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Abstract

This work proposes a stochastic domain decomposition method for solving steady-state partial
differential equations (PDEs) with random inputs. Specifically, based on the efficiency of the variable-
separation (VS) method in simulating stochastic partial differential equations (SPDEs), we extend
it to stochastic algebraic systems and employ it in the context of stochastic domain decomposi-
tion. The resulting method, termed stochastic domain decomposition based on variable-separation
(SDD-VS) alleviates the challenge commonly known as the “curse of dimensionality” notably by
leveraging explicit representations of stochastic functions derived from physical systems. The pri-
mary objective of the proposed SDD-VS method is to obtain a separate representation of the solution
for the stochastic interface problem. To enhance computational efficiency, we introduce a two-phase
approach consisting of offline and online computation. In the offline phase, we establish an affine
representation of stochastic algebraic systems by systematically applying the VS method. During
the online phase, we estimate the interface unknowns of SPDEs using a quasi-optimal separated
representation, facilitating the construction of efficient surrogate models for subproblems. We sub-
stantiate the effectiveness of our proposed approach through numerical experiments involving three
specific instances, demonstrating its capability to provide accurate solutions.

keywords: stochastic partial differential equation; stochastic domain decomposition; stochastic
interface problem; variable-separation method; uncertainty quantification

MSC: 65N99, 65N55, 60H35, 35R60

1 Introduction

In the realm of computational science and engineering, many problems such as modeling water flow and
solute transport in heterogeneous soil and aquifer formations involve uncertainties due to inadequate
knowledge about physical properties and measurement noise. To provide accurate and reliable predic-
tions, these uncertainties are often represented by random variables, and their impact on the system is
explored through the lens of stochastic partial differential equations (SPDEs). A few numerical methods
have been proposed for simulating SPDEs, including Galerkin projections [1, 2, 3], stochastic interpo-
lation [4, 5, 6, 7] and the methods based on deep learning [8, 9]. This work focuses on the domain
decomposition method (DDM), a promising approach for addressing stochastic problems. We aim to
apply DDM techniques for solving SPDEs efficiently and enabling robust predictions in the presence of
uncertainties.

Domain decomposition methods have a long history of successful application in solving deterministic
problems [10, 11, 12, 13, 14]. These methods are to partition a large computational domain into several
subdomains so that the subproblems on each subdomain can be solved independently [15, 16]. Under this
setting, DDM has primarily focused on developing parallel solvers for deterministic partial differential
equations (PDEs) to improve computational efficiency[17, 18, 19]. These methods are generally catego-
rized into overlapping (Schwarz iteration) methods and non-overlapping (Schur complement) methods
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[20]. Our proposed stochastic domain decomposition (SDD) method is based on the latter, specifically
the Schur complement methods [21, 22, 23, 24]. In this approach, the computational domain is divided
into non-overlapping subdomains, and the degrees of freedom on each subdomain are separated into in-
terior and interface parts. The global system can be reduced to a Schur complement system by applying
block Gaussian elimination. The unknown variables on the interface are then determined by solving the
Schur complement system.

The application of domain decomposition methods in stochastic simulations has emerged as a promis-
ing research area. Notably, Sarkar et al. [25] proposed a domain decomposition approach with Schur
complement in the physical space and functional decomposition in the probability space for solving
stochastic partial differential equations. Subsequently, Subber et al. [26, 27] extended this method by in-
corporating a typical preconditioner to determine the coefficients of the interface solution. In a separate
study by Chen et al. [28], the authors employed a domain decomposition approach to solve stochas-
tic elliptic PDEs. They approximated the local solution in each subdomain within a low-dimensional
parametric space. In Hadigol et al. [29], a stochastic model reduction approach based on low-rank
separated representations for the stochastic space was studied, where the coefficients of the interface so-
lution are done by finite element tearing and interconnecting method. Liao and Willcox [30] proposed an
offline-online approach that combines DDM with importance sampling. This enables the use of different
strategies in local systems, and the interface solution is generated by weighting precomputed PDE solu-
tions. To handle elliptic PDEs in high-contrast random media, Hou et al. [31] incorporated multiscale
finite element methods into the DDM framework. Incorporating a Schwarz-type iterative algorithm,
Zhang et al. [32] introduced a moment-minimizing interface condition to match the stochastic interface
solution. Lastly, Mu and Zhang [33] recently combined model reduction methods with sparse polyno-
mial approximation. They developed a stochastic domain decomposition method comprising an offline
procedure and an online procedure for linear steady-state convection-diffusion equations with random
coefficients.

In this paper, we focus on integrating Schur complement methods with the variable-separation (VS)
method for stochastic simulations. The VS method is one of the most effective model order reduction
methods and has been successfully used to solve SPDEs in a low-dimensional manifold [34, 35, 36].
Building upon the extension of the VS method to stochastic algebraic systems, we propose a novel model
reduction approach for solving the global stochastic interface problem of SPDEs, termed the stochastic
domain decomposition based on the variable-separation method (SDD-VS). To enhance simulation effi-
ciency, an offline-online computational decomposition is employed for the stochastic interface problem.
The offline phase consists of three stages. Firstly, the original domain is partitioned into non-overlapping
subdomains, and the Schur complement system is established, including local Schur complement ma-
trices and corresponding right-hand side vectors with random inputs. Secondly, a reduced stochastic
algebraic system is generated using low-rank representations of the global stochastic Schur complement
matrices and right-hand side vectors. Although the reduced model requires less computational effort
compared to the original stochastic Schur complement system, it still involves the discrete degrees of the
full model and may not be considered small-scale. To address this, the third stage introduces a functional
decomposition expression for the stochastic solution on the interface, achieved through the extended VS
method. In the online phase, each realization of the stochastic interface problem is recovered using the
outputs from the offline phase. Finally, efficient surrogate models for the stochastic subproblems can be
obtained using the VS method or other model reduction techniques [37, 38, 39].

The SDD-VS method proposed in this paper shares the advantages of both the variable separation
and the domain decomposition method. Specifically, the SDD-VS method can alleviate the “curse of
dimensionality” in an effective way and this is achieved by the explicit representation of the stochastic
functions deduced from the physical system instead of using a suitable set of basis functions (e.g.,
polynomial chaos basis and radial basis functions) of the random variables. Meanwhile, the proposed
method is much easier than other stochastic domain decomposition methods when implemented, thanks
to the applications of the VS method. Furthermore, the whole computation of the SDD-VS method
consists of an offline stage and an online stage. The online stage has high computational efficiency
and its computational cost is completely independent of spatial discretization. Moreover, the SDD-VS
method can reduce the dimension of the random variable for local problems in subdomains, it leads to
a more efficient surrogate model for each subproblem than that obtained on the entire domain. Finally
and most importantly, the proposed method maintains the same merits as DDM for deterministic PDEs,
such as the ability to solve subproblems independently and in parallel. In summary, the SDD-VS method
offers an efficient and reliable approximation for SPDEs, which is particularly valuable in many-query
contexts such as optimization, control design, and inverse analysis.
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This paper is organized as follows. Section 2 provides the necessary notation and preliminaries, and
introduces the VS method for stochastic algebraic systems. It also provides a brief overview of the domain
decomposition method for deterministic PDEs. In Section 3, we present the SDD-VS method proposed in
this paper, detailing its key steps and procedures, and we discuss the corresponding numerical methods
of the subproblems in Section 3.2. In Section 4, three numerical examples are presented to demonstrate
the performance and computational advantages of the proposed SDD-VS method. Finally, we draw
conclusions and offer some final remarks on the method and its potential applications.

