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ABSTRACT. We define the totally nonnegative matroid Schubert variety YV of a linear subspace V ⊂ Rn. We
show thatYV is a regular CW complex homeomorphic to a closed ball, with strata indexed by pairs of acyclic flats
of the oriented matroid of V . This closely resembles the regularity theorem for totally nonnegative generalized
flag varieties. As a corollary, we obtain a regular CW structure on the real matroid Schubert variety of V .

1. INTRODUCTION

1.1. Matroids. Matroids model the combinatorics of linear subspaces, and have found broad application
in and out of mathematics [RST20; Rec11; Iri83] since their formulation by Nakasawa [Nak35] andWhitney
[Whi35]. They enjoy a particularly close relationship with algebraic geometry [Kat14; Ard21].
In this work we study the so-called “matroid Schubert varieties”. If V ⊂ Kn is a linear subspace, then

itsmatroid Schubert variety YV is the Zariski closure of V in (P1
K)

n, which contains Kn as an open subset.
Introduced by [AB16], matroid Schubert varieties are central to the proof of the Top Heavy Conjecture for
realizablematroids [HW17], guide the conjecture’s resolution for allmatroids [Bra+20], and are the geomet-
ric model for matroidal Kazhdan-Lusztig theory [EPW16]. Preceding [AB16], a neighborhood of the most
singular point of a matroid Schubert variety was studied in [PS06] and [Ter02].
The geometry of YV is controlled by the flats of V ; that is, the sets F ⊂ {1, . . . , n} such that there is v ∈ V

whose zero coordinates are exactly those indexed by F . The flats of V are an example of amatroid. When
K = R, we may consider the more refined notion of covectors, which record the combinations of signs
that the coordinate functions of Rn can take on V . This data gives an example of an oriented matroid. Our
main theorem says that oriented matroid data controls the geometry of the totally non-negative matroid
Schubert variety YV := V ∩ Rn

≥0

an, the closure of V ∩ Rn
≥0 in (P1

R)
n with respect to the analytic topology.

1.2. Total positivity. By definition, an invertible real matrix is called totally positive if all the minors are
positive and totally non-negative if all the minors are non-negative. These notions were introduced in the
1930s by Schoenberg [Sch30]. The theory of totally positive realmatrices was further developed byWhitney
and Loewner in the 1950s and found important applications in many different areas, including, for exam-
ple, statistics, game theory, mathematical economics, and stochastic processes. We refer to the book by
Karlin [Kar68] for detailed discussions.
Alln×n invertiblematrices form the general linear group, which is an example of a split reductive group.

The theory of total positivity for an arbitrary split real reductive group was developed by Lusztig in his
foundational work [Lus94] and has had significant impacts on many active research directions, including,
among others,

• the theory of cluster algebras by Fomin and Zelevinsky [FZ02],
• higher Teichmüller theory by Fock and Goncharov [FG06],
• the theory of the amplituhedron by Arkani-Hamed and Trnka [AT14].

It has also been discovered that many spaces with G-action have natural positive structures. A typical
example is the (partial) flag variety P. This has a natural decomposition into (open) Richardson varieties:
P = ⊔αPα. This is a stratification, i.e., the closure of eachPα (under the Zariski topology) is a disjoint union
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of other Richardson varietiesPβ. On the other hand, Lusztig defined the totally non-negative flagP≥0. This
is a semi-algebraic subvariety of B. We then have the decomposition

P≥0 =
⊔
α

Pα,>0, where P>0 = P≥0 ∩ Pα.

Lusztig refers to the totally non-negative flag as a “remarkable polyhedral space”. It has been studied by
many leading experts: Bao, Galashin, Karp, Lam, Lusztig, Marsh, Postnikov, Rietsch, Williams, the first-
named author, and others. They have established many remarkable geometric/topological properties, in-
cluding the following:

• Connected components: Pα,>0 is a connected component of Pα(R).
• Cell structure: Pα,>0

∼= RdimPα
>0 is a semi-algebraic cell.

• Cellular decomposition: Pα,>0
an is a disjoint union of other totally positive cells Pβ,>0.

• Regularity property: Pα,>0
an is a regular CW complex homeomorphic to a closed ball.

1.3. Main result. Onemay expect thatmatroid Schubert varieties admits a “nice” positive structure, similar
to the flag varieties. This is what we will establish in this paper.

Let E be a finite set. If V ⊂ RE is a linear subspace, then YV ⊂ (P1
R)

n can be decomposed as a disjoint
union of locally closed “Richardson varieties” Y ◦

FG := YV ∩ (0F ×RG\F
̸=0 ×∞E\F ), with F ⊂ G ⊂ E running

over all flats of V . For any sets F ⊂ G ⊂ E, we analogously define Y◦
FG := YV ∩ (0F × RG\F

>0 × ∞E\G),
and let YFG := Y◦

FG

an. Note that Y∅,E = YV by definition. Call a flat F of V acyclic if V ∩ (0F × RE\F
>0 ) is

nonempty. The rank of a flat is the codimension in V of the subspace V ∩ {xi = 0 : i ∈ F}.
The main result of this paper is that the totally non-negative matroid Schubert variety is a “remarkable

polyhedral space”. More precisely,

Theorem 1.1. Let V ⊂ RE, with matroid Schubert variety YV and totally non-negative Schubert variety YV .

