ = aω0 +

√
−1∂∂(ρψ′). Then ω′

defines a complete Kähler metric g′ on X for a constant a > 0 sufficiently large. We will also call g′

the Poincaré metric on X.
A more intrinsic way to describe the Poincaré metric on X is as follows. Let Di be defined by

si = 0 locally and hi be a Hermitian metric associated to the line bundle [Di]. Then |si|h := |si|2hi
is a well-defined function on X. Rescaling hi by a small constant if necessary, we can assume that
|si|2h < 1 for each i. Let ψ =

∏n
i=1

1
log |si|−2

h

. From direct computations, on X = X −D,

√
−1∂∂ logψ =

k∑
i=1

(
−
√
−1

∂∂ log |si|2h
log |si|2h

+
√
−1

∂|si|2h ∧ ∂|si|2h
|si|4h(log |si|2h)2

)

=
k∑
i=1

(
Θ([Di], hi)

log |si|2h
+
√
−1

4∂|si|h ∧ ∂|si|h
|si|2h(log |si|2h)2

)
. (10)

By choosing hi sufficiently small, we can make sure that the first term of (10) is bounded by ϵ ω0 for
any given ϵ > 0. Hence

ω := bω0 +
√
−1∂∂(logψ)

is positive-definite if b is sufficiently large, and defines a Kähler metric g on X. It is clear from
definition that ω ∼ ω′. We will also call g the Poincaré metric on X.

In the following, we always equip X with the Poincaré metric g defined by the Kähler form ω.
Recall that g (or ω) has bounded geometry in the sense of [7] and [29] (cf. [34]), and satisfies the
following properties:
(i). For any p ∈ D and a neighbourhood U ∼= (∆∗)k ×∆n−k of p in X, there exists quasi-coordinate
chart given by unramified covering maps of the form f :W 1

2
= (∆ 1

2
)k ×∆n−k

1
2

→ U .

(ii). (X, g) has finite volume.
(iii). All the derivatives of g are bounded. Hence the Riemannian sectional curvature of g is bounded.

From (i), we can cover a neighbourhood V of D in X by a finite collection of polydisks, so that
the corresponding collection U of punctured polydisks U cover V = V − V ∩D in X. Each U ∈ U is
an image of the form f(W 1

2
). Denote by Ũ = π−1(U), Ṽ = π−1(V ) and Ũ = {π−1(U) : U ∈ U} the

pull-backs via the universal covering π :M → X.

Proposition 2.3. Let X be a quasi-projective manifold such that its universal covering M has a
bounded plurisubharmonic exhaustion function. Equip X with the Poincaré metric g on X given by
(9) or equivalently (10). Then the injectivity radius of g is bounded below by a positive constant on
M .
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Proof. Assume on the contrary that there exists a sequence pj ∈ M such that τ(pj) → 0 as j → ∞.
Then the injectivity radius τg(π(pj)) → 0 as j → ∞ on X. So there is a point b ∈ D such that
π(pj) → b as j → ∞.

We can take b ∈ D to be a smooth point. Let U ⊂ X be an open neighbourhood of b in X such
that U := U ∩ X ∼= ∆∗ × ∆n−1, where we have the biholomorphism ∆∗ ∼= D∗ ⊂ X for some disk
∆ ∼= D ⊃ D∗ transversal to D at b in X. We can assume π(pj) ∈ D∗ for all j.

Let V0 ⊂ π−1(U) be a connected component. Then V := π−1(D∗) ∩ V0 ⊂ M is connected.
Moreover,

η := π|π−1(D∗)∩V0 : V = π−1(D∗) ∩ V0 → D∗ (11)

is a holomorphic covering. We obtain the universal covering

π′ : H → V → D∗, (12)

factored as π′ = π0 ◦ η, where π0 : H → V is also a holomorphic covering. We have the following
information:

H

V M

∆∗ ∼= D∗ X

π0

π′

η π

Note that the deck transformation group of π0 is a subgroup of π1(D∗) = Z and hence as a subgroup
has to be of the form mZ for some integer m > 0:

Covering map Deck transformations

π′ : H → D∗ Z : z 7→ z + 1
π0 : H → V mZ : z 7→ z +m
η : V → D∗ Z/mZ

There are two mutually exclusive situations, either
(I) V ∼= ∆∗ ∼= D∗, where m > 1; or
(II) V ∼= H, where m = 1.