2 Preliminaries and notations

In this section, we present some preliminaries and specify the notation of this paper. Let (Ω,B, P ) be
a finite dimensional probability space, where Ω is the event space, B is a σ-algebra on Ω, and P is
the probability measure on B. Let D be a given convex and bounded physical domain with Lipschitz
continuous boundary ∂D. We use V to denote a Hilbert space defined on D with an inner product
defined by (·, ·)V , and the induced norm is given by ∥ · ∥V =

√
(·, ·)V . We consider the following SPDE

defined on D {
L(x, ξ;u(x, ξ)) = f(x, ξ), ∀ x ∈ D, ξ ∈ Ω,

B(x, ξ;u(x, ξ)) = g(x, ξ), ∀ x ∈ ∂D, ξ ∈ Ω,
(1)

where ξ ∈ Ω is a set of real-valued random variables, L is a stochastic differential operator, B is the
boundary condition operator, f is the source team and g is the boundary team, u(x, ξ) is the solution
to this stochastic PDE. A practical instance of (1) is a stochastic diffusion equation given by{

−∇ · (c(x; ξ)∇u(x; ξ)) = f(x; ξ), ∀ x ∈ D, ξ ∈ Ω,

u(x; ξ) = 0, ∀ x ∈ ∂D, ξ ∈ Ω,

where c(x; ξ) is the diffusion coefficient.
The weak formulation of the problem (1) reads as follows: find u ∈ V such that

a(u(ξ), v; ξ) = b(v; ξ), ∀ v ∈ V, (2)

where a(·, ·; ·) and b(·; ·) are a bilinear form and a linear form on V, respectively. We assume that a(·, ·; ξ)
and b(·; ξ) are affine with respect to ξ, i.e.,

a(w, v; ξ) =

ma∑
k=1

pk(ξ)ak(w, v), ∀ w, v ∈ V,∀ ξ ∈ Ω,

b(v; ξ) =

mb∑
k=1

qk(ξ)bk(v), ∀ v ∈ V,∀ ξ ∈ Ω,

(3)

where pk(ξ) : Ω → R is a ξ-dependent stochastic function and ak : V × V → R is a bilinear form
independent of ξ, for each k = 1, · · · ,ma. Each q

k(ξ) : Ω → R is a ξ-dependent stochastic function and
each bk : V → R is a linear form independent of ξ, for k = 1, · · · ,mb. When a(·, ·; ξ) and b(·; ξ) are not
affine with respect to ξ, we can use the novel VS method for multivariate function [34] to obtain such
an affine expansion approximation for them.

In particular, we consider the finite element (FE) approximation of problem (1) in an n-dimensional
subspace Vh ⊂ V. Let {ψi}ni=1 be the set of basis functions of the FE space Vh, the solution uh(ξ) can
be represented by

uh(ξ) =

n∑
i=1

ui(ξ)ψi.

With the assumption (3) of affine decomposition, we have the matrix form of equation (2) in an FE space
Vh as follows ( ma∑

k=1

pk(ξ)Ak
)
u(ξ) =

mb∑
k=1

qk(ξ)F k, (4)

where

(Ak)ij = ak(ψi, ψj), (u(ξ))j = uj(ξ), (F k)j = bk(ψj), 1 ≤ i, j ≤ n.

3



Now we consider equation (4) as an example and introduce the VS method for stochastic algebraic
systems. This is the key technology for the stochastic domain decomposition method we will propose in
Section 3.

2.1 VS method for stochastic algebraic systems

We attempt to achieve an approximation of the stochastic algebraic system (4) in the form

u(ξ) ≈ uN (ξ) :=

N∑
i=1

ζi(ξ)ci, (5)

where ζi(ξ) are stochastic functions and ci are deterministic vectors, and N is the number of the sep-
arated terms. The VS method was first proposed in [34] for linear stochastic problems, and has seen
extensions to stochastic saddle point problems in [35], and to nonlinear parameterized PDEs in [36].
In this contribution, we develop the strategy of VS for stochastic algebraic systems. The VS method
employs an offline-online computational decomposition to enhance efficiency. In offline stage, to generate
the reduced basis functions {ci}Ni=1 and {ζi(ξ)}Ni=1, we need to compute a set of snapshots, which are
the solutions of the stochastic problem (4) corresponding to a set of optimal parameter samples. In the
online stage, the output is computed by the quasi-optimal separated representations for many instances
of parameters, and the influence of the uncertainty is estimated.

Here we describe the detail of the VS algorithm to obtain {ci}Ni=1 and {ζi(ξ)}Ni=1 in (5). To this end,
we define the residual for the VS method by

e(ξ) := u(ξ)− uk−1(ξ). (6)

By (4), we have that( ma∑
j=1

pj(ξ)Aj
)
e(ξ) =

mb∑
j=1

qj(ξ)F j −
( ma∑

j=1

pj(ξ)Aj
)
uk−1(ξ). (7)

Let rk(ξ) be the residual of equation (4) when using uk−1(ξ) to approximate u(ξ), that is,

rk(ξ) :=



mb∑
j=1

qj(ξ)F j , k = 1,

mb∑
j=1

qj(ξ)F j −
( ma∑

j=1

pj(ξ)Aj
)
uk−1(ξ), k ≥ 2.

(8)

Combining the representation of residual equation (8) with equation (7), we get the following error
residual equation as

ma∑
j=1

pj(ξ)Aje(ξ) = rk(ξ). (9)

At step k, we choose ξk as follows

ξk :=

{
chosen randomly in Ω, k = 1,

argmaxξ∈Ξ∥rk(ξ)∥2, k ≥ 2,

where Ξ is a collection of a finite number of samples in Ω. Let eh be the solution of (9) with ξ = ξk,
then we obtain the k-th deterministic column vector ck = eh in (5). Given e(ξ) := ckeξ(ξ), and

uk−1(ξ) :=
∑k−1

i=1 ζi(ξ)ci in equation (7), it follows that

ma∑
j=1

pj(ξ)Ajckeξ(ξ) =

mb∑
j=1

qj(ξ)F j −
ma∑
j=1

k−1∑
i=1

pj(ξ)ζi(ξ)A
jci. (10)

Both sides of the equation (10) are taken dot product with ck. Then, we have

ma∑
j=1

pj(ξ)(A)kjeξ(ξ) =

mb∑
j=1

qj(ξ)(F)j −
ma∑
j=1

k−1∑
i=1

pj(ξ)ζi(ξ)(A)ij ,
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where the matrix A is defined by (A)ij = (ck)
TAjci, for 1 ≤ i ≤ k, 1 ≤ j ≤ ma, and the vector F is

defined by (F)j = (ck)
TF j , for 1 ≤ j ≤ mb. This gives rise to

eξ(ξ) =

∑mb

j=1 q
j(ξ)(F)j −

∑ma

j=1

∑k−1
i=1 p

j(ξ)ζi(ξ)(A)ij∑ma

j=1 p
j(ξ)(A)kj

. (11)

Consequently, the k-th stochastic function in (5) can be obtained by taking ζk(ξ) = eξ(ξ). When

∥rk(ξk)∥2 :=
√

(rk(ξk))T rk(ξk) is small enough, we can stop the iteration procedure. Algorithm 1
summarizes the above procedure of the VS method for stochastic algebraic systems.

Algorithm 1 The VS method for stochastic algebraic systems

Input: The stochastic algebraic system in (4), a set of samples Ξ ∈ Ω,
and the error tolerance ε.
Output: The separated representation uN (ξ) :=

∑N
i=1 ζi(ξ)ci.

