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Abstract
Ensemble Kalman filter (EnKF) has been widely used in parameter estimation of the dy-
namic models. When the forward model is computationally intensive, such as nonlinear
parameterized partial differential equations (PDEs), a direct application of EnKF forecast
with full order model would be computationally prohibitive. For nonlinear parameterized
PDEs, constructing an accurate reduced order model (ROM) has always been a challenging
problem. As a ROM technique, dynamic mode decomposition (DMD) has gained signifi-
cant popularity. However, it is an efficient data-driven method for ROM of time-dependent
problems and has the limitation for the parameterized problems. In this paper, a new ROM
is proposed based on DMD coupled with the weighted & interpolated nearest-neighbors al-
gorithm (wiNN). The wiNN can approximate the solution for any given parameter value
by choosing and computing the weighted average of the n nearest DMD solutions. This
extends the applicability of DMD to parameterized problems. The weights are obtained by
the distances between the given parameter and training parameters. Moreover, a low rank
approximation of Kalman gain is used to EnKF and avoid explicitly computing the second-
order derivative of the forward model. This can accelerate the EnKF update. We apply the
proposed method to nonlinear parameterized PDEs for the two-dimensional fluid flow and
investigate their Bayesian inverse problems. The results are presented to show the appli-
cability and efficiency of the proposed EnKF with DMD-wiNN method by taking account
of parameters in nonlinear diffusion functions, nonlinear reaction functions and source func-
tions. For the predictive ability, the EnKF based on DMD-wiNN outperforms that based on
FEM and gPC.
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1. Introduction

Many complex real-world models in science and engineering, such as optimization, con-
trol, or uncertainty quantification, are commonly simulated by parametric partial differential
equations (PDEs). These parameters can originate from physical properties, geometric con-
figurations, initial or boundary conditions, among others, and may be full of uncertainty
due to the incomplete knowledge. The uncertainties propagate through the model and this
can significantly affect the prediction of the model. Thus efficient and effective parameter
estimation in complex dynamic systems is an important task. Measurement data is often
necessary for the estimation problem. In general, the data is noisy and limited. They may
be obtained by measuring a function of the system response. This leads to inverse problems.
To circumvent the ill-posedness of inverse problems, the Bayesian regularisation method
[38, 37] is often used and it combines the prior knowledge with given measurement data.
In the paper, the parameter estimation problem is considered in time-dependent nonlinear
diffusion-reaction models.

In general, the Bayesian inference is often applied to solve the inverse problems. The
Bayesian methods incorporate uncertainties in incomplete measurement data and prior in-
formation, and then give the posterior distribution of unknowns. The most often used
approach is a Markov chain Monte Carlo (MCMC) method [11]. It requires costly computa-
tion to achieve a good convergence and the samples may be not independent. To accelerate
the MCMC method, the stochastic spectral methods have been proposed in [25, 46]. The
unknowns are expanded based on the prior information by the polynomial choas [41] or
Karhunen-Loève [26] expansion. Ensemble method is another Bayesian approach. In the
ensemble method, the posterior mean and covariance matrix are approximated by ensemble
mean and ensemble covariance, respectively. Ensemble methods, such as ensemble Kalman
filter (EnKF) [9, 2] and ensemble smoother (ES) [40], are proposed not only for data assim-
ilation, but also for the estimation of unknowns. The EnKF method based on polynomial
chaos expansion (PCE) has been proposed in [33]. However, the number of stochastic basis
functions grows with an exponential rate as the dimension of unknowns increases. To reduce
the number of polynomial basis functions, the generalized polynomial chaos based stochastic
collocation methods have been proposed in [21, 20, 47]. This method uses a few number of
samples and reduces the expensive computation of solving the forward model. For deriving
a linear Bayesian update for the estimation of parameter and state, a sampling-free method
is proposed in [32, 29]. It adopts the Bayesian update of the PCE based on the prior infor-
mation to a posterior distribution without any sampling. This is a direct algebraic way and
only the coefficients obtained by PCE are estimated. The original KF [17] is shown to be the
low-order part of the sampling-free methods. The above sampling-free methods are obtained
by PCE. Due to the exponential increasing of PCE terms as the dimension of unknowns in-
creases, a large number of coefficients need to be estimated in the sampling-free method. To
elimilate the issue of high dimensionality, a variable-separation method for solving Bayesian
inverse problems is proposed in [28, 3]. The stochastic basis functions are derived from the
model and can represent the model in a compact form. However, the compact form for the
nonlinear PDEs may be difficult to build.

Repeatedly calculating the forward problems for each sample is inevitable and time-
consuming in ensemble methods. Traditional full-order techniques, such as finite element
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or finite volume methods, are often too computationally expensive, especially when dealing
with nonlinear, multiphysics, and time-dependent phenomena. To overcome these chal-
lenges, many model order reduction (MOR, [13, 31, 27]) have been proposed to reduce the
computation complexity and improve computation efficiency. These methods construct an
approximate model with lower dimensionality but still describes important aspects of the
original model. The projection-based method [5, 15, 7, 8] is one of the model order reduc-
tion methods, arising from the ffeld of structure mechanics, fluid dynamics. The success of
these methods relies on the assumption that the solution manifold can be embedded in a low-
dimensional space. However, the important class of problems given by parametric dynamical
systems usually induce rough solution manifold with slowly decaying Kolmogorov n-widths.
This implies that traditional MOR methods are generally not effective. In this contribu-
tion, we try to combine dynamic mode decomposition with the weighted & interpolated
nearest-neighbors algorithm (wiNN) to construct an efficient and reliable approximation of
input-output relationship (i.e. surrogate model) for parametric dynamical systems defined
on complex geometries.

