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ERROR ESTIMATE OF A QUASI-MONTE CARLO TIME-SPLITTING

PSEUDOSPECTRAL METHOD FOR NONLINEAR SCHRÖDINGER

EQUATION WITH RANDOM POTENTIALS
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Abstract. In this paper, we consider the numerical solution of a nonlinear Schrödinger

equation with spatial random potential. The randomly shifted quasi-Monte Carlo (QMC)

lattice rule combined with the time-splitting pseudospectral discretization is applied and

analyzed. The nonlinearity in the equation induces difficulties in estimating the regularity

of the solution in random space. By the technique of weighted Sobolev space, we iden-

tify the possible weights and show the existence of QMC that converges optimally at the

almost-linear rate without dependence on dimensions. The full error estimate of the scheme

is established. We present numerical results to verify the accuracy and investigate the wave

propagation.
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1. Introduction

In this paper, we consider the following one-space-dimensional nonlinear Schrödinger

(NLS) equation with a spatial random potential on the torus:



i∂tψ = −1

2
∂2xψ + V (ω, x)ψ + α|ψ|2ψ, x ∈ T, ω ∈ Ω, t > 0,

ψ(t = 0, ω, x) = ψin(x), x ∈ T, ω ∈ Ω.
(1.1)

Here t ≥ 0 is the time variable, x ∈ T is the space variable with T the one-dimensional torus

(periodic boundary condition in x), ω ∈ Ω is the random sample with Ω the sample space,

ψ = ψ(t, ω, x) is the complex-valued unknown with ψin the given initial data, V (ω, x) is a

given real-valued random potential, and α ∈ R is a given parameter describing the strength

of the nonlinearity. We refer to the NLS equation (1.1) as the random NLS.

It is well known that in the one-space-dimensional case in the presence of a random

potential and in the absence of nonlinearity (i.e., α = 0) with probability one all the states

are exponentially localized [1, 2, 3, 17, 38]. With α = 0 the equation in (1.1) is a linear

Schrödinger equation with random potentials, which belongs to the family of the Ander-

son models named after P. Anderson. In 1958, P. Anderson considered the discrete linear

Schrödinger equations and discovered the localization of waves due to the disorder induced

by the random potential [3]. Ever since then, the Anderson localization effect has been

widely considered in many applications such as semiconductors and acoustic waves.
1
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When α 6= 0, the interplay between disorder and nonlinear effects leads to new interesting

physics. In spite of the extensive research, many fundamental problems still remains open.

A long-lasting question in mathematics and physics is whether a nonlinearity especially

the defocusing nonlinearity, i.e., α > 0 in (1.1), could break the localization [19]. Many

analytical and numerical investigations have been done to address this question. The study

of the long-time behavior of wave propagation so far still relies on numerical simulations,

which are performed on the discrete NLS models [18, 44]. Our model problem (1.1) is the

continuous version of the random NLS. It has been considered physically for modeling the

Anderson localization of Bose-Einstein Condensates [40, 45] and for the study of nonlinear

dispersive wave dynamics in a disordered medium [9, 22, 33]. For theoretical results, we

refer readers to [13, 14] for the well-posedness results of (1.1) and to [15, 20, 27] for other

related mathematical properties. Here we consider the one-space-dimensional case and the

torus domain in (1.1) for simplicity.

In this work, we consider the parametrization of the random potential in the manner of

the Karhunen-Loève expansion [25, 26, 37, 54]:

V (ω, x) = v0(x) +
∞∑

j=1

√
λjξj(ω)vj(x), x ∈ T, ω ∈ Ω, (1.2)

where v0(x) is a deterministic function, {vj(x)}j≥1 are the physical components, λ1 > λ2 >

· · · > 0 are the corresponding strengths and ξ(ω) = (ξ1(ω), ξ2(ω), . . .)
T are independent and

identically distributed (i.i.d.) uniform random variables on
[
−1

2
, 1
2

]
. Thus,

ξ ∈
[
−1

2
,
1

2

]N
=: U.

According to the Doob-Dynkin lemma [32], the solution ψ can be represented by parametric

functions parameterized by ξ. Hence, (1.1) can be rewritten as the following parametric

nonlinear Schrödinger equation with a random potential V (ξ, x) given by (1.2):



i∂tψ = −1

2
∂2xψ + V (ξ, x)ψ + α|ψ|2ψ, x ∈ T, ξ ∈ U, t > 0,

ψ(t = 0, ξ, x) = ψin(x), x ∈ T, ξ ∈ U,
(1.3)

with ψ = ψ(t, ξ, x), ψin being deterministic, and we shall consider that α 6= 0.

Along the numerical aspect of (1.1) or (1.3), let us mention several related works. The

work of Henning and Peterseim [29] considered the fully deterministic case of (1.1) and

addressed the convergence issue of a Crank-Nicolson finite element discretization. Zhao

later addressed the corresponding convergence of an exponential integrator spectral method

in [55] and numerically investigated the stochastic case. The work of Kachman, Fishman

and Soffer [33] proposed an iterative integrator in time for the linear model. However, to

our best knowledge, the existing studies on (1.1) so far are yet to address the discretization

in the random variable. The sampling method in the aforementioned works as well as in the

physical works [18, 40, 44] all consider the classical Monte-Carlo method. It is known that the

classical Monte-Carlo offers only a half-order convergence rate and so practical computing

would require a large number of samples for accurately capturing the statistical quantities of
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interest. To increase the efficiency and accuracy of quantifying the uncertainty, methods like

the quasi-Monte Carlo sampling [8, 12, 53], polynomial chaos expansion [10, 21, 30, 54] and

stochastic collocation method [6, 42, 52] have later been developed for PDEs with random

inputs.

In this work, we shall consider the quasi-Monte Carlo (QMC) sampling method for

the NLS (1.3). The origin of QMC dates back to around 1960, which proposes to sample

deterministically by using the low-discrepancy sequences [28, 48]. The convergence order

of QMC with respect to the number of samples is higher than that of the classical Monte

Carlo method; however, it is dependent on the dimension of the random variable [8, 41].

To overcome this problem, some state-of-art randomization techniques of different kinds

have been further introduced to the QMC. We refer the interested readers to [12, 36] and

the references therein for a detailed review. In this work, we would follow the randomly

shifted QMC lattice rule [11, 43, 47]. In such a way, Graham, Kuo, Schwab and Sloan et

al. proposed the QMC method with finite element discretizations to solve linear elliptic

equations [23, 25, 26, 37]. Via the technique of the weighted Hilbert space with the carefully

chosen weights [25, 37], they established the almost-linear convergence rates in N without

dependence on the dimension.

By combining the randomly shifted QMC lattice rule with the popular time-splitting

Fourier pseudospectral (TSFP) method [4, 7, 31], we propose an efficient numerical method

to solve (1.3). Moreover, we aim to analyze for the full convergence result of the scheme. The

difficulty/novelty of the analysis mainly come from the following facts: i) the nonlinearity

in the equation (1.3) makes it complicated to estimate of the regularity of the solution

in the parametric space; ii) the physical observable of interest is a nonlinear functional of

the solution; iii) the full scheme involves the discretizations in time, physical space and

parametric space. Under suitable assumptions on the decaying rate of the potential (1.2),

we point out the possible choice of the weights in the framework of the weighted Sobolev

space, and we show the existence of a randomly shifted QMC lattice rule which can achieve

an almost-linear convergence rate without dependence on dimensions for the expectation of

the physical observable. The optimal root-mean-square error estimate of the QMC-TSFP

scheme in time, physical space, and random space will then be established and verified

numerically. Finally, we numerically investigate the wave propagation in the random NLS

models.

The rest of the paper is organized as follows. In Section 2, we present the detailed QMC-

TSFP scheme and our main result about its convergence theorem. Section 3 and Section 4

are devoted to rigorously establishing the theorem by analyzing the error on the PDE and

on the scheme in a sequel. Numerical results are presented in Section 5. Concluding remarks

are made in Section 6.

2. Numerical method

In this section, we shall first present the numerical discretization of the NLS (1.3). Then,

we shall give the convergence result of the scheme.
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2.1. Dimension truncation and discretization. First of all, for practical computation

we need to truncate the Karhunen-Loève expansion (1.2) of the random potential V (ξ, x)

into a finite sum. That is to say, we choose an integer m > 0 large enough and truncate the

parameterized random potential as:

Vm(ξ, x) = v0(x) +
m∑

j=1

√
λjξj(ω)vj(x), x ∈ T, ξ = (ξ1, . . . , ξm)

T ∈ Um :=

[
−1

2
,
1

2

]m
.

(2.1)

We emphasize that the approximation of the truncated random potential Vm(ξ, x) to V (ξ, x)

depends on the decaying rates of the strengths. With the above finite dimensional random

potential, we consider the following truncated NLS problem:



i∂tψm = −1

2
∂2xψm + Vm(ξ, x)ψm + α|ψm|2ψm, x ∈ T, ξ ∈ Um, t > 0,

ψm(t = 0, ξ, x) = ψin(x), x ∈ T,
(2.2)

which is an approximation to (1.3). Here we have ψm(t, ξ, x) = ψ(t, (ξ{1:m}, 0), x) with

ξ = ξ{1:m}.