(i) Y◦
FG is nonempty if and only if F ⊂ G are acyclic flats of V . In this case, Y◦

FG is a single connected
component of Y ◦

FG, and is a semi-algebraic cell isomorphic to (R>0)
rk(G)−rk(F ).

(ii) The closure YFG of a nonempty cell Y◦
FG decomposes as the disjoint union of cells Y◦

F ′,G′ with F ⊂ F ′ ⊂
G′ ⊂ G.

(iii) This decomposition makes YFG a regular CW complex homeomorphic to a closed ball.

Some comparison is due. Combinatorially, we see a new phenomenon in the matroid setting. The cells
ofP≥0 and YV are obtained by intersecting these sets with real Richardson strata ofP and YV , respectively.
Theposet of boundary strata ofP is thin—that is, every interval of length twohas exactly four elements—and
P≥0 contains exactly one connected component of every stratum. Hence, the poset of cells in the boundary
of P≥0 is also thin, a fact which is helpful for establishing the regularity property. On the other hand, the
poset of boundary strata of YV is not thin. However, YV fails to meet all strata of YV , and surprisingly, its
cell poset is thin. As in the Lie-theoretic setting, this fact helps us to establish regularity.
Geometrically, the Richardson strata of matroid Schubert varieties are simpler than those of flag vari-

eties. In the matroid Schubert case, each Richardson stratum is a hyperplane arrangement complement.
Every connected component of a real hyperplane arrangement complement is homeomorphic to an open
ball. However, a real open Richardson variety in a flag variety may have connected components with non-
trivial topology (see, e.g. [MR00]). The relative simplicity of the matroid case’s geometry allows us to show
that YV is a ball by directly exhibiting it as a cone over a closed ball in its boundary, bypassing such high-
powered tools as the Poincaré conjecture, which underpins the knownproofs of Theorem 1.1’s Lie-theoretic
analogues.
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Example 1.2. Let V ⊂ R5 be the linear subspace cut out by

x1 + x2 − x3 = x3 − x4 − x5 = 0.

The poset of flats of V (below left) is not thin, so its interval poset, which indexes strata of YV , is also not
thin. On the other hand, the subposet of acyclic flats (below right) is thin, so its interval poset, which indexes
cells of YV is also thin.

E

123 14 24 25 15 345

1 2 3 4 5

∅

E

14 24 15 25

1 2 4 5

∅

The non-negative matroid Schubert variety YV (below) is homeomorphic to a closed 3-ball. Cells of YV

are indexed by intervals in the poset of acyclic flats, ordered by inclusion. Hence, the cells structure of YV

has ten 0-cells and sixteen 1-cells (labelled), along with eight 2-cells and one 3-cell (unlabelled). One sees
immediately that the closure of any cell is homeomorphic to a closed ball, so the cell structure is regular.

♢
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nerstone Investigator Program and the Xplorer prize, and by Hong Kong RGC Grant 14300023. CS thanks:
Xuhua for his support & hospitality during the visits that enabled this collaboration, BotongWang for help-
ful conversation, and both CUHK and BICMR for pleasant working environments.

2. MATROIDS AND ORIENTED MATROIDS

We review aspects of (oriented) matroid theory, comprehensively explored in [Whi86] and [Bjö+99], and
state the main properties of matroid Schubert varieties.
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2.1. Wemay omit braces whenwriting one-element sets, e.g. “{1, 2}∪i”means “{1, 2}∪{i}” and “{1, 2}×0”
means “{1, 2} × {0}”. If E and K are sets, with E finite, then KE :=

∏
i∈E K. If F ⊂ E, then πF : KE →

KF is the projection. If all factors in a product are single-element sets, then we may omit notation for
the product, e.g. “{0} × {1} × {1}” will be written 0{1}1{2,3}, and 0E represents the origin of RE. Both
conventions on singletons will be violated as necessary to avoid confusion.

Throughout this paper, E will denote a finite set.

In addition to sets, we will need to work with signed sets; that is, elements of {−, 0,+}E. IfX is a signed
set, write X−, X0, and X+ for the coordinates of X that have value −, 0, and +, respectively. We define
−X to be the signed set with (−X)− := X+, (−X)0 := X0, and (−X)+ := X−. IfX and Y are signed sets,
then their composition is given by

(X ◦ Y )i :=

Xi, ifXi ̸= 0

Yi, otherwise.

SayX is contained in Y , and writeX ≤ Y , ifX+ ⊂ Y + andX− ⊂ Y −.
For most terminology on posets, we refer to [Sta11]. The opposite of a poset P is P op, the poset on the

same underlying set as P , but with order reversed.

