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Abstract

In this paper, we study the stochastic convergence of regularized solutions for back-

ward heat conduction problems. These problems are recognized as ill-posed due to the

exponential decay of eigenvalues associated with the forward problems. We derive an error

estimate for the least-squares regularized minimization problem within the framework of

stochastic convergence. Our analysis reveals that the optimal error of the Tikhonov-type

least-squares optimization problem depends on the noise level, the number of sensors, and

the underlying ground truth. Moreover, we propose a self-adaptive algorithm to iden-

tify the optimal regularization parameter for the optimization problem without requiring

knowledge of the noise level or any other prior information, which will be very practical in

applications. We present numerical examples to demonstrate the accuracy and efficiency

of our proposed method. These numerical results show that our method is efficient in

solving backward heat conduction problems.
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1 Introduction

Inverse problems associated with parabolic equations have attracted considerable attention in

both mathematics and engineering research fields [18, 15]. In general, inverse problems can

be categorized into three types: identifying physical parameters or source terms in the PDEs;

determining the system’s initial state; and determining the boundary conditions. In this paper,

we focus on the second type of inverse problem within the context of heat transfer. Specifically,
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we aim to determine the initial condition from transient temperature measurement at the final

time T . This problem is commonly referred to as the backward heat conduction problem

(BHCP).

The main difficulty in solving the BHCP arises from the exponential decay of forward

solutions of the heat equations with respect to the initial data. Specifically, this type of problem

is considered ill-posed in the sense of Hadamard. We refer the interested reader to the papers

[16, 20, 17] for a comprehensive review of the definitions and examples of inverse and ill-posed

problems.

The BHCP exemplifies an severely ill-posed problem that is not solvable using traditional

numerical methods and requires special techniques to be employed, which have been long-

standing computational challenges. To point out, we are not trying to fill this gap to solve

this severely ill-posed inverse problem ultimately in this paper. We will treat this problem

in a different way and try to give the theoretical and numerical analysis from the stochastic

point of view. Conditions that render the BHCP well-posed have been investigated in [8, 10].

These studies introduced supplementary hypotheses, constraining the class of functions to which

the solution must belong. However, in practical settings, verifying the hypotheses for initial

conditions is very difficult. Consequently, numerical methods with less stringent assumptions

regarding initial conditions for solving BHCPs prove to be more beneficial.

In response to these challenges, many regularization techniques have been developed for

solving BHCPs. For example, Sobolev error estimates and a prior parameter selection for

semi-discrete Tikhonov regularization were obtained in [19]. A backward problem for the one-

dimensional heat conduction equation, with the measurements on a discrete set, was consid-

ered in [6], and the uniqueness of recovering the initial value was proved using the analytic

continuation method. To address the ill-posedness, discrete Tikhonov regularization with the

generalized cross-validation rule was employed to obtain a stable numerical approximation of

the initial value. It is worth noting that in [23], a comparison of various inverse methods for

estimating the initial condition of the heat equation was studied, demonstrating that explicit

approaches to BHCP yield disastrous results unless some form of regularization is utilized.

Various other approaches have been proposed for solving BHCPs. Perturbation-based meth-

ods were introduced in [27, 9], where the operator is replaced with a perturbed higher-order one

that exhibits improved invertibility properties. A homotopy-based iterative regularizing scheme

was proposed for solving BHCP in [21]. This approach provided error analysis for the regu-

larizing solution with noisy measurement data and demonstrated that the algorithm is easily

implementable with low computational costs. In [7], different approaches, such as the conjugate

gradient method with the adjoint equation, regularized solution using a quasi-Newton method,

and regularized solution via the genetic algorithm, were compared for solving BHCPs.

In this paper, we study a practical scenario in which observational measurements are col-

lected point-wise from a set of distributed sensors located at {xi}ni=1 across the physical domain

[2, 22, 24, 25]. Each sensor is subject to independent additional noise or random error due to

natural noise, measurement errors, and other uncertainties in the model. We aim to adopt a

realistic approach for solving such inverse problems by optimizing the mean-square error using
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appropriate Tikhonov-type regularizations [5, 14, 30]. To accomplish this, we utilize classical

methods such as regression methods, linear and nonlinear programming methods [14], linear

and nonlinear conjugate gradient methods [2, 30], and Newton-type methods during the opti-

mization process.

Then, we investigate the stochastic convergence of the proposed method for two general

types of random variables. In [4, 5, 29], the authors develop the tools to study the stochastic

convergence of the numerical method for an inverse source problem. Here, we derive the

convergence analysis of the BHCP with Tikhonov regularization. Compared to the inverse

source problem of the parabolic equation, the backward problem is severely ill-posed due to the

exponential decay of the eigenvalues [16]. Our analysis in Theorem 3.7 demonstrates that the

optimal error of the Tikhonov type least-squares optimization problem depends on the noise

level, the number of sensors, and the ground truth. Furthermore, we describe the asymptotic

behavior of the regularization parameter with respect to these model configurations. Unlike

the traditional estimate of the regularization parameter, we show that this parameter should

also vary with different final times T , and we point out this dependence.

Leveraging these asymptotic estimates, we design a self-consistent algorithm to determine

the optimal regularization parameter for solving BHCPs without knowing any prior information

about the inverse problem. Finally, we carry out numerical experiments to demonstrate the

accuracy and efficiency of the proposed method. Several kinds of source functions, including

both smooth and discontinuous ones, are considered. From the numerical results, we observe

that the proposed method successfully recovers the initial conditions for different types of

source functions. The algorithm demonstrates robust performance, even in the presence of

measurement noise and discontinuities. Moreover, the self-consistent approach for selecting

the optimal regularization parameter proves to be effective in balancing the trade-off between

fitting the data and minimizing the impact of the ill-posedness. In summary, these results

validate the theoretical convergence analysis and demonstrate the practical applicability of our

method in solving BHCPs with noisy measurements from distributed sensors.

The rest of the paper is organized as follows. In Section 2, we introduce the setting of the

backward problem of parabolic equations. Section 3 presents the stochastic convergence analysis

for the backward problem of parabolic equations. More details about the implementation of

the proposed method will be discussed in Section 4. Section 5 presents numerical results to

demonstrate the accuracy of our method. Finally, in Section 6, we provide concluding remarks.