With one precise sample for ξ, (2.2) reads as a cubic NLS with the given potential Vm, and

so it can be numerically solved by any of the classical algorithms. Concerning the periodic

boundary condition, we shall consider in this paper the time-splitting Fourier pseudospectral

method, which is simple to begin with but undoubtedly one of the most popular numerical

methods for NLS [7, 31, 49]. It begins by splitting (2.2) into two subflows Ψk
s and Ψp

s as

Ψk
s : i∂tψm = −1

2
∂2xψm, t ∈ (0, s]; (2.3a)

Ψp
s : i∂tψm = Vmψm + α|ψm|2ψm, t ∈ (0, s]. (2.3b)

Note that Vm and α are real-valued, so both of the above equations can be integrated exactly

in time, and then the scheme composes as ψm(tn+1, ξ, x) ≈ Ψk
τ
2
◦Ψp

τ ◦Ψk
τ
2
(ψm(tn, ξ, x)), where

τ = tn+1 − tn is the time step. Let us briefly present the detailed scheme below.

Denote T = [−L, L] with some L > 0 and choose some even integerM > 0. The physical

space is discretized as xk = −L+ kh with h = 2L/M for k = 0, 1, . . . ,M . For the time axis,

we take τ = ∆t > 0 and denote tn = nτ for n = 0, 1, . . .. Denote the numerical solution as

ψnm,k = ψnm,k(ξ) ≈ ψm(tn, ξ, xk) with ψ
0
m,k = ψin(xk), the scheme of the time-splitting Fourier

pseudospectral method (TSFP) for solving (2.2) reads for n ≥ 0,

ψn+1
m,k =

M/2−1∑

l=−M/2

(̃ψn+1
m,k )le

iul(xk+L), (̃ψn+1
m,k )l = e−iu

2
l
τ/4(̃ψ∗∗

m,k)l, ul =
πl

L
, (2.4a)

ψ∗∗
m,k = e−i[Vm(ξ,xk)+α|ψm,k |

2]τψ∗
m,k, (̃ψ∗

m,k)l = e−iu
2
l
τ/4(̃ψnm,k)l, 0 ≤ k ≤M, (2.4b)

with (̃φ)l =
1
M

∑M−1
k=0 φke

−iul(xk+L) being the discrete Fourier coefficients of a discrete function

φk. With the discrete values, we can define a continuous version of the numerical solution
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as the interpolation:

IMψ
n
m(x) =

M/2−1∑

l=−M/2

(̃ψnm,k)le
iul(x+L), x ∈ T, n ≥ 0. (2.5)

The TSFP (2.4) is fully explicit in time and efficient with the computational costO(M logM)

per time level under the help of fast Fourier transform. Moreover, it is time symmetric and

preserves the discrete l2-norm of the solution. These properties offer it unconditional stability

and the reliable long-time performance [16]. Thus, it has been used in [19, 44] to simulate

the nonlinear Anderson models. For simulating wave propagation, the torus domain setup

for (1.3) or (2.2) is a valid truncation of the whole space problem provided that the domain

size L > 0 is taken large enough and the initially localized solution in T is away from the

boundary within the time of computation.

2.2. Quasi-Monte Carlo sampling. With the solution ψ of (1.3), the physical observables

in applications are some functionals of ψ, i.e., G(ψ(t, ξ, ·)), t ≥ 0, ξ ∈ U, for some functional

G in the energy space of the solution. Then, the expected value with respect to the random

parameter is given by the following integral in infinite dimensions:

E[G](t) := lim
m→∞

∫

Um

G(ψm(t, ξ, ·))dξ, (2.6)

with the truncated solution ψm of (2.2). Therefore, for some sufficiently largem > 0, E[G] can

be approximated by E[G](t) ≈
∫
Um

G(ψm(t, ξ, ·))dξ. Note that |ψ|2 represents the probability
density function in quantum physics. Many widely concerned physical observables are linear

functionals of |ψ|2. One typical example is the center of mass, which is frequently considered

in the context of Anderson localization [19]. Therefore, in the following, we shall focus

on the expected value of G(|ψ|2), where G is a linear functional. In order to estimate the

convergence of QMC for computing the expected value of G(|ψ|2), we shall analyze the

parametric regularity of G(|ψ|2) or equivalently the parametric regularity of |ψ|2 in Section

3.3, which is one of our main contributions in this work. Let us denote

G(t, ξ) := G(|ψ(t, ξ, ·)|2), Gm(t, ξ) := G(|ψm(t, ξ, ·)|2), (2.7)

for short in the following, and so we look for E[G](t).
To evaluate the expectation of a general function F (ξ) under a fixed m, the strategy of

a quasi-Monte Carlo (QMC) method is an equal weight quadrature rule, i.e.,

Em[F ] :=

∫

Um

F (ξ)dξ ≈ 1

N

N∑

p=1

F (ξ(p)) =: Qm,N [F ], (2.8)

where ξ(p) ∈ Um is the quadrature point and N > 0 is the total number of samples. Classical

QMC is done by constructing some deterministic quadrature points, such as the Halton

sequence [28] or the Sobol sequence [48]. However, a drawback is that the approximation

error of (2.8) depends on the dimension m. When m is large, the QMC might lose its

efficiency over the standard Monte Carlo method.
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To provide a practical error estimate and reduce the biased error, some randomization

techniques have been developed to construct the quadrature points. Here, we adopt the

so-called shifted rank-one lattice rule [12] to get ξ(p). That is

ξ(p) = frac
(pz
N

+∆
)
− 1

2
, p = 1, . . . , N, (2.9)

where frac(w) means to take the fractional part of each component of a vector w, ∆ ∈ [0, 1]m

is a uniformly distributed random shift and z ∈ Zm is known as the generating vector. A

specific generating vector z can be constructed by the component-by-component construction

(CBC) approach [12] to minimize the shifted-averaged worst-case error function, which will

be detailed in our analysis later in Section 3.4. For every ξ(p), we solve the NLS (2.2)

using the TSFP scheme (2.4). Then, we obtain {ψnm(ξ(p))}Np=1 to compute the numerical

expectation of some quantity of interest. The whole numerical scheme shall be referred to

as QMC-TSFP in the rest of the paper. The practical computing of E[G] via the randomly

shifted QMC-TSFP method is then implemented as:

(1) Given the truncated dimension m in (2.1), choose M, τ for discretizations in TSFP,

and take N as the number of samples for one random shift and R as the number of

random shifts;

(2) Construct the generating vector z using the CBC approach;

(3) Generate i.i.d. random shifts ∆1, . . . ,∆R from the uniform distribution on [0, 1]m.

For each ∆r with r = 1, . . . , R, obtain the sample set {ξ(r,p) = frac
(
pz
N

+∆r

)
− 1

2
:

p = 1, . . . , N};
(4) For each ξ(r,p) with r = 1, . . . , R and p = 1, . . . , N , solve (2.2) via (2.4) and obtain

IMψ
n
m(ξ

r,p, x) in (2.5);

(5) Compute {Q(r)
m,N (G(|IMψnm|2)) : r = 1, . . . , R}, where

Q
(r)
m,N (G(|IMψnm|2)) =

1

N

N∑

p=1

G(|IMψnm(ξ(r,p), ·)|2) (2.10)

is the approximation of Em[G(|IMψnm|2)] with one single shift ∆r in the QMC rule;

(6) Take the average over all the random shifts to get

Qm,N,R(G(|IMψnm|2)) =
1

R

R∑

r=1

Q
(r)
m,N (G(|IMψnm|2)) (2.11)

as the final approximation of E[G(|ψ(tn, ·, ·)|2)].

With a precise shift ∆r, the total computational cost of QMC-TSFP is O(NM logM). The

number of shifts R is usually kept small in practice, e.g., 10-50 [12].

2.3. Main result. We shall present here the main convergence result. We first introduce

the Bochner spaces we will consider for the potential V and the wave functions ψ. For the

potential V , we will consider the Bochner space L∞(U ;Hs(T)) with the norm

‖V ‖L∞(U ;Hs(T)) = sup
ξ∈U

‖V (ξ)‖Hs(T).
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For the wave function ψ, we will consider the Bochner space L∞((0, T )×U ;Hs(T)) with the

norm

‖ψ‖L∞((0,T )×U ;Hs(T)) = sup
t∈(0,T ),ξ∈U

‖ψ(t, ξ)‖Hs(T).

Assume that the functional, the potential and the initial data of (1.3) satisfy the following

conditions.

Assumption 2.1. Assume the linear functional G ∈ (H1(T))′, which is the dual space

of H1(T). For some fixed s ≥ 1, assume that ψin ∈ Hs(T), V ∈ L∞(U ;Hs(T)) and

‖Vm‖L∞(U ;Hs) ≤ ‖V ‖L∞(U ;Hs) for any m > 0. Concerning the relevant physical context,

assume further that ψin is localized in the torus domain T = [−L, L] and L > 0 is large

enough such that the wave is yet to reach the boundary within the time of interest.

In addition, to achieve the optimal convergence rate of QMC, we would further ask for

the following technical assumption on V , which shows the property of the decaying rates of

the terms in the series (2.1).