2.2. A matroid on a finite set E is defined by a collection of flats F ⊂ E such that (i) E is a flat, (ii) the
intersection of two flats is a flat, and (iii) if F is a flat and i ∈ E \ F , then there is a unique smallest flat
containing F ∪ i. The flats of a linear subspace, defined in Section 1.1, satisfy these properties, giving us a
recipe for producing a matroid from a linear subspace.
When ordered by inclusion, the flats of a matroid M form a graded lattice. The rank of M , denoted

rk(M), is the length of any maximal chain in this poset. More generally, the rank of a flat F of M is the
length of anymaximal chain of flats contained in F , and is denoted rk(F ). The loops ofM are the elements
of the minimal flat ofM . CallM loopless if its minimum flat is empty.
If F ⊂ E is a flat ofM , then we can form the restrictionM |F and contractionM/F , matroids on F and

E, respectively, with flats

{G ⊂ F : G is a flat ofM} and {G ⊃ F : G ⊃ F is a flat ofM}.

Remark 2.1 (Matroids and linear algebra). IfK is a field and V ⊂ KE is a linear subspace, then the flats of V
defined in Section 1.1 are the flats of a matroidM . The rank ofM is dimV . Any matroid that arises in this
manner is realizable, and V is its realization.
LetπF : KE → KF be the coordinate projection. The restrictionofM toF is realizedbyπF (V ) ⊂ KF , and

the contractionM/F is realized by V ∩ker(πF ). The element i ∈ E is a loop ofM if and only if πi(V ) = {0}.

Let K be a field and V ⊂ KE. Recall (from Section 1.1) that thematroid Schubert variety YV associated
to a linear subspace V ⊂ KE is the Zariski closure of V in (K ∪∞)E = (P1

K)
E. For each pair of flats F ⊂ G

of V , let Y ◦
FG := YV ∩ (0F × (K ̸=0)

G\F ×∞E\G), and let YFG be the Zariski closure of Y ◦
FG.

Theorem 2.2. [PXY18, Section 7] Let K be a field. Let V ⊂ KE be a linear subspace, with associated matroidM .

(i) The intersection YV ∩ (KF ×∞E\F ) is nonempty if and only if F is a flat, in which case the intersection
is equal to πF (V )×∞E\F .

(ii) If F is a flat, then YV ∩
(
(P1

K)
F ×∞E\F ) = YπF (V ) ×∞E\F .

(iii) If F is a flat, then YV ∩
(
0F × (P1

K)
E\F ) = YV ∩ker(πF ).

(iv) YFG is the disjoint union of all Y ◦
F ′G′ with F ⊂ F ′ ⊂ G′ ⊂ G.
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If L is the set of loops of V ’s matroid, then YV = 0L ×YπE\L(V ), so we lose little by assuming the matroid
of V is loopless.

2.3. An oriented matroidM on a finite set E is the data of a collection of covectors C ⊂ {−, 0,+}E such
that

(i) 0E ∈ C,
(ii) C is closed under composition and negation
(iii) IfX,Y ∈ C andX(i) = −Y (i) ̸= 0, then there existsZ ∈ C such thatZ(i) = 0 andZ(j) = (X◦Y )j =

(Y ◦X)j for all j such thatXj = Yj .
The above axioms imply the collection {X0 : X ∈ C} is the flats of a matroidM , the underlying matroid of
M . Flats and loops of an oriented matroid are those of its underlying matroid.
Ordering {−, 0,+} by 0 < − and 0 < +, we induce a partial order on C. The poset C ∪ {1̂}, formed by

adjoining a maximum to C, is a graded lattice. Maximal covectors are called topes.
Fix A ⊂ E. By negating in each covector the coordinates indexed by A, we obtain a new subset C′ ⊂

{−, 0,+}E. In fact, C′ the covectors of an oriented matroidM ′, called a reorientation ofM . Evidently, C
and C′ are isomorphic as posets, and the underlying matroids ofM andM ′ are equal.
Given F ⊂ E a flat of an oriented matroidM on E, the restriction ofM to F and contraction ofM by F

are the oriented matroidsM |F andM/F defined by

C(M |F ) := {πF (X) : X ∈ C(M)} and C(M/F ) := {X : X ∈ C(M), F ⊂ X0}.

From this description, one sees that the topes ofM/F are the covectors X with X0 = F . The underlying
matroids ofM |F andM/F areM |F andM/F , respectively.

Remark 2.3 (Oriented matroids and linear algebra). The sign map is s : RE → {−, 0,+}E defined by

s(v)i =


−, πi(v) < 0,

0, πi(v) = 0,

+, πi(v) > 0.

The sign map explains composition: if v, w ∈ RE, then s(v) ◦ s(w) = s(v+ ϵw) for small ϵ > 0. If V ⊂ RE is
a linear subspace, then {s(v) : v ∈ V } is the covectors of an oriented matroid. An oriented matroidM that
arises in this way is called realizable, and V its realization. Reorientations ofM are obtained by negating
some of the coordinate functions on RE.
By intersecting the coordinate hyperplanes ofRE with V , we obtain a hyperplane arrangement in V . The

topes of M correspond to the connected components of the arrangement complement. More generally,
each region of the arrangement is the preimage under s of a covector of M . The poset of the regions’
closures, ordered by containment, is isomorphic to the poset of covectors ofM .