2 Backward heat conduction problems

To start with, we consider an initial value heat equation as follows:
ut + Lu = 0 in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = f(x) in Ω,

(2.1)
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where Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain with C2 boundary or a convex domain

satisfying the uniform cone condition, L is a second-order elliptic operator given by

Lu = −∇ · (a(x)∇u) + c(x)u,

and f(x) is the initial condition. We assume the elliptic operator L is uniform elliptic, i.e.

there exist amin, amax > 0, such that amin < a(x) < amax for all x ∈ Ω. Moreover, we assume

a(x) ∈ C1(Ω̄), c(x) ∈ C(Ω̄) and c(x) ≥ 0.

Let u be the solution of the heat equation (2.1). We define the forward operator Ft :

L2(Ω)→ H2(Ω) by Ftf = u(·, t). Then the forward problem is to compute the solution u(·, t)
for t > 0 with known initial condition f(x).

In the backward heat conduction problem, we aim to reconstruct an unknown initial con-

dition f(x) ∈ L2(Ω) based on the final time measurement u(·, T ) for a given final time T > 0.

Specifically, we focus on a very practically physical scenario, where we assume that obser-

vational measurements are collected point-wisely over a set of distributed sensors located at

{xi}ni=1 over the physical domain Ω (see e.g. [11, 16, 22, 25]). Additionally, taking into account

of uncertainty in data, we also assume that the measurement data is always blurred with noise

and is represented as mi = FTf
∗(xi) + ei, i = 1, · · · , n, where f ∗ ∈ L2(Ω) is the true initial

condition and {ei}ni=1 are independent random variables on a suitable probability space with

zero means, i.e. E[ei] = 0. Both of the assumptions are very practical in applications, and the

analysis in this paper is rare in the mathematical field.

First, we should verify that FTf
∗(x) is well-defined point-wisely to ensure the validity of the

aforementioned considerations. Let L0 denote the operator of L with zero Dirichlet boundary

condition. According to the analytic semigroup theory [28, 26], Ft = e−L0t is an analytic

semigroup, and the second-order elliptic operator −L0 is the infinitesimal generator of e−L0t.

Moreover, we have the following estimate: there exists a constant ω such that,

∥L0e
−L0t∥ ≤ Ceωt

1

t
, t > 0.

As a consequence, ∥u(·, T )∥H2(Ω) ≤ ∥L0u(·, T )∥L2(Ω) ≤ CT∥f ∗∥L2(Ω), i.e. ∥FTf
∗∥H2(Ω) ≤

CT∥f ∗∥L2(Ω), where the constant CT only depends on T . According to the embedding the-

orem of Sobolev spaces, we know that H2(Ω) is continuously embedded into C(Ω̄), so that

FTf
∗(x) is well-defined point-wisely for all x ∈ Ω̄.

Without loss of generality, we assume that the scattered locations {xi}ni=1 are uniformly

distributed in Ω, i.e., there exists a constant B > 0 such that dmax/dmin ≤ B, where dmax and

dmin are defined by

dmax = sup
x∈Ω

inf
1≤i≤n

|x− xi| and dmin = inf
1≤i ̸=j≤n

|xi − xj|.

We denote the inner product between the measurement data and any function v ∈ C(Ω̄) by

(m, v)n =
∑n

i=1w
2
imiv(xi), with weight w2

i = O
(
1
n

)
. Moreover, we represent the inner product

between two functions as (u, v)n =
∑n

i=1w
2
i u(xi)v(xi) for any u, v ∈ C(Ω̄), and the empirical

norm ∥u∥n =
(∑n

i=1w
2
i u

2(xi)
)1/2

for any u ∈ C(Ω̄).
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With these definitions in place, we formulate the backward heat conduction problem as

recovering the unknown initial condition f ∗ from the noisy final time measurement data mi =

FTf
∗(xi)+ei, i = 1, ..., n. To solve this backward problem, we employ a regularization method.

Specifically, we seek an approximate solution of the true initial condition f ∗ by solving the

following least-squares regularized minimization problem:

min
f∈X
∥FTf −m∥2n + λ∥f∥2L2(Ω) , (2.2)

where λ is the regularization parameter. Two critical issues arise when implementing this

method: selecting the optimal regularization parameter and the converges in probability space.

In the next section, we will present theoretical results addressing stochastic convergence.

3 Stochastic convergence of the inverse problem

To show the stochastic convergence of the regularization method (2.2), we first revisit an impor-

tant property of the eigenvalue distribution for the elliptic operator L, as presented in [1, 12].

Proposition 3.1. Suppose Ω is a bounded domain in Rd and a, c ∈ C0(Ω̄), c ≥ 0, then the

eigenvalue problem

Lψ = µψ with ψ∂Ω = 0 (3.1)

has a countable set of positive eigenvalues µ1 ≤ µ2 ≤ · · · , with its corresponding eigenfunc-

tions {ϕk}∞k=1 forming an orthogonal basis of L2(Ω). Moreover, there exist constants C1, C2 > 0

such that C1k
2/d ≤ µk ≤ C2k

2/d for all k = 1, 2, · · · .

Using Proposition 3.1, we can derive the spectral property of the forward operator FT .

Specifically, we consider FTf = u(·, T ), where FT is the parabolic operator defined on Ω ⊂ Rd

as follows:


ut + Lu = 0 Ω× (0, T )

u(x, t) = 0 ∂Ω× (0, T )

u(x, 0) = f(x) Ω.

(3.2)

Specifically, we have the following lemma with respect to the eigenvalue distribution of the

forward operator FT .