Assumption 2.2. Assume that the potential V in the form of (1.2) satisfies:

‖Vm − V ‖L∞(U ;H1) ≤ Cm−χ,

∞∑

j=1

[
3j
√
λj‖vj‖H1

]1/2
<∞, (2.12)

for some constants C, χ > 0.

Then, we have the following error estimate result for the QMC-TSFP method.

Theorem 2.3. Assume that Assumption 2.1, Assumption 2.2 hold and ψin ∈ Hs(T) with

s ≥ 5. Then, a randomly shifted QMC lattice rule can be constructed to solve (2.2) till

any fixed T > 0, and there exist constants τ0, h0 > 0 independent of m so that with the

numerical solution IMψ
n
m from the QMC-TSFP scheme (2.4) for τ ≤ τ0 and h ≤ h0, the

root-mean-square error satisfies: for any δ ∈ (0, 1/2) and N ≤ 1030,
√

E∆

[∣∣∣E[G](tn)−Qm,N [G(|IMψnm|2)]
∣∣∣
2
]
≤ C(τ 2 + hs−1 +m−χ +N δ−1), (2.13)

for all tn ∈ [0, T ] and some constant C > 0 independent of m, τ, h,N , where E∆ denotes the

expectation with respect to the random shift.

The rest of the paper is devoted to rigorously establishing the above theorem. It will be

done in a sequel by analyzing the QMC error on the PDE in Section 3 and the error of the

TSFP scheme in Section 4.

Remark 1. The condition N ≤ 1030 is purely a technical condition since we use in the proof

of Theorem 2.3 the property that the Euler totient function ϕ(N) satisfies 1/ϕ(N) ≤ 9/N

for N ≤ 1030 [25]; see also the proof of Lemma 3.7. In practice, the number of samples will

seldom exceed 1030.
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Remark 2. The Assumption 2.2 basically requires that the eigenpairs in (1.2) are exponen-

tially decaying, which is stronger than the usual algebraic ones in the literature for linear

model problems, e.g., [25, 37]. Such exponential decay assumption is a technical condition

for the rigorous proof by means of analysis in the weighted Sobolev space. It is essentially

raised by the nonlinearity. In practice, it could be satisfied if the random potential V (ξ, x)

is a smooth and periodic (or Schwartz for the whole space case) function in terms of x uni-

formly for all ξ. Generally, the decaying speed of the eigenvalues depend on the regularity

of the covarivance kernel. We refer interested readers to [46] for more details.

Remark 3. Under weaker assumptions than those in Theorem 2.3, weaker convergence rates

can be established similarly. For instance, if we only have s ≥ 3 then the temporal accuracy

of TSFP will drop down to one (see [39] for the deterministic case). On the other hand,

if the decaying rate in Assumption 2.2 is slower, then the sampling error from QMC might

drop down to 1/2 [37]. Here we omitted these cases for simplicity.

Remark 4. The physical context of Anderson localization in NLS is associated with many

physical parameters, including the time interval, spatial domain size, strength of nonlinearity,

and randomness of the potential. Our primary focus in Theorem 2.3 is on the convergence

rates with respect to numerical parameters. The dependence of the error estimate on physical

parameters is encapsulated in the error constant C > 0 in (2.13). Determining the explicit

and particularly optimal dependence of the constant C on these physical parameters requires

substantial additional efforts and will be a subject of our future research.

3. QMC on the PDE

In this section, we aim to analyze the convergence of the QMC sampling for the NLS

model (1.3) or (2.2) on the continuous level. We shall largely follow the framework in [37].

3.1. Regularity in physical space.

Lemma 3.1. Under Assumption 2.1, for each ξ ∈ U the solution ψ(t, ξ, x) of (1.3) is globally

well-posed and uniformly bounded in H1(T). Moreover, for any fixed 0 < T < ∞, we have

ψ ∈ L∞((0, T )× U ;Hs(T)).

Proof. Following the framework from [24], let us briefly go through the proof to check mainly

the effect from the random potential. For simplicity, we shall omit the spatial variable x in

the functions. By the Duhamel formula, (1.3) reads

ψ(t, ξ) = eit∂
2
x/2ψin − i

∫ t

0

ei(t−ρ)∂
2
x/2
[
V (ξ)ψ(ρ, ξ) + α|ψ(ρ, ξ)|2ψ(ρ, ξ)

]
dρ, t ≥ 0. (3.1)

Note that under condition s ≥ 1, we have the algebraic property of the Sobolev space Hs in

the 1D [5, Chapter 4]. Therefore, by taking the Hs-norm on both sides of (3.1), we get

‖ψ(t, ξ)‖Hs ≤ ‖ψin‖Hs + C

∫ t

0

[
‖V (ξ)‖Hs‖ψ(ρ, ξ)‖Hs + ‖ψ(ρ, ξ)‖3Hs

]
ds,

for some constant C > 0 from the Sobolev embedding which depends only on s. Then, a

bootstrap-type argument [51] will give the local well-posedness of (1.3) in Hs(T) for each
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ξ (see Appendix A for details of the bootstrap-type argument). Moreover, there exists a

T0 > 0 such that ψ ∈ L∞((0, T0) × U ;Hs(T)) owning to the fact that ψin is deterministic

and the assumption V ∈ L∞(U ;Hs(T)).

On the other hand, since V is real-valued, the model (1.3) enjoys the mass conservation

M(t) :=

∫

T

|ψ(t, ξ, x)|2dx ≡
∫

T

|ψin(x)|2dx =M(0), t ≥ 0, (3.2)

where the mass is independent of ξ. Also, we have the energy conservation:

E(t, ξ) :=

∫

T

[
1

2
|∂xψ(t, ξ, x)|2 + V (ξ, x)|ψ(t, ξ, x)|2 + α

2
|ψ(t, ξ, x)|4

]
dx

≡
∫

T

[
1

2
|∂xψin(x)|2 + V (ξ, x)|ψin(x)|2 +

α

2
|ψin(x)|4

]
dx = E(0, ξ), t ≥ 0, ξ ∈ U.

(3.3)

Note by the Sobolev embedding that Hs(T) ⊆ L∞(T), then the condition V ∈ L∞(U ;Hs(T))

guarantees a uniform upper bound of the initial energy for all the ξ, i.e.,

|E(0, ξ)| ≤
∫

T

[
1

2
|∂xψin(x)|2 + ‖V ‖L∞(U×T)|ψin(x)|2 +

|α|
2
|ψin(x)|4

]
dx =: E0 <∞, ξ ∈ U.

(3.4)

In the defocusing case, i.e., α > 0, it can be seen from the definition of E(t, ξ) in (3.3) that

E(t, ξ) ≥
∫

T

[
1

2
|∂xψ(t, ξ, x)|2 + V (ξ, x)|ψ(t, ξ, x)|2

]
dx

≥ 1

2
‖∂xψ(t, ξ)‖2L2 − ‖V ‖L∞(U×T)‖ψ(t, ξ)‖2L2, (3.5)

which together with the mass conservation (3.2), the energy conservation (3.3) and the bound

of E(0, ξ) in (3.4) shows that

‖∂xψ(t, ξ)‖2L2 ≤ 2|E(t, ξ)|+ 2‖V ‖L∞(U×T)‖ψ(t, ξ)‖2L2

≤ 2E0 + 2‖V ‖L∞(U×T)‖ψin‖2L2 , ∀ t ≥ 0, ξ ∈ U. (3.6)

In the focusing case, i.e., α < 0, we derive by the Gagliardo-Nirenberg inequality ‖ψ‖4L4 ≤
C‖∂xψ‖L2‖ψ‖3L2 and the Young’s inequality that

‖ψ(t, ξ)‖4L4 ≤ C‖∂xψ(t, ξ)‖L2‖ψ(t, ξ)‖3L2 ≤ 1

−2α
‖∂xψ(t, ξ)‖2L2 +

−αC2

2
‖ψ(t, ξ)‖6L2, (3.7)

which together with the definition of E(t, ξ) in (3.3) shows that

E(t, ξ) ≥ 1

4
‖∂xψ(t, ξ)‖2L2 − ‖V ‖L∞(U×T)‖ψ(t, ξ)‖2L2 − α2C2

4
‖ψ(t, ξ)‖6L2. (3.8)

Then the inequality (3.8) together with the mass conservation (3.2), the energy conservation

(3.3) and the bound of E(0, ξ) in (3.4) shows that

‖∂xψ(t, ξ)‖2L2 ≤ 4|E(t, ξ)|+ 4‖V ‖L∞(U×T)‖ψ(t, ξ)‖2L2 + α2C2‖ψ(t, ξ)‖6L2

≤ 4E0 + 4‖V ‖L∞(U×T)‖ψin‖2L2 + α2C2‖ψin‖6L2, ∀ t ≥ 0, ξ ∈ U. (3.9)
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Thus, ‖ψ(t, ξ)‖H1 for any t ≥ 0, ξ ∈ U is always bounded from above by a uniform constant

depending only on ‖ψin‖2L2 , E0 and ‖V ‖L∞(U×T). Such generic upper bound for ‖ψ(t, ξ)‖H1

together with the local well-posedness leads to the global well-posedness of (1.3) in H1(T)

for each ξ, and ψ ∈ L∞(R+ × U ;H1(T)) ⊆ L∞(R+ × U × T). Then, (3.1) by the product

lemma [51] (see Appendix A for details of the product lemma) gives

‖ψ(t, ξ)‖Hs ≤ ‖ψin‖Hs + C
[
‖V ‖L∞(U ;Hs) + ‖ψ‖2L∞(R+×U×T)

] ∫ t

0

‖ψ(ρ, ξ)‖Hsdρ,

and the last assertion of the lemma follows from the Gronwall inequality for any fixed T >

0. �

Remark 5. For the truncated NLS problem (2.2), note that the truncation does not change

the regularity of the random potential, as stated in Assumption 2.1. Therefore, by the same

procedure in Lemma 3.1, we can have ψm ∈ L∞((0, T ) × Um;H
s(T)) for any finite T > 0

with ‖ψm‖L∞((0,T )×Um;Hs) ≤ ‖ψ‖L∞((0,T )×U ;Hs).