2.4. An acyclic flat1 of an oriented matroidM is a flat F ofM such that 0F+E\F is a covector ofM . When
ordered by containment, the acyclic flats form a lattice L, called the Las Vergnas face lattice ofM .

Proposition 2.4. Let F be a flat of an oriented matroidM .

(i) H ⊃ F is an acyclic flat ofM/F if and only ifH is an acyclic flat ofM .
(ii) If F is an acyclic flat, thenG ⊂ F is an acyclic flat ofM |F if and only ifG is an acyclic flat ofM .

Proof.

(i) IfH ⊃ F , then 0H+E\H is a covector ofM if and only if it is a covector ofM/F .

1Acyclic flats may be called “positive flats” elsewhere in the literature, e.g. [ARW06; AKW04].



6 XUHUA HE, CONNOR SIMPSON, AND KAITAO XIE

(ii) Suppose F is an acyclic flat. If G ⊂ F is an acyclic flat ofM , then 0G+E\G is a covector ofM , so
0G+F\G is an acyclic flat ofM |F .
Conversely, supposeG is an acyclic flat ofM |F ; in other words, there is a covector Y ofM such

that Y 0 ⊃ G and Y + ⊃ F \G. SinceF is an acyclic flat, there is also a covectorX ofM withX0 = F

andX+ = E \ F . Their composition satisfies (X ◦ Y )0 = F ∩G = G and

(X ◦ Y )+ = X+ ∪ (Y + \X−) ⊃ (E \ F ) ∪ ((F \G) \ ∅) = E \G,

soG is an acyclic flat ofM . □

WhenM is realized by V ⊂ RE, one can check the acyclicity of a flat F using the equations of V .

Proposition 2.5. LetM be the oriented matroid of a linear subspace V ⊂ RE. A flat F is acyclic if and only if
there is no linear function f =

∑
i αixi that vanishes on V , satisfies αi ≥ 0 for all i ∈ E \ F , and has αi > 0 for

at least one i ∈ E \ F .

Proof. If such an f exists, then V ∩(0F ×RE\F
>0 ) = ∅ because f is strictly positive on 0F ×RE\F

>0 . The converse
holds by [Bjö+99, Proposition 3.4.8(i) & (ii)], applied toM/F . □

Example 2.6. Proposition 2.4(ii) can fail if F is not an acyclic flat. LetE = {1, 2, 3, 4}, V ⊂ RE be defined by
x1 − x2 − x3 − x4 = 0, andM the associated oriented matroid. The flats ofM are E, and all subsets of E of
size≤ 2. In particular, F = {1, 2} is a flat ofM , but is not an acyclic flat because the system

x1 = x2 = 0

x1 − x2 − x3 − x4 = 0

has no solutions with x3, x4 > 0. For similar reasons,G = {1} is a flat, but not an acyclic flat ofM .
On the other hand,G is an acyclic flat ofM |F . This is because the point (0, 2,−1,−1), for example, is in

V , so (0,+,−,−) is a covector ofM , so (0,+) is a covector ofM |F . ♢

Remark 2.7. If V ⊂ Rn, then V ∩ Rn
≥0 is a polyhedral cone. The face lattice of V ∩ Rn

≥0 is known as the
Edmonds-Mandel lattice ofM , and the opposite poset is the Las Vergnas face lattice ofM .

A graded poset is thin if all of its length-two intervals have exactly four elements.

Theorem 2.8. [Bjö+99, Theoerem 4.1.14] The poset of covectors is thin. In particular, the Las Vergnas face lattice
is thin.

3. STRATA OF YV

Let V ⊂ RE be a linear subspace with oriented matroidM . Let L be the set of loops ofM . Recall from
Section 1.3: the non-negative matroid Schubert variety YV is the analytic closure of V ∩ (0L × RE\L

>0 ) in
(P1

R)
n. For each F ⊂ G ⊂ E, Y◦

FG := YV ∩ (0F × RG\F
>0 ×∞E\G), and YFG := Y◦

FG

an. 2

In this section, we prove Theorems 1.1(i) and (ii), which say that the subsets Y◦
FG indexed by acyclic flats

form a stratification of YV , and that the closure poset is isomorphic to the interval poset of the Las Vergnas
face lattice of the oriented matroid of V .

Lemma 3.1. Let V ⊂ RE be a linear subspace defining an oriented matroidM . If F ⊂ G ⊂ E are flats ofM , then

YV ∩ (0F × RG\F
>0 ×∞E\G) =

(
πG(V ) ∩ (0F × RG\F

>0 )
)
×∞E\G.

In particular, YV ∩ (0F × RG\F
>0 ×∞E\G) is nonempty if and only if F is an acyclic flat ofM |G.