1: Initialize the residual r(ξ) :=
∑mb

j=1 q
j(ξ)F j , a random ξ1 ∈ Ξ,

the iteration counter k = 1;
2: Calculate ck = eh by solving (9) with ξ = ξk, ζk(ξ) = eξ(ξ) by (11);

3: Update Ξ = Ξ\ξk, and take the approximation uk(ξ) :=
∑k

i=1 ζi(ξ)ci;
4: k → k + 1;
5: Take the residual r(ξ) :=

∑mb

j=1 q
j(ξ)F j −

∑ma

j=1 p
j(ξ)Ajuk−1(ξ), and choose

ξk = argmaxξ∈Ξ∥r(ξ)∥2;
6: Return to Step 2 if ∥r(ξ)∥2 ≥ ε, otherwise terminate.
7: N = k.

Note that the matrix A and the vector F are independent of random variables ξ, and their compu-
tation is once in the offline phase. The online computation is to calculate (5) for any ξ ∈ Ω, which is
efficient because the online computation only involves the separated representation (5).

2.2 Domain decomposition method for deterministic problem

In this section, we briefly review the non-overlapping domain decomposition method for deterministic
PDEs (see, e.g., [27, 33] for more details), and take the equation (1) with Dirichlet boundary condition
for a realization of random variable ξ ∈ Ω as an example. In this case, we have the following weak
formulation which is independent of random variables

a(u, v) = b(v), ∀ v ∈ V.

Assumed that D is partitioned into Ns non-overlapping subdomains, denoted by Di, i = 1, 2, · · · , Ns,
such that

D =
Ns∪
i=1

Di and Di ∩Dj = ∅, if i ̸= j,

and we define the interface of two adjoint subdomains Di and Dj by Γij , a notional example for two
subdomains is shown in Figure 1. Moreover, we denote the Hilbert space V restricted on subdomain Di

by Vi.

D2D1 Γ12

Figure 1: Illustration of a domain partitioned into two subdomains.

Then the weak formulation in a typical subdomain Di can be expressed as a(u, v)i = b(v)i, ∀ v ∈ Vi.
The finite element approximation of the above equation leads to a local linear system as follows

Aiui = fi, (12)
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where Ai and fi are the local stiffness matrix and local load vector, respectively, and ui is the vector of
local nodal values in the subdomain Di. Due to the lack of boundary conditions, the local system (12) is
singular. Then we consider dividing ui into two parts: the nodal shared by two or more adjacent subdo-
mains, i.e. the interface part ui

Γ and the interior part ui
I that belong to subdomain Di. Consequently,

the system (12) can be rewritten asAi
II Ai

IΓ

Ai
ΓI Ai

ΓΓ

ui
I

ui
Γ

 =

f i
I

f i
Γ

 .

Performing the Gaussian elimination technique, we know that once the interface unknowns ui
Γ are

obtained, the interior unknowns ui
I can be obtained by solving the interior problem on each subdomain

Di as follows

ui
I = (Ai

II)
−1(f i

I −Ai
IΓu

i
Γ). (13)

Next, we discuss how to get the interface unknowns ui
Γ. First, we introduce the restriction matrix Ri

(consisting of zeros and ones) represents a scatter operator, which relates the global interface unknowns
uΓ and the local interface unknowns ui

Γ as

RiuΓ = ui
Γ.

Define the local Schur complement matrix Si and the corresponding right-hand side vector Fi as

Si = Ai
ΓΓ −Ai

ΓI(A
i
II)

−1Ai
IΓ, Fi = f i

Γ −Ai
ΓI(A

i
II)

−1f i
I .

Then the global interface unknowns uΓ can be obtained by solving the global interface problem

SuΓ = F, (14)

where

S :=

Ns∑
i=1

RT
i SiRi, F :=

Ns∑
i=1

RT
i Fi,

and the interior unknowns in each subdomain Di can be obtained through (13).
It is worth noting that the interface system described above exhibits a smaller but denser structure

compared to the original global system. Furthermore, the condition number of the Schur complement
matrix S is generally better than the original global stiffness matrix [11]. Notably, the computational
cost associated with calculating S and F primarily arises from the inversion of Ai

II , for 1 ≤ i ≤ Ns,
particularly when dealing with a large number of degrees of freedom. In this study, our objective is to
explore the application of the domain decomposition method to stochastic partial differential equations
(PDEs). In this context, all the aforementioned matrices are influenced by random inputs, introducing
significant challenges when attempting to solve the stochastic interface system.

3 Stochastic domain decomposition based on Variable-separation
method

In this section, we will present an offline-online method for the interface problem of the SPDEs, which
builds a relation between the random inputs and the stochastic interface solution. The purpose of the
offline stage is to construct all the components that are needed in the online stage. Details about the
offline stage are provided in Subsections 3.1-3.2. Assuming that the original domain D is divided into
Ns non-overlapping subdomains, the interface problem of stochastic PDEs can be expressed as follows
(referring to equation (14)):

S(ξ)uΓ(ξ) = F (ξ), (15)

where

S(ξ) :=

Ns∑
i=1

RT
i Si(ξ)Ri, F (ξ) :=

Ns∑
i=1

RT
i Fi(ξ),

6



and

Si(ξ) = Ai
ΓΓ(ξ)−Ai

ΓI(ξ)(A
i
II(ξ))

−1Ai
IΓ(ξ), (16)

Fi(ξ) = f i
Γ(ξ)−Ai

ΓI(ξ)(A
i
II(ξ))

−1f i
I(ξ). (17)

For an elementary exposition of the methodology, we consider dividing D into two subdomains D1

and D2, and redefine the interface of D1 and D2 by Γ instead of Γ12, as shown in Figure 1. It should be
clarified that all the discussions in two subdomains can be generalized to the case of multiple subdomains.
Then we have the interface problem of stochastic PDEs as follows

(S1(ξ) + S2(ξ))uΓ(ξ) = F1(ξ) + F2(ξ). (18)

Note that, for each sample ξ ∈ Ω, the calculation of S1(ξ), S2(ξ), F1(ξ), F2(ξ) by equations (16-17)
depends on the inversion of the full order matrices A1

II(ξ), A
2
II(ξ), which will substantially impact on

the computation efficiency of solving the interface problem (18). To improve computational efficiency,
we aim to reconstruct equation (18) such that S(ξ) and F (ξ) are affine with respect to ξ, i.e.

S(ξ) =

mS∑
j=1

η̂j(ξ)X̂ j , (19)

F (ξ) =

mF∑
j=1

γ̂j(ξ)F̂ j . (20)

The details of the process and definitions for η̂j(ξ), γ̂j(ξ), X̂ j and F̂ j will be introduced in Subsection
3.1. By equations (19-20), we have the stochastic interface problem such as

mS∑
j=1

η̂j(ξ)X̂ juΓ(ξ) =

mF∑
j=1

γ̂j(ξ)F̂ j . (21)

The matrices X̂ j and F̂ j are independent of the random variables ξ, and their computation is a one-time
operation. For any ξ ∈ Ω, we just need to solve equation (21) instead of equation (15) involving the
inversion of the full order matrices.

3.1 Assemble strategies for S and F

Now we describe the detail of the strategy for constructing equations (19-20). With the assumption (3)
of affine decomposition, the stochastic matrices in equations (16-17) can be written as follows

Ai
II(ξ) =

mai∑
j=1

pij(ξ)Aij
II , A

i
IΓ(ξ) =

mai∑
j=1

pij(ξ)Aij
IΓ,

Ai
ΓI(ξ) =

mai∑
j=1

pij(ξ)Aij
ΓI , A

i
ΓΓ(ξ) =

mai∑
j=1

pij(ξ)Aij
ΓΓ,

(22)

where Aij
II , A

ij
IΓ, A

ij
ΓI , A

ij
ΓΓ are independent of random variables ξ. Thus the first item of Si(ξ) in equation

(16), i.e., Ai
ΓΓ(ξ) is affine with respect to ξ naturally. To achieve affine expression for the second item

of Si(ξ), i.e., A
i
ΓI(ξ)(A

i
II(ξ))

−1Ai
IΓ(ξ), we perform it as follows.