3.2. Error of dimension truncation.

Lemma 3.2. Under Assumption 2.1, the difference between the solution of (2.2) and the

solution of the parameterized approximation (1.3) is given by

‖ψm − ψ‖L∞((0,T )×U ;H1) ≤ C‖Vm − V ‖L∞(U ;H1),

with a constant C > 0 depending on α, T , the norm of V in L∞(U ;Hs(T)) and the norm of

ψ in L∞((0, T )× U ;Hs(T)).

Proof. Denoting δψ = ψm − ψ and taking the difference between (2.2) and (1.3), we get



i∂tδψ = −1

2
∂2xδψ + V δψ + (Vm − V )ψm + α

[
|ψm|2ψm − |ψ|2ψ

]
, x ∈ T, t > 0,

δψ(t = 0) = 0, x ∈ T.

The Duhamel formula gives

δψ(t, ξ) = −i
∫ t

0

ei(t−ρ)∂
2
x/2
[
V (ξ)δψ(ρ, ξ) + (Vm(ξ)− V (ξ))ψm(ρ, ξ)

+ α(|ψm(ρ, ξ)|2ψm(ρ, ξ)− |ψ(ρ, ξ)|2ψ(ρ, ξ))
]
dρ, t ≥ 0,

which by the product lemma gives

‖δψ(t, ξ)‖H1

≤C
∫ t

0

[
‖V ‖L∞(U ;Hs) + ‖ψ‖2L∞((0,T )×U ;Hs) + ‖ψm‖2L∞((0,T )×Um;Hs)

]
‖δψ(ρ, ξ)‖H1dρ

+ tC‖ψm‖L∞((0,T )×Um;Hs)‖Vm − V ‖L∞(U ;H1), 0 ≤ t ≤ T,

with some C > 0 depending on α only. Note that the function

q(t) := tC‖ψm‖L∞((0,T )×Um;Hs)‖Vm − V ‖L∞(U ;H1)

is non-decreasing in t and the constant

K := C
[
‖V ‖L∞(U ;Hs) + ‖ψ‖2L∞((0,T )×U ;Hs) + ‖ψm‖2L∞((0,T )×Um;Hs)

]
≥ 0.
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Then the Gronwall inequality leads to

‖δψ(t, ξ)‖H1 ≤q(t) +K exp(Kt)

∫ t

0

exp(−Kρ)q(ρ)dρ

≤q(t)
(
1 +K exp(Kt)

∫ t

0

exp(−Kρ)dρ
)

= q(t) exp(Kt)

=tC‖ψm‖L∞((0,T )×Um;Hs)‖Vm − V ‖L∞(U ;H1)

× exp
{
tC
[
‖V ‖L∞(U ;Hs) + ‖ψ‖2L∞((0,T )×U ;Hs) + ‖ψm‖2L∞((0,T )×Um;Hs)

]}
,

where we use the fact that q(t) is non-decreasing in t in the second inequality, and the

uniform right-hand-side in ξ gives the assertion. �

Under the condition ‖Vm−V ‖L∞(U ;H1) ≤ Cm−χ in Assumption 2.2, Lemma 3.2 tells that

ψm → ψ in L∞((0, T )× U ;H1(T)) as m → ∞. Recall that with the given linear functional

G, we are interested in computing E[G] which after the truncation is approximated by

Em[Gm] =
∫

Um

G(|ψm(t, ξ, ·)|2)dξ.

Its error is given as follows.

Lemma 3.3. Under Assumption 2.1 and Assumption 2.2, with G and Gm defined in (2.7),

we have the estimate

|E[G]− Em[Gm]| ≤ Cm−χ,

where C is independent of m.

Proof. By the definition (2.6), E[G] − Em[Gm] = lim
p→∞

Ep[Gp] − Em[Gm]. Note that when

p ≥ m, Ep[Gm] = Em[Gm], so we have

|E[G]− Em[Gm]| = lim
p→∞

|Ep[Gp − Gm]|. (3.10)

By the assumptions and Lemma 3.2, we have for all t ∈ [0, T ],

|Gp(t, ξ{1:p})− Gm(t, ξ)| ≤‖G‖H1(T)′‖|ψp(t, ξ{1:p}, ·)|2 − |ψm(t, ξ, ·)|2‖H1. (3.11)

With the estimates in Lemma 3.1 and Remark 5, we get by the triangle inequality and the

algebraic property of H1,

‖|ψp(t, ξ{1:p}, ·)|2 − |ψm(t, ξ, ·)|2‖H1 ≤ C‖ψp(t, ξ{1:p}, ·)− ψm(t, ξ, ·)‖H1.

Plugging it into (3.11) and then using triangle inequality and Lemma 3.2, we find

|Gp(t, ξ{1:p})− Gm(t, ξ)| ≤C‖ψp(t, ξ{1:p}, ·)− ψ(t, ξ, ·)‖H1 + C‖ψ(t, ξ, ·)− ψm(t, ξ, ·)‖H1

≤C(‖Vp − V ‖L∞(U ;H1) + ‖Vm − V ‖L∞(U ;H1)) ≤ C(m−χ + p−χ).

Note here C > 0 is uniform constant in ξ, p,m. Then, we find

|Ep[Gp − Gm]| ≤ Ep[|Gp − Gm|] ≤ C(m−χ + p−χ),

and so by (3.10) we have the assertion of the lemma. �
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3.3. Regularity in parametric space. As one key to determine the convergence of the

QMC method, we need the regularity of the solution in the parametric space. We now start

to estimate the mixed first derivatives of ψm with respect to ξj. In the following, we shall

denote

Γ := {ν = (ν1, . . . , νm) | νj = 0 or 1, j = 1, . . . , m}
with |ν| =∑m

j=1 νj, and the mixed first derivative reads

∂νψm = ∂ν1ξ1 . . . ∂
νm
ξm
ψm, ν ∈ Γ.

Lemma 3.4. Under Assumption 2.1, for any fixed T > 0, m > 0 and multi-index 0 6= ν ∈ Γ,

we have

‖∂νψm(t, ξ, ·)‖H1 ≤ 3(|ν|+2)(|ν|−1)/2C
2|ν|−1
T

m∏

j=1

(√
λj‖vj‖H1

)νj
, ∀ ξ ∈ Um, t ∈ [0, T ], (3.12)

where CT = max{C0
T , 1} with

C0
T :=2max{1, |α|}C0T max

{
1, ‖ψ‖L∞((0,T )×U ;Hs)

}

× exp
(
T max

{
1, C0

[
‖V ‖L∞(U ;Hs) + 3|α|‖ψ‖2L∞((0,T )×U ;Hs)

]})

for some generic constant C0 > 0 independent of ν and m.

Proof. We prove (3.12) by an induction on |ν|. When |ν| = 1, we differentiate (1.3) with

respect to ξj. By denoting ∂jψm = ∂ξjψm and ∂jVm = ∂ξjVm for short, we get for j =

1, . . . , m,

i∂t∂jψm = −1

2
∂2x∂jψm + ∂jVmψm + Vm∂jψm + α

(
2|ψm|2∂jψm + ψ2

m∂jψm
)
.

Omitting the spatial variable for brevity, the Duhamel formula of the above shows

∂jψm(t, ξ) =eit∂
2
x/2∂jψin − i

∫ t

0

ei(t−ρ)∂
2
x/2
[
∂jVm(ξ)ψm(ρ, ξ) + Vm(ξ)∂jψm(ρ, ξ)

+ α
(
2|ψm(ρ, ξ)|2∂jψm(ρ, ξ) + ψm(ρ, ξ)

2∂jψm(ρ, ξ)
) ]
dρ.