Lemma 3.2. The eigenvalue problem

(ψ, v) = ρ(FTψ,FTv) ∀ v ∈ L2(Ω) (3.3)

has a countable set of positive eigenvalues 0 < ρ1 ≤ ρ2 ≤ · · · and the corresponding eigen-

functions are the same ϕk as in Proposition 3.1. Moreover, ρk = O(e2Tk2/d) for all k = 1, 2, · · · .
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Proof. Firstly, we consider the eigenvalue problem

ψ = ηFTψ. (3.4)

Let {ϕk}∞k=1 be eigenfunctions of the problem (3.1) that form an orthogonal basis of L2(Ω). We

write f =
∑∞

k=1 fkϕk with a set of coefficients fk. Let u =
∑∞

k=1 uk(t)ϕk be the solution of the

problem (2.1). By plugging both expressions of f and u into the first equation of (2.1) and

noting the fact that Lϕk = µkϕk, we can compare the coefficients of ϕk on both sides of the

equation to obtain the following decoupled ordinary differential equations:

u′k(t) + µkuk = 0 in (0, T )

uk(0) = fk.

Solve this simple ordinary differential equation, uk(T ) = e−µkTfk. Noting that FTf = u(·, T ) =∑∞
k=1 uk(T )ϕk, we can formally write

FT

( ∞∑
k=1

fkϕk

)
=

∞∑
k=1

e−µkTfkϕk.

Since {ϕk}∞k=1 is an orthogonal basis of L2(Ω), we can readily see that the eigenvalue problem

(3.4) has a countable set of positive eigenvalues {ηk}∞k=1, with {ϕk}∞k=1 being their corresponding

eigenfunctions. By Proposition 3.1, we have ηk = eµkT = O(eTk2/d). Therefore, the eigenvalue

problem (3.3) has a countable set of eigenvalues {ρk}∞k=1 that satisfy ρk = O(e2Tk2/d). This

completes the proof.

We also need the following estimate regarding the covering entropy of Sobolev space [3],

which plays an important role in this paper. For the completeness of this paper, we present the

definition of the covering number. For a semi-metric space (V, d) and any ε > 0, the covering

number N(ε, BV, d) is the minimum number of ε-balls that cover the unit ball BV of V and

logN(ε, V, d) is called the covering entropy which is an important quantity to characterize the

complexity of the set V .

Proposition 3.3. Let Q be the unit cube in Rd (d = 1, 2, 3) and BH2(Q) be the unit sphere of

space H2(Q). Then it holds for sufficiently small ε > 0 that

logN(ε, BH2(Q), ∥ · ∥C(Q)) ≤ Cε−d/2,

where N(ε, BH2(Q), ∥ · ∥C(Q)) means the covering number of Sobolev space H2(Ω).

With the above two lemmas, we will prove the following stochastic convergence of the inverse

problem (2.2) based on the framework developed in [5]. A random variable X is sub-Gaussian

with parameter σ if it satisfies

E
[
ez(X−E[X])

]
≤ e

1
2
σ2z2 ∀z ∈ R.

The probability distribution function of a sub-Gaussian random variable has an exponen-

tially decaying tail, which is, if X is a sub-Gaussian random variable, then

P (|X − E[X]| ≥ z) ≤ 2e−
1
2
z2/σ2 ∀z > 0.
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Theorem 3.4. Let f ∗ be the ground truth of observation mi = FTf
∗(xi) + ei, i = 1, · · · , n, fn

is the solution of the following problem:

min
f∈L2(Ω)

∥FTf −m∥2n + λ∥f∥2L2(Ω).

For the first case, if ei are independent random variables with zero expectations and bounded

variance σ2, then,

E ∥FTfn −FTf
∗∥2n ⩽ Cλ ∥f ∗∥2 + C

σ2

nλd/4
, (3.5)

E ∥fn − f ∗∥2L2(Ω) ⩽ C ∥f ∗∥2L2(Ω) + C
σ2

nλ1+d/4
. (3.6)

For the second case, if ei are sub-Gaussian random variables with parameter σ and zero expec-

tations, and choose λ1/2+d/8 = O(σn−1/2ρ0) with ρ
−1
0 = ∥f ∗∥L2(Ω) + σn−1/2, then,

P
(
∥FTfn −FTf

∗∥n ⩾ λ1/2ρ0z
)
≤ 2e−Cz2 , (3.7)

P
(
∥f ∗ − fn∥L2(Ω) ⩾ ρ0z

)
≤ 2e−Cz2 . (3.8)

Proof. For the first case, with Proposition 3.2, the eigenvalue distribution of (3.3) satisfies

that ηk ≥ Ck4/d. The estimates (3.5) and (3.6) follow from Theorem 2.3 in [5].

For the second case, with Proposition 3.3, the entropy number of space H2(Ω) has the order

ε−d/2 . The estimates (3.7) and (3.8) follow from Theorem 2.8 in [5].

Balance the two terms of the right hand side in (3.5)-(3.6), the optimal choice λ has the

following form,

λ
1/2+d/8
optimal = O(σn−1/2 ∥f ∗∥−1

L2(Ω)). (3.9)

The theorem above only gives the stochastic convergence at the final time, while the conver-

gence rate for the time 0 < t < T should also be considered in BHCP. Next, we start to prove

the main theorem of this paper to prove this convergence. Before proving this main theorem,

we show two important estimates related to the forward operator Ft.

Lemma 3.5. Denote the operator Kt = Ft (F∗
TFT + λI)−1, where Ft is the forward operator

defined in the equation (3.2). Then, we have the estimate ∥Kt∥2 ⩽ 1
λ2−t/T .

Proof. For any u ∈ L2(Ω), let u =
∑∞

i=1 uiϕi, where ϕi are normalized eigenfunctions of L in

Proposition 3.1. Moreover, we have ∥u∥2L2(Ω) =
∑∞

i=1 u
2
i . Simple calculations give us that∥∥Ft (F∗

TFT + λI)−1 u
∥∥2 = ∞∑

i=1

e−2tµi

(e−2Tµi + λ)2
u2i

=
∞∑
i=1

e−2tµi

(e−2Tµi + λ)t/T
1

(e−2Tµi + λ)2−t/T
u2i

⩽
∞∑
i=1

1

(e−2Tµi + λ)2−t/T
u2i

⩽
1

λ2−t/T

∞∑
i=1

u2i =
1

λ2−t/T
∥u∥2L2(Ω).

7



This proves the lemma.

Using a similar approach, we can prove the following lemma.