Let t(z) be the injectivity radius with respect to the Poincaré metric ds2H = dz⊗dz
y2

(z = x+iy ∈ H).

In case (II), H ∼= ∆ has injectivity radius t(z) bounded from below by any real positive number as z
approaches the boundary, so we are done. Hence it suffices for us to consider case (I).

Let B ⊂ ∆ ∼= D be a small neighbourhood of 0. Using the explicit map π′(z) = e2πiz (identifying
D∗ ∼= ∆∗), we see that (π′)−1(B ∩ D∗) ⊃ {x + iy ∈ H : y ≥ T} for some sufficiently large T > 0. We
can choose the fundamental domain Ao ⊂ H of ∆∗ ∩ B ⊂ ∆∗ for the universal covering π′ : H → ∆∗

to lie in the strip L := {x+ iy : 0 < x < 1} ⊂ H, i.e.,

Ao = {x+ iy ∈ H : 0 < x < 1, y ≥ T}.

For the preimage η−1(B ∩ D∗) = π−1(B ∩ D∗) ∩ V0 ⊂ V , the fundamental domain A ⊂ H of η−1(B ∩
D∗) ⊂M for π0 is a union of translations of A0 by some γ ∈ Γ.

Covering map Subset Fundamental domain

π′ : H → D∗ B ∩ D∗ Ao ⊂ L

π0 : H → V η−1(B ∩ D∗) A =
⋃

γ∈I⊂Γ

γ(A0)
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Claim. Suppose the injectivity radius of η−1(B ∩ D∗) is 0, then A is the union of finitely many
translates of A0 by γ ∈ Γ.

Proof. Note that τ(pj) → 0 for pj ∈ η−1(B∩D∗) if and only if t(zj) → 0 as j → ∞ for zj ∈ A, where zj
are liftings of pj via π0. Moreover, t(zj) → 0 implies that zj → γ(q∞) for some γ ∈ Γ := π1(∆

∗) ∼= Z.
We can assume zj ∈ A for all j > 0. By choosing B sufficiently small, we can assume A has only one
cusp from the orbit Γ · q∞. By choosing another fundamental domain A if necessary, we can assume
zj → q∞ as j → ∞. As a fundamental domain, A ⊂ H is connected. Thus A is a tessellation of A0.

Suppose A is the union of infinitely many translates of A0 = {z = x + iy : 0 < x < 1, y ≥ T} by
γ ∈ Γ. Since Γ is generated by z 7→ z+1 and A is connected, A = {z = x+ iy ∈ H, y ≥ T}. It follows
that the covering map π0 : H → V is a biholomorphism. In such case, the injectivity radius of V with
respect to the Poincaré metric is bounded below, contradicting our assumption. ■

It follows from the above claim that η : V → D∗ is a holomorphic covering with deck transformation
group Γ0

∼= Z/mZ, which is a finite group. Let φ be a bounded plurisubharmonic exhaustion on M .
Let φ0(ξ) :=

∑
γ0∈Γ0

(φ|V )(γ0(ξ)) for ξ ∈ V . Then φ0 descends to a bounded subharmonic function on
D∗, which extends to D. Note that as φV is an exhaustion function, the sum φ0 cannot be a constant.
From construction, the extended function φ0 has maximal value at the origin. By maximum principle
for subharmonic functions, such extension must in fact be a constant function. Hence φ|V must be
constant. However, this is a contradiction.

Estimates of Bergman kernel

Let X be a quasi-projective manifold so that its universal covering M is Carathéodory hyperbolic.
Equip M with the Kähler metric obtained by pulling back the Poincaré metric g on X, which is
associated to the Kähler form ω defined by (10). By abuse of notation, the pull-back Kähler metric
and Kähler form onM are still denoted by g and ω respectively. By Theorem 1.9, the Bergman metric
on M is nondegenerate and descends to a smooth Hermitian metric ωB on X. The Bergman kernel k̃
and the Bergman kernel function k on M also descend to X.

We need the technical estimates in the following proposition for our later arguments.

Proposition 2.4. Let X be a quasi-projective manifold such that its universal covering M supports
a bounded plurisubharmonic exhaustion function. Denote by k the Bergman kernel function on M .
Then there exists a constant c > 0 such that k(x) ≤ c for any x ∈M .