Since the initial function is deterministic, so ∂jψin = 0. Then we find

‖∂jψm(t, ξ)‖H1 ≤ C0

∫ t

0

[
‖∂jVm(ξ)‖H1‖ψm(ρ, ξ)‖H1 + ‖Vm(ξ)‖H1‖∂jψm(ρ, ξ)‖H1

+ 3|α|‖ψm(ρ, ξ)‖2H1‖∂jψm(ρ, ξ)‖H1

]
dρ,

with a generic constant C0 > 0 coming from the Sobolev embedding. By the fact ∂jVm =√
λjvj , and the boundedness

‖ψm(t, ξ)‖H1 ≤ ‖ψm‖L∞((0,T )×Um;H1) ≤ ‖ψ‖L∞((0,T )×U ;Hs), t ∈ [0, T ],

as stated in Remark 5, we further find for t ∈ [0, T ],

‖∂jψm(t, ξ)‖H1 ≤C0t
√
λj‖vj‖H1‖ψ‖L∞((0,T )×U ;Hs)

+ C0

[
‖V ‖L∞(U ;Hs) + 3|α|‖ψ‖2L∞((0,T )×U ;Hs)

] ∫ t

0

‖∂jψm(ρ, ξ)‖H1dρ.
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By Gronwall’s inequality, we get for t ∈ [0, T ], ξ ∈ Um,

‖∂jψm(t, ξ)‖H1

≤ exp
(
tC0

[
‖V ‖L∞(U ;Hs) + 3|α|‖ψ‖2L∞((0,T )×U ;Hs)

])
C0t‖ψ‖L∞((0,T )×U ;Hs)

√
λj‖vj‖H1 ,

which verifies (3.12) for |ν| = 1.

When |ν| ≥ 2, by the Leibniz rule we have

i∂t∂
νψm =− ∂2x

2
∂νψm +

∑

µ�ν

(
ν

µ

)
∂ν−µVm∂

µψm + α
∑

µ�ν

(
ν

µ

)
∂ν−µ|ψm|2∂µψm

=− ∂2x
2
∂νψm + Vm∂

νψm + α
(
2|ψm|2∂νψm + ψ2

m∂
νψm

)
+

∑

|ν−µ|=1,µ≺ν

∂ν−µVm∂
µψm

+ α
∑

06=µ≺ν

∑

η�ν−µ

∂ν−µ−ηψm∂
µψm∂

ηψm.

Here
(
ν
µ

)
=
∏m

j=1

(
νj
µj

)
. Similarly as before, we can deduce

‖∂νψm(t, ξ)‖H1

≤C0

∫ t

0

[
‖V ‖L∞(U ;Hs) + 3|α|‖ψ‖2L∞((0,T )×U ;Hs)

]
‖∂νψm(ρ, ξ)‖H1dρ

+ C0

∫ t

0

∑

|ν−µ|=1,µ≺ν

‖∂ν−µVm‖H1‖∂µψm(ρ, ξ)‖H1dρ

+ C0|α|
∫ t

0

∑

06=µ≺ν

∑

η�ν−µ

‖∂ν−µ−ηψm(ρ, ξ)‖H1‖∂µψm(ρ, ξ)‖H1‖∂ηψm(ρ, ξ)‖H1dρ.

By the Gronwall inequality, we have

‖∂νψm(t, ξ)‖H1 ≤C̃
[ ∑

|ν−µ|=1,µ≺ν

‖∂ν−µVm‖H1

∫ T

0

‖∂µψm(ρ, ξ)‖H1dρ (3.13)

+
∑

06=µ≺ν

∑

η�ν−µ

∫ T

0

‖∂ν−µ−ηψm(ρ, ξ)‖H1‖∂µψm(ρ, ξ)‖H1‖∂ηψm(ρ, ξ)‖H1dρ

]
,

with

C̃ = max{1, |α|}C0 exp
(
T max

{
1, C0

[
‖V ‖L∞(U ;Hs) + 3|α|‖ψ‖2L∞((0,T )×U ;Hs)

]})
.

For the first summation term above, noting that |µ| = |ν| − 1 and using an induction

argument with the assumption (3.12), we have

∑

|ν−µ|=1,µ≺ν

‖∂ν−µVm‖H1‖∂µψm(ρ, ξ)‖H1 ≤ |ν|3(|ν|+1)(|ν|−2)/2C
2|ν|−3
T

m∏

j=1

(√
λj‖vj‖H1

)νj
.

(3.14)
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On the other hand, for the double summation part in (3.13), by the induction assumption

(3.12) we find
∑

06=µ≺ν

∑

η�ν−µ

‖∂ν−µ−ηψm(ρ, ξ)‖H1‖∂µψm(ρ, ξ)‖H1‖∂ηψm(ρ, ξ)‖H1

≤
∑

06=µ≺ν

∑

η�ν−µ

C
2|ν|−2
T

m∏

j=1

(√
λj‖vj‖H1

)νj
3

|ν|2+|ν|−6

2
+|µ|2+|η|2−|ν||µ|−|ν||η|−|µ||η|,

and it is direct to check here that

|ν|2 + |ν| − 6

2
+ |µ|2 + |η|2 − |ν||µ| − |ν||η| − |µ||η| ≤ |ν|2 − |ν| − 2

2
.

So by noting that the double summation contains 3|ν| − 3 terms in total, we further get
∑

06=µ≺ν

∑

η≺ν−µ

‖∂ν−µ−ηψm(ρ, ξ)‖H1‖∂µψm(ρ, ξ)‖H1‖∂ηψm(ρ, ξ)‖H1

≤3|ν|C
2|ν|−2
T

m∏

j=1

(√
λj‖vj‖H1

)νj
3(|ν|+1)(|ν|−2)/2. (3.15)

By plugging (3.15) and (3.14) into (3.13), we obtain

‖∂νψm(t, ξ)‖H1 ≤C̃TC2|ν|−2
T 3(|ν|+1)(|ν|−2)/2

(
|ν|+ 3|ν|

) m∏

j=1

(√
λj‖vj‖H1

)νj
.

Further noting that C̃T ≤ C0
T/2 and |ν| < 3|ν|, we find

‖∂νψm(t, ξ)‖H1 ≤1

2
C

2|ν|−1
T 3(|ν|+1)(|ν|−2)/2

(
|ν|+ 3|ν|

) m∏

j=1

(√
λj‖vj‖H1

)νj

≤C2|ν|−1
T 3(|ν|+2)(|ν|−1)/2

m∏

j=1

(√
λj‖vj‖H1

)νj
.

�

With the established regularity of the solution in the parametric space, we can now

estimate the mixed derivative of the physical observable Gm(t, ξ) = G(|ψm(t, ξ, ·)|2) with

respect to ξ.

Lemma 3.5. Under Assumption 2.1, for any multi-index ν ∈ Γ with the constant Cν :=

2|ν|C
2|ν|−1
T 3(|ν|+2)(|ν|−1)/2, we have

|∂νGm(t, ξ)| ≤ C0Cν

m∏

j=1

(√
λj‖vj‖H1

)νj
‖G‖H1(T)′ , ∀ ξ ∈ Um, t ∈ [0, T ]. (3.16)

Proof. For any ξ ∈ Um and t ∈ [0, T ], we have

|∂νGm(t, ξ)| = |G
(
∂ν |ψm|2

)
| ≤ ‖G‖H1(T)′‖∂ν |ψm|2‖H1(T).



QUASI-MONTE CARLO FOR NLS WITH RANDOM POTENTIALS 15

By the algebraic property of H1 and Lemma 3.4, we find

|∂νGm(t, ξ)| ≤ ‖G‖H1(T)′

∑

µ�ν

C0

∥∥∂ν−µψm
∥∥
H1 ‖∂µψm‖H1

≤ C0Cν‖G‖H1(T)′

m∏

j=1

(√
λj‖vj‖H1

)νj
.

�

3.4. Analysis of the QMC integration error. With the preparation before, we now

specify the QMC method, i.e., the quadrature points in (2.9), and then we shall derive its

error bound on the PDE level.

We adopt the weighted Sobolev space technique [37, 47] here. Consider the weighted

and unanchored Sobolev space Wm,γ := {F (ξ) : Um → R | ‖F‖Wm,γ
<∞} with the norm

‖F‖Wm,γ
:=


∑

ν∈Γ

γ−1
ν

∫

U|ν|

(∫

Um−|ν|

∂νF (ξ)dξ†ν

)2

dξν



1/2

, (3.17)

where by the notation, ξ is split into the active part ξν for differentiations and the inactive

part ξ†ν , i.e., ξν consists of ξj with j such that νj = 1 and ξ†ν consists of ξk with k such that

νk = 0. The notation γν denotes the product-type weight, i.e., γν = Πνj=1γj with γ0{1:m}
= 1,

which will be chosen later, and γ := {γν | ν ∈ Γ}. With the chosen γj (j = 1, . . . , m) and

the following worst-case error function

ewts (z) := −1 +
1

N

N∑

p=1

s∏

j=1

[1 + γjB (frac(pzj/N))] , z = (z1, . . . , zs), 1 ≤ s ≤ m,

where B(x) = −1/(2π2)
∑

l∈Z\{0} e
2πilx/l2 is the Bernoulli polynomial, the generating vector

z in (2.9) is computed by the CBC algorithm [12]. That is to set z1 = 1, and then determine

each zs for s = 2, . . . , m in a sequel by minimizing ewts (z) for zs ∈ UN = {x ∈ Z | 1 ≤
x ≤ N − 1, gcd(x,N) = 1}. An explicit error bound of the QMC with such constructed

quadrature points can be established (see e.g., [36]). Here let us quote it as the following

lemma.