Lemma 3.6. Let Ft denote the forward operator defined in equation (3.2). Then, we have the

estimate
∥∥FT (F∗

TFT + λI)−1Ft

∥∥2 ⩽ λt/T−1.

Proof. For any u ∈ L2(Ω), let u =
∑∞

i=1 uiϕi, where ϕi are normalized eigenfunctions of

L. Moreover, we have ∥u∥2 =
∑∞

i=1 u
2
i . Similar to the proof of Lemma 3.5, we just need to

estimate the following term,

∞∑
i=1

e−2tµie−2Tµi

(e−2Tµi + λ)2
u2i

=
∞∑
i=1

e−2tµi

(e−2Tµi + λ)t/T
e−2τµi

e−2τµi + λ

1

(e−2Tµi + λ)1−t/T
u2i

≤λt/T−1∥u∥2L2(Ω).

This proves the lemma.

The estimate (3.5) only demonstrates the convergence of E ∥FTfn −FTf
∗∥2n for the final

time T . To obtain the stochastic convergence result for any time t ∈ [0, T ], we need to estimate

the error term E ∥Ftfn −Ftf
∗∥L2(Ω) for 0 ≤ t ≤ T . Equipped with these two lemmas above, we

can derive the following main theorem on the error of the backward heat conduction problem.

To simplify the proof of the main theorem, we will choose xi, wi in a way that the follow-

ing property is satisfied:
∑n

i=1w
2
i u

2 (xi) is approximation of ∥u∥2L2(Ω),
∣∣∣∥un∥n − ∥u∥L2(Ω)

∣∣∣ ⩽
Cd2max∥u∥H2(Ω) with dmax ∼ n− 1

d . This assumption assures that the discrete norm ∥ · ∥n is

close to L2 norm. This is not a very strong assumption. For example, let the operator Ih be

such that ∥Ihu∥2L2(Ω) =
∑n

i=1w
2
i u

2 (xi). One could find many kinds of discrete inner products

(·, ·)n in the practice of numerical integration. For instance, we could choose xi’s as the nodes

of a regular finite element mesh and Ih as the finite element interpolation operator. Then

∥Ihu− u∥L2(Ω) ⩽ Ch2∥u∥H2(Ω), where h ∼ n− 1
d .

Theorem 3.7 (Main Theorem). Assume the discrete semi-norm ∥ · ∥n is a good approximation

of L2 norm in the sense above. Let f ∗ be the ground truth of the final time observation mi =

FTf
∗(xi) + ei, i = 1, · · · , n, and fn be the solution of the following problem:

min
f∈L2(Ω)

∥FTf −m∥2n + λ∥f∥2L2(Ω). (3.10)

For the first case, if ei are independent random variables with zero expectations and bounded

variance σ2, then,

E ∥Ftfn −Ftf
∗∥L2(Ω) ⩽ Cλt/2T ∥f ∗∥L2(Ω) + C

σ2

n

1

λd/4
λt/T−1. (3.11)

If we take the optimal parameter (4.3) as λ1/2+d/8 = O(σn−1/2 ∥f ∗∥−1
L2(Ω)) (balancing the first

and second part in the righthand side of (3.11)),

E ∥Ftfn −Ftf
∗∥L2(Ω) ≤ Cλt/2T∥f ∗∥L2(Ω). (3.12)
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For the second case, if ei are sub-Gaussian random variables with parameter σ and zero expec-

tations, choose λ1/2+d/8 = O(σn−1/2ρ0) with ρ
−1
0 = ∥f ∗∥L2(Ω) + σn−1/2, then,

P
(
∥Ftfn −Ftf

∗∥n ⩾ λt/2Tρ0z
)
≤ 2e−Cz2 . (3.13)

To make the proof of the main theorem clearer, we will present three lemmas that will be

used in the proof.

Lemma 3.8. Assuming the same conditions as stated in Theorem 3.7, we can assert the ex-

istence of an operator P ∗
T : Rn → L2(Ω) that acts as the adjoint operator with respect to the

inner product (·, ·)n.

Proof. Let P ∗
T : Rn → L2(Ω) be the adjoint operator with respect to the inner product (·, ·)n,

i.e.

(u,FTv)n = (P ∗
Tu, v)L2(Ω) , ∀u ∈ R

n, v ∈ L2(Ω).

Let F∗
T be the adjoint operator such that,

∀u, v ∈ L2, (u,FTv)L2 = (F∗
Tu, v)L2 .

Moreover we should point out that FT is self-adjoint [28, 26], meaning thatF∗
T = FT .

First, we will show the existence of the adjoint operator P ∗
T . Fixing u, let Fu(v) = (u,FTv)n,

then Fu is a bounded linear operator on L2 → R:

Fu(v) ≤ ∥u∥n∥FTv∥n ≤ ∥u∥n∥v∥L2 .

According to the Riesz representation Theorem, there exists a unique fu ∈ L2 such that Fu(v) =

(u,FTv)n = (fu, v), for all v ∈ L2. We then define the linear operator P ∗
Tu = fu for any u ∈ Rn.

Lemma 3.9. Under the same assumptions as stated in Theorem 3.7, we can conclude that

∥ (P ∗
TFT −F∗

TFT ) f∥L2(Ω) ⩽ Cd2max ∥f∥L2(Ω) ,

where C is a constant.

Proof. Denote F = (P ∗
TFT −F∗

TFT ) f . We can calculate the L2 norm of F as follows:

∥F∥2L2(Ω) =(F, F ) = ((P ∗
TFT −F∗

TFT ) f, F )L2(Ω)

=(FTf,FTF )n − (FTf,FTF )L2(Ω)

=(IhFTf, IhFTF )L2(Ω) − (FTf,FTF )L2(Ω)

=(IhFTf −FTf, IhFTF )L2(Ω)

+ (FTf, IhFTF −FTF )L2(Ω)

⩽Cd2max ∥f∥L2(Ω) ∥F∥L2(Ω)

Therefore, we obtain that

∥F∥L2(Ω) ⩽ Cd2max ∥f∥L2(Ω) ,
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Lemma 3.10. With the same assumption as Theorem 3.7, we can conclude that

E∥KtP
∗
T e∥2L2(Ω) ⩽ C

σ2

n

1

λd/4
λt/T−1. (3.14)

Proof. For any v ∈ L2(Ω), we know that

(KtP
∗
T e, v)L2(Ω) =

(
Ft (F∗

TFT + λI)−1 P ∗
T e, v

)
L2(Ω)

=
(
e,FT (F∗

TFT + λI)−1Ftv
)
n

= (e,FTv1)n ,

where v1
∆
= (F∗

TFT + λI)−1Ftv.