Proof. Recall that X = X−D. Take V ⊃ D to be an open neighbourhood in X so that V = V −V ∩D.
Thus X − V is relatively compact. It suffices to prove the Proposition for x ∈ Ṽ = π−1(V ). Cover V
by open subsets of the form U 1

2
.

By Proposition 2.3, the injectivity radius τg of g is positive on the universal covering M . In terms
of the coverings by quasi-coordinates, choose 0 < τ < τg so that the geodesic ball Bτ (x) ⊂ M with

respect to g lies in a quasi-coordinate chart of the formW 1
2
for each x ∈ Ũ 1

2
:= π−1(U 1

2
). In particular,

since we are considering the Poincaré metric g on X, there exists δ > 0 so that Bτ (x) lies within an
Euclidean ball Uδ(x) of radius δ in terms of the quasi-coordinates in (i). By choosing a constant τ < τg
sufficiently small, we can assume that for each x ∈ Ũ 1

2
, the geodesic ball Bτ (x) of radius τ centred at

x lies in Ũ 1
2
.

On the geodesic ball Bτ (x), it follows from our choice of quasi-coordinates in bounded geometry
that there exists c > 0 independent of x such that

1

c
<

det g(y)

det g(z)
< c ∀y, z ∈ Bτ (x). (13)
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Denote by ∥ · ∥g the norm on H0
L2(M,KM ) induced by g. Since Bergman kernel is independent of the

choice of the unitary basis, it is well-known that we can represent the Bergman kernel by extremal
functions in the sense that

k(x) = sup
s∈H0

L2 (M,KM ),∥s∥g=1

|s|2g = |sx|2g (14)

for some sx ∈ H0
L2(M,KM ) with ∥sx∥g = 1. Write sx(y) = ŝx(y)dz1 ∧ · · · ∧ dzn in terms of the

local coordinates on a coordinate chart and dµ the corresponding Lebesgue measure. It follows from
Cauchy’s estimates or Sub-Mean-Value Inequality that the Euclidean norm

|ŝx(x)|2 ≤
1

πδ2

∫
Uδ(x)

|ŝx(y)|2dµ(y).

Together with (13), this implies that for a constant c′ > 0,

|sx(x)|2g ≤ c′
∫
Uδ(x)

|sx(y)|2gdµ(y)

≤ c′∥sx∥2g
= c′.

(15)

Hence from (14) , k(x) ⩽ c′ on M .

Combing Proposition 2.3 and Proposition 2.4 with Proposition 1.5, we have

Corollary 2.5. Let X be a quasi-projective manifold such that its universal covering M is strongly
Carathéodory hyperbolic. Equip X with the Poincaré metric g on X given by (9) or equivalently (10).
Then the injectivity radius of g on M is positive and there exists a constant c > 0 such that k(x) < c
for all x ∈M .

Proof of Theorem 0.6

Proof. Let us prove that X is of log-general type. From assumption, X = X − D for some divisor
D. By the resolution of singularity of Hironaka, we can assume that D = D1 ∪ · · · ∪Dn is in simple
normal crossing. Equip X with the Poincaré metric g with associated Kähler form ω constructed from
(9) or equivalently (10).

First we claim that there exist a Hermitian metric κ on KX and some constant c > 0, so that for
q sufficiently large, the dimension

h0L2(X,K
q
X , κ, ω) ≥ c qn. (16)

As in the argument of Mok in [23], we want to prescribe the order of vanishing for sections of
H0
L2(X,K

q
X) at a point x ∈ X up to order cq for some positive constant c. If this can be done,

then the estimates (16) follows by noting that the coefficients of Taylor series expansion at x of order
up to q has qn coefficients.

Let x ∈ X. Let z be a local coordinates around x as used in equation (*) in the proof of Proposition
1.7, and χ be a cutoff function supported in a small coordinate neighborhood of x as described in
equation (*). Suppose we would like to prescribe the vanishing order up to ℓ, from the notations used
in equations (*) or (*q), it suffices to make sure that there exists a Hermitian metric κ such that

Θ(qKX , κ) + Ric(ω) + (2n+ ℓ)
√
−1∂∂(χ log |z|) ≥ ϵ ω (17)

for some positive constant ϵ > 0 .
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By construction, Θ(KX , g) > 0 on a neighborhood U of D in X and Θ(KX , g) > −c1ω on X − U
for some constant c1 > 0. On the other hand, apply the proof of Theorem 0.4, we found that the
inverse of Bergman kernel k̃−1 defines a Hermitian metric ho on KM which descends to KX , so that
Θ(KX , ho) = −Ric(X,ho) = ωB =