Lemma 3.6. ([36, Theorem 4.1]) With fixed m, N, γ and some F (ξ) ∈ Wm,γ, the QMC

method (2.9) given by the CBC algorithm satisfies

√
E∆ [|Em(F )−Qm,N [F ]|2] ≤


 ∑

ν∈Γ\0{1:m}

γλν

(
2ζ(2λ)

(2π2)λ

)|ν|



1/(2λ)

ϕ(N)−1/(2λ)‖F‖Wm,γ
,

(3.18)

for any λ ∈ (1
2
, 1]. Here ϕ(N) = |UN | is the Euler totient function and ζ(·) is the Riemann

zeta function.

The possible choice of the weight γ to provide the optimal convergence rate for the QMC

is specified in the following lemma.
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Lemma 3.7. With fixed m ∈ N+ and N ≤ 1030, choose λ = 1/(2− 2δ) for any δ ∈ (0, 1/2).

Then under Assumption 2.1 and Assumption 2.2, a QMC method (2.9) can be constructed

by the CBC algorithm which satisfies
√
E∆ [|Em[Gm](t)−Qm,N [Gm](t)|2] ≤ CN δ−1, t ∈ [0, T ], (3.19)

where C > 0 is some constant independent of m.

Proof. It is direct to compute from the definition of the weighted norm (3.17) and Lemma

3.5 that

‖Gm(t, ·)‖Wm,γ
=


∑

ν∈Γ

γ−1
ν

∫

U|ν|

(∫

Um−|ν|

∂νGm(t, ξ)dξ†ν

)2

dξν



1/2

≤C0‖G‖H1(D)′

[∑

ν∈Γ

γ−1
ν C2

ν

m∏

j=1

λ
νj
j ‖vj‖

2νj
H1

]1/2
.

Meanwhile, it is known that the Euler totient function satisfies 1/ϕ(N) ≤ 9/N for N ≤ 1030

[25]. Thus, by (3.18) and choosing λ = 1/(2− 2δ) we find
√
E∆ [|Em[Gm](t)−Qm,N [Gm](t)|2] ≤ 9CγC0‖G‖H1(T)′N

δ−1,

with

Cγ =

[∑

ν∈Γ

γ−1
ν C2

ν

m∏

j=1

λ
νj
j ‖vj‖

2νj
H1

]1/2 [∑

ν∈Γ

γλν

(
2ζ(2λ)

(2π2)λ

)|ν|
]1/(2λ)

.

Denote bj =
√
λj‖vj‖H1 and ρ(λ) = 2ζ(2λ)/(2π2)λ for simplicity. Now we take

γν =

[
Cν

m∏

j=1

b
νj
j

ρ(λ)νj/2

]2/(1+λ)
,

and it is direct to deduce that Cγ = (Aλ)
λ+1
2λ with

Aλ =
∑

ν∈Γ

C2λ/(1+λ)
ν

m∏

j=1

[
b
2λνj
j ρ(λ)νj

]1/(1+λ)
.

It remains to show that Aλ is bounded ∀ν ∈ Γ, m ∈ N.

By the constant Cν from Lemma 3.5 and using Hölder’s inequality, we find

Aλ ≤
∑

ν∈Γ

[
3|ν|

2+|ν|−1/2
m∏

j=1

α
νj
j

]2λ/(1+λ) m∏

j=1

[
(2C2

T )
2λb2λj ρ(λ)

α2λ
j

]νj/(1+λ)

≤
(∑

ν∈Γ

m∏

j=1

3νjsjα
νj
j

)2λ/(1+λ)

∑

ν∈Γ

m∏

j=1

[
(2C2

T )
2λb2λj ρ(λ)

α2λ
j

]νj/(1−λ)


(1−λ)/(1+λ)

,
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where sj :=
∑j

l=1 νl and αj > 0 is chosen as follows. Note the fact that
∑

ν∈Γ

∏m
j=1 β

νj
j ≤

exp(
∑

j≥1 βj) holds for any m ≥ 1 and any βj > 0 with
∑

j≥1 βj < ∞ (see [37]), then we

have: ∀ν ∈ Γ, m ∈ N,

Aλ ≤ exp

(
2λ

1 + λ

∑

j≥1

3jαj

)
exp


1− λ

1 + λ

∑

j≥1

[
(2C2

T )
2λb2λj ρ(λ)

α2λ
j

]1/(1−λ)
 =: Amax.

By taking αj =
√
bj/3j and under Assumption 2.2, we have

∑
j≥1 3

jαj < 1. Moreover, with

λ ∈ (1
2
, 1] we have λ

1−λ
≥ 1 and so
∑

j≥1

(bj/αj)
2λ/(1−λ) =

∑

j≥1

(3jbj)
λ/(1−λ) <∞.

Thus, we find the upper bound Amax is finite. �

Proposition 3.8. Under the same assumption of Lemma 3.7, there exists a constant C > 0

independent of m such that
√

E∆
[
|E[G](t)−Qm,N [Gm](t)|2

]
≤ C(m−χ +N δ−1), t ∈ [0, T ], (3.20)

for any δ ∈ (0, 1/2).

Proof. Firstly, by triangle inequality we have

|E[G](t)−Qm,N [Gm](t)| ≤ |E[G](t)− Em[Gm]|+ |Em[Gm]−Qm,N [Gm](t)|.
The first part of right-hand-side is independent of the random shift ∆, so

E∆
[
|E[G](t)−Qm,N [Gm](t)|2

]
≤2 |E[G](t)− Em[Gm](t)|2

+ 2E∆
[
|Em[Gm](t)−Qm,N [Gm](t)|2

]
.

Then by Lemma 3.3 and Lemma 3.7, we obtain the result. �

Remark 6. We remark the choice of the weight γ and the error constant given in our analysis

above may be far away from optimal. Our result theoretically serves to show the existence

of the randomly shifted QMC lattice rule that can converge at the desired almost-linear and

dimension-independent rate for solving the random NLS (1.3).

4. Error of the scheme

In this section, we continue the analysis to complete the full error estimate result given

in Section 2.3. To do so, we first carry out the error estimate of the TSFP scheme on the

truncated problem (2.2), which is stated as the following.

Proposition 4.1. Let ψnm be the numerical solution from the TSFP scheme (2.4) for solving

the truncated problem (2.2) till any fixed T > 0 with any m ∈ N. Under the same assumption

in Theorem 2.3, there exist constants τ0, h0 > 0 independent of m such that when τ ≤ τ0 and

h ≤ h0, the following error bound holds

‖IMψnm − ψm(tn, ξ, ·)‖H1 ≤ C(τ 2 + hs−1), ∀ 0 ≤ tn ≤ T, ξ ∈ Um,

for some constant C > 0 independent of ξ,m, τ and h.
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Proof. The proof largely follows the framework of analysis for the Strang splitting in [7, 39].

Here we shall go through it mainly to check the impact from the parametric space. Let us

omit the variables x, ξ and denote ψm(t) = ψm(t, ξ, x) for simplicity.

We begin with the estimate of the temporal truncation error. Denoting vn(ρ) :=

e
1
2
i∂2xρψm(tn) for short, by Taylor’s expansion we find

Ψp
τ ◦Ψk

τ
2
(ψm(tn)) =

[
1 + iτ(Vm + α|vn(τ/2)|2)− τ 2

2
(Vm + α|vn(τ/2)|2)2

]
vn(τ/2) + rn1 ,

where rn1 depends on Vm and vn. By Remark 5, we have ‖rn1‖H1 ≤ Cτ 3 with C depending

on the H1-norm of Vm, ψm. Then,

Ψk
τ
2
◦Ψp

τ ◦Ψk
τ
2
(ψm(tn)) =v

n(τ) + iτe
1
2
i∂2xτ/2

(
Vm + α|vn(τ/2)|2

)
vn(τ/2)

− τ 2

2

(
Vm + α|vn(τ/2)|2

)2
vn(τ/2) + rn2 , (4.1)

where

rn2 = ei∂
2
xτ/4rn1 +

∫ τ

0

i

4
∂2xe

i∂2xs/4
(
Vm + α|vn(τ/2)|2

)2
vn(τ/2)ds.