Assuming that β1 ≤ β2 ≤ · · · ≤ βn are the eigenvalues of the problem

(ψ, v) = β(FTψ,FTv)n, ∀v ∈ Vn,

with corresponding eigenfunctions {ψk}nk=1, which form a set of orthonormal basis functions

spanning Vn = span{ψ1, · · · , ψn} under the inner product (FT ·,FT ·)n, we can conclude that

the eigenvalues satisfy βk ≥ Ck4/d by using Lemma 3.2 in this paper and Lemma 2.2 in [5].

Therefore, we have (FTψk,FTψl)n = δkl, and as a result, (ψk, ψl) = βkδkl, k, l = 1, 2, · · · , n and

FTψi(xj) = δij. We can define the interpolation operator I from L2 to Vn as:

Iv =
n∑

i=1

(FTv)(xi)ψi.

This operator satisfies that ∥Iv∥ ≤ ∥v∥. For the complete proof, please refer to Lemma 2.2 in

[5]. Moreover, we can define e′i = nwiei, which means that {e′i} are also independent random

variables and have the same order variance as {ei} since wi = O(1/n). It is easy to verify that

FT (v − Iv)(xi) = 0 for all xi.

Now for v1, we have the expansion v1(x) = Iv1+ v1− Iv1 =
∑n

k=1 ukψk(x)+ v1− Iv1, where
uk = (FTv,FTψk)n for k = 1, 2, · · · , n. Therefore, ∥FT Iv1∥2n + λ∥Iv1∥2L2 =

∑n
k=1(λβk + 1)u2k.

By the Cauchy-Schwarz inequality, we can easily obtain:

(e,FTv1)
2
n = (e,FT Iv1)

2
n

=
1

n2

n∑
i=1

e′i

(
n∑

k=1

ukψk(xi)

)
=

1

n2

n∑
k=1

uk

(
n∑

i=1

e′iψk(xi)

)

≤ 1

n2

n∑
k=1

(1 + λnβk)u
2
k ·

n∑
k=1

(1 + λnβk)
−1
( n∑

i=1

e′i(Fψk)(xi)
)2

=
(
∥FTv1∥2n + λ∥Iv1∥2L2

) 1

n2
·

n∑
k=1

(1 + λnβk)
−1
( n∑

i=1

e′i(Fψk)(xi)
)2

≤ C
(
λt/T−1∥v∥2L2(Ω) + λ · λt/T−2∥v∥2L2(Ω)

) 1

n2
·

n∑
k=1

(1 + λnβk)
−1
( n∑

i=1

e′i(Fψk)(xi)
)2

≤ Cλt/T−1∥v∥2L2(Ω)

1

n2
·

n∑
k=1

(1 + λnβk)
−1
( n∑

i=1

e′i(Fψk)(xi)
)2
,

10



where in the second-to-last inequality, we have applied Lemma 3.5 and Lemma 3.6.

Then we have,

sup
v∈L2

(KtP
∗
T e, v)

2

∥v∥2L2(Ω)

= sup
v∈L2

(e,FTv1)
2
n

∥v∥2L2(Ω)

≤ λt/T−1 1

n2
·

n∑
k=1

(1 + λnβk)
−1
( n∑

i=1

ei(Fψk)(xi)
)2
.

Taking expectations on both sides, we get

E sup
v∈L2

(KtP
∗
T e, v)

2

∥v∥2L2(Ω)

≤ Eλt/T−1 1

n2
·

n∑
k=1

(1 + λnβk)
−1
( n∑

i=1

ei(Fψk)(xi)
)2

= λt/T−1 1

n2
·

n∑
k=1

(1 + λnβk)
−1E

( n∑
i=1

ei(Fψk)(xi)
)2

≤ C
σ2

n

1

λd/4
λt/T−1,

where the fact that βk ≥ Ck4/d is used in the last inequality.

Thus,

E∥KtP
∗
T e∥2L2(Ω) ⩽ C

σ2

n

1

λd/4
λt/T−1.

We will also recall a useful lemma of Van De Geer concerning stochastic convergence. In

terms of the terminology of the stochastic convergence order, we denote a random variable

X = Op(z) if X is a sub-Gaussian random variable with zero expectation and parameter z.

Proposition 3.11. [[13], lemma 8.4] Suppose G is a function space and logN (ε, BG, ∥·∥n) ⩽
Cε−γ, where N denotes the local cover number of the unit ball BG. Then, we have

sup
g∈G

|(e, g)n|
∥g∥1−γ/2

n ∥g∥γ/2G

= Op

(
σn−1/2

)
.

Proof of the main theorem. We consider the least-squares regularized minimization

problem (3.10). We know that fn satisfies the following variational form:

(FTfn −m,FTv)n + λ (fn, v)L2(Ω) = 0, ∀v ∈ L2(Ω).

Using Lemma 3.8, we have,

(P ∗
T (FTfn −m) , v)L2(Ω) + λ (fn, v)L2(Ω) = 0, ∀v ∈ L2(Ω).

This implies that

P ∗
TFTfn + λfn = P ∗

Tm.

Since mi = FTf
∗ (xi) + ei,

(P ∗
TFT + λI) fn = P ∗

TFTf
∗ + P ∗

T e,

where e = (e1, ..., en)
T .

11



It is clear that (F∗
TFT + λI) f ∗ = F∗

TFTf
∗ + λf ∗, along with the above equality, we can

obtain

(F∗
TFT + λI) (fn − f ∗) = (P ∗

TFT −F∗
TFT ) (f

∗ − fn)− λf ∗ + P ∗
T e.