√
−1∂∂ log k(x). Here recall that k(x) is the Bergman function on

M , which descends to X. Since g is a metric of bounded geometry, we can choose a positive integer ℓ
sufficiently large so that

ℓ ω > c1Θ(KX , g) and ℓΘ(KX , ho) > 2c1ω on X − U. (18)

It follows that
h := hℓ/(1+ℓ)o (det g)−1/(1+ℓ) (19)

is a smooth Hermitian metric of KX , and

Θ(KX , h) =
1

ℓ+ 1
(ℓΘ(KX , ho) + Θ(KX , g)).

Note that ω is equivalent to ωP on U defined by (9). Using (18),we have

Θ(KX , h) ≥
{ 1

ℓ+1(c1ω) on X − U
1
ℓ+1Θ(KX , gP ) on U

≥ c2
ℓ+ 1

ω on X, (20)

where c2 = min(c1,Θ(KX , gP )/ωP ). Hence there exist constants c3 > 0 such that

Θ(KX , h) > c3ω. (21)

Now from (21), by choosing κ = hq,

Θ(qKX , κ) + Ric(ω) + (2n+ ℓ)
√
−1∂∂(χ log |z|)

≥ (c3q − 1)ω − c4(2n+ ℓ)ω (22)

for some constant c4 > 0. Hence condition (17) is satisfies for all ℓ < c3q−1
c4

− 2n. It follows that the
vanishing order at x can be prescribed up to order c5q for q large and the estimates (16) follows.

Claim. For q ⩾ 1, L2-holomorphic sections of (Kq
X , h

q) over (X, g) have pole of order ≤ q along
D = DX := X −X.

Proof. Let σ ∈ H0
L2(X,K

q
X) that is L2 with respect to hq. By Proposition 2.4, h−1

o ≤ C det g for
some constant C > 0. Thus |σ|h ≥ |σ|g. Take a smooth point x ∈ DX and suppose U ⊂ X is a
neighborhood of x so that U ∩ X ∼= ∆∗ ×∆m−1 and U ∩ DX = {w = 0}, where (w, z2, . . . , zm) is a
local holomorphic coordinates of U . In U , write σ = σ0(dw ∧ dz2 ∧ · · · ∧ dzn)q. Then

∞ >

∫
U∩X

|σ|2hdVg

≥
∫
U∩X

|σ|2gdVg

= C ′ ·
∫
∆∗×∆m−1

|σ0|2|w|2(q−1)(log |w|)2(q−1)dVe,

where C ′ > 0 is a constant and Ve is the Euclidean volume form. ■
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Continuation of the Proof of Theorem 0.6: It follows from the above Claim that sections of
H0
L2(X,K

q
X) that is L2 with respect to h obtained by solving ∂-equations using Theorem 1.6 and

(22) extend as sections of qKX + qD over X. From (16), we conclude that

h0(X, q(KX +D)) ≥ c qn

for q sufficiently large. Hence X is of log-general type.
Consider now Z ⊂ X a quasi-projective subvariety. Let Z be the Zariski closure of Z in X. If Z is

compact, it is a subvariety of general type from Theorem 0.4. Hence we assume from this point that
Z ∩D ̸= ∅. Let DZ = D∩Z. From the result of Hironaka again, we can assume that DZ is a divisor in
simple normal crossing in Z, DZ = D1 ∪ · · · ∪Dk for some positive integer k, and each Di is smooth.
If Z is smooth, the argument above for X immediately implies that Z is of log-general type, since the
restriction of the bounded strictly plurisubharmonic function φ on M as given in Theorem 0.1 to an
irreducible component Y of π−1(Z) on M is still a bounded strictly plurisubharmonic function on Y .

Assume now that Z has singularities SZ := Z − Z0, where Z0 is the set of smooth points on Z.