2Careful readers will have noticed that in Section 1.1, we defined YV as the closure of V ∩RE
≥0. The two definitions agree because

V ∩ RE
≥0 is in the closure of V ∩ (0L × RE\L

>0 ).
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Proof. The equality follows from Theorem 2.2(ii). For the statement on non-emptiness, recall (from Sec-
tion 2.3) that the oriented matroid of πG(V ) isM |G. Non-emptiness of πG(V ) ∩ (0F × RG\F

>0 ) is equivalent
to 0F ×+G\F being a covector ofM |G, in turn equivalent to acyclicity of F inM |G. □

Lemma 3.2. Let V ⊂ RE be a linear subspace defining an oriented matroidM . Let F ⊂ E. If F is not an acyclic
flat, then YV ∩ (RF

≥0 ×∞E\F ) = ∅.

Proof. If F is not a flat, then YV ∩ (RF
≥0 ×∞E\F ) = ∅ by Theorem 2.2(i). Otherwise, suppose F is a flat, but

not an acyclic flat and let w ∈ RF
≥0 × ∞E\F . By Proposition 2.5, there is a linear functional f =

∑
i αixi

that vanishes on V and satisfies αi ≥ 0 for all i ̸∈ F , with at least one such αi nonzero. When N ≫
0, f does not vanish at any point of

∏
i∈F (wi − 1

N , wi +
1
N ) ×

∏
j∈E\F (N,∞). Hence, the neighborhood∏

i∈F (wi − 1
N , wi +

1
N )×

∏
j∈E\F (N,∞] of w does not intersect V ∩ RE

>0, meaning that w ̸∈ YV . □

Lemma 3.3. Let V ⊂ RE be a linear space defining an oriented matroidM . If F ⊂ E is an acyclic flat, then

YV ∩ (RF
≥0 ×∞E\F ) = YV ∩ (RF

≥0 ×∞E\F ).

Proof. Letw ∈ YV ∩ (RF
≥0×∞E\F ). By Theorem 2.2(i), there isw′ ∈ V such that πF (w′)×∞E\F = w. Since

F is acyclic, there is also u ∈ V ∩ (0F × RE\F
>0 ). For large t > 0, w′ + tu ∈ V≥0, and limt→∞ w′ + tu = w, so

w ∈ V ∩ RE
≥0

an
= V ∩ RE

>0

an
= YV . This shows

YV ∩ (RF
≥0 ×∞E\F ) ⊂ YV ∩ (RF

≥0 ×∞E\F ),

and the reverse inclusion is obvious, so the two sets are equal. □

We are now ready to prove the first part of the main result.

Proof of Theorem 1.1(i). IfG is not an acyclic flat, thenY◦
FG is empty by Lemma 3.2. IfG is an acyclic flat, but

F is not, then F is not acyclic inM |G by (ii), so Y◦
FG is empty by Lemma 3.1.

Conversely, if both F andG are acyclic flats, then

Y◦
FG = YV ∩ (0F × RG\F

>0 ×∞E\F ) =
(
πG(V ) ∩ (0F × RG\F

>0 )
)
×∞E\G

by Lemma 3.1 and Lemma 3.3. Consequently, Y◦
FG is the interior of a polyhedral cone of dimension rk(G)−

rk(F ). Via the equalities

Y ◦
FG = YV ∩ (0F × RG\F

̸=0 ×∞E\G) =
(
πG(V ) ∩ (0F × RG\F

̸=0 )
)
×∞E\G,

we see Y ◦
FG is the complement of a real hyperplane arrangement in V ∩ {xi = 0 : i ∈ F}. Since F and G

are acyclic, 0F+G\F is a tope of the oriented matroid associated to this arrangement; the corresponding
connected component of the arrangement complement is Y◦

FG. □

The following two corollaries of Theorem 1.1(i) provide geometric interpretations for restriction and
contraction at the level of totally non-negative matroid Schubert varieties. They closely resemble Theo-
rem 2.2(i) and (iii).

Corollary 3.4. Let V ⊂ RE be a linear subspace defining an oriented matroidM . IfG ⊂ E is an acyclic flat ofM ,
then

YV ∩ ((P1)G ×∞E\G) = YπG(V ) ×∞E\G.

Proof. By Lemma 3.3 and Lemma 3.1, YV ∩ ((P1)G×∞E\G) contains (πG(V )∩RG
>0)×∞E\G, the closure of

which isYπG(V )×∞E\G. This proves the “⊃” containment. For the reverse: by Theorem 1.1(i) the nonempty
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strata of YV are of the form YV ∩ (0F ×RG\F
>0 ×∞E\G), with F ⊂ G acyclic flats ofM . By Proposition 2.4(ii),

F andG are also acyclic flats ofM |G, the oriented matroid represented by πG(V ). Hence,

YV ∩ (0F × RG\F
>0 ×∞E\G) =

(
πG(V ) ∩ (0F × RG\F

>0 )
)
×∞E\G =

(
YπG(V ) ∩ (0F × RG\F

>0 )
)
×∞E\G

by Lemma 3.3 and Lemma 3.1, which completes the proof. □

A proof along the same lines shows:

Corollary 3.5. Let V ⊂ RE be a linear subspace defining an oriented matroid M . If F is an acyclic flat, then
YV ∩ (0F × (P1)E\F ) = YV ∩ker(πF ).