• Step 1: Construct the low-rank approximation of X(ξ) = (Ai
II(ξ))

−1Ai
IΓ(ξ) such as

XN (ξ) :=

NSi∑
j=1

βj(ξ)Xj . (23)

First, we rewrite (Ai
II(ξ))

−1Ai
IΓ(ξ) as the following stochastic algebraic system

Ai
II(ξ)X(ξ) = Ai

IΓ(ξ), (24)

with assumptions of affine decomposition (22), we have

mai∑
j=1

pij(ξ)Aij
IIX(ξ) =

mai∑
j=1

pij(ξ)Aij
IΓ.

7



Let nΓ be the number of the interface unknowns, we rewrite the stochastic matrix asX(ξ) = [xi1(ξ), x
i
2(ξ), · · · , xinΓ

(ξ)].
It follows that to get the solution of equation (24) is equivalent to solving the following nΓ equations

mai∑
j=1

pij(ξ)Aij
IIx

i
k(ξ) =

mai∑
j=1

pij(ξ)αij
k , 1 ≤ k ≤ nΓ, (25)

where αij
k represents the k-th column of the matrix Aij

IΓ for 1 ≤ k ≤ nΓ, and 1 ≤ j ≤ ma. For each
equation of (25), we adopt Algorithm 1 proposed in Subsection 2.1 to get the low-rank approximation of
xik(ξ) such as (5). Consequently, the low-rank approximation of X(ξ) in the form of (23) can be given
by rearranging the low-rank approximations of xik(ξ) for 1 ≤ k ≤ nΓ.

• Step 2: Assemble affine expression for

X i(ξ) = −Ai
ΓI(ξ)(A

i
II(ξ))

−1Ai
IΓ(ξ). (26)

Based on the low-rank representation of X(ξ) and equation (23), we have

X i(ξ) ≈ −Ai
ΓI(ξ)

NSi∑
k=1

βk(ξ)Xk = −
mai∑
j=1

NSi∑
k=1

pij(ξ)βk(ξ)A
ij
ΓIXk. (27)

The affine decomposition of Ai
ΓI(ξ) in equation (22) yields the second equality.

To simplify notation, the affine expression for X i(ξ) can be obtained by using the single-index notation
as follows

X i(ξ) =
∑
j∈J

ηij(ξ)X ij , (28)

where J = {1, 2, · · · ,mai} × {1, 2, · · · , NSi}, ηij(ξ) = pij1(ξ)βj2(ξ), and X ij = −Aij1
ΓIXj2 is matrix of

nΓ × nΓ for arbitrary 1 ≤ j ≤ mai
NSi

. Subsequently, we have the low-rank representation for Si(ξ)
based on equation (16) as follows

Si(ξ) = Ai
ΓΓ(ξ) + X i(ξ) ≈

mai∑
j=1

pij(ξ)Aij
ΓΓ +

mai
NSi∑

j=1

ηij(ξ)X ij ,

where the first equality follows from the definition of X i(ξ) in equation (26), the second equality fol-
lows from the affine decomposition of Ai

ΓΓ(ξ) and equation (28). Consequently, we have the low-rank
representation for S(ξ) as follows

S(ξ) = S1(ξ) + S2(ξ)

≈
ma1∑
j=1

p1j(ξ)A1j
ΓΓ +

ma2∑
j=1

p2j(ξ)A2j
ΓΓ +

ma1NS1∑
j=1

η1j(ξ)X 1j +

ma2NS2∑
j=1

η2j(ξ)X 2j

=

ma1
(NS1

+1)+ma2
(NS2

+1)∑
j=1

η̂j(ξ)X̂ j ,

(29)

where the last equality comes from stacking the variables and sorting the corresponding indices via a
single one. Algorithm 2 outlines the assembling process of S(ξ).

Algorithm 2 The Assemble Process of S(ξ)

Input: The stochastic matrices Ai
II(ξ), A

i
IΓ(ξ), A

i
ΓI(ξ), A

i
ΓΓ(ξ), i = 1, 2.

Output: The low-rank representation S(ξ) =
∑ma1 (NS1

+1)+ma2 (NS2
+1)

j=1 η̂j(ξ)X̂ j .

1: Get the approximation of X(ξ) = (Ai
II(ξ))

−1Ai
IΓ(ξ) by solving equations (25)

use Algorithm 1;
2: Assemble the affine expression of −Ai

ΓI(ξ)(A
i
II(ξ))

−1Ai
IΓ(ξ) by (27);

3: Assemble Si(ξ) based on (22) and the expression derived in step 2;
4: Assemble the low-rank representation of S(ξ) by (29).
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Similarly, with the assumption (3) of affine decomposition

f i
I(ξ) =

mbi∑
j=1

qij(ξ)f ij
I , f i

Γ(ξ) =

mbi∑
j=1

qij(ξ)f ij
Γ , (30)

where f ij
I ,f

ij
Γ are independent of ξ. Then following the assemble strategy of S(ξ), the low-rank repre-

sentation for F (ξ) can be constructed as follows

F (ξ) = F1(ξ) + F2(ξ)

≈
mb1∑
j=1

q1j(ξ)f1j
Γ +

mb2∑
j=1

q2j(ξ)f2j
Γ +

ma1
NF1∑

j=1

γ1j(ξ)F
1j +

ma2
NF2∑

j=1

γ2j(ξ)F
2j

=

mb1
+mb2

+ma1NF1
+ma2NF2∑

j=1

γ̂j(ξ)F̂ j .

(31)

We present the detail of the process of assembling F (ξ) in Algorithm 3.

Algorithm 3 The Assemble Process of F (ξ)

Input: The stochastic matrices Ai
II(ξ), A

i
ΓI(ξ) and vectors f i

I(ξ),f
i
Γ(ξ), i = 1, 2.

Output: The low-rank representation F (ξ) =
∑mb1

+mb2
+ma1

NF1
+ma2

NF2

j=1 γ̂j(ξ)F̂ j .

1: Get the approximation of X(ξ) = (Ai
II(ξ))

−1f i
I(ξ) by Algorithm 1;

2: Assemble the affine expression of −Ai
ΓI(ξ)(A

i
II(ξ))

−1f i
I(ξ);

3: Assemble Fi(ξ) based on (30) and the expression derived in step 2;
4: Assemble the low-rank representation of F (ξ) by (31).

Remark 3.1 Note that ma1
(NS1

+1)+ma2
(NS2

+1) is the maximum number of the separated terms of
S(ξ). For practical problem, the number of the separated terms of S(ξ) is smaller than ma1

(NS1
+ 1) +

ma2
(NS2

+1) when there exist p1j(ξ) = p2k(ξ), j = 1, 2, · · · ,ma1
, k = 1, 2, · · · ,ma2

, the same is true for
F (ξ).