Similarly, let SY := Y − Y0. Let σ : Z̃ → Z be a smooth resolution of Z coming from the resolution Z̃
of Z. We will show that Z̃ is of general type. We adopt the setting in the proof of Theorem 0.4. Let
τ : Ỹ → Y be the resolution of singularity of Y . There is a covering map π′ : Ỹ → Z̃ with π◦τ = σ◦π′.
The function τ restricts to give a biholomorphic map Ỹ0 := Ỹ − τ−1(SY ) ∼= Y − SY = Y0, where Y0
is the smooth locus of Y . Let φ be a bounded strictly plurisubharmonic function on M as given in
Theorem 0.1. Then φ ◦ τ is a bounded plurisubharmonic function on Ỹ , not strictly plurisubharmonic
at points of Ỹ − Ỹ0.

The key fact is the following. Clearly φ ◦ τ is strictly plurisubharmonic at a point x ∈ Ỹo. Since φ
is strictly plurisubharmonic in transverse direction to Ỹo in Ỹ in the sense that

√
−1∂V ∂V φ(y) ⩾ cy,V g(V, V ) (23)

for some t cy,V > 0 depending on y ∈ Ỹo and V ̸= 0 in transversal direction to SY . Furthermore, if V
is a tangent vector of SY at a smooth point of SY , equation (23) holds as well. This is reflected in the
desingularization Ỹ that for ỹ ∈ S̃Y = τ−1(SY ) and 0 ̸=W ∈ TỹỸ ,

√
−1∂W∂W τ

∗φ(x) ⩾ cx,W τ
∗g(W,W ),

where cx,W ≥ 0 and can only be 0 if τ∗(W ) = 0.
The set SZ may not be codimension 1 subvariety of Z. Let E1 be a divisor on Z containing SZ .

Then E1 defines a line bundle L1, which has a section s1 whose zero divisor E1 is effective. After
replacing Z by some resolution if necessary, we can assume that E1 is a union of smooth divisors in
simple normal crossings. E1 may not be ample. Since Z is projective, there exist a very ample line
bundle L2 on Z so that it supports a holomorphic section s2 with zero divisor E2, which is in simple
normal crossings with DZ , and that L1 + L2 is ample on Z. Hence we can find smooth Hermitian
metrics hi on Li for i = 1, 2 such that Θ(L2, h2),Θ(L1, h1) + Θ(L2, h2) are both positive definite.
Consider the weight function ψ on Ỹ given by

ψ = τ∗φ−mτ∗(log ∥π∗s1∥h1 + log ∥π∗s2∥h2).

It follows that √
−1∂∂ψ =

√
−1∂∂(τ∗φ) +mτ∗(Θ(L1, h1) + Θ(L2, h2))

is positive definite on Ỹ − τ∗(π∗E1) ∪ τ∗(π∗E2). Write E = τ∗(π∗E1) ∪ τ∗(π∗E2).
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Applying arguments using L2-estimates in §1.4 with φ replaced by ψ and M replaced by Ỹ − E,
we know that the sections of H0

L2(Ỹ − E,K
Ỹ
) are very ample and generate any order of jets. Note

that a section s ∈ H0
L2(Ỹ − E, qK

Ỹ
) for any integer q > 0 has to vanish on E, since

∞ >

∫
Ỹ−τ∗(π∗E1)∪τ∗(π∗E2)

|s|2eτ∗φ · ∥τ∗s1∥−mqh1
· ∥τ∗s2∥−mqh2

.

It follows that s extends naturally across E by taking 0 along E. These sections descend along the
covering π′ : Ỹ → Z̃ to sections denoted by the same notation s of H0

L2(Z̃, qKZ̃
). Hence the Bergman

kernel k(x) provides a Hermitian metric on Ỹ and satisfies Proposition 2.4 for points on Ỹ − E.
This allows us to apply the earlier argument for X to conclude that h0L2(Z̃, τ

∗Kq
Z) ⩾ cqm for

q sufficiently large, making use of the argument of Mok in [23]. The necessary modifications go as
follows: first choose a point x ∈ Z̃ − σ∗E1 ∪ σ∗E2 and metric as given in (19). We need the analogue
of (17) with X replaced by Z̃ and n replaced by m. Then choose cutoff function χ so that its support
lies in Z̃ − σ∗E1 ∪ σ∗E2. Use of L2-estimates as explained earlier for X allows us to show that the
order of vanishing at x among sections of H0

L2(Z̃, qKZ̃
) can be prescribed up to order c8q for some

constant c8 > 0. Hence h0L2(Z, qKZ) ≥ c9q
m for q sufficiently large and some constant c9 > 0. We

conclude that Z̃ and hence Z is of log-general type.
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