This gives,

fn − f ∗ = (F∗
TFT + λI)−1 ((P ∗

TFT −F∗
TFT ) (f

∗ − fn)− λf ∗ + P ∗
T e)

Hence,

Ft (fn − f ∗) = Kt (P
∗
TFT −F∗

TFT ) (f
∗ − fn)−Kt (λf

∗) +Kt (P
∗
T e)

= (I) + (II) + (III),

where Kt = Ft (F∗
TFT + λI)−1, I = Kt (P

∗
TFT −F∗

TFT ) (f
∗ − fn), II = −Kt (λf

∗) and III =

Kt (P
∗
T e).

First, we estimate the term I. Denote F = (P ∗
TFT −F∗

TFT ) (f
∗ − fn). Using Lemma 3.9,

we obtain that

∥F∥L2(Ω) ⩽ Cd2max ∥f ∗ − fn∥L2(Ω) .

Applying Lemma 3.5, the estimate for the term I is,

(I) ⩽ C
1

λ1−t/2T
d2max ∥f ∗ − fn∥L2(Ω) ⩽ Cλt/2T∥f ∗∥L2(Ω), (3.15)

where we use the condition that d2max ⩽ Cλ.

Next, we estimate the term II. This part is straightforward since we have

∥Kt (λf
∗)∥L2(Ω) ⩽ C

1

λ1−t/2T
· λ∥f ∗∥L2(Ω) = Cλt/2T ∥f ∗∥L2(Ω) . (3.16)

Finally, the estimation of the term III comes directly from Lemma 3.10.

Combining (3.15), (3.16) and (3.14), we can prove that

E ∥Ftfn −Ftf
∗∥L2(Ω) ⩽ Cλt/2T ∥f ∗∥L2(Ω) + C

σ

n1/2

1

λd/8
λt/2T−1/2.

In addition, if we take λ1/2+d/8 = σn−1/2 ∥f ∗∥−1
L2(Ω),

E ∥Ftfn −Ftf
∗∥L2(Ω) ≤ Cλt/2T∥f ∗∥L2(Ω).

Then (3.11) and (3.12) are proved.

Next, we will prove the convergence in probabilities (3.13) for the second case. As parts I and

II only consist of deterministic terms, we just need to estimate the convergence in probability

of the term III. To achieve this, we will apply the theory of empirical process as described in

[13], see Proposition 3.11.
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In Proposition 3.11, letG = H2(Ω), According to Proposition 3.3, we have logN (ε, BG, ∥·∥n) ⩽
Cε−d/2. For any v ∈ L2(Ω), let g ≜ FT (F∗

TFT + λI)−1Ftv ∈ H2(Ω). We can apply Proposition

3.11 to obtain

sup
g

|(e, g)n|

∥g∥1−
d
4

n ∥g∥d/4H2

= Op

(
σn−1/2

)
.

Then we apply Lemma 3.5 and Lemma 3.6, we have,

(e, g)n = Op

(
σn−1/2 ∥g∥1−

d
4

n ∥g∥d/4H2

)
= Op

(
σn−1/2

(
λt/2T−1/2

)1− d
4
(
λt/2T−1

)d/4 ∥v∥L2(Ω)

)
= Op

(
σn−1/2 λt/2T λ−(

1
2
+ d

8)∥v∥L2(Ω)

)
.

Since the optimal parameter λ
1
2
+ d

8 = O
(
σ
−1/2
n ∥f ∗∥−1

L2(Ω)

)
, then,

(e, g)n = Op

(
λt/2T ∥f ∗∥L2(Ω) ∥v∥L2(Ω)

)
. (3.17)

For the term III,

(KtP
∗
T e, v)L2(Ω) = (e,FTv1)n = (e, g)n .

Apply the estimate (3.17),

(KtP
∗
T e, v)L2(Ω) = Op

(
λt/2T ∥f ∗∥L2(Ω) ∥v∥L2(Ω)

)
.

Since v ∈ L2(Ω) is an arbitrary function, then

∥KtP
∗
T e∥L2(Ω) = Op

(
λt/2T∥f ∗∥L2(Ω)

)
.

This will give the estimate (3.13).

4 Methodology

In this section, we introduce a numerical method for solving the backward heat conduction

problems (2.1) with noisy final time measurement. Our method consists of two parts. First,

we will present a numerical method to solve the regularization problem (2.2) for a given regu-

larization parameter λ. Then, we will propose an iterative algorithm to determine the optimal

λ, inspired by the convergence analysis in Section 3.

4.1 Iterative method for the inverse problem

We first define the functional J as follows:

J [f ] = ∥FTf −m∥2n + λn∥f∥2L2(Ω).

Then we just need to solve the following misfit functional:

min
f∈L2(Ω)

J [f ].
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Lemma 4.1. The misfit functional J [f ] is Fréchet-differentiable.

Proof. From the definition of Fréchet differentiability, we need to compute

dJ [f ](v) = lim
t→0

J [f + tv]− J [f ]
t

= (FTf −m,FTv)n + λn(f, v)

=
(
F∗

T (FTf −m), v
)
+ λn(f, v)

=
(
F∗

T (FTf −m) + λnf, v
)
, (4.1)

where v ∈ L2(Ω). In (4.1), the second equality is easy to get from the quadratic form of the

misfit functional J [f ]. Thus, one can directly obtain that

dJ [f ] = F∗
T (FTf −m) + λnf. (4.2)

The formula (4.2) in Lemma 4.1 allows us to apply the gradient descent method to minimize

the discrepancy functional J [f ]. Let f0 be an initial guess and fk denote the solution of the

least-squares regularized minimization problem (2.2) at the k-th iteration step. We update the

iterative solution by

fk+1 = fk − βdJ [fk], ∀k ∈ N,

where β is the step size.