3.2 Reduced model representation for the stochastic interface problem

As we mentioned before, once the separation approximations of S(ξ) and F (ξ) are available, the stochastic
interface problem (18) can be given by

mS∑
j=1

η̂j(ξ)X̂ juΓ(ξ) =

mF∑
j=1

γ̂j(ξ)F̂ j , ∀ ξ ∈ Ω, (32)

where mS = ma1
(NS1

+ 1) +ma2
(NS2

+ 1) and mF = mb1 +mb2 +ma1
NF1

+ma2
NF2

. The amended
model defined in (32) for the interface problem is a linear algebraic system with nΓ unknowns. Although
the amended model needs much less computation effort compared with the original model (18), it may
be not a very small-scale problem because the amended model defined in (32) involves the discrete degree
of the original full model. In order to significantly improve the computation efficiency, we want to get
the reduced model representation of the stochastic interface problem, i.e.,

uΓ(ξ) ≈
M∑
i=1

ζi(ξ)ci, (33)

whereM is the number of the separated terms of uΓ(ξ), each ci, i = 1, · · · ,M is a vector of nΓ-dimension.
Then the functional decomposition expression of the stochastic solution for the interface problem can be
written as follows

uΓ(ξ) ≈
M∑
i=1

ζi(ξ)ci(x), (34)
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with ci(x) =
∑nΓ

j=1(ci)jψj(x), i = 1, · · · ,M and {ψj}nΓ
j=1 being the corresponding basis functions of the

FE space Vh on the interface Γ. We call this reduced model representation, which is more applicable to
solving the subproblems on subdomains.

We employ the VS method for stochastic algebraic systems presented in Subsection 2.1 to derive the
reduced model representation (33), which is beneficial to construct the efficient surrogate model of the
subproblems.

The online stage of the SDD-VS method is to use the output of the offline stage to recover the solution
to the stochastic interface problem for a large number of new samples. The online stage is efficient thanks
to the reduced model representation (33) and (34) for the stochastic interface solution.

3.3 The numerical method for the subproblems

In the above subsections, we have a detailed description of the SDD-VS method for the stochastic
interface problem. Once we get the stochastic solution uiΓ(ξ) of the interface, the interior solution uiI(ξ)
in the subdomain Di can be obtained by solving the following stochastic problem

L(x, ξ;uiI(ξ)) = f(x, ξ), ∀ x ∈ Di, ξ ∈ Ω,

B(x, ξ;uiI(ξ)) = g(x, ξ), ∀ x ∈ ∂Di\(∂Di ∩ Γ), ξ ∈ Ω,

B(x, ξ;uiI(ξ)) = hi(x, ξ), ∀ x ∈ ∂Di ∩ Γ, ξ ∈ Ω,

(35)

where hi(x, ξ) is defined by the interface solution uiΓ(ξ) such as equation (34) on the interface boundary,
i.e., ∂Di ∩ Γ. To address the computational complexity associated with solving the stochastic partial
differential equation (35), we attempt to apply model reduction methods to construct an efficient sur-
rogate model. Model reduction methods have been proposed to reduce the computation complexity
especially when the full model are expensive to perform numerical simulations. These methods construct
an approximate model with lower dimensionality but still describe important aspects of the full model.
The reduced basis method is one of the model order reduction methods and usually provides an efficient
and reliable approximation of the input-output relationship [40, 41, 42, 43, 44, 45]. Another class of
model reduction methods is based on the variable-separation (VS) method. As an example, the proper
generalized decomposition (PGD) method has been used in solving stochastic partial differential equa-
tions (SPDEs) [47]. The PGD method constructs optimal reduced basis from a double orthogonality
criterium [48, 49], and it requires the solutions of a few uncoupled deterministic problems solved by
classical deterministic solution techniques and the solutions of stochastic algebraic are solved by classical
spectral stochastic methods. We note that PGD requires many iterations with the arbitrary initial guess
to compute each term in the separated expansion at each enrichment step. This will deteriorate the
simulation efficiency.

Here, we would like to adopt the VS method we proposed in [34] for the stochastic problem (35) to
get a separated representation for the solution without iterations at each enrichment step. Moreover,
the proposed VS method can alleviate the “curse of dimensionality” when dealing with problems in
high-dimensional stochastic spaces.

Finally, we summarize the SDD-VS method for stochastic PDEs in Figure 2.

4 Numerical experiments

In this section, we will present various numerical results to demonstrate the applicability and efficiency
of the proposed SDD-VS method on several stochastic PDEs. For each problem, we seek a separate
representation approximation to the interface problem induced by the model depending on random
variables. All the numerical experiments in this paper were run in Python on a Dell desktop with Intel
Core i7-4970 CPU @3.60GHz and 16GB of RAM. In Section 4.1, we consider the one-dimensional (1D)
stochastic diffusion equation to illustrate the performance of the proposed SDD-VS method. In Section
4.2, we study the SDD-VS method for a two-dimensional (2D) stochastic diffusion equation with three
subdomains. The 2D stochastic convection-diffusion equation with high-dimensional random inputs is
considered in Section 4.3.

In order to quantify the accuracy of the proposed SDD-VS method, we use the relative mean error ϵ
for the stochastic interface problem as follows

ϵ =
1

N

N∑
i=1

|uΓ(ξi)− ûΓ(ξi)|
|uΓ(ξi)|

, (36)
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Pre-step for SDD-VS (Offline stage 1)
• Partition D into Ns subdomains D1, · · · , DNs

;
• Construct the elements in Schur complement system.

· · ·
Offline stage 2 for subdomain D1

• Construct the low-rank approxima-
tion of S1(ξ) and F1(ξ).

Offline stage 2 for subdomain DNs

• Construct the low-rank approxima-
tion of SNs

(ξ) and FNs
(ξ).

Offline stage 2 for constructing equation (32)
Based on S(ξ)uΓ(ξ) = F (ξ), taking

• S(ξ) =
∑Ns

i=1R
T
i Si(ξ)Ri ≈

∑mS

j=1 η̂
j(ξ)X̂ j ;

• F (ξ) =
∑Ns

i=1R
T
i Fi(ξ) ≈

∑mF

j=1 γ̂
j(ξ)F̂ j .

Offline stage 3 to get the surrogate model
• uΓ(ξ) ≈

∑M
i=1 ζi(ξ)ci or uΓ(ξ) ≈

∑M
i=1 ζi(ξ)ci(x).

Online stage for SDD-VS
Based on the surrogate model uΓ(ξ) ≈

∑M
i=1 ζi(ξ)ci(x)

• Evaluate the interface unknowns for any ξ ∈ Ω;
• Simulate the subproblems as (35).

By VS method

Figure 2: Flowchart of the SDD-VS method.
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where N is the number of samples used to compute the mean error, ûΓ(ξ) is the approximation of the
interface unknowns obtained by the SDD-VS method, uΓ(ξ) is the restriction of the reference solution,
which is solved by the finite element method over the whole domain D, on the interface part Γ.

4.1 1D stochastic diffusion equation

We begin by considering a 1D stochastic diffusion equation with homogeneous Dirichlet boundary con-
ditions − d

dx
(c(x; ξ)

du(x; ξ)

dx
) = f(x; ξ), ∀ x ∈ D,

u(0; ξ) = u(1; ξ) = 0,

where the original domain D = [0, 1] is divided into two subdomains D1 = [0, 0.5], D2 = (0.5, 1], and the
random coefficient c(x; ξ), the source function f(x; ξ) are defined as follows

c(x; ξ) =

{
ξx+ 4, when x ∈ D1,

x+ 1, when x ∈ D2,

f(x; ξ) =

{
cos(2πx), when x ∈ D1,

ξ2x, when x ∈ D2.

In this example, we set the random variable ξ to be a truncated Gaussian distribution with mean 0,
standard deviation 1, and range [−3, 3]. Here the reference solution is calculated by the finite element
method with mesh size h = 1/1000. For the stochastic problems of one dimension, the reduced model
(32)

mS∑
j=1

η̂j(ξ)X̂ juΓ(ξ) =

mF∑
j=1

γ̂j(ξ)F̂ j , ∀ ξ ∈ Ω,

is just a linear algebraic equation, where {X̂ j}mS
j=1 and {F̂ j}mF

j=1 are constants. Thus we can obtain the
simple analytic expression for the stochastic interface unknowns

uΓ(ξ) =

∑mF

j=1 γ̂
j(ξ)F̂ j∑mS

j=1 η̂
j(ξ)X̂ j

, ∀ ξ ∈ Ω, (37)

without further calculations. Therefore, most of the cost in the offline phase concentrates on the assemble
process of Si(ξ), Fi(ξ), i = 1, 2 in equations (16-17), i.e. the construction of their low-rank representation.
To this end, we choose |Ξ| = 20 samples for training in Algorithm 1.