Together, these corollaries yield a short proof of the main result’s second part.

Proof of Theorem 1.1(ii). By Corollary 3.4 and Corollary 3.5, YFG is equal to 0F × YπG(V ∩ker(πF )) ×∞E\G, in
turn the closure of 0F ×

(
πG(V ∩ ker(πF )) ∩ (0F × RG\F

>0 )
)
× ∞E\G. The latter set is equal to Y◦

FG. Strata
of YπG(V ∩ker(πF )) correspond to pairs F ′ ⊂ G′ of acyclic flats of (M/F )|G. By Proposition 2.4, such F ′ ⊂ G′

are precisely the acyclic flats ofM such that [F ′, G′] ⊂ [F,G], as desired. □

4. TOPOLOGY OF YV

In this section, we prove Theorem 1.1(iii), which says that YV is a regular CW complex homeomorphic
to a closed Euclidean ball. For basics on CW complexes, we refer the reader to [LW69].

4.1. Shellings and topology. A CW complex is regular if the closure of any of its cells is homeomorphic to
a closed Euclidean ball. A d-complex is a finite regular CW complex with all maximal cells of dimension d.
Maximal closed cells of a d-complex∆ are facets. Following [Bjö84] or [Bjö+99, Appendix 4.7], a shelling of
∆ is an ordering of its facets (F1, . . . , Fm) such that the boundary complex ofF1 has a shelling,Fj∩(∪j−1

i=1Fi)

is (d− 1)-complex for 1 < j ≤ m, and the boundary of Fj has a shelling in which the facets of Fj ∩ (∪j−1
i=1Fi)

come first for 1 < j ≤ m.

Example/Theorem 4.1. [BW83, Theorem 4.5] The boundary complex of any convex polytope is shellable.

A shellable complex satisfies the so-called “Property S” of [BW83]. It is equivalent to shellability for
simplicial complexes.

Proposition 4.2. If (F1, . . . , Fm) is a shelling of a d-complex ∆, then for all i > j there exists k < i such that
Fi ∩ Fj ⊂ Fk and Fk ∩ Fj has dimension d− 1.

Proof. If i > j then each cell of Fi ∩ Fj is contained in a cell G of ∆, maximal among those contained in
Ci := Fi ∩ (F1 ∪ · · · ∪ Fi−1). Since G cannot be written as a union of its proper faces, it must be contained
in some Fk with k < i. The dimension ofG is d− 1 because Ci is pure of dimension d− 1. □

The following result is our main topological tool.

Proposition 4.3. [Bjö84, Proposition 4.3] A shellable d-complex is homeomorphic to a closed Euclidean ball if each
of its (d− 1)-cells is a face of at most two d-cells, and some (d− 1)-cell is contained in only one d-cell.
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4.2. Proof of Theorem 1.1(iii). Let Y0 be the set of all points in YV with at least one coordinate zero, and
fix w ∈ Y◦

∅E. Define

µ : (R≥0 ∪∞)n → [0, 1], (y1, . . . , yn) 7→ 1− exp(−min
i
{yi/wi})

The value µ(y) is the largest value of t ∈ [0, 1] such that y − ln(1 − t)w has non-negative coordinates. The
map

ψ : YV → Y0 × [0, 1]/(Y0 × {1}), y 7→ (y + ln(1− µ(y))w, µ(y))

is a (non-cellular) homeomorphism, with inverse (x, t) 7→ x − ln(1 − t)w. To show Y is a ball, it now
suffices to show that Y0 is a ball. This follows from Proposition 4.3 and Lemma 4.4, whose proof is below.
By induction, it is now proved that all closed strata of YV are homeomorphic to closed balls, so YV is a
regular CW complex.

Lemma 4.4. ∂YV := YV \Y∅,E is a regular shellable CW complex in which all (d−1)-cells are contained in exactly
two d-cells. The shelling can be chosen such that all the cells of Y0 come first, and there are (d − 1)-cells of Y0 that
are contained in only one d-cell of Y0.

Proof. LetM be the oriented matroid of V , dimV = d+1, and L its Las Vergnas face lattice. We first check
the containment assertions. The statement that every (d−1)-cell is contained in exactly two d-cells follows
easily from the description of cells given by Theorem 1.1, combined with Theorem 2.8, which says that L is
thin.
The d-cells of Y0 are YF,E with F of rank 1. IfG is a corank 1 acyclic flat containing F , then YF,E ⊃ YF,G,

but no other d-cell of Y0 contains YF,G.