Under the assumption s ≥ 5, we have ‖rn2‖H1 ≤ Cτ 3 with C depending on the H3-norm of

Vm and ψm. On the other hand, by the Duhamel formula of (2.2), we have

ψm(tn+1) = e
1
2
iτ∂2xψm(tn) + i

∫ τ

0

gnτ (ρ)dρ, n ≥ 0, (4.2)

with gnτ (ρ) := e
1
2
i(τ−ρ)∂2x [Vm + α|ψm(tn + ρ)|2]ψm(tn + ρ). By plugging ψm(tn + ρ) = vn(ρ) +

i
∫ ρ
0
gnρ (s)ds into (4.2) we find

ψm(tn+1) =v
n(τ) + i

∫ τ

0

e
1
2
i(τ−ρ)∂2x

[
Vm + α|vn(ρ)|2

]
vn(ρ)dρ

+ i

∫ τ

0

e
1
2
i(τ−ρ)∂2x

∫ ρ

0

[
i(Vm + 2α|vn(ρ)|2)gnρ (s)− iαvn(ρ)2gnρ (s)

]
dsdρ+ rn3 ,

where clearly ‖rn3‖H1 ≤ Cτ 3 with C depending on the H1-norm of Vm, ψm. Note gnρ (s) =

[Vm + α|vn(ρ)|2]vn(ρ) +O(τ∂2x) for 0 ≤ s ≤ ρ ≤ τ , we further get

ψm(tn+1) =v
n(τ) + i

∫ τ

0

e
1
2
i(τ−ρ)∂2x

[
Vm + α|vn(ρ)|2

]
vn(ρ)dρ

−
∫ τ

0

ρ(Vm + α|vn(ρ)|2)2vn(ρ)dρ+ rn3 + rn4 ,

where ‖rn4‖H1 ≤ Cτ 3 with C depending on the H3-norm of Vm, ψm. Subtracting the above

from (4.1) and then using the quadrature error formula of the midpoint rule, we find

‖ψm(tn+1)−Ψk
τ
2
◦Ψp

τ ◦Ψk
τ
2
(ψm(tn))‖H1

≤‖rn2‖H1 + ‖rn3‖H1 + ‖rn4‖H1 + τ 3
∫ 1

0

κ(θ)‖f ′′(θτ)‖H1dθ,

where κ(θ) is the Peano kernel of the midpoint rule and

f(ρ) := ie
1
2
i(τ−ρ)∂2x

[
Vm + α|vn(ρ)|2

]
vn(ρ)− ρ(Vm + α|vn(ρ)|2)2vn(ρ).
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Therefore, we find in total

‖ψm(tn+1)−Ψk
τ
2
◦Ψp

τ ◦Ψk
τ
2
(ψm(tn))‖H1 ≤ Cτ 3, 0 ≤ n < T/τ, (4.3)

with C depending on the H5-norm of Vm, ψm. By the uniform bounds of Vm and ψm in Hs

with s ≥ 5 from the assumption and the result of Lemma 3.1 and Remark 5, we find the

error constant C > 0 in (4.3) is eventually a constant depending only on ‖ψ‖L∞((0,T )×U ;Hs)

and ‖V ‖L∞(U ;Hs).

Next, by the triangle inequality and the projection error (denote by PM the projection

operator to cutoff the Fourier modes of a function larger than M/2) [50], we find

‖IMψn+1
m − ψm(tn+1)‖H1 ≤ ‖IMψn+1

m − PMψm(tn+1)‖H1 + Chs−1,

with C here depends only on ‖ψm‖L∞((0,T )×Um;Hs) and so only on ‖ψ‖L∞((0,T )×U ;Hs). Noting

that IMψ
n+1
m = Ψk

τ
2
◦ IM [Ψp

τ ◦Ψk
τ
2
(IMψ

n
m)] and Ψk

τ
2
is isometric in H1, we find by the triangle

inequality and (4.3),

‖IMψn+1
m − PMψm(tn+1)‖H1 ≤ ‖IMΨp

τ ◦Ψk
τ
2
(IMψ

n
m)− PMΨp

τ ◦Ψk
τ
2
(ψm(tn))‖H1 + Cτ 3. (4.4)

Then by an induction on the boundedness of IMψ
n
m in H1-space and the difference between

the flows, we find with some C depending only on ‖ψ‖L∞((0,T )×U ;Hs) and ‖V ‖L∞(U ;Hs),

∥∥∥IMΨp
τ ◦Ψk

τ
2
(IMψ

n
m)− PMΨp

τ ◦Ψk
τ
2
(ψm(tn))

∥∥∥
H1

≤‖IMψnm − PMψm(tn)‖H1 + Cτ‖IMψnm − PMψm(tn)‖H1 + Cτhs−1.

Plugging it into (4.4), summing the inequalities up till n = 0 and noting IMψ
0
m = IMψm(0),

the Gronwall inequality gives

‖IMψn+1
m − ψm(tn+1)‖H1 ≤ C(τ 2 + hs−1),

for some C depending only on T, ‖ψ‖L∞((0,T )×U ;Hs) and ‖V ‖L∞(U ;Hs). Thus, there exist

constants τ0, h0 > 0 uniformly in m such that for τ ≤ τ0 and h ≤ h0, ‖IMψn+1
m ‖H1 ≤

‖ψ‖L∞((0,T )×U ;Hs) + 1 for all tn+1 ≤ T . �

With all the obtained results so far, we are now ready to get the full error bound stated

in our main theorem in Section 2.3 for the QMC-TSFP scheme (2.4). The proof is given as

follows.

Proof of the Theorem 2.3: By the triangle inequality, we have

E∆
[∣∣E[G](tn)−Qm,N [G(|IMψnm|2)]

∣∣2
]

≤2E∆
[
|E[G](tn)−Qm,N [Gm](tn)|2

]
+ 2E∆

[∣∣Qm,N [G(|IMψnm|2)]−Qm,N [Gm](tn)
∣∣2
]

≤C(m−χ +N δ−1)2 + 2E∆
[∣∣Qm,N [G(|IMψnm(ξ, ·)|2)−G(|ψm(tn, ξ, ·)|2)]

∣∣2
]
, (4.5)
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where we used Proposition 3.8. By (2.8) and Assumption 2.1, we find

E∆
[∣∣Qm,N [G(|IMψnm(ξ, ·)|2)−G(|ψm(tn, ξ, ·)|2)]

∣∣]

≤ sup
ξ∈Um

∣∣G(|IMψnm(ξ, ·)|2)−G(|ψm(tn, ξ, ·)|2)
∣∣

≤‖G‖H1(D)′ sup
ξ∈Um

∥∥|IMψnm(ξ, ·)|2 − |ψm(tn, ξ, ·)|2
∥∥
H1 .

Then, by the error estimate in Proposition 4.1 which is uniform in ξ and m, we plug the

above into (4.5) to get
√

E∆

[∣∣∣E[G](tn)−Qm,N [G(|IMψnm|2)]
∣∣∣
2
]
≤ C(τ 2 + hs−1 +m−χ +N δ−1), tn ∈ [0, T ],

for some constant C > 0 independent of m. This completes the proof. �

5. Numerical examples

In this section, we carry out numerical experiments for the QMC-TSFP scheme. We

shall test its accuracy in the random space, physical space and time to verify the theoretical

result. The generating vector (2.9) for QMC is constructed by the code in [34] (see also [35]).

Some simulations on the wave propagation are provided in the end.

5.1. Convergence test.

Example 5.1 (Convergence in random space). Consider (2.2) with α = 1,T = [−π, π], the
initial data ψin(x) =

√
8/π exp(−8x2) and the random potential

Vm(ξ, x) = 1 +

m∑

j=1

1

j2
ξj cos(jx), (5.1)

where {ξj} are i.i.d. uniformly distributed random variables on [−1, 1]. Firstly, we test and

compare the performance of the Monte Carlo (MC) method and the QMC method. One set

of the numerical solutions are computed by TSFP combined with MC under τ = 10−4, h = π
64

and NMC samples {ξ(p)MC : p = 1, . . . , NMC}. The other set of solutions are computed by QMC-

TSFP under τ = 10−4, h = π
64

and RNQMC samples {ξ(r,p)QMC : r = 1, . . . , R, p = 1, . . . , NQMC},
where R is the number of shifts and NQMC is the number of samples for each shift. To have

a fair comparison between these two methods, we set Ntot = NMC = RNQMC. We choose

R = 10 and NQMC = 210, 211, . . . , 216. The final time is fixed as tn = T = 1.

For m, we consider two choices: m = 6 and m = 16. For m = 6, we compute the

reference solution using TSFP combined with the multidimensional stochastic collocation

method [6] with τ = 10−4, h = π
64

and 15 Gauss-Legendre points in each of the m dimensions

of ξ. We consider the L2 relative error of the expectation of the density

L2 relative error =
‖Enum[|ψnum(x)|2]− Eref[|ψref(x)|2]‖L2

‖Eref[|ψref(x)|2]‖L2

, (5.2)
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Figure 1. Convergence of QMC-TSFP in random space.

where for the MC method

Enum[|ψnum(x)|2] =
1

NMC

NMC∑

p=1

|IMψnm(ξ
(p)
MC, x)|2, (5.3)

and for the QMC method

Enum[|ψnum(x)|2] =
1

RNQMC

R∑

r=1

NQMC∑

p=1

|IMψnm(ξ
(r,p)
QMC, x)|2, (5.4)

with n = T/τ and M = 2π/h. The result for m = 6 is shown in Figure 1a. For m = 16, a

reference solution is not easy to obtain. Here we consider a physical observable given by the

following functional G:

G(|ψ(t, ξ, x)|2) =
∫

T

|x|2|ψ(t, ξ, x)|2dx. (5.5)

Note that G(|ψ|2) is the second spatial moment of the density function |ψ|2, which is im-

portant in checking the localization phenomenon (see also Example 5.3). For both MC and

QMC, we consider the root-mean-square (RMS) error

RMS :=

√
E∆

[∣∣∣E[G](tn)−Qm,N [G(|IMψnm|2)]
∣∣∣
2
]
.