We employ the backward Euler scheme to discretize the heat equation by the linear finite

element method. Given a fully discrete scheme with linear finite element space Vfem, we define

the standard approximate forward operator Ffem: L
2(Ω) → Vfem. This operator, given any

initial function f , provides the numerical solution at the final time, i.e., Ffemf gives the nu-

merical solution at the final time for a given initial function f . In such a discrete setting, we

turn to solve the following misfit functional:

min
f∈Vfem

Jfem[f ],

where the functional Jfem[f ] has the form Jfem[f ] = ∥Ffemf −m∥2n+λn∥f∥2L2(Ω). We compute

the Fréchet derivative of Jfem[f ] in the same spirit of (4.2) and obtain the following iterative

scheme:

fk+1 = fk − βdJfem[fk], ∀k ∈ N,

where β is the step size, dJfem[f ] = F∗
fem(Ffemf −m) + λnf , F∗

fem is the discrete operator for

the F∗ and f0 is an initial guess.

4.2 An a posterior estimate of the regularization parameter λ

Theorem 3.7 and Theorem 3.4 indicate that the optimal choice of regularization parameter has

the form:

λ1/2+d/8 = O(σn−1/2 ∥f ∗∥−1
L2(Ω)). (4.3)
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The corresponding error will be

∥FTfn −FTf
∗∥L2(Ω) = O(λ1/2∥f ∗∥L2(Ω)).

This estimate provides a rough order of the optimal parameter λ. Determining the optimal

value of λ can be challenging, and the optimal λ may vary as T changes. This variation can

also be observed through numerical experiments. Obtaining accurate estimations of all the

constants in this paper is necessary to determine the optimal parameter, but it is not an easy

task. In this section, we present an alternative method for selecting the optimal value of λ,

which varies as the final time T changes.

This optimal parameter λ depends on T since ∥FTf
∗∥H2(Ω) ≤ CT∥f ∗∥L2(Ω), where CT de-

pends on T . Let u∗ = FTf
∗ ∈ H2(Ω) and we can approximately estimate this constant CT by

∥u∗∥H2(Ω)

∥fi∥L2(Ω)
. Counting this constant into the proofs of Theorems 3.4 and 3.7, we obtain that the

optimal regularization parameter λ has the following form:

λ1/2+d/8 = O(
∥u∗∥d/4H2(Ω)

∥f ∗∥d/4L2(Ω)

σn−1/2 ∥f ∗∥−1
L2(Ω)), (4.4)

In this way, we establish an appropriate method for estimating the correct time-dependent

constant in (4.3). We can see from the numerical examples that this estimate is a good choice.

This approach offers an a prior estimate of the optimal regularization parameter λ with knowl-

edge of the noise level σ and true solution f ∗. In many industrial applications, these prior

parameters are exactly what one wants to know, and many methods assume the knowledge of

this a prior information. In the following section, we will present an algorithm that determines

the regularization parameter λ in an a posteriori manner, without requiring prior knowledge of

the noise level σ or the true solution f ∗.

In practical settings, since the initial value f ∗ and noise level σ are unknown, we cannot

directly apply the suggested formula to find the optimal λ from Eq.(4.4). To address this issue,

we propose a self-adaptive method inspired by fixed-point iteration to determine the optimal

λ. Specifically, we begin with an initial guess, such as λ0 = 1, and solve for f0. After solving fi
at the i-th step, we update λ as follows:

λ
1/2+d/8
i+1 =

∥u∗∥d/4H2(Ω)

∥fi∥d/4L2(Ω)

n−1/2 ∥FTfi −m∥n ∥fi∥
−1
L2(Ω) .

In the above formula, we estimate ∥u∗∥H2(Ω) solely from the observation data m using the de-

noising algorithm proposed in [4]. We will terminate the iteration of λ once ∥fi∥L2(Ω) converges.

The iteration details are presented in the following diagram, and the numerical performance of

this iteration will be discussed in the following section.

5 Numerical examples

In this section, we demonstrate the effectiveness of our proposed regularization method for

solving BHCPs through numerical examples. Since our estimate only assumes L2 initial data, we
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Algorithm 1: An iterative algorithm of finding optimal parameter λ and

recovering initial value .

1 Input: Observation data m, number of observation data n, error threshold of λ tolλ.

2 Estimate ∥u∗∥H2(Ω) from the data m by the denoising algorithm proposed in [4], denote

this estimation by Hest;

3 Setup initial guess λ0 ← n−4/(d+4);

4 Solve f0 from m with parameter λ = λ0;

5 λ1 ← (
H

d/4
est

∥f0∥d/4
L2(Ω)

n−1/2 ∥FTf0 −m∥n ∥f0∥
−1
L2(Ω))

1
1/2+d/8 ;

6 j ← 1;

7 while |λj − λj−1| > tolλ do

8 Solve fj from m with parameter λ = λj;

9 λj ← (
H

d/4
est

∥fj∥
d/4

L2(Ω)

n−1/2 ∥FTfj −m∥n ∥fj∥
−1
L2(Ω))

1
1/2+d/8 ;

10 j ← j + 1;

11 end

12 Output: parameter λj, computed the initial function fj.

explore two types of initial data: a smooth function (such as a product of two sin functions) and

a discontinuous bounded function (such as the indicator function of an A shaped domain). We

will start with the case of smooth initial data. First, we examine the stochastic convergence of

our method, as outlined in our main theorem. Next, we demonstrate that our estimate provides

a near-optimal choice of the regularization parameter. Additionally, we propose a scheme that

uses fixed-point integration to determine optimal regularization parameters, even without a-

priori knowledge of the initial data. Finally, we apply our algorithm to invert discontinuous

initial data.

5.1 Configurations and performance in recovering L2 initial data

For the first example, we consider a smooth initial condition on the Ω = [0, π]2 domain, i.e.,

f(x, y) = sin(2x) sin(2y) (x, y) ∈ [0, π]2, (5.1)

see Fig.1(c). To generate a synthetic observation, we first solve Eq.(2.1) for t = [0, 0.1] by finite

element methods with h = π
16

in space discretizaion and δt = 1× 10−3 in time. Then we make

observations of u(·, t = 0.1) at n = 20 × 20 equiv-distance distributed points {xi}Ni=1 over Ω.