Next, we check the shellability statements. The Las Vergnas face lattice ofM is dual to the face poset
of the polyhedral cone V≥0; therefore, Lop and L are the face posets of convex polytopes P op

M and PM with
facets in bijection with the rank 1 and corank 1 acyclic flats ofM , respectively. By Example/Theorem 4.1,
let (F1, . . . , Fs) and (G1, . . . , Gt) be shellings of P op

M and PM , respectively. We will show by induction on d
that ([F1, E], . . . , [Fs, E], [∅, G1], . . . , [∅, Gt]) indexes a shelling of ∂YV .
The statement holds when d = 1; suppose d > 1. The boundary of YF1,E

∼= YV ∩{xi=0:i∈F1} is shellable by
the induction hypothesis. For later cells, we break into two cases. First consider

Cj := YFj ,E ∩ (∪i<jYFi,E) = ∪i<jYFi∨Fj ,E .

Since (F1, . . . , Fs) is a shelling of P op
M , for each i < j, there is k such that YFi∨Fk,E ⊃ YFi∨Fk,E and Fi ∨ Fk

has rank 2 by Proposition 4.2. This shows Cj is a (d− 1)-complex.
Let P op

M (F ) be the face of P op
M corresponding to an acyclic flat F in Lop. By hypothesis, P op

M (Fj) has a
shelling in which the facets P op

M (Fj ∨ Fi), i < j and rk(Fj ∨ Fi) = 2 come first. The face poset of P op
M (Fj)

is the same as that of P op
M/Fj

, the polytope associated to the oriented matroid of V ∩ {xj = 0}. Hence, by
induction ∂YV ∩{xj=0} ∼= ∂YFj ,E has a shelling in which the (d− 1)-cells of Cj come first.
We now consider

Dj := Y∅,Gj
∩
(
Y0 ∪ (∪i<jY∅Fi

)
)
= (∪Fk⊂GjYFk,Gj ) ∪ (∪i<jY∅,Gi∩Gj

).

All cells of the form YFk,Gj are dimension d− 1, and ∪i<jY∅,Gi∩Gj
is a (d− 1)-complex by Proposition 4.2,

as above, soDj is a (d− 1)-complex. Observing that Y∅,Gj
∼= YπGj

(V ), shellability follows as above. □

Remark 4.5. Ourproof relies on the fact that bothL andLop are face lattices of polytopes, henceCL-shellable
(see [BW83]). It is known that L is CL-shellable even whenM is not realizable [Bjö+99, Theorem 4.3.5], but
remains open whether Lop is.
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Remark 4.6. A slightly different route to Theorem 1.1(iii): the order complex of a poset is the simplicial
complex whose faces are chains in the poset, and a poset is shellable if its order complex is. By [Bjö+99,
Theorem 4.3.5], Lop is shellable, so L is also shellable, so the interval poset of L is shellable by [BW83,
Theorem 8.5]. Every length 2 interval in the interval poset of L has cardinality 4, so ∂YV is homeomorphic
to a sphere by [DK74, Propositions 1.1, 1.2] and [LW69, Theorem III.1.7]. In fact, by [Bjö+99, Proposition
4.7.26], ∂YV is a PL sphere. The link of a vertex of a PL sphere is also a PL sphere; in particular, the equator
Y⊖ := Y0 \ V≥0 is a PL sphere because it is the link of YE,E. The star of a point is a cone over its link, so Y0

is a cone over Y⊖, so Y0 is a closed ball. The proof may now be completed as above.

5. TOPOLOGY OF YV

Let V ⊂ RE. In this section, we will show that YV admits a regular cell decomposition.

We first record a consequence of Theorem 1.1. Let M be the oriented matroid of V , and s : RE →
{−, 0,+}E the sign map (see Remark 2.3). Fix a tope T ofM . A flat is relatively acyclic in T if it is the zero
set of a covector contained in T . Define TYV := s−1(T )

an
, the analytic closure of s−1(T ) in (P1

R)
E. For each

pair of sets F ⊂ G ⊂ E, let

TY◦
FG := TYV ∩ (0F × R(G\F )∩T+

>0 × R(G\F )∩T−

<0 ×∞E\G).

Finally, set TYV := TY◦
V

an.

Corollary 5.1. Fix a tope T of the oriented matroid of V ⊂ RE. Then

(i) TY◦
FG is nonempty if and only if F ⊂ G are acyclic flats in T . In this case, TY◦

FG is a single connected
component of Y ◦

FG, and is a semi-algebraic cell isomorphic to (R>0)
rk(G)−rk(F ).

(ii) The closure TYFG of a nonempty cell TY◦
FG decomposes as the disjoint union of cells TY◦

F ′,G′ with F ⊂
F ′ ⊂ G′ ⊂ G.

(iii) This decomposition makes TYV a shellable regular CW complex homeomorphic to a closed ball.

Proof. For A ⊂ E, let −A : (P1
R)

E → (P1
R)

E be the map that negates the coordinates indexed by E. The
result follows from Theorem 1.1 because−T−(s−1(T )) = −T−(V ) ∩ RE

≥0. □

Remark 5.2. A tope in the matroid-theoretic setting is akin to a pinning in the Lie-theoretic setting, as de-
fined in [Lus94]. Indeed, SL(2) has just one negative simple root. Choosing an isomorphism y : R → U−α

up to positive scalars in each factor of SL(2)n is the same as choosing which side of R ⊂ P1
R will be re-

garded as positive, hence is the same as choosing a positive side for each hyperplane in V ⊂ Rn obtained
by intersecting V with a coordinate hyperplane of Rn.