As given in [12], an unbiased estimator of the RMS for MC reads

RMS ≈

√√√√ 1

NMC(NMC − 1)

NMC∑

p=1

(
G(|IMψnm(ξ

(p)
MC)|2)−QMC

m,NMC
[G(|IMψnm|2)]

)2
, (5.6)
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Figure 2. Convergence of QMC-TSFP in time and physical space.

where QMC
m,NMC

[G(|IMψnm|2)] =
∑NMC

p=1 G(|IMψnm(ξ
(p)
MC)|2), and the one for QMC reads

RMS ≈

√√√√ 1

R(R− 1)

R∑

r=1

(
Q

(r)
n,NQMC

[G(|IMψnm|2)]−Qm,NQMC,R
[G(|IMψnm|2)]

)2
, (5.7)

where Q
(r)
n,NQMC

and Qm,NQMC,R
are defined in (2.10) and (2.11) respectively. The result for

m = 16 is shown in Figure 1b.

From the results in Figure 1, we observe approximately O(N
−1/2
tot ) convergence for MC

and approximately O(N−1
tot ) convergence for QMC. We remark that the decaying rate of the

potential (5.1) in this example is in fact weaker than what is imposed in Assumption 2.2.

The almost-linear convergence rate of QMC is still observed, and this indicates that the

condition on the potential for analysis might be relieved.

Example 5.2 (Convergence in time & physical space). Next, we test the accuracy of QMC-

TSFP in time and physical space by considering the same setting in Example 5.1 with m = 6,

where the reference solution is obtained as before. To investigate the convergence in time,

we fix R = 10, NQMC = 220, h = π
64

in QMC-TSFP and compute the numerical solution by

τ = 1
40
, 1
80
, 1
160
, 1
320

. For the convergence in space, we fix R = 10, NQMC = 220, τ = 10−4

and take h = π
4
, π
8
, π
16
, π
32
. We still consider the L2 relative error (5.2) at tn = 1. Temporal

convergence is shown in Figure 2a, and spatial convergence is shown in Figure 2b. Clearly

from Figure 2, we can observe the second-order convergence rate in time and the exponential

convergence rate in space.

5.2. Simulation of wave propagation.

Example 5.3. Consider (2.2) with α > 0,T = [−6π, 6π], ψin(x) = 1/
√
π exp(−x2) and

Vm(ξ, x) = 1 + σ

32∑

j=1

1

j
3
2

ξj cos(jx), (5.8)
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Figure 3. Simulation of wave propagation in random NLS with α = 1.
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Figure 4. Sample variances of G(|ψ(t, ξ, x)|2) with α = 1.

with {ξj} the i.i.d. random variables uniformly distributed on [−1, 1] and σ ≥ 0 denoting the

intensity of the randomness. Here the NLS (2.2) is equipped with a defocusing nonlinearity

and the initial density function is exponentially localized in the physical domain. We solve

(2.2) to simulate the wave propagations till the time tn = T = 10 by using the QMC-

TSFP method with R = 10, NQMC = 216, τ = 1
400

and h = 3π
256

. The physical observable

G(|ψ(t, ξ, x)|2) in (5.5) is now considered to measure the spreading of the density function in

the physical space at time t ∈ [0, T ], and the expectation of G(|ψ(t, ξ, x)|2) is approximated

by

E[G](t) ≈ A(t) := Qm,NQMC,R
[G(|IMψnm|2)](t)

with Qm,NQMC,R
in (2.11).
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Figure 5. Sample variances of |ψ(T, ξ, x)|2 with α = 1.
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Figure 6. Simulation of wave propagation in random NLS with σ = 4.
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Figure 7. Sample variances of G(|ψ(t, ξ, x)|2) with σ = 4.

Fixing α = 1, the temporal behaviour of A(t) is shown in Figure 3a for different σ, and

the quantity

Ψ(x) :=
1

RN

R∑

r=1

N∑

p=1

|IMψnm(ξ(r,p), x)|2,
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Figure 8. Sample variances of |ψ(T, ξ, x)|2 with σ = 4.

which approximates the expectation of the density |ψ(T, ξ, x)|2 at the final time T = 10, is

shown in Figure 3b. In addition, the sample variances of the physical observableG(|ψ(t, ξ, x)|2)
and the density |ψ(T, ξ, x)|2 at the final time T = 10 are shown in Figures 4 and 5, respec-

tively. In this case, we observe pure diffusion when randomness is absent in the potential

(5.8), and we observe localization of the expected density function within the computational

time when randomness presents in the potential (5.8). When the randomness intensity σ

increases, the profile becomes more localized. By fixing σ = 4 in (2.2), the corresponding

results for different α are provided in Figures 6, 7 and 8. In this case, the profile of the

expected density expands more as α becomes larger. This shows the defocusing nonlinear

effect on the wave propagation.

6. Conclusion

We proposed to combine the randomly shifted QMC lattice rule with the time-splitting

Fourier pseudospectral method for solving the nonlinear Schrödinger equation with random

potential. We analysed the convergence in random space by using the technique of the

weighted Sobolev space. The nonlinearity in the equation introduces difficulties in estimating

the parametric regularity of the solution, and the physical observable considered here is

typically a nonlinear functional of the solution. We propose sufficient conditions to show

the existence of a QMC rule that can achieve the almost-linear and dimension-independent

convergence rate for the expected value of the physical observable. The full error estimate

of the scheme is established which also covers the convergence in time and in the physical

space. Numerical examples are presented to verify the theoretical result and simulations are

done to investigate the wave propagation in the random NLS.
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Appendix A. Some useful tools for studying NLS

To study the regularity of the solution of (1.3) in the physical space and analyze the

error resulting from dimension truncation, we need two useful tools introduced in [51]. We

briefly review these two tools in this section.

The bootstrap-type argument. The bootstrap-type argument is an application of the

bootstrap principle or the continuity method, which can be viewed as a continuous analogue

of the principle of mathematical induction. The abstract bootstrap principle works in the

following way.

Proposition A.1. Let I be a time interval, and for each t ∈ I suppose we have two state-

ments, a “hypothesis” H(t) and a “conclusion” C(t). Suppose we can verify the following

four assertions:

(a) (Hypothesis implies conclusion) If H(t) is true for some time t ∈ I, then C(t) is also

true for for that time t.

(b) (Conclusion is stronger than hypothesis) If C(t) is true for some t ∈ I, then H(t′) is

true for all t′ ∈ I in a neighbourhood of t.

(c) (Conclusion is closed) If t1, t2, . . . is a sequence of times in I which converges to another

time t ∈ I, and C(tn) is true for all tn, then C(t) is true.

(d) (Base case) H(t) is true for at least one time t ∈ I.

Then C(t) is true for all t ∈ I.

The proof of this proposition can be found in [51, Chapter 1.3]. Moreover, for an illus-

tration of how the bootstrap-type argument is applied to proving the local well-posedness of

NLS, we refer readers to the proof of Proposition 3.8 in [51].

The product lemma. As a useful tool from harmonic analysis, the product lemma reads

as follows:

Lemma A.2. For all f, g ∈ Hs(T) with s ≥ 1, we have

‖fg‖Hs(T) ≤ Cs
(
‖f‖Hs(T)‖g‖L∞(T) + ‖f‖L∞(T)‖g‖Hs(T)

)
, (A.1)

where Cs > 0 is a constant dependent on s.

Proof. Let T = (0, 2π) for simplicity, and the Fourier expansion reads f(x) =
∑

l∈Z f̂le
ilx

where f̂l denotes the Fourier coefficient. For some l ∈ Z, we consider

(1 + l2)s/2|(̂fg)l| = (1 + l2)s/2

∣∣∣∣∣
∑

l1+l2=l

f̂l1 ĝl2

∣∣∣∣∣ ≤
∑

l1+l2=l

[
1 + (l1 + l2)

2
]s/2 |f̂l1 ĝl2|.

It is direct to check that
[
1 + (l1 + l2)

2
]s/2 ≤ 2s/2

[√
1 + l1

2 +
√
1 + l2

2
]s

≤ Cs
[
(1 + l1

2)s/2 + (1 + l2
2)s/2

]
,
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where the last inequality used the convexity of the function xs for x > 0, s ≥ 1. In the

following, the constant Cs > 0 may be different at each occurrence. Combining the above,

we deduce (1 + l2)s/2|(̂fg)l| ≤ Cs
∑

l1+l2=l
(1 + l21)

s/2|f̂l1 ĝl2 |+Cs
∑

l1+l2=l
(1 + l22)

s/2|f̂l1 ĝl2 |. By
taking the square, we find

(1 + l2)s|(̂fg)l|2 ≤ Cs
∑

l1+l2=l

(1 + l21)
s|f̂l1 ĝl2 |2 + Cs

∑

l1+l2=l

(1 + l22)
s|f̂l1 ĝl2|2.

By Parseval’s identity and note ‖fg‖2Hs =
∑

l∈Z(1 + l2)s|(̂fg)l|2, we get

‖fg‖2Hs ≤ Cs(‖f‖2Hs‖g‖2L2 + ‖g‖2Hs‖f‖2L2).

The assertion of the lemma is obtained by noting ‖f‖L2 ≤ C‖f‖L∞ and Sobolev’s embedding

‖f‖L∞ ≤ Cs‖f‖Hs. For more general statement of product lemma, see e.g., [51]. �
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