At the i-th observation point, xi, the observation is assumed to deviate from the ground truth

u(xi, T ) by an independent noise, i.e.,

mi = u(xi, T ) + σNi, (5.2)

where {Ni} are i.i.d. standard normal distribution and σ = 0.05 > 0 represents the standard

derivation of observation error at each point.
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Then we present the performance of the regularization method in recovering the initial

values. Fig.1(a) shows the noisy observation of u at time T = 0.1. Since the selection in λ is

crucial in the inverse initial value problem, we utilize the fixed point iteration proposed in Alg.1

to find the optimal regularization. The detailed performance of the iterative algorithm 1 will be

discussed in the second part of Sec.5.2. The result of inversion with final step λ = 3.936× 10−4

is presented in Fig. 1(b). Despite the noisy observation, we find that our inversion is smooth

and successfully recovers the ground truth in Fig.1(c).

(a) observation at t = 0.1 (b) regularized inversion (c) ground truth

Figure 1: Performance of regularization algorithm when recovering smooth L2 initial value

Verification of convergence Following up, we verify the convergence result in Sec.3.

The interior time estimate in Eq.(3.11) is validated in Fig.2(a). The y-axis of the plot is in

log scale, and the near-linear line indicates that the error exponentially decays as t approaches

the terminal time of 0.1. This can be attributed to the fact that error grows exponentially fast

when propagating back to the initial values.

To investigate the stochastic convergence in Theorem 3.4, we generate 10000 independent

realizations of noisy observations in (5.2) and record the errors. In Fig.2(b), we compare the

errors with a standard normal distribution by using a quantile-quantile plot (Q-Q plot). The

Q-Q plot is a statistical method for comparing two probability distributions by plotting their

quantiles against each other. We can see a straight line in Fig.2(b), which indicates that the

distribution of errors is similar to a normal distribution. This verifies the Gaussian tail estimate

in Eq.(3.13).

5.2 Optimality of the regularization parameter λ

One of the main contributions in our analysis in Sec.3 is to provide a scale estimate of the

optimal regularization parameter for the BHCPs. This estimate is valuable for practitioners

as it helps them choose an appropriate value of the regularization parameter for their specific

problems.
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Figure 2: Convergence verification when recovering smooth L2 initial value

Verification of scale estimation To begin, we recall the estimation for the optimal λ in

(3.9). Specifically, when we take d = 2, we have the following:

λ = O(σ4/3n−2/3 ∥f ∗∥−4/3

L2(Ω)). (5.3)

In Fig.3, we demonstrate the application of various configurations for recovering smooth initial

data. Specifically, we begin by setting σ = 10−1 and n = 104. To find the optimal value of

λ in practice, we apply our inverse algorithm (excluding the fixed point interactive algorithm

in Alg.1) with λ ranging from 10−5 to 10−2. We then determine the corresponding λ∗ that

minimizes the L2 error between the inversion fn and the ground truth f ∗.

In Fig.3(a), we keep the observation number n and ground truth f ∗ unchanged while testing

for varying values of σ between 2.5 × 10−2 and 0.8, and determine the corresponding λ∗. The

fitted slope is 1.12, which is close to the analytical suggestion 4
3
in Eq.(5.3). Similarly, in

Fig.3(b) and (c), we test for different observation numbers n and L2 norm of the initial value

||f ||L2 while keeping the remaining configuration constant. In both cases, the practical best λ

adheres to the scale suggested analytically in Eq.(5.3).

Self adaptive method in finding optimal λ. In Fig.4(a), we demonstrate that our iterative

algorithm monotonically decreases the l2 distance between recovered final time solution Sfi and

the observation in 9 steps. In Fig.4(c),(d),(e), (f), we present the inversion result at 1, 2 4, and

6 steps, respectively. Fig.4(b) shows the l2 distance to the observation at the i-th step against

the difference between λi and optimal λ. By iterating for λ, we can see that our algorithm

gradually recovers the initial data f in (5.1).
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Figure 3: Validation of optimal scale estimate of λ (3.9)

5.3 Performance in recovering discontinuous initial data

In the second example, we consider the initial condition f as the indicator function of an A-

shape sub-domain, as shown in Fig.5 (b). Compared to smooth initial data, the sharp edges of f

lead to a slower decay of the spectrum. In the forward problem, the higher frequency data decays

rapidly against T , making it difficult to track. Thus, in this example, the standard derivation

of the noise σ is set to 10−4, and the final observation is at T = 0.05 with n = 50× 50 equally

spaced points. Fig.5 (a) illustrates the generated observations. The remaining configuration is

identical to the one used for smooth data presented in Fig.1.

In Fig.5(d-f), we present the step-wise regularized inversion result. Our iterative algorithm

takes 2 steps to achieve a near-optimal λ = 1.2644× 10−6. The observation is two-fold. Firstly,

we can see that the inversion cannot recover the sharp edge of A but can accurately identify

the shape of the sub-domain. This is due to the ill-posed nature of the problem. However,

in contrast to the inversion result with an incorrect λ, as depicted in Fig.5(d-e), the iterative

method Alg.1, based on our theoretical analysis in Sec.3, plays a crucial role in recovering L2

non-smooth data.

In addition, we validate the asymptotic estimate against t in (3.12). After applying the

iterative algorithm to find the initial value fn and optimal λ∗, we apply the forward solver Ft

for various t and compare Ftfn with Ftf
∗ at different t values. We then determine the fitted

slope of log10(∥Ftfn − Ftf
∗∥) against t to be −131.02, which is close to the predicted slope of

log10 λ∗
2T

= −135.81.

6 Conclusions

The backward heat conduction problem is a challenging inverse problem. In this paper, we have

successfully obtained the stochastic convergence analysis of the regularized solutions for this

problem. By establishing an error estimate for the least-squares regularized minimization prob-

lem within the stochastic convergence framework, our analysis demonstrates that the optimal

error of the Tikhonov-type least-squares optimization problem depends on the noise level, the

number of sensors, and the ground truth. Moreover, we have developed an a posteriori algo-
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rithm that can find the optimal regularization parameter in the optimization problem without

requiring knowledge of the noise level or other prior information. Finally, we demonstrated the

accuracy and efficiency of our proposed method through numerical experiments. These results

confirm the effectiveness of our method in solving the backward heat conduction problem.
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