The various subsets TYV are not disjoint. The following statement characterizes their intersections.

Lemma 5.3. Let M be the oriented matroid of V ⊂ RE. Define an equivalence relation on the set of all triples
(F,G, T ), with F ⊂ G flats relatively acyclic in the tope T of M , by (F,G, T ) ∼ (F ′, G′, T ′) if and only if
(F,G) = (F ′, G′) and πG\F (T ) = πG\F (T

′). The intersection of TY◦
FG and T ′Y◦

F ′G′ is empty unless (F,G, T ) ∼
(F ′, G′, T ′), in which case TY◦

FG = T ′Y◦
F ′G′ .

Proof. Reorienting, applying Lemma 3.1 and Lemma 3.3, then reverting to the original orientation, we see

TY◦
FG = (πG(V ) ∩ (0F × RT+∩(G\F )

>0 × RT−∩(G\F )
<0 ))×∞E\G and(∗)

T ′Y◦
F ′G′ = (πG′(V ) ∩ (0F

′
× RT ′+∩(G′\F ′)

>0 × RT ′−∩(G′\F ′)
<0 ))×∞E\G′

.

The result follows. □
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For each pair of flats F ⊂ G ⊂ E and tope T of (M/F )|G, let Y ◦
FGT be the connected component of

Y ◦
FG corresponding to the tope T . Explicitly, Y ◦

FGT := YV ∩ (0F × RT+

>0 × RT−

<0 × ∞E\G). As usual, let
YFGT := Y ◦

FGT

an.

Lemma 5.4. The equivalence classes of ∼ (defined as in Lemma 5.3) are in bijection with cells Y ◦
FGT . If [S, I, J ]

is the equivalence classes corresponding to Y ◦
FGT , then Y

◦
FGT = SY◦

IJ . Explicitly, Y
◦
FGT = SY◦

IJ if and only if
(F,G) = (I, J) and πG\F (S) = πG\F (T ).

Proof. Given SY◦
IJ , take F := I, G := J , and T := πG(X), where X is the unique covector contained in S

withX0 = F . Evidently, YFGT is independent of the representative of [S, I, J ].
For the inverse: let F ⊂ G be flats ofM and let T be a tope of (M/F )|G. There are covectors F̃ , G̃ ofM

satisfying F̃ 0 = F , πG(F̃ ) = T , and G̃0 = G. The composition X := G̃ ◦ F̃ then satisfies G̃ ≤ X, X0 = F ,
and πG(X) = T . Both F and G are relatively acyclic with respect to any tope S ≥ X ofM , so there is an
equivalence class [S, F,G]. This class is independent of S because πG\F (S) = πG\F (T ).
Under the bijection described above, we see that YFGT corresponds to [S, I, J ] if and only if (F,G) =

(I, J) and πG\F (S) = πG\F (T ). In this case, SY◦
IJ = YFGT by Eq. (∗). □

Corollary 5.5. LetM be the oriented matroid of V ⊂ RE.

(i) YFGT contains Y ◦
F ′G′T ′ if and only ifF ⊂ F ′ ⊂ G′ ⊂ G and there is a tope S ofM satisfying: F,G, F ′, G′

are all relatively acyclic in S, πG\F (S) = πG\F (T ) and πG′\F ′(S) = πG′\F ′(T ′).
(ii) The cells Y ◦

F,G,T , where F ⊂ G run over flats ofM and T runs over topes of (M/F )|G, form a regular CW
decomposition of YV .

Proof. We prove the second statement first. The set ∪T TYV is closed in (P1
R)

E and contains V ; therefore,
it is equal to YV . Together with Lemma 5.3 and Corollary 5.1, this implies the collection {SY◦

IJ}I,J,S is a
regular cell decomposition of YV . The cells in this decomposition are in fact the sets Y ◦

FGT by Lemma 5.4,
completing the proof of Corollary 5.5(ii).
We now prove the first statement. The closure of any cell is contained in some set SYV . Hence, the

closure of Y ◦
FGT contains Y ◦

F ′G′T ′ if and only if there is a tope S ofM such that Y ◦
FGT = SY◦

FG, Y ◦
F ′G′T ′ =

SY◦
F ′G′ , and SYFG ⊃ SY◦

F ′G′ . By Corollary 5.1 and Lemma 5.4, this is equivalent to the conditions specified
by Corollary 5.5(i). □

Remark 5.6. If V ⊂ R3 is defined by x1 + x2 − x3 = 0, then YV has nontrivial first homology. This means
YV is not a shellable cell complex, since a shellable d-complex always has the homotopy type of a wedge of
d-spheres [Bjö84, Proposition 4.3].
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