It should be noted that the relative mean error in all the assemble processes becomes smaller as
the number of the separated terms increases. We take the construction of S1(ξ) as an example, and
depict the relative mean error versus the number of the separated terms for the VS method in Figure 3,
where the relative mean error ϵ is calculated by equation (36) with N = 104 test samples. This could
provide evidence for the selection of NS1

= 4 such that the relative mean error ϵ < 10−5 is small enough.
Similarly, we take NS2

= 1, NF1
= 4, NF2

= 1 for the construction of S2(ξ), F1(ξ) and F2(ξ) respectively.
Thus we have mS = ma1(NS1 +1)+ma2(NS2 +1) = 12 and mF = mb1 +mb2 +ma1NF1 +ma2NF2 = 11
in the reduced model (32), where ma1 = 2,ma2 = 1 and mb1 = mb2 = 1.

Based on the reduced model (32), the interface solution by the SDD-VS method can be obtained
by equation (37) directly. We implement it in two different conditions: (1) NS1

= 4, NS2
= 1, NF1

=
4, NF2

= 1; (2) NS1
= 6, NS2

= 1, NF1
= 4, NF2

= 1, and plot the relative errors in Figure 4 to visualize
the individual relative error of the first 100 samples from N = 104 random samples. From the figure,
we see that the method we proposed gives good approximation, and the relative error for each random
sample becomes smaller when the number of the separated terms increases.

Figure 5 shows the mean of the solution generated by our proposed SDD-VS method with NS1
=

4, NS2
= 1, NF1

= 4, NF2
= 1 and the reference solution defined on each subdomain, we find that our

method provides good approximations.
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Figure 3: Comparison of the relative mean error corresponding to the different numbers of the separated
terms NS1 .
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Figure 4: The relative error for 100 random samples by the SDD-VS method in two conditions: (1)
NS1

= 4, NS2
= 1, NF1

= 4, NF2
= 1; (2) NS1

= 6, NS2
= 1, NF1

= 4, NF2
= 1.

4.2 2D stochastic diffusion equation with three subdomains

In this example, the stochastic diffusion equation is posed on domain D = [0, 100] × [0, 100] consists of
three subdomains, which is defined by

−div
(
c(x; ξ

)
∇u(x; ξ)) = f(x; ξ), ∀ x ∈ D,

u(x; ξ) = g(x; ξ), ∀ x ∈ ∂D1,

∂u(x; ξ)

∂n
= h(x; ξ), ∀ x ∈ ∂D2,

where ∂D1 = {(0, 0), (100, 100)}, ∂D2 = ∂D\∂D1, the source function f(x; ξ) = 0, the Dirichlet bound-
ary function g(x; ξ) satisfied: g

(
(0, 0); ξ

)
= 20, g

(
(100, 100); ξ

)
= 15, the Neumann boundary function

13



0.0 0.1 0.2 0.3 0.4 0.5
x

0.000

0.001

0.002

0.003

0.004
E[

u(
x;

:)
]

SDD-VS
Reference

(a) D1

0.5 0.6 0.7 0.8 0.9 1.0
x

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

E[
u(

x;
:)

]

SDD-VS
Reference

(b) D2

Figure 5: Comparison of the mean solution for reference and the SDD-VS method with NS1
= 4, NS2

=
1, NF1 = 4, NF2 = 1 in subdomains D1 and D2.

h(x; ξ) = 0, and the random coefficient c(x; ξ) is defined as

c(x; ξ) =



80

µ
, when x ∈ D1,

ξ

µ
, when x ∈ D2,

20

µ
, when x ∈ D3,

where µ = 0.02, D1 = [0, 100]× [0, 30], D2 = [0, 100]×(30, 70], D3 is the remainder part of the domain D.
We set the random variable ξ to be uniformly distributed in the interval [1, 4]. Here, the finite element
method calculates the reference solution with mesh size hx = hy = 1/100.

For this numerical example, the affine expansion approximation of the stochastic stiffness matrix and
the load vector defined on each subdomain has only one term, i.e. mai

= mbi = 1, i = 1, 2, 3, and then
NS1

= NS2
= NS3

= NF1
= NF2

= NF3
= 1. The affine expansion of S(ξ) and F (ξ) have a directly

analytic expression with mS = 2, mF = 1 such as

S(ξ) =

Ns∑
i=1

RT
i Si(ξ)Ri = X̂ 1 + X̂ 2ξ,

F (ξ) =

Ns∑
i=1

RT
i Fi(ξ) = F̂ ,

(38)

where

X̂ 1 =

[
A1

Γ12Γ12
−A1

Γ12I
(A1

II)
−1A1

IΓ12
0

0 A3
Γ23Γ23

−A3
Γ23I

(A3
II)

−1A3
IΓ23

]
,

X̂ 2 =

A2
Γ12Γ12

−A2
Γ12I

(A2
II)

−1A2
IΓ12

A2
Γ12Γ23

−A2
Γ12I

(A2
II)

−1A2
IΓ23

A2
Γ23Γ12

−A2
Γ23I

(A2
II)

−1A2
IΓ12

A2
Γ23Γ23

−A2
Γ23I

(A2
II)

−1A2
IΓ23

 ,
and

F̂ =


f1
Γ12

−A1
Γ12I

(A1
II)

−1f1
I + f2

Γ12
−A2

Γ12I
(A2

II)
−1f2

I

f2
Γ23

−A2
Γ23I

(A2
II)

−1f2
I + f3

Γ23
−A3

Γ23I
(A3

II)
−1f3

I

 ,

are independent of random variable ξ, and their computation is once. We choose |Ξ| = 20 samples to get
the efficient surrogate model of uΓ(ξ) by Algorithm 1 based on the following stochastic algebraic system

(X̂ 1 + X̂ 2ξ)uΓ(ξ) = F̂ .

Firstly, we focus on the results of the stochastic interface problem solved by the SDD-VS method. In
Figure 6, we depict the relative mean error of the stochastic interface problem by the SDD-VS method
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versus a different number of the separated terms M , where the relative mean error ϵ is calculated with
N = 104 test samples. According to the figure, we can see that as the number of the separated terms M
increases, the approximation becomes more accurate.
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Figure 6: Comparison of the relative mean error corresponding to the different number of the separated
terms M .

To visualize the individual relative error, we choose the first 100 samples from N = 104 random
samples and plot the relative error with the number of the separated terms being M = 2,M = 4,M = 6
in Figure 7. This shows that the relative error for each individual sample becomes smaller when the
number of the separated terms M increases.
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Figure 7: The relative error for 100 samples versus the number of the separated terms being M = 2,
M = 4, M = 6.

Figure 8 shows the mean of the solution generated by the SDD-VS method and the reference solution
in two interfaces [0, 100]× 30 and [0, 100]× 70 with the number of the separated terms M = 3 based on
104 random samples, as we can see, both interfaces yield an accurate mean solution.

The probability density estimates of the reference and the SDD-VS method at a single measurement
location in interfaces are shown in Figure 9. From the figure, we find that the SDD-VS method can give
a good approximation for the reference probability density.

Following (13), the stochastic interior unknowns ui
I(ξ) belong to each subdomain Di can be obtained

by solving the following stochastic linear equation

Ai
II(ξ)u

i
I(ξ) = f i

I(ξ)−Ai
IΓ(ξ)u

i
Γ(ξ).
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Figure 8: Comparison of the mean solution for the reference and the SDD-VS method in two interfaces
with the number of the separated terms M = 3.
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Figure 9: Comparison of the probability density of u(x0; ξ) for reference and the SDD-VS method with
the number of the separated terms M = 3.
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Indeed, for this type of SPDE, the subproblems can be solved more efficiently. In subdomain Di,
once we get the reduced model representation of the stochastic interface unknowns ui

Γ(ξ), the reduced
model representation of the interior unknowns ui

I(ξ) can be obtained directly, which can be written as

ui
I(ξ) = (Ai

II)
−1(f i

I(ξ)−Ai
IΓu

i
Γ(ξ))

≈ (Ai
II)

−1

mbi∑
j=1

qij(ξ)f ij
I − (Ai

II)
−1Ai

IΓ

M∑
j=1

ζj(ξ)c
i
j

=

mbi∑
j=1

qij(ξ)f̂ ij
I −

M∑
j=1

ζj(ξ)ĉ
i
j , i = 1, 3,

(39)

ui
I(ξ) = (Ai

II)
−1

(f i
I(ξ)

ξ
−Ai

IΓu
i
Γ(ξ)

)
≈ (Ai

II)
−1

mbi∑
j=1

qij(ξ)

ξ
f ij
I − (Ai

II)
−1Ai

IΓ

M∑
j=1

ζj(ξ)c
i
j

=

mbi∑
j=1

qij(ξ)

ξ
f̂ ij
I −

M∑
j=1

ζj(ξ)ĉ
i
j , i = 2,

(40)

where the second equation following from Ai
II(ξ) = Ai

IIξ, A
i
IΓ(ξ) = Ai

IΓξ, when i = 2, for each i, cij is

the corresponding vector of cj restricted on the interface of Di, f̂
ij
I = (Ai

II)
−1f ij

I , ĉij = (Ai
II)

−1Ai
IΓc

i
j .

In Figure (10), we plot the mean of the reference solution and the solution generated by (39-40) in three
subdomains with the number of the separated terms M = 3 for the stochastic interface unknowns, the
first row is the reference solution, and the second row is the solution generated by our proposed SDD-VS
method. We find that our method works well for this problem.
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Figure 10: Comparison of the mean solution on three subdomains for reference and the SDD-VS method
with the number of the separated terms M = 3.

Finally, since the VS method proposed in [34] is applicable to solve SPDEs directly, we compare
the accuracy and the computational cost of the SDD-VS method against the VS method. To this end,
|Ξ| = 20 samples are selected to construct the surrogate model for the VS method. In Table 1, we list
the relative mean error, CPU time (offline CPU time Toff, online CPU time Ton, total CPU time Ttot
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and average online CPU time Ton) for SDD-VS method with the number of the separated terms M = 10
for the interface unknowns, VS method with the number of the separated terms MV S = 3, 6, 12 and the
reference method. Note that the online CPU time for the SDD-VS method can become smaller if we
use the parallel strategy. From the table, we conclude that (1) as the number of separated terms MV S

increases, the CPU times needed for the VS method increase steadily; (2) the magnitude of average
online CPU time by the SDD-VS method and VS method are much smaller than that of the reference
method; (3) the SDD-VS method achieves much better approximation than the VS method with similar
online computational cost, besides, the SDD-VS method uses much less computational cost than the
VS method with similar approximation accuracy. In summary, the proposed SDD-VS method for this
problem renders a more robust and accurate approximation than the VS method applied here directly.

Table 1: Comparison of average relative errors and the CPU times for SDD-VS, VS and the reference
based on 104 parameter samples.

SDD-VS VS Reference

MV S = 3 MV S = 6 MV S = 12
ε 2.40× 10−13 1.37× 10−5 8.14× 10−9 1.37× 10−13 \

Toff 10.39s 222.14s 223.23s 225.95s \
Ton 3.98s 9.53s 22.65s 59.67s \
Ttot 14.37s 231.67s 245.88s 285.62s 94507.32s
Ton 3.98× 10−4s 9.53× 10−4s 2.27× 10−3s 5.97× 10−3s 9.45s

4.3 2D stochastic convection-diffusion equation with high-dimensional ran-
dom inputs

In the final example, we consider the stochastic convection-diffusion equation defined on domain D =
[0, 1]× [0, 1] with high-dimensional random variables, which is defined by{

−div
(
c(x, y; ξ

)
∇u(x, y; ξ)) + d(x, y; ξ) · ∇u(x, y; ξ) = f(x.y; ξ), ∀ (x, y) ∈ D,

u(x, y; ξ) = g(x, y; ξ), ∀ (x, y) ∈ ∂D,

where the boundary condition function g(x, y; ξ) = 0, the random diffusivity c(x, y; ξ) and velocity
d(x, y; ξ) are defined as

c(x, y; ξ) = ξ33 + yξ34 + 3, d(x, y; ξ) = 1.

For this problem, we divide D into two subdomains D1 = [0, 0.5]× [0, 1] and D2 = (0.5, 1]× [0, 1]. In
each subdomain Di, the source function f(x, y; ξ) is taken as a random field, which is characterized by
a two-point exponential covariance function cov[f ], i.e.,

cov[f ](x1, y1;x2, y2) = σ2exp
(
− |x1 − x2|2

2l2x
− |y1 − y2|2

2l2y

)
, (41)

where (xi, yi), i = 1, 2 is the spatial coordinate, the variance σ = 0.1, correlation length ly = 0.5 and
we take different correlation lengths in the x direction for different subdomains, specifically, lx = 0.5 in
subdomain D1 while lx = 0.05 in subdomain D2. Then the random source term f(x, y; ξ) is obtained by
truncating a Karhunen-Loève expansion, i.e.,

f(x, y; ξ) := E[f ] +

16∑
i=1

√
γibi(x, y)ξi,

where E[f ] = 1, the random vector ξ := (ξ1, ξ2, · · · , ξ34) ∈ R34, we assumed that ξi, i = 1, 2, · · · , 34 are
i.i.d uniform random variables range [−1, 1]. The reference solution is obtained by the finite element
method with mesh size hx = hy = 1/60.

We focus on the numerical result of the stochastic interface problem solved by the SDD-VS method
with NS1 = NS2 = 20, NF1 = NF2 = 80. And we choose |Ξ| = 120 samples for training in Algorithm 1.
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First, we randomly choose 103 samples and plot the relative mean error calculated by equation (36)
versus the number of the separated terms M for the interface numerical solution in Figure 11, which
shows that the SDD-VS method is suited for the high-dimensional stochastic problem, and the relative
mean error becomes smaller when the number of the separated terms M increases.
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Figure 11: Comparison of the relative mean error corresponding to the different numbers of the separated
terms M .

We plot the relative error for the number of the separated terms M = 20 in Figure 12 to visualize the
individual relative error by choosing the first 100 samples out of 103 random samples. From the figure,
we can see that the SDD-VS method can give a good approximation for each sample.
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Figure 12: The relative mean error for 100 samples with the number of the separated terms M = 20.

In Figure 13, we plot the mean of the solution generated by our proposed SDD-VS method with the
number of the separated terms M = 4, 8, 12 and the reference in the interface based on 103 random
samples. As we can see, the approximation becomes better when the number of the separated terms M
increases.

5 Conclusions

This paper presented the SDD-VS method for solving linear steady-state convection-diffusion equations
with random coefficients. The proposed method is devoted to building a relationship between the random
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Figure 13: Comparison of the mean solution in the interface for reference and the SDD-VS method with
the number of the separated terms M = 4, 8, 12.

inputs and the interface problem of SPDEs, in which the VS method plays a key role. The whole
computation of the SDD-VS method admits an offlineonline decomposition. In the offline phase, we
applied the direct Schur complement method to construct equation (15), which is dense and depends on
the inversion of Ai

II(ξ), for 1 ≤ i ≤ Ns. It brings great challenges to solving the stochastic interface
system (15) repeatedly, especially for many samples. To improve computational efficiency, we adopted
the extended VS method to reconstruct S(ξ) and F (ξ) as in equations (19) and (20), i.e., having affine
decomposition. This renders the reduced model (32), which needs much less computation effort than the
original stochastic Schur complement system (15) with the aid of affine decomposition. However, it may
be not a very small-scale problem especially when the number of subdomains Ns is large. To further
improve efficiency, the VS method was used again to get the surrogate model for equation (32).

In the online phase, we used the functional decomposition expression (34) to recover the solution to
the stochastic interface problem for a large number of new samples. Moreover, the efficient surrogate
model of the stochastic subproblem (35) can be obtained by the VS method in [34]. The online phase
is efficient thanks to the reduced model representation for the stochastic interface solution. We applied
the proposed method to a few numerical models with random inputs. Careful numerical analysis was
carried out for these numerical examples. We found that the SDD-VS method renders an efficient and
robust reduced model.

In the future, we plan to extend the proposed method to tackle nonlinear unsteady problems. This
will involve adapting the SDD-VS method to handle nonlinearity and time-dependent behavior. We also
aim to conduct a rigorous convergence analysis for both the VS method and the SDD-VS method. This
analysis will provide insights into the convergence properties and accuracy of the methods, enabling us to
establish theoretical guarantees. Additionally, we will focus on applying the proposed method to models
in dynamical systems, such as biological systems and petroleum engineering problems. By tailoring the
methodology to these specific domains, we can address important challenges and develop efficient compu-
tational tools. In summary, our future research will involve extending the method to nonlinear unsteady
problems, conducting convergence analysis, and exploring applications in dynamical systems. These
efforts will contribute to advancing reduced-order modeling for stochastic partial differential equations
and its practical use in various fields.
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[4] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential
equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005-1034.

[5] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for partial
differential equations with random input data, SIAM J. Numer. Anal., 46 (2008), pp. 2309-2345.

[6] D. Xiu, Efficient collocational approach for parametric uncertainty analysis, Commun. Comput. Phys., 2
(2007), pp. 293-309.

[7] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs,
SIAM J. Sci. Comput., 27 (2005), pp. 1118-1139.

[8] Y. Zhu and N. Zabaras, Bayesian deep convolutional encoderdecoder networks for surrogate modeling and
uncertainty quantification, J. Comput. Phys., 366 (2018), pp. 415-447.

[9] Z. Wang and Z. Zhang, A mesh-free method for interface problems using the deep learning approach, J.
Comput. Phys., 400 (2020), pp. 108963.

[10] M. Papadrakakis, G. Stavroulakis and A. Karatarakis, A new era in scientific computing: domain
decomposition methods in hybrid CPU-GPU architectures, Comput. Methods Appl. Mech. Engrg., 200 (2011),
pp. 14901508.

[11] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta Numer., 3 (1994), pp. 61-143.

[12] I. M. Navon and Y. Cai, Domain decomposition and parallel processing of a finite element model of the
shallow water equations, Comput. Methods Appl. Mech. Engrg., 106 (1993), pp. 179-212.

[13] B. F. Smith, P. Bjorstad, and W. Gropp, Domain decomposition: parallel multilevel methods for elliptic
partial differential equations, Cambridge University Press, New York, 1996.

[14] H. Vereecken, O. Neuendorf, G. Lindenmayr, and A. Basermann, A Schwarz domain decomposition
method for solution of transient unsaturated water flow on parallel computers, Ecol. Model., 93 (1996), pp.
275-289.

[15] A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, The Claren-
don Press, Oxford University Press, New York, 1999.

[16] A. Toselli and O. B. Widlund, Domain decomposition methods - algorithms and theory, Springer Ser.
Comput. Math., 34, Springer, Berlin Heidelberg, 2005.

[17] X. Cai, An optimal two-level overlapping domain decomposition method for elliptic problems in two and
three dimensions, SIAM J. Sci. Comput., 14 (1993), pp. 239247.

[18] M. Jung, On the parallelization of multi-grid methods using a non-overlapping domain decomposition data
structure, Appl. Numer. Math., 23 (1997), pp. 119-137.

[19] T. Sun and K. Ma, Parallel Galerkin domain decomposition procedures for wave equation, J. Comput.
Appl. Math., 233 (2010), pp. 1850-1865.

[20] T. F. Chan and D. Goovaerts, On the relationship between overlapping and nonoverlapping domain
decomposition methods, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 663-670.

[21] T. F. Chan, Analysis of preconditioners for domain decomposition, SIAM J. Numer. Anal., 24 (1987), pp.
382-390.

[22] J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9 (1993), pp. 233-241.

[23] M. Heinkenschloss, H. Nguyen, Neumann–Neumann domain decomposition preconditioners for linear-
quadratic elliptic optimal control problems, SIAM J. Sci. Comput., 28 (2006), pp. 1001-1028.

[24] J. Schberl, Efficient contact solvers based on domain decomposition techniques, Comput. Math. Appl., 42
(2001), pp. 1217-1228.

[25] A. Sarkar, N. Benabbou, and R. Ghanem, Domain decomposition of stochastic PDEs: theoretical for-
mulations, Internat. J. Numer. Methods Engrg., 77 (2009), pp. 689-701.

[26] W. Subber and S. Loisel, Schwarz preconditioners for stochastic elliptic PDEs, Comput. Methods Appl.
Mech. Engrg., 272 (2014), pp. 34-57.

[27] W. Subber and A. Sarkar, A domain decomposition method of stochastic PDEs: An iterative solution
techniques using a two-level scalable preconditioner, J. Comput. Phys., 257(2014), pp. 298-317.

[28] Y. Chen, J. Jakeman, C. Gittelson, and D. Xiu, Local polynomial chaos expansion for linear differential
equations with high dimensional random inputs, SIAM J. Sci. Comput., 37 (2015), pp. A79-A102.

[29] M. Hadigol, A. Doostan, H. G. Matthies, and R. Niekamp, Partitioned treatment of uncertainty in
coupled domain problems: A separated representation approach, Comput. Methods Appl. Mech. Engrg., 274
(2014), pp. 103-124.

21



[30] Q. Liao and K. Willcox, A domain decomposition approach for uncertainty analysis, SIAM J. Sci. Com-
put., 37 (2015), pp. A103-A133.

[31] T. Y. Hou, Q. Li, and P. Zhang, Exploring the locally low dimensional structure in solving random elliptic
PDEs, Multiscale Model. Simul., 15 (2017), pp. 661-695.

[32] D. Zhang, H. Babaee, and G. E. Karniadakis, Stochastic domain decomposition via moment minimiza-
tion, SIAM J. Sci. Comput., 40 (2018), pp. A2152-A2173.

[33] L. Mu and G. Zhang, A domain decomposition model reduction method for linear convection-diffusion
equations with random coefficients, SIAM J. Sci. Comput., 41 (2019), pp. A1984-A2011.

[34] Q. Li and L. Jiang, A novel variable-separation method based on sparse and low rank representation for
stochastic partial differential equations, SIAM J. Sci. Comput., 39 (2017), pp. A2879-A2910.

[35] L. Jiang and Q. Li, Model reduction method using variable-separation for stochastic saddle point problems,
J. Comput. Phys., 354 (2018), pp. 43-66.

[36] Q. Li and P. Zhang, A variable-separation method for nonlinear partial differential equations with random
inputs, SIAM J. Sci. Comput., 42 (2020), pp. A723-A750.
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