Over the past decade, the dynamic mode decomposition (DMD) method has gained sig-
nificant popularity as a reduced-order modeling technique. Originally introduced by Schmid
in the field of fluid dynamics [36], the DMD method has quickly become a standard algo-
rithm for approximating the Koopman operator [19] from data. Rowley et al. established
the initial connection between the DMD method [39, 18, 42, 43, 30] and the Koopman oper-
ator. Koopman operator is an infinite dimensional linear operator acting on the observation
function space. The spectral decomposition of the Koopman can capture linear systems
in the observation function space. For numerical computation, it is necessary to approxi-
mate the Koopman operator in a finite dimensional subspace. DMD is used to approximate
Koopman eigenvalues and eigenvectors in the subspace are spanned by a set of observation
functions. DMD [36] describes the dynamical system in an equation-free manner and can be
used for prediction and control. DMD is a spatio-temporal matrix decomposition method
that connects spatial dimensionality-reduction technology (POD) and Fourier transforms in
time. In the standard DMD method [36], identity functions are used as a finite dimensional
set of observation functions for approximate the Koopman operator. The DMD mode cal-
culated using standard DMD is a projection approximation. Tu et al. [39] proposed that
the exact DMD method can obtain accurate DMD modes. Williams et al. [42] developed
the extended dynamic mode decomposition (EDMD) method by applying the Koopman op-
erator to a given dictionary of observation functions. When these dictionary functions are
sufficiently rich, the matrix obtained by EDMD converges to the Koopman operator [19]. In
addition, there are a number of DMD variant methods, such as sparsity promoting DMD
[16], compressed DMD [4], Hankel-DMD [1] and so on. The DMD method has proven to
be highly efficient in analyzing and extracting coherent structures from dynamic systems.
For dynamical systems with random parameters, combining K-nearest-neighbors regression
[12] or parametric interpolation [14, 22] with DMD, and including the stacked parametric
dynamic mode decomposition method [35].

In this work, we aim to apply DMD to reduce computational costs of solving forward
models while accurately capturing the most important features of the original parametric
system. Huhn et al.[14] analyzed the stacked-snapshots approach and proposed two new
methods based on the interpolation of the Koopman eigen-pair and the components of the
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reduced Koopman operator matrix. It shows that the reduced Koopman operator interpo-
lation method is more applicable to actual models. To this end, we propose a more general
method to predict the reduced DMD matrix and SVD-modes for a given parameter value.
To improve computation efficiency, we combine DMD with wiNN ([6, 44]), and develop a
new model reduction method. The whole computation consists of an offline stage and an
online stage. The online stage has high computational efficiency and its computational cost
is completely independent of spatial discretization. In the offline stage, we firstly solve pa-
rameterized equations for each parameter in training set to generate the snapshots and get
the data matrixes. Then singular value decomposition (SVD) is performed to get the reduced
operator matrixes, and the wiNN is adopted to construct the efficient surrogate models of the
reduced operator matrixes (including reduced Koopman operator matix, SVD-modes). In
the online stage, for each parameter, we just perform operations on low-dimensional matrixes
to obtain the efficient surrogate model. Besides, to handle problems with complex geome-
tries or evolving boundaries without relying on a predefined mesh, some meshless methods
are considered. Meshless methods, including radial basis function-based approaches, share
the common feature of approximating or interpolating solutions using dispersed nodes or
particles, without explicitly defining connectivity between them. Radial basis functions, in
particular, have attracted attention due to their inherent meshless nature and their ability to
achieve spectral accuracy when interpolating or approximating solutions at dispersed nodes.
By combining the radial basis functions with the scattered node set, radial basis function-
based methods provide a powerful tool for solving problems with complex geometries. The
dispersed nodes can be placed directly on the boundary or within the domain, and the radial
basis functions allow the solution to be accurately interpolated or approximated throughout
the entire computational domain.

To the end, a low rank EnKF using DMD-wiNN model is proposed to take care of the
challenges and concerns mentioned above. Inference of model parameters is one step in most
uncertainty quantifications often ending in predictions that support decision in the form
of design or control. Thus, we also focus on the predictive ability of DMD for nonlinear
parametrized PDEs within the training time region and outside of the training time region.
The wiNN method is used to extend the applications of DMD to parametrized PDEs. In
DMD-wiNN, DMD is applied to predict the outputs of PDEs for the training parameter set
and then wiNN is used to generate the approximate outputs of PDEs for each new sample.
The main idea of wiNN is to find the n nearest neighbors of the new sample with some
metric measure, and then using the weighted average of these n nearest neighbor to predict
the reduced DMD matrix. To further reduce cost, we apply the low-rank approximation
to generate the second-order derivative of the forward model in the inversion process. This
is not only improve the efficiency, but avoid the rank-deficient when ensemble covariance
is singular. One of the advantage is EnKF is performed by sequential measurements. The
surrogate model can be rebuilded according to the practice problems, where the dynamic
model is sensitivity for the time. This increases flexibility in the Bayesian inference. To
extend the proposed EnKF to non-Gaussian models, we can integrate this method with
normal-score transformation [2] to broaden the applicability.

The rest of this paper is arranged as follows. Section 2 describes the problem tackled
in this work. In section 3, the dynamic mode decomposition method is introduced. In
section 4, we introduce the low rank EnKF using DMD-wiNN model. In section 5, a few
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numerical experiments are presented to illustrate the performance of the proposed DMD-
wiNN based EnKF with applications to the nonlinear dynamic systems. Finally, we make
some conclusions and comments in Section 6.

2. Problem setting

Let N be a generic forward operator on a Hilbert space U for a dynamic system. The
forward operator describes the relation of model coefficient k, state u and source term f ,
i.e.,

N(u; k) = f, (2.1)
where u ∈ U , f ∈ U∗, the dual space of U . In practical modeling, the coefficient function k
and source term function f may be unknown. Let (Ω,B,P) be a probability space, where Ω
is the sample space, B is the σ- algebra on Ω, P is the probability measure on B. We assume
that θ : Ω → Rnθ , i.e., θ(ω) ∈ Rnθ . We define

L2(Rnθ) := L2(Ω,B,P;Rnθ) =
{
θ(ω) :

∫
Ω

|θ(ω)|2P(dω) < ∞
}
.

2.1. Bayesian inference using ensemble-based filter
For Bayesian inference, the unknowns k and f are assumed to be parameterized as

k ≈ k(θk) and f ≈ f(θf ), respectively. The estimated parameter θ will be (θk, θf )
T when

f and k are both unknown, where [·]T is the transpose operator. Let H be the observation
operator mapping the state u(θ) to the observation space Y , i.e.,

d = H
(
u(θ)

)
+ ε := H(θ) + ε, (2.2)

where ε is assumed to be additive Gaussian noise for measurement and independent of θ. In
practical setting, the measurement data is in a finite-dimensional space, i.e., d ∈ Rnd , where
nd is the dimension of measurements. Let ε be an independent and identically distributed
(i.i.d.) Gaussian random vector with zero mean and variance σ2, i.e.,

ε ∼ N(0, σ2I),

where I is the nd × nd identity matrix.
The goal of parameter estimation is to find an appropriate solution to minimize the misfit

between the measurements and outputs of the forward model. In general, the minimization
problem is ill-posed. For ensuring the well-posedness, some regularization term on the misfit
are necessary. In this paper, we use Bayesian inference to identify the unknown parameters
by some given noisy measurements of (2.2). For Bayesian context, both θ and d are random
variables. Thus Bayes rule gives the posterior probability density for θ by

p(θ|d) ∝ p(d|θ)p(θ), (2.3)

where p(θ) is the prior distribution before the data is observed. The data enters the Bayesian
inference through the likelihood function p(d|θ). Then we estimate the posterior mean
or the maximum a posteriori (MAP) of unknowns. Let Υ be the parameter space. If a
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Gaussian prior is used, then the MAP estimate is equivalent to the solution of the following
minimization problem

min
θ∈Υ

(∥∥d−H(θ)
∥∥2

2σ2
+

(
θ − θb

)T
(P b)−1

(
θ − θb

)
2

)
, (2.4)

where ∥ ·∥ is the Euclidean norm, θb and P b are the mean and covariance matrix of the prior
(background information) for θ.

In practice, the analytical expression of the posterior distribution in Eq. (2.3) is generally
unavailable and the high dimension integration involved in posterior expectation is a great
challenge. The Monte Carlo method is often used to approximate the integration. The
samples in Monte Carlo can be obtained by ensemble methods, which can avoid explicit
calculating the gradient and adjoint equation of forward model. In the paper, we use filter
methods to get the samples. Assume θf and θa be the forecast and analysis of θ, respectively.
Let F be the forecast operator mapping the current prior into the forecast space, i.e.,

θf = F(θa).

Algorithm 1 describes the main steps of ensemble-based filter methods.

Algorithm 1 Ensemble-based filter methods
Input: {Given the prior µ0, the sample size Ne, the forecast operator F and the measurement

data d}.
Output: {θai }Ne

i=1

1. Initial ensemble: Generate samples {θai }Ne
i=1 of θ from µ0

2. Forecast: Update the initial ensemble {θai }Ne
i=1 by θfi = F(θai ), i = 1, · · · , Ne.

Generate samples of the model response:
{
H(θfi )

}Ne

i=1
.

3. Analysis: {θai }Ne
i=1 is obtained by updating the forecast ensemble.

The analysis step utilizes θfi , H(θfi ) and d together.

Let D be a given bounded physical domain with Lipschitz continuous boundary ∂D. In
this paper, Eq. (2.1) is the most general parametric partial differential equations as follows

∂

∂t
u(t,x; θ) = f(u,∇u,∇2u, · · · ; θ),

u(t,x; θ) = u0(x; θ),
(2.5)

where u(t,x; θ) ∈ RNh is the solution vector with Nh components at time t ∈ [0, T ], at spatial
coordinates x ∈ D, and a parameter vector θ ∈ Rnθ . The function f ∈ RNh represents a
linear or nonlinear function involving u and the spatial derivatives of u. u0(x; θ) is the initial
condition.

The full model (e.g., finite element method, finite difference method, spectral method
or radial basis function methods, etc) requires a large number of degrees of freedom and a
huge number of time steps and iterations. Therefore, the computational cost is prohibitive
when solving complex problems, especially for many-query problems such as quantifying the
effects of parameters and estimating unknown parameter values. We note that the forecast
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step and the analysis step of Algorithm 1 are repeated in a sequential manner. For the
posterior exploration, the forward model needs to be solved repeatedly online. Our goal
is to construct a surrogate model û of u so that the output of the system (2.5) can be
evaluated without solving the full model. Based on the surrogate model û, we can estimate
the statistics of u efficiently. More generally, given a function G(u), the expectation of G(u)
can be approximated using Monte Carlo as follows

E[G(u)] ≈ E[G(û)] =

∫
Ω

G(û(θ(ω)))P(dω) ≈ 1

Ne

Ne∑
i=1

G (û (θi)) .

The dynamic mode decomposition (DMD) method has gained popularity due to its ability
to extract coherent structures and dynamic features from data without requiring detailed
knowledge of the underlying system equations. Its simplicity and effectiveness have made it
a valuable tool for data-driven analysis and modeling in various scientific and engineering
fields. In this work, we attempt to extend DMD to the parametric dynamical systems. In
the next section, we briefly introduce the radial basis function finite difference method.

3. Dynamic mode decomposition

We consider the following continuous time dynamical system to present the dynamic
mode decomposition 

∂

∂t
u(t,x) = f(u,∇u,∇2u, · · · ),

u(t,x) = u0(x).
(3.1)

Using the finite element method to solve equation (3.1), we get the following discrete dy-
namical system with external inputs

un+1 = F (un, zn), u ∈ M, z ∈ N , (3.2)

where un = u(t0 +n∆t) with ∆t being the size of the time step, M denotes the state space,
and F is a map from M to itself, zn = z(t0 + n∆t) represents external input, which can be
introduced by the source item and boundary conditions. When the dynamical system (3.1)
has no external inputs, i.e., the source term equals zero and the boundary conditions are
homogeneous, then we have

un+1 = F (un), u ∈ M. (3.3)
F can be a linear mapping or nonlinear mapping. When F is a nonlinear mapping, solv-
ing nonlinear dynamical system takes a large amount of computing resources. Koopman
operator is a linear operator acting on the observation function space. Koopman operator
can transform a nonlinear dynamical system into a linear system in the observation function
space. For discrete dynamical systems (3.3), the Koopman operator is defined as follows.

Definition 3.1. (Koopman operator) Let G(M) is an infinite dimensional observation func-
tion space for any scalar-valued observable function g : M → R. The Koopman operator
K : G(M) → G(M) is defined by

Kg(u) := g
(
F (u)

)
, ∀g ∈ G(M).
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The nonlinear dynamical system (3.3) can be lifted to the following linear problem,

un+1 = F (un) ⇒ g(un+1) = Kg(un).

K is an infinite-dimensional operator. We restrict the infinite-dimensional system to a finite-
dimensional invariant subspace G(M) ⊆ G(M) for the numerical simulation. Suppose that
there exists an invariant subspace G of K, i.e.,

Kg ∈ G, ∀g ∈ G.

Let a set of observation functions {g1, . . . , gq}(q < ∞) span G. We restrict K to G and denote
it by K|G. Then K|G has a matrix-form representation K with respect to {g1, . . . , gq}, i.e.,

g(F (u)) =


g1(F (u))
g2(F (u))

...
gq(F (u))

 =


Kg1(u)
Kg2(u)

...
Kgq(u)

 =Kg(u).

The spectral decomposition theory of the Koopman operator can give an expression for the
observation functions. Therefore, we consider the eigendecomposition of the matrix K. Let

Kψj = λjψj, ωT
j K = λjω

T
j ,

where λj is the eigenvalue, ψj is the right eigenvector, ωj is the left eigenvector and ωT
i ψj =

δij. If the matrix K ∈ Rq×q has q linearly independent eigenvectors, then any g ∈ G can be
expressed by a linear combination of the eigenvectors, i.e.,

g(u) =

q∑
j=1

vj(u)ψj, (3.4)

where vj(u) = ωT
j g(u). For a sequential time series, repeatedly applying the Koopman

operator to equation (3.4) gives

g(un) =

q∑
j=1

λn
j vj(u0)ψj. (3.5)

Therefore, we can use the eigenvalues and eigenvectors of the Koopman operator and g(u0)
to evaluate the observation function g(u) at any time without knowing the specific expression
of F .

Dynamic mode decomposition algorithm only uses the observation data to compute an
approximation to the Koopman eigenvalues and eigenvectors. Suppose we have a snapshot
sequence of data {u0,u1,u2, · · · ,um}. Given the observation function g, we define the data
matrices of observables S1 and S2 as follows:

S1 =

 | | |
g(u0) g(u1) . . . g(um−1)

| | |

 , S2 =

 | | |
g(u1) g(u2) . . . g(um)

| | |

 .
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The DMD matrix can be defined as L = S2S
†
1, where S†

1 is the Moore-Penrose pseudoinverse
of S1, then we have

g(un+1) ≈ Lg(un).

DMD matrix L is an approximation of the Koopman matrix K. It may be very expensive
to do eigendecomposition directly on the matrix L. Tu et al. [39] proposed DMD, which
reconstructs the nonzero eigenvalues and eigenvectors of L by calculating the eigendecom-
position of a low-dimensional projection of L. We note that U is termed as the SVD-modes,
and the low-dimensional projection of DMD matrix L can be termed as the reduced DMD
matrix or reduced Koopman operator matrix, i.e., Lr = U∗LU. Here “ ∗ ” denotes the con-
jugate transpose of matrixes. Let’s briefly summarize the main steps of DMD as follows in
Algorithm 2.

Algorithm 2 DMD method
input: Given snapshots {g(u0), g(u1), · · · , g(um)} and the truncated rank r
output: DMD solution uDMD(t)
1. Obtain data sets S1 and S2 from data set.
2. Perform SVD of S1 as S1 = UΣV ∗, U ∈ RN×r, Σ ∈ Rr×r, V ∈ Rm×r.
3. Define a low-dimensional projection of L: Lr = U∗LU = U∗S2V Σ−1.
4. Compute the eigenvalues and eigenvectors of Lr, LrW = WΛ.
5. Set the mode of L as Φ = UW.
6. Then the future state in the space of observables is given by gDMD(un) = ΦΛnb, with

b = Φ†g(u0), the continuous formulation gDMD(u(t)) = ΦΛt/∆tb.
7. Finally, transform to state space uDMD(t) = g

−1(gDMD(u(t))) = g
−1(ΦΛt/∆tb), where

g−1 is in the sense of least-squares if g is not invertible.

4. Ensemble-based filter using DMD-wiNN model

For the ensemble-based filter methods presented in Algorithm 1, we need to repeatedly
compute the forward model for all ensemble members. This computation is very expensive
when the forward model is a complex PDE model and the number of ensemble members is
large. In order to significantly accelerate the forward model computation, we construct a
surrogate model for the forward model using model reduction methods.

The goal is to approximate a large-scale problem in a low dimensional space. To this
end, the key idea is to choose a set of appropriate basis functions, which can span a good
approximation space for the solution. If Eq. (2.5) is nonlinear with respect to u, we can derive
an algebraic system for Eq. (2.5) as follows by applying suitable discretization method

A(θ,u)u = B(u), (4.1)

where B ∈ RNh the source vector. The Nh is the number of spatial degree of freedoms and
is usually very large if we straightforwardly solve the equation in fine grid. We can use a
model reduction method and reduce the number of basis functions to improve the efficiency.
Then we can get a reduced algebraic system for Eq. (2.5),

Ar(θ,ur)ur = Br(ur).
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In order to accelerate evaluations of the posterior density for each updated parameter
ensemble, The stochastic response surface methods can be applied to construct surrogate.
The solution ur of the reduced model can be expressed by stochastic basis functions such as
polynomial chaos [45], radial basis functions [34], and wavelet basis functions [23]. In this
paper, the surrogate model is constructed through DMD method to reduce the computation
cost of solving forward models. In the next subsection, we will introduce a parametric
dynamic mode decomposition method, i.e., a model order reduction (MOR) method based
on the reduced DMD matrixs to construct a parameter-dependent surrogate model for the
nonlinear parametric dynamical systems.

4.1. A MOR method based on the reduced DMD matrixs
Using the finite element method to simulate equation (2.5), we can obtain a system of

coupled parametric ODEs such as

un+1(θ) = F (un; θ), u ∈ M. (4.2)

By the defination of Koopman operator in 3.1, the nonlinear system (4.2) can be rewritten
as

g(un+1; θ) = K(θ)g(un; θ). (4.3)
When F is a nonlinear mapping, it starves for a large amount of computing resources

using the Newton method or Piccard iterative method to solve nonlinear problems. To
improve computation efficiency, we combine DMD with the weighted & interpolated nearest-
neighbors algorithm (wiNN, [6, 44]) to develop a model reduction method, which is named
as DMD-wiNN, and it admits an offline-online procedure. We first define the parameter
training set Ξtrain ⊊ Υ, which is a finite subset with the cardinality being |Ξtrain| = Ns.

In the offline stage, given training set Ξtrain, we perform it as follows in Al-
gorithm 3.

Algorithm 3 The offline stage for DMD-wiNN
input: The parameter training set Ξtrain ⊊ Υ
output: Reduced DMD matrixes {Lr(θj)}Ns

j=1, SVD-modes {U(θj)}Ns
j=1 and initial coefficients

{g(u0; θj)}Ns
j=1.

1. Generate snapshot data for each parameter θj ∈ Ξtrain such as
{u0(θj),u1(θj),u2(θj), · · · ,umj

(θj)}Ns
j=1;

2. Obtain data set S1(θj) and S2(θj) from snapshot data;
3. Perform singular value decomposition of S1(θj) as S1(θj) = U(θj)Σ(θj)V (θj)

∗, and define
the corresponding reduced Koopman operator matrix as
Lr(θj) = U(θj)

∗L(θj)U(θj) = U∗S2V Σ−1(θj), for 1 ⩽ j ⩽ Ns.

Once the offline stage is completed, we need storing the reduced DMD matrixes {Lr(θj)}Ns
j=1,

SVD-modes {U(θj)}Ns
j=1 for the online stage computation. Subsequently, we focus on con-

structing the efficient surrogate model of parametric DMD (an approximation of Koopman
operator) matrix L(θ). There are several approaches for the approximation of Lθ

r, such as
point-wise Lagrangian interpolation [14], Neural network and least square fitting and so on.
In this work, we mainly adopt the wiNN algorithm.
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The main idea of wiNN is to find the n nearest neighbors of the new sample θ with some
metric measure, and then using the weighted average of these n nearest neighbor to predict
the reduced DMD matrix Lθ

r. More specifically, let θi be the i-th nearest neighbor of the
test sample θ among the training data Ξtrain, and wd(ω, z) be a weight function Υ×Υ → R
as follows

wd(θ, θ
i) =

1
∥θ−θi∥∑n
j=1

1
∥θ−θj∥

, for i = 1, · · · , n. (4.4)

We note that the weighting scheme satisfies wd(θ, θ
i) ≥ 0 and

∑n
i=1 wd(θ, θ

i) = 1. According
to (4.4), we find the parameter θj close to θ has a large weight wθj , and parameter θj far
from θ with a small weight wθj .

Then the weighted nearest neighbor scheme for Lr(θ) is approximated of the form

Lθ
r =

k∑
i=1

Lr(θ
i)wd(θ, θ

i). (4.5)

Similarly, we approximate SVD-modes U θ as

U θ =
k∑

i=1

U(θi)wd(θ, θ
i). (4.6)

For each parameter θ ∈ Υ, the online stage can be summarized as follows in
Algorithm 4.

Algorithm 4 The online stage for DMD-wiNN
input: Reduced DMD matrixes {Lr(θj)}Ns

j=1, SVD-modes {U(θj)}Ns
j=1 and initial coefficients

{g(u0; θj)}Ns
j=1.

output: Parametric DMD solution uDMD(t; θ)
1. Find the n nearest neighbor parameter values of θ, denoted as {θi}ni=1;
2. Construct the reduced DMD matrix Lθ

r by equation (4.5);
3. Perform the eigen-decomposition of Lθ to get the reduced eigen-pair (Λ,W );
4. Construct the SVD-mode U θ by equation (4.6);
5. Compute the DMD-mode Φ(θ) = U θW ;
6. Compute initial coefficients bθ = (Φθ)†gθ(u0);
7. Then gDMD(u(t; θ)) = ΦθΛt/∆tbθ;
8. Finally, transform to state space uDMD(t; θ) = g

−1(ΦθΛt/∆tbθ).

4.2. A low-rank EnKF using DMD-wiNN model
The goal of inverse problems is to identify an appropriate solution which can minimize the

misfit between the outputs of interest and measurements. Here it is equivalent to solving the
minimization problem (2.4). In this paper, we use EnKF methods to solve the minimization
problem. Thus, we present a low-rank EnKF using DMD-wiNN model to accelerate posterior
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exploration and improve the sequential update performance. The lth update of EnKF [2] is
as following {

θal = θfl +K
l
al(dl −H(θfl )),

P a
l = (I −K l

alH)P f
l ,

where H is the gradient of operator H, P f
l and P a

l are the covariances of forecast and
analysis ensemble, respectively, and Kalman gain

K l
al = P

f
l H

T(HP f
l H

T +R)−1, R = σ2I.

Algorithm 5 low-rank EnKF with DMD-wiNN model
Input: Initial {θa0,s}Ne

s=1, parameter training set Ξtrain ⊊ Υ, given the truncated rank r and
the total artificial time steps I, measurement data {d1, · · · , dI}

Output: Θa
I .

1. Perform algorithm 3 to construct the snapshots: Reduced DMD matrixes {Lr(θj)}Ns
j=1,

SVD-modes {U(θj)}Ns
j=1 and initial coefficients {g(u0; θj)}Ns

j=1, where θj ∈ Ξtrain.
2. Θa

0 = (θa0,1, · · · , θa0,Ne
)

3. for: l = 1 : I
(1). Forecast step:

(i) Θf
l = Θa

l−1.
(ii) parfor: i = 1 : Ne

Perform Algorithm 4 to get H(u(t, θfl,i))
endfor

(iii) Zl = (H(u(t, θfl,1)), · · · ,H(u(t, θfl,Ne
))).

(2). Compute the deviation Z̃l =
1

σ
√
Ne−1

(Zl −
∑Ne

i=1 H(u(t,θfl,i))

Ne
)

(3). [U e,Λe, V e] = SVD(Z̃l).
(4). Obtain the truncated {U e

tr,Λ
e
tr, V

e
tr} by retain the 98% energy.

(5). The low-rank Kal = Θf
l V

e
trΛ

e
tr(I + Λe

tr(Λ
e
tr)

T )−1(U e
tr)

T .
(6). Zo

l = (dl, · · · , dl).
(7). Analysis step:Θa

l = Θf
l +Kal(Z

o
l − Zl).

endfor

In general, Kalman gain matrix is appproximate using the covariance of ensemble sample
and simulated data, i.e.,

K l
al ≈ Cov(Θf

l , Zl)Cov(Zl, Zl)
−1, (4.7)

where Θf
l is the forecast ensemble and Zl is the ensemble of simulated measurements. EnKF

is a sampling method and avoids expensive gradient computation for solving minimization
problem. The second-order derivative is included in the form of Kalman gain K l

al. Thus, the
forecast error covariance matrix and analysis error covariance matrix are not necessary to
compute. The true mean and covariance are approximated by ensemble mean and ensemble
covariance, respectively. In the paper, we make use of the stochastic analysis ensemble gener-
ation method, where the simulated measurements are perturbed by simulated measurement
error εf . The εf is independent of ε.
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Although EnKF method can avoid linearization and repeated sampling to explore pos-
terior density, it requires to compute the forward model many times in each forecast step
described in algorithm 1. When the dimension of unknown parameters θ is large, we need
a large number of ensemble members to estimate θ. This implies that the computation of
the forecast is very expensive. For improving the computation efficiency, we construct a
surrogate model based on DMD-wiNN to approximately represent the full order model. The
reduced model only retains a fewer basis functions. To avoid the singular of (4.7) for a small
ensemble size, we apply the SVD method for the deviation of Zl.

However, EnKF has an inherent constraint assumption for the prior distribution, which
must be a Gaussian distribution. As we know, the support of Gaussian distribution is R.
If the support of unknown parameters is bounded, its values are uncontrollable during the
sequentially update of Kalman filter, ensemble samples may run out of the interval. For this
case, we apply normal-score EnKF [2, 49] to perform non-Gaussian models. The objective of
the surrogate model is to construct a reduced model that quantifies the primary features of
the high-fidelity model while providing the computational efficiency required for uncertainty
quantification. In stationary Bayesian inference, we may need to build surrogate model only
once. However, EnKF method integrates new measurement data in each analysis step. Thus,
the surrogate model can be updated sequentially according to the practice. The outline of
low-rank EnKF using DMD is presented in Algorithm 5.

5. Numerical results
In this section, we demonstrate applicability and efficiency of the proposed filter method

using DMD-wiNN on several nonlinear time-dependent equations. A few numerical results
will be presented for the estimations of the model’s unknown parameters and different un-
known sources. The prediction errors between the predictive solutions and the reference
solutions show the predictive ability of DMD-wiNN outside of the training time region. In
Subsection 5.1, we indetify a nonlinear reaction parameter when reaction term is a quadratic
polynominal of u. In Subsection 5.2, we estimate the parameter of nonlinear diffusion term
when equation (2.5) is a advection diffusion model. In Subsection 5.3, we will recover a
nonlinear permeability field and source locations.

For comparison, the effectiveness and effficiency of EnKF without surrogate model and
with different order gPC models [2] are computed. The same prior ensemble and measure-
ments as DMD-wiNN in each experiment are used. Measurements are generated syntheti-
cally using the finite element method (FEM) for spatial discritization and the explicit Euler
method for the time in a fine grid. Furthermore, FEM are applied to solve the forward mod-
els when no extra surrogate model is builded. For convenience, FEM in the following figures
refers to no extra surrogate, gPC (N=2) denotes the second-order gPC and gPC (N=4) is
the fourth-order gPC for each experiment. For the numerical examples, we consider a dimen-
sionless square domain D = [0, 1]× [0, 1] for spatial variable and a homogeneous Neumman
boundary condition

∂u

∂n
= 0, x ∈ ∂D, t ∈ [0, T ], ω ∈ Ω. (5.1)

The final time T = 1 for each experiment. The deviation of measurement noise is set as
σ = 0.01.
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To assess the estimation by the filter methods based on different surrogate models, we
use two indicators of ensemble samples, i.e., root mean square error (RMSE) and spread
[48, 24]. They are defined as follows

RMSEθ :=

√√√√ 1

nθ

nθ∑
i=1

(E[θi]− θti)
2, spreadθ :=

√√√√ 1

nθ

nθ∑
i=1

Var(θi),

where E[θi], θti and Var(θi) denote the ensemble mean, reference and ensemble variance of
the ith element of the unknown θ, respectively. Here RMSE measures the accuracy of the
mean and spread measures the uncertainty in the estimation. The match between the RMSE
and the spread provides another indicator [48], defined as

RSθ := RMSE2
θ − spread2

θ =
2

nθ

nθ∑
i=1

(
E[θi](E[θi]− θti)

)
+

1

nθ

nθ∑
i=1

(
(θ∗i )

2 − E[θ2i ]
)
. (5.2)

RSθ characterizes the mean and uncertainty estimation. When E[θ] → θt and E[θ2] → (θt)2,
RSθ will tend to zero. Thus the small value of RSθ indicates an accurate estimation. For the
practical application, the model output H(θ) is also the key. For providing a quantitative
comparison, the average data dismatch (ADM) [48] is defined as

ADM =

√√√√ 1

nt

nt∑
i=1

[
1

nd

nd∑
j=1

(dsi,j − dti,j)
2

]
where nt it the total number of measurement steps, dsi,j is the simulated data of the jth
measurement location at the ith measurement step and dti,j is the corresponding true data
given as the reference.

5.1. Identify the nonlinear reaction term
In this subsection, we consider the following non-linear diffusion-reaction model

∂u(x, t, ω)

∂t
− µ∆u(x, t, ω) = f(u,x, t;ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω

with the boundary condition given by Eq. (5.1). For this example, we prescribe an initial
condition that are a sum of exponential plumes, i.e.,

u0(x, ω) =
2∑

i=1

exp(− 1

2α2
i

∥x− xi∥2),

where the standard deviations α1 = 0.3, α2 = 0.2 and centers x1 = (0.2, 0.2), x2 = (0.75, 0.8).
The diffusion coeficient µ = 0.2 and the reaction term is a quadratic polynomial in u, i.e.,

f(u, x, t;ω) = λ1(ω)u

(
1− u

λ2(ω)

)
with excitation rate λ1 and threshold potential λ2. Here both λ1 and λ2 are unknown.
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Figure 5.1: The black points are the measurement locations (left). The relative errors for the test set using
different truncation DMD basis functions (right).

For this example, the ground true parameters λ1 and λ2 are set as 10−4 and 2, respectively.
The magnitude of λ1 is far smaller than λ2. Thus we scale λ1 using the logarithmic function,
i.e., − log10 λ1 = 4. To the end, the estimated parameter is θ = (− log10 λ1, λ2). The number
of artificial time steps for data assimilation is set as 12. The measurement locations are
distributed on the uniform 11 × 6 grid of the domain [0, 1] × [0, 1] as shown in Fig. 5.1
(left). Measurement data are generated from 100× 100 grid with time step ∆t = 0.005. For
the inversion based on EnKF, ensemble size is set as 300 and prior ensemble samples are
randomly drawn from the standard multivariate normal distribution. For Algorithm 5, the
artificial time steps I of EnKF is set as 8.

The forward model is defined on a uniform 100× 100 fine grid with time step ∆t = 0.01.
400 training samples with randomly generated from the uniform distribution [2, 10]× [1, 10]
are used to build the parameterized DMD model. For the applicability and efficiency of
DMD-wiNN model, the relative errors for different truncation basis functions are plotted
in Fig. 5.1 (right). At the beginning, the error for the test set slightly decreases when the
number r of truncation basis functions increases. However, the test error increases for the
case of r = 20. Figure 5.1 (right) shows it is enough to select r = 8 basis functions for
the DMD-wiNN method. Furthermore, the training data are obtained by FEM and the
training time interval is [0, 0.5] as shown the left region of the vertical dash in Fig. 5.1
(right). For t ∈ (0.5, 1], it is the predictive error from DMD-wiNN model. Both the test
errors of training time and predictive time are steady when 8 basis functions are applied to
construct the DMD-wiNN model.

Table 1 demonstrates the CPU time, RSθ and ADM using DMD-wiNN, FEM and gPC
surrogate model. EnKF based on FEM is time-consuming because of no extra surrogate
model. Compared with FEM, the surrogate model using DMD-wiNN is faster. The EnKF
using gPC (N=2) is easy to perform. However, the RMSE using gPC is bigger than using
FEM and DMD-wiNN. Increasing the order number of gPC can not improve the RMSE.
Furthermore, the spread values using gPC (N=2) and FEM are smaller than the proposed
DMD-wiNN based EnKF method. This is due to the underestimation exists in the ensemble
filter methods [10]. In term of the match RSθ between the RMSE and the spread, DMD-
wiNN outperforms the orther surrogate models. The ADM from DMD, FEM and different
order gPC are also shown in Table. 1. The proposed EnKF based on DMD-wiNN model
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Figure 5.2: The prior and posterior distributions for − log λ1 and λ2 generated by three sufforgate models
(DMD-wiNN, FEM and gPC).

provides the smallest ADM than based on FEM and gPC. The gPC (N=2) gives the largest
ADM for the three surrogate models.

In order to measure the estimate accuracy of θ, Fig. 5.2 displays the final marginal pos-
terior density estimations generated by EnKF using FEM, DMD-wiNN and gPC. We note
the marginals by the two-stage EnKF are closer to the reference values than the standard
EnKF. Although the output of the DMD-wiNN model in the time interval [0.5, 1] is the
predictive data, it is sufficiently informative to identify a small range of values for the un-
known parameters as plotted in Fig. 5.2 (blue solid line). The important region of marginal
densities becomes narrower than the prior as data information gains. The marginal poste-

Table 1: CPU time, RSθ and ADM using three different surrogates.

FEM DMD-wiNN gPC (N=2) gPC (N=4)
CPU time (s) 4035.8 215.12 17.30 65.13

RMSEθ 1.4491 0.0434 1.4803 2.3293
spreadθ 0.0031 0.0649 0.0012 0.7688
|RSθ| 2.0999 0.0023 2.1914 4.8344
ADM 0.8345 0.0743 2.5141 1.7549
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Figure 5.3: The reference solutions (top row) and posterior mean solutions using DMD-wiNN, FEM, gPC
(N=2) and gPC (N=4) against the time.

rior densities by FEM and gPC (N=2) are almost concentrated in one point far from the
reference. This is incosistent with the small spread in Table. 1. When using gPC (N=4),
the uncertainty is overestimation. The marginal posteriors from the proposed EnKF using
DMD-wiNN method provides a better estimation of − log λ1 and λ2.

Because the true parameter of the reaction term is actually unknown in practice, comput-
ing the match between the estimated output and the reference is the most straightforward
way to measure the performance. Figure. 5.3 (top row) illustrates the structure and value of
reference solutions. Both FEM and gPC (N=2) can not capture the main structures. The
estimated solutions tend to the same value. The gPC (N=4) improves estimated solutions.
The structure is close to that of reference, but the value is smaller than that of reference due
to overestimating the uncertainty of θ. For the proposed method, the first two subfigures of
second row belong to the training time region. So both the value and structure are the same
as the references. In the predictive time region, the value is slightly smaller than that of the
reference. It implies that the DMD-wiNN model is effective for state predictions.

5.2. Estimate the nonlinear diffusion coefficient
In this subsection, we consider the following transient nonlinear diffusion model

∂u(x, t, ω)

∂t
+w·∇u−∇·κ(u, ω)∇u(x, t, ω) = f(x, t, ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω (5.3)

with the boundary condition in Eq. (5.1). For this example, we prescribe an initial condition
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Figure 5.4: The initial condition (left) and source term (right).

Table 2: Standard deviations and center loca-
tions for the initial condition in Eq. (5.4). The
initial condition is pictured in Fig. 5.4 (left).

i 1 2 3 4 5
αi 0.06 0.04 0.06 0.04 0.04
xi 0.2 0.25 0.35 0.45 0.55
yi 0.15 0.15 0.2 0.2 0.12

Table 3: Standard deviations and center loca-
tions forthe source term in Eq. (5.5). The source
term is pictured in Fig. 5.4 (right).

i 1 2 3 4 5
βi 0.07 0.05 0.07 0.05 0.05
xi 0.7 0.75 0.85 0.9 0.95
yi 0.7 0.7 0.8 0.8 0.72

as shown in Fig. 5.4 that are a sum of Gaussian plumes, i.e.,

u0(x, ω) =
5∑

i=1

1

αi

√
2π

exp(− 1

2α2
i

∥x− xi∥2), (5.4)

where the standard deviations αi and centers xi, i = 1, 2, · · · , 5, are given in Table 2. The
form of the source term is similar to the initial condition, i.e.,

f(x, t, ω) =
5∑

i=1

1

βi

√
2π

exp(− 1

2β2
i

∥x− xi∥2). (5.5)

where the detailed parameters are given in Table 3. The advection velocity for this problem
is w = 0.8̂i+ 0.4ĵ. The thermal conductivity κ is a nonlinear function of temperