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Abstract

We introduce an efficient stochastic interacting particle-field (SIPF) algorithm with no
history dependence for computing aggregation patterns and near singular solutions of
parabolic-parabolic Keller-Segel (KS) chemotaxis system in three space dimensions (3D).
The KS solutions are approximated as empirical measures of particles coupled with a
smoother field (concentration of chemo-attractant) variable computed by the spectral
method. Instead of using heat kernels causing history dependence and high memory
cost, we leverage the implicit Euler discretization to derive a one-step recursion in time for
stochastic particle positions and the field variable based on the explicit Green’s function
of an elliptic operator of the form Laplacian minus a positive constant. In numerical
experiments, we observe that the resulting SIPF algorithm is convergent and self-adaptive
to the high gradient part of solutions. Despite the lack of analytical knowledge (e.g. a
self-similar ansatz) of the blowup, the SIPF algorithm provides a low-cost approach to
study the emergence of finite time blowup in 3D by only dozens of Fourier modes and
through varying the amount of initial mass and tracking the evolution of the field variable.
Notably, the algorithm can handle at ease multi-modal initial data and the subsequent
complex evolution involving the merging of particle clusters and formation of a finite time
singularity.

AMS subject classification: 35K57, 92C17, 65C35, 65M70, 65M75.
Keywords: fully parabolic Keller-Segel system, interacting particle-field approximation,
singularity detection, critical mass.

1. Introduction

Chemotaxis partial differential equations (PDEs) were introduced by Keller and Segel
(KS [15]) to describe the aggregation of the slime mold amoeba Dictyostelium discoideum
due to an attractive chemical substance. Related random walk model by Patlak was
known earlier [24], see [29] for an analysis of basic taxis behaviors (aggregation, blowup,
and collapse) based on reinforced random walks. We consider the parabolic-parabolic
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(fully parabolic) KS system of the form:

ρt = ∇ · (µ∇ρ− χρ∇c),
ϵ ct = ∆ c− k2 c+ ρ, (1)

where χ, µ (ϵ, k) are positive (non-negative) constants. The model is called elliptic if
ϵ = 0 (when c evolves rapidly to a local equilibrium), and parabolic if ϵ > 0. The ρ is
the density of active particles (bacteria), and c is the concentration of chemo-attractant
(e.g. food). See detail discussion in Section 2

The KS systems (1) have been studied for several decades, with various cases and
dimensions explored. For the parabolic-elliptic case with k = 0 and ϵ = 0, Herrero et al
[11] investigated the 3D case and found the existence of self-similar radial blowup, while
such a blowup does not occur in 2D. An overview of blow-up phenomena, particularly
in 2D, can be found in the book by Perthame [25]. In [8], Giga et al. further explored
the parabolic-elliptic case with k = 0 and introduced the concept of type I blowup,
denoted by yt = y2. They demonstrated that when the spatial dimension d > 3, all
type-I radial blowup is self-similar. More recently, Souplet and Winkler [27] provided a
detailed profile of the 3D parabolic-elliptic self-similar blowup satisfying the inequality
u(x, t) ≤ C(T − t+ |x|2)−1, where C is a constant.

The fully parabolic case, i.e. system (1) with ϵ ̸= 0, has also been extensively studied.
In the 2D fully parabolic case, Herrero and Velázquez [12] demonstrated the existence of
self-similar Dirac-delta type blow-up in the 2D fully parabolic case for k ̸= 0; while Calvez
and Corrias [1] and Mizoguchi [23] showed that under mild assumptions on the initial
conditions, a global weak solution exists for mass M0 < 8π. In contrast, for super-critical
mass, the system blows up in finite time under the smallness assumption of the second
moment. Further work by Lemarié-Rieusset [17] proved global existence and stability
in Rn with small initial data in the critical Morrey space. When k = 0, Takeuchi [30]
demonstrated the existence of a global strong solution on Rn provided that the initial
data is small in the homogeneous Besov space, which is scaling invariant.

Several notable numerical methods have been developed for KS systems to date. Cher-
tock et al. [5] developed a finite-volume method for a class of chemotaxis models and a
closely related haptotaxis model. This approach allows for accurate and efficient simu-
lations of chemotaxis phenomena. Shen et al. [26] proposed an energy dissipation and
bound preserving scheme that is not restricted to specific spatial discretization. The
bound preserving property is achieved through modification of the system. In a related
work, Hillen and Othmer [13] assumed a saturation concentration M0 for the bacteria,
such that if ρ > M , there is no chemo-attractant contribution. Under this assumption,
the system does not blow up and still exhibits spiky solutions. Chen et al. [3] developed a
fully-discrete finite element method (FEM) scheme for the 2D classical parabolic-elliptic
Keller-Segel system, following the approach of Shen et al. [26]. They showed that the
proposed scheme will blow up in a finite time, under assumptions similar to those in the
continuous blow-up scenarios. In the classic setting, Liu and Wang [18] reformulated the
equation using the Le Châtelier Principle to attain a positive-preserving scheme. It is
worth noting that all the aforementioned numerical methods are tailored for 2D cases.

Besides the Eulerian discretization methods above, there have been theoretical de-
velopments in the Lagrangian framework for the KS system (1) and related equations.
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Stevens [28] derived an N -particle system with convergence in the fully parabolic case.
Additionally, Havskovéč and Ševčovič [9] developed a convergent regularized particle sys-
tem for the 2D parabolic elliptic case. Havskovéč and Markowich [10] demonstrated
convergence in the BBGKY hierarchy modulo a gap due to the lack of uniqueness of the
Boltzmann hierarchy. This gap was addressed by Mischler and Mouhot [22] who studied
the propagation of chaos and mean-field limits for systems of indistinguishable particles
undergoing collisions. Craig and Bertozzi [6] proved the convergence of a blob method for
the related aggregation equation. In the study of the KS system, Liu et al. [20] and [19]
developed a random particle blob method with a mollified kernel for the parabolic-elliptic
case. They demonstrated convergence when the limiting (macroscopic mean field) equa-
tion admits a global weak solution. As noted by Mischler and Mouhot [22], the success
of this analysis strongly relies on detailed knowledge of the nonlinear mean field equa-
tion, rather than the details of the underlying many-particle Markov process. A particle
computation based on [9] for the 2D advective parabolic-elliptic KS system, i.e. (1) with
ϵ = 0 and an additional passive flow, was conducted in [16]. A deep learning study for
chemotaxis aggregation in 3D laminar and chaotic flows based on a kernel regularization
technique of a particle method by the present authors is in [31].

Most existing particle-field algorithms for KS equations are deterministic, assuming
that the underlying particle systems are well-mixed. In this paper, we propose a novel
stochastic interacting particle-field (SIPF) algorithm for the fully parabolic KS system
(1). Our method takes into account the coupled stochastic particle evolution (density
ρ) and the accompanying field (concentration c) in the system and allows for a self-
adaptive simulation of focusing and potentially singular behavior.In the SIPF algorithm,
we represent the active particle density ρ by empirical particles and the concentration
field c is discretized by a spectral method instead of a finite difference method [7]. This is
possible since the field c is smoother than density ρ. We demonstrate the effectiveness of
our method through numerical experiments in three space dimensions (3D), which have
not been systematically computed and benchmarked to the best of our knowledge.

It is worth noting that the pseudo-spectral methods were employed to compute the
nearly singular solutions of the 3D Euler equations [14]. Subsequently, the finite-time
blowup of the 3D axisymmetric Euler equations was computed using the adaptive moving
mesh method [21]. These methods represent the cutting edge in the computation of
nearly singular solutions of the 3D Euler equations. Nevertheless, we also point out that
the implementation of pseudo-spectral methods for 3D problems demands substantial
computational resources, while the adaptive moving mesh method requires sophisticated
design and advanced programming skills.

It is also worth noting that the Lagrangian algorithms in computation of parabolic-
elliptic KS system, for instance [9], cannot be directly generalized to fully parabolic cases.
Those algorithms rely on that the field c at time t can be accessed by particle density
ρ at the same instant. Hence one only needs to update the particle density locally in
time. A direct generalization to the fully parabolic case will require historical particle
density ρ from the starting time of the algorithm. An example and related convergence
analyses can be found in [2]. However from computational perspective, the volume of
such historical data increases in time and becomes a costly burden on memory and flops.
In contrast, our SIPF algorithm computes particle and field once per time step without
involving a long past history so the computational cost does not grow in time.
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The goal of this paper is to introduce a novel stochastic interacting particle-field
algorithm (SIPF) for the fully parabolic KS system. Though we verify the convergence
of SIPF algorithm numerically, the theoretical study will be left for a future work.

The rest of the paper is organized as follows. In Section 2, we briefly review the
blow-up behavior in the fully parabolic KS models under critical mass conditions and the
Lagrangian formulations in the computation of KS models. In Section 3, we present our
SIPF algorithms for solving the fully parabolic KS system by simplifying a theoretically
equivalent yet computationally undesirable method with history dependent parabolic
kernel functions (a naive extension of particle method in the parabolic-elliptic case) into
efficient recursions. In Section 4, we show numerical results to demonstrate the perfor-
mance of our method for 3D KS chemotaxis systems. Concluding remarks are given in
section 5.

2. Parabolic-Parabolic KS System

In this section, we list some theoretical analyses of singular behaviors and related
computational methods for Keller Segel (KS) models in both parabolic elliptic cases and
parabolic parabolic (fully parabolic) cases. To begin, we recall the KS model:

ρt = ∇ · (µ∇ρ− χρ∇c), (2)
ϵct = ∆ c− k2 c+ ρ, (3)
x ∈Ω ⊆ Rd, t ∈ [0, T ]. (4)

The first equation (2) of ρ models the evolution of the density of active particles (bacteria).
The bacteria diffuse with mobility µ and drift in the direction of ∇c with velocity χ∇c,
where χ is called chemo-sensitivity. The second equation (3) of c models the evolution of
the concentration of chemo-attractant (e.g. food). The increment of c is proportion to ρ,
which indicates the aggregation (attraction) between active particles. Another important
physical parameter is ϵ in Eq.(3), which models the time scale of the chemotaxis. When
ϵ ̸= 0, it is referred to as parabolic parabolic Keller Segel systems. For ϵ = 0 the system
is reduced to the parabolic-elliptic case, which models the chemical attractant released
by the active particle instantly turns to equilibrium.

2.1. From Critical Collapse to Coexistence of Blow-up and Global Smooth Solutions
Well-known KS dichotomy (critical collapse) states that 8π is the critical mass for

the simplest two-dimensional parabolic-elliptic KS system in Ω = R2, namely (1) with
ϵ = k = 0,

ρt = ∇ · (∇ρ− ρ∇c),
∆ c = −ρ, (5)

so that

1. If M0 < 8π, the system has a global smooth solution.
2. If M0 > 8π, the system blows up in finite time in the sense of | · |∞ norm.
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It can be seen from the classical variance identity for system (5), [25], that,

d

dt

∫
x∈R2

|x|2 ρ(x) dx =
M

2π
(8π −M). (6)

Then the solution of (5) exhibits a quantized concentration of mass at origin, a δ type
blow-up.

For system (5) on Rd (d ≥ 3), the identity (6) does not apply and the KS evolution
is not as clear cut. Nonetheless, the coexistence of blow-up and global smooth solutions
remains depending on the size of the initial data. In addition, there exists the blow-up
profile that is different from δ type blowup. For example, it is shown in [11] that in 3D
fully parabolic systems, there exist radial, positive, backward self-similar solutions of the
form,

ρ(x, t) =
V (x/

√
T − t)

T − t
, 0 < t < T, (7)

where the radially decreasing profile function V satisfies limy→∞ y2V (y) = L ∈ R+.
Later in a more refined result by [27], the blowup is said to be type I if

0 < lim sup
t→T

(T − t) ∥ρ∥∞ <∞. (8)

Then for radial initial data in L1(R3), if a blowup is type I, ∃C > 0 such that

ρ(x, t) ≤ C(T − t+ |x|2)−1, 0 < |x| ≤ R, 0 < t < T. (9)

On the other side of the dichotomy, it is shown in [30], that the global strong solution
exists in the fully parabolic system (1) for small initial data.

The analyses are unknown for the blowup behavior of the KS system on R3 from a
non-radial initial value to our best knowledge. One must resort to numerical computation
to investigate the possible singular behavior which will be discussed in section 4.3.

2.2. Lagrangian formulations
As a fundamental step of deriving the algorithms, we introduce the Lagrangian formu-

lation of active particle density ρ in the KS system (1) and start with the elliptic system
with ϵ = k = 0, namely (5) in general d dimension. From ∆c = −ρ and the Green’s
function of Laplacian operator in Rd, we know,

c(x, t) =

{
− 1

2π

∫
ln |x− y| ρ(y, t), d = 2

Cd

∫
1

|x−y|d−2 ρ(y, t) dy, d ≥ 3
, (10)

where Cd =
Γ(d/2+1)

d(d−2)πd/2 . So the convection term in (2) turns to,

∇c(x) = −Γ(d/2)

2πd/2

∫
x− y

|x− y|d
ρ(y, t) dy. (11)

Now we arrive at the interactive stochastic differential equation system of P particles,
{Xp

t }p=1:P ,

dXp
t = −χM

P

∑
q ̸=p

Γ(d/2)

2πd/2

Xp
t −Xq

t

|Xp
t −Xq

t |d
+
√
2µ dW p

t , p = 1, · · · , P, (12)
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where W p
t denotes independent identically distributed standard Brownian motions. In

[22], it is shown with mild regularity condition, when P →∞, the distribution of empirical
particles {Xp

t }p=1:P converges to ρ in the continuous PDE system (2). Several novel
numerical methods have been developed or implemented to study the singularity behavior
in the parabolic elliptic Keller Segel systems, see [19, 9, 31].

In the fully parabolic case (ϵ ̸= 0), the solution of chemical concentration c comes
from solving a parabolic equation, which is non longer Markovian as one in (12). At time
t > 0, solution of ρ in [0, t] has to be involved in the representation of c, namely,

c(·, t) = e−k2tet∆c(·, 0) +
∫ t

0

ek
2(s−t)e(t−s)∆ ρ(·, s) ds, (13)

where the heat semigroup operator et∆ is defined by

(et∆f)(x, t) :=

∫
e−|x−y|2/(4t)

(4πt)d/2
f(y) dy. (14)

Similar to (12), the empirical particle system converging to density ρ reads:

dXp = χ∇X c(Xp
t , t) dt+

√
2µ dW p, p = 1, · · · , P, (15)

and W p’s are independent Brownian motions in Rd. Due to the historic path dependent
in the solution of c in (13), direct computation of drift ∇X c(Xp

t , t) in (15) will lead
to significant memory cost, which increases w.r.t. computational time T . To our best
knowledge, a memory-less algorithm to compute the fully parabolic KS system has not
been developed. We will present one in the following section.

3. SIPF Algorithms for Parabolic-Parabolic KS

In this section, we present the SIPF algorithm for solving the fully parabolic KS
models. Since we are interested in the spatially localized aggregation behavior as dis-
cussed in Sec 2.1, it is viable that we restrict the system (2) and (3) in a large domain
Ω = [−L/2, L/2]d and assume Dirichlet boundary condition for particle density ρ and
Neumann boundary condition for chemical concentration c.

As a discrete algorithm, we assume the temporal domain [0, T ] is partitioned by
{tn}n=0:nT

with t0 = 0 and tnT
= T . We approximate the density ρ by particles, i.e.

ρt ≈
M0

P

P∑
j=1

δ(x−Xp
t ), P ≫ 1, (16)

where M0 is the conserved total mass (integral of ρ). For chemical concentration c, we
approximate by Fourier basis, namely, c(x, t) has an series representation∑

j,m,l∈H

αt;j,m,l exp(i2πj x1/L) exp(i2πmx2/L) exp(i2πl x3/L), (17)

where H denotes index set

{(j,m, l) ∈ N3 : |j|, |m|, |l| ≤ H

2
}, (18)
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and i =
√
−1.

Then at t0 = 0, we generate P empirical samples {Xp
0}p=1:P according to the initial

condition of ρ0 and set up α0;j,m,l by the Fourier series of c0.
For ease of presenting our algorithm, with a slight abuse of notation, we use ρn =

M0

P

∑P
p=1 δ(x−Xp

n), and

cn =
∑

j,m,l∈H

αn;j,m,l exp(i2πj x1/L) exp(i2πmx2/L) exp(i2πl x3/L)

to represent density ρ and chemical concentration c at time tn.
Considering time stepping system (1) from tn to tn+1, with ρn and cn−1 known, our al-

gorithm, inspired by the operator splitting technique, consists of two sub-steps: updating
chemical concentration c and updating organism density ρ.

Updating chemical concentration c. Let δt = tn+1−tn > 0 be the time step. We discretize
the c equation of (1) in time by an implicit Euler scheme:

ϵ (cn − cn−1)/δt = (∆− k2) cn + ρn. (19)

From (19), we obtain the explicit formula for cn as:

(∆− k2 − ϵ/δt) cn = −ϵ cn−1/δt− ρn. (20)

It follows that:

cn = c(x, tn) = −Kϵ,δt ∗ (ϵ cn−1/δt+ ρn) = −Kϵ,δt ∗ (ϵ c(x, tn−1)/δt+ ρ(x, tn)) (21)

where ∗ is spatial convolution operator, and Kϵ,δt is the Green’s function of the operator
∆− k2 − ϵ/δt. In case of R3, the Green’s function Kϵ,δt reads as follows

Kϵ,δt = Kϵ,δt(x) = −
exp{−β|x|}

4π|x|
. β2 = k2 + ϵ/δt, (22)

The Green’s function admits a closed form Fourier transform,

FKϵ,δt(ω) = −
1

|ω|2 + β2
. (23)

For the term −Kϵ,δt ∗ cn−1 in (21), by Eq.(23) it is equivalent to modify Fourier
coefficients αj,m,l to αj,m,l/(4π

2j2/L2 + 4π2m2/L2 + 4π2l2/L2 + β2).

For the second term Kϵ,δt ∗ ρ, we first approximate Kϵ,δt with cos series expansion,
then according to the particle representation of ρ in (16),

(Kϵ,δt ∗ ρ)j,m,l ≈
M0

P

P∑
p=1

exp(−2πjXp
n,1/L− 2πmXp

n,2/L− 2πlXp
n,l/L)(−1)j+m+l

4π2j2/L2 + 4π2m2/L2 + 4π2l2/L2 + β2
. (24)

Finally, we summarize the one-step update of Fourier coefficients of chemical concentra-
tion c in Alg.1.
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Algorithm 1: One step update of chemical concentration in SIPF
Data: Distribution ρn represented by empirical samples Xn , initial

concentration cn−1 represented by Fourier coefficients αn−1;
for (j,m, l) ∈ H do

αn;j,m,l ← ϵαn−1;j,m,l

δt(4π2j2/L2+4π2m2/L2+4π2l2/L2+β2)

Fj,m,l ← 0.
for p = 1 to P do

Fj,m,l ← Fj,m,l + exp(−2πjXp
n;1/L− 2πmXp

n;2/L− 2πlXp
n;3/L)

end
Fj,m,l ← Fj,m,l

(−1)j+m+l

4π2j2/L2+4π2m2/L2+4π2l2/L2+β2 ∗ M
P

end
αn ← αn − F

Result: Updated chemical concentration field from input cn−1 to cn via αn.

Updating density of active particles ρ. In the one-step update of density ρn represented
by particles {Xp

n}p=1:P , we apply Euler-Maruyama scheme to solve the SDE (15):

Xp
n+1 = Xp

n + χ∇xc(X
p
n, tn)δt+

√
2µ δtNp

n, (25)

where Np
n’s are i.i.d. standard normal distributions with respect to the Brownian paths

in the SDE formulation (15). For n > 1, substituting (21) in (25) gives:

Xp
n+1 = Xp

n − χ∇xKϵ,δt ∗ (ϵ cn−1(x)/δt+ ρn(x))|x=Xp
n
δt+

√
2µ δtNp

n, (26)

from which ρn+1(x) is constructed via (16).
In such particle formulation, the computation of spacial convolution is slightly different

from one in the update of c, namely (21).
For ∇xKϵ,δt ∗ cn−1(X

p
n), to avoid the singular points of ∇xKϵ,δt, we evaluate the in-

tegral with the quadrature points that are away from 0. Precisely, denote the standard
quadrature point in Ω with

xj,m,l = (j L/H,mL/H, j L/H), (27)

where j, m, l are integers ranging from −H/2 to H/2− 1. When computing the integral
∇xKϵ,δt ∗ cn−1(X

p
n), we evaluate ∇xKϵ,δt at {Xp

n + X̄p
n − xj,m,l}j,m,l where a small spatial

shift X̄p
n = H

2L
+ ⌊ Xp

n

H/L
⌋H
L
− Xp and c at {xj,m,l − X̄p

n}j,m,l correspondingly. The latter
one is computed by inverse Fourier transform of shifted coefficients, with αj,m,l modified
to αj,m,l exp(−i2πjX̄p

n;1/L − i2πmX̄p
n;2/L − i2πlX̄p

n;3/L) where (X̄p
n;i) denotes the i-th

component of X̄p
n.

The term ∇xKϵ,δt ∗ ρ(Xp
n, tn) is straightforward thanks to the particle representation

of ρ(Xp
n, tn) in (16):

∇xKϵ,δt ∗ ρn(X
p
n) =

∫
Kϵ,δt(X

p
n − y)ρ(y) ≈

P∑
q=1,q ̸=p

M

P
Kϵ,δt(X

p
n −Xq

n). (28)

We summarize the one-step update (for n > 1) of density in SIPF as in Alg.2.
Combining (21) and (26), we conclude that the recursion from ({Xp

n}p=1:P , ρn(x), cn−1(x))
to ({Xp

n+1}p=1:P , ρn+1(x), cn(x)) is complete. We summarize the SIPF method in the fol-
lowing Algorithm 3.
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Algorithm 2: One step update of density in SIPF
Data: Distribution ρn represented by empirical samples Xn, input:

concentration cn−1 represented by Fourier coefficients αn−1;
for p = 1 to P do

Xp
n+1 ← Xp

n+1 +
√
2µδtN where N is a random generated standard normal

distribution.
for q = 1 to P do

Xp
n+1 ← Xp

n+1 −
χMδt
P
Kϵ,δt(X

p
n −Xq

n)

end
X̄p

n ← H
2L

+ ⌈ Xp
n

H/L
⌉H
L
−Xp

for (j,m, l) ∈ H do
Fj,m,l ← ∇xKϵ,δt(X

p
n + X̄p

n − xj,m,l), xj,m,l from Eq. (27)
Gj,m,l ← αj,m,l exp(−i2πjX̄p

n;1/L− i2πmX̄p
n;2/L− i2πlX̄p

n;3/L)

end
Ǧ = iFFT (G)

Xp
n+1 ← Xp

n+1 − ϵχ(F, Ǧ) L3

H3 , where (·, ·) L3

H3 denote an inner product
corresponding to L2(Ω) quadrature.

end
Result: Output ρn+1 represented by updated Xn+1.

Algorithm 3: Stochastic Interacting Particle-Field Method
Data: Initial distribution ρ0, initial concentration c0;
Generate P i.i.d samples following distribution ρ0, X1, X2, · · ·XP .
for p← 1 to P do

Compute Xp
1 by (25), with c−1 = c0

end
Compute c1 by Alg.1 with c0 and ρ1 =

∑P
p=1

M
P
δXp

1
.

for step n← 2 to N = T/δt do
Compute Xn by Alg.2 with ρn−1 and cn−2

Compute cn by Alg.1 with cn−1 and ρn =
∑P

p=1
M
P
δXp

n
.

end

9



4. Numerical Experiments

4.1. Aggregation Behaviors
To illustrate the functionality of the algorithm, we start with two examples. In both

cases, the initial distribution ρ0 is assumed to be a uniform distribution over a ball

centered at

00
0

 with radius 1, see Fig.1(a). Also in both cases, we assume the following

model parameters,

µ = χ = 1, ϵ = 10−4 and k = 10−1. (29)

for the fully parabolic Keller Segel model (1). The choice (29) is made so that the
model exhibits comparable behavior as the corresponding parabolic-elliptic KS system
whose blow-up behavior is known. For the first example, the total mass is chosen to be
M0 = 20, while for the second, the mass is M0 = 80.

In the numerical computation of both examples, we use H = 24 Fourier basis in each
spatial dimension to discretize chemical concentration c and use P = 10000 particles
to represent approximated distribution ρ. The computational domain is in the domain
Ω = [−L/2, L/2]3 where L = 8. We then compute the evolution of c and ρ via Alg.3 with
δt = 10−4 up to T = 0.1.

(a) T = 0 (b) T = 0.1, M0 = 20 (c) T = 0.1, M0 = 80

Figure 1: Density ρ approximated by empirical distribution at T = 0.1: the mass effect on focusing.

In Fig.1, we plot the distribution ρ by empirical samples, at the starting time T = 0

and final computation time T = 0.1. In Fig.1(b), we can see the diffusive behaviors
compared with the initial distribution shown in Fig.1(a). While in Fig.1(c), we increase
the total mass from M0 = 20 to M0 = 50, we can see particles become concentrated at
the origin, which indicates the possible blow-up of the continuous system.

In Fig.2, we present the chemical concentration c at final time T = 0.1 and third
component z = 0 for various M0. By comparing the subfigures, we can see that in the
large total mass case, c exhibits a sharp profile at the origin due to the near singular
behavior of ρ towards a possible blow-up.

Furthermore, if we assume, there exists a self-similar profile of ρ at origin as discussed
in [27] and Section 2.1, namely, ρ(x, t) ∼ 1

|x|2 , by (1), the Fourier coefficients of chemical
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(a) M0 = 20 (b) M0 = 80

Figure 2: Chemical concentration c at final time T = 0.1, sliced at z = 0.

(a) M0 = 20 (b) M0 = 80

Figure 3: Maximum of chemical concentration c vs computation time T with different total mass M0.

11



concentration c has the following asymptotics,

Fc(ω) ∼ 1

|ω|2 + k2
ρ̂ ∼ 1

(|ω|2 + k2)|ω|
. (30)

Then the maximum of c in the computation shall vary vs the discretization parameter
H. More precisely, we note at the origin,

c(0) ∼
∫

1

(|ω|2 + k2)|ω|
eiωxdω|x=0 =

∫
1

(|ω|2 + k2)|ω|
dω. (31)

In practical discretization, the range of integral (31) is related to the maximum frequency,
namely [− π

L
(H
2
− 1), π

L
· H

2
]3. Then, for the type of 1

|x|2 profile blow up,

∥c∥∞ = O(ln(H)). (32)

Similar analysis shows for the type of δ(x) profile blow up,

∥c∥∞ = O(H). (33)

In Fig.3, we present the maximum value of c vs the computational time T with a different
number of Fourier modes H and total mass M0. We can see in the case of a possible
blow-up (Fig.3(b)), that the maximum of c varies dramatically for different H. In the
investigation following, we will use this as an indicator of a possible blow-up.

Furthermore, under the same configuration in the case of M0 = 80, we take T = 1 to
achieve a numerically stable ∥c∥∞. And test for H ranging from 8 to 24. In Fig.4, we
plot ∥c∥∞ vs H and observe that the maximum of c grows near-linearly in H.

Figure 4: Maximum of c vs. the number of Fourier modes H (in each dimension), total mass M0 = 80.

Remark 4.1. Similar ideas that detect blow-ups by comparing maximum values computed
under different discretizations, can be found in the literature on finite volume approach
to 2D Keller Segel systems. For example in [4], the δ type singularities in the 2D system
are identified when ∥ρ∥∞ = O( 1

∆x∆y
),
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4.2. Convergence over δt

Now we turn to validate the convergence of algorithms with respect to time step δt.
In this regard, we consider the same initial condition (ρ and c at t = 0) and physical
parameters, see (29), as in the first example. Also, we keep the number of Fourier modes
in each dimension as H = 24, the number of particles P = 10000, and computational
domain Ω = [−L/2, L/2]3 with L = 8. Lastly, we set M0 = 80 and T = 0.01 when the
system has not formed any singularities (see Fig.3(b)). To investigate the convergence,
we consider δ in the range between 2−8T to 2−4T and take δref = 2−11T as the reference
solution. In Fig.5, we compute the L2 relative error of chemical concentration c at the
final time T . In addition, we fit the slope of error vs δt in the logarithmic scale and find
e(δt) = O(δt1.011) indicating the algorithm being approximately first order in time.

Figure 5: L2 relative error of c vs δt.

4.3. Blow up behaviors
As mentioned in Sec.2.1, it is a well-known dichotomy that 8π is the critical mass for

the simplest two-dimensional parabolic-elliptic KS system (5).
1. If M0 < 8π, the system has a global smooth solution.
2. If M0 > 8π, the system has no global smooth solutions.

While for fully parabolic system or (5) with passive advection, no variance identity like
(6) is known. One must resort to numerical computation to investigate the physical
factors that lead to the possible blow-up behaviors. As suggested by the asymptotics
(32) and (33), in the following examples, we will test for two cases H = 24 and H = 12

and comparing the ∥c∥∞ to detect possible blowup.

Mass dependence. We start with investigating the critical mass M0 which plays the dom-
inant role in the dichotomy of simple 2D parabolic elliptic system (5). To this end, we
initialize the algorithm with uniform distribution over the unit ball centered at the ori-
gin and c(0, x) = 0. We then apply the algorithm with two different H to compute the
density and chemical concentration until T = 1. To identify the possible blow-up, we
compute the ratio of the |c|∞ between two cases. In Fig.6(a) we present the ratio, namely,
|c|∞,H=24

|c|∞,H=12
, along time with various M0. We can see the ratio increases dramatically when

a potential blow-up forms for M0 ≥ 47.6. In Fig.6(b) we present the ratio at final time
T = 1, indicating that the critical mass of the aforementioned initial condition shall be
between 47.6 and 47.8.
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(a) |c|∞,H=24

|c|∞,H=12
vs. computation time T . (b) |c|∞,H=24

|c|∞,H=12
at T = 1 vs. M0.

Figure 6: Ratio of |c|∞’s from 2 runs with H = 24 and H = 12, revealing critical mass for blowup.

Geometry dependence. Unlike the simplest parabolic-elliptic KS system (5) where the
total mass is the only factor that determines the aggregation behaviors, we find exper-
imentally that the critical mass varies for the different initial distributions of ρ. For
example, we follow the same configuration in the experiment of finding critical mass (as
shown in Fig.6) except replacing the initial distribution to be the uniform distribution
on a ball centered at the origin with radius 0.8. Given a more concentrated initial dis-
tribution, we find the critical mass for the system decreases. More precisely, in Fig.7(a),
we present the ratio of |c|∞ of various total mass M0 vs. computational time T . We can
see a sharp change of ratio when the total mass M0 is large enough (M0 ≥ 39) then the
possible singularities have formed. While for M0 that is relatively small (M0 ≤ 38.8) the
ratio is stable near 1 over the computational time. In Fig.7,(b) we present the ratio at
final time T = 0.1 vs. total mass M0, which indicates the critical mass for such initial
condition is between 38.8 and 39.

(a) |c|∞,H=24

|c|∞,H=12
vs. computation time T . (b) |c|∞,H=24

|c|∞,H=12
at T = 1 vs. M0.

Figure 7: Ratio of |c|∞’s from 2 runs with H = 24, 12; particles stay within initial radius 0.8.
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4.4. Aggregation behaviors from non-radial initial data
In this subsection, we investigate the aggregation behaviors in more general distribu-

tions. To this end, we consider a more practical scenario where the initial distribution ρ

models several separated clusters of organisms and the mass in each individual cluster is
below the critical mass while the total mass is super-critical. To be more concrete, we
assume the initial distribution is a uniform distribution on four balls with a radius 0.5

and centered at four vertices of a regular tetrahedron, namely,1

0

0

 ,

−1
2√
3
2

0

 ,

 −1
2

−
√
3
2

0

 ,

 0

0√
2

 . (34)

See also Fig.8(a) for the scatter plot of particles representing the initial distribution. We
assume the total mass to be M0 = 80 and so each cluster has a mass of 20 which is below
the critical mass for a ball with radius r = 0.5. Then we apply the algorithm to compute
the KS system up to T = 0.5 with H = 24 and H = 12 while keeping the rest of the
configurations. In Fig.8(b), we compute the ratio between the maxima of c vs time with
two different spatial discretizations. We can see the singularities formed in the system at
around T = 0.3.

(a) Initial distribution. (b) |c|∞,H=24

|c|∞,H=12
vs. computation time.

Figure 8: Identifying the formation of a finite time singularity at t ≈ 0.3 in non-radial solutions.

In Fig.9, we present the scatter plot of particles between T = 0.1 and T = 0.4.
Comparing Fig.8(a) with Fig.9(a), we can see diffusive behavior. This is due to the mass
in each individual cluster being below the critical mass. Such diffusive behavior lasts
until around T = 0.2, see Fig.8(b) where the active particles form a single larger cluster.
The mass of the new cluster centered at the origin is M0 = 80. Then in Fig.9(c), the
aggregation starts to form a singularity, which can also be seen from the sharp increase
in the ratio of maximum of c in Fig.8(b). Lastly, in Fig.9(d), we can directly identify the
possible blow-up at the origin through the scatter plot.

4.5. Critical mass and blowup in parabolic-parabolic KS
As the last example, we access the singular solutions in the fully parabolic systems.

For expository purposes, we set ϵ = 0.1 in (1) and keep the rest of the physical parameters.
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(a) T = 0.1 (b) T = 0.2

(c) T = 0.3 (d) T = 0.4

Figure 9: Particle scatter plot at T = 0.1 : 0.1 : 0.4: three cluster merging and a singularity formation.
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The initial condition is assumed to be a uniform distribution on a ball with radius 0.8

and c(x, 0) = 0.
From Fig.7, we know the critical mass is around M0 = 39. We apply the same

computational configuration as in Fig.7, besides enlarging the domain to L = 12 to
accommodate the possible diffusive behavior. We test our algorithm in two cases, M0 = 40

and M0 = 160 correspondingly.
The behaviors of the system are reported in Fig.10. In Fig.10(a) and (b), we present

the scatter plot of the particles representing the density ρ with M0 = 40 and M0 = 160

correspondingly, we found that despite the initial mass M0 = 40 being larger than the
critical mass in the case of ϵ = 10−4, the system does not blow-up. We report that the
variance of the particles grows linearly in computational time T with diffusion coefficients
fitted to be 1.696. In the absence of the chemical attractant, namely χ = 0, the diffusion
coefficient is expected to be 4µ = 4. While for M0 = 160 the system exhibits a possible
singularity at the origin. In Fig.10(c), we present the ratio of |c|∞ under H = 24 and
H = 12 for both initial mass. Similar to the observation of Fig.10(a) and (b), the blow-up
behavior crucially depends on a critical level of the initial mass.

(a) Scattering plot of particles at
T = 1 with M0 = 40.

(b) Scattering plot of particles at
T = 1 with M0 = 160.

(c) |c|∞,H=24

|c|∞,H=12
vs computation time

T with different total mass M0.

Figure 10: Effects of initial mass M0 on focusing behavior (finite time blowup).

5. Concluding Remarks

We introduced a stochastic interacting particle and field algorithm, observed its con-
vergence, and demonstrated its efficacy in computing blowup dynamics of fully parabolic
KS systems in 3D from general non-radial initial data. The algorithm is recursive with
no history dependence, and the field variable is computed by FFT. Due to the field vari-
able (concentration) being smoother than the density, the FFT approach works with only
dozens of Fourier modes. The aggregation or focusing behavior in the density variable is
resolved by 10k particles. The algorithm successfully detected blowup through the field
variable in terms of the critical amount of initial mass. The algorithm is self-adaptive and
does not rely on any anzatz of blowup which is unknown except in the parabolic-elliptic
KS system. A weakness is the potentially high cost of FFT in 3D when a large number
of Fourier modes is required in case of a high-resolution computation near blowup time.
We plan to study this issue in a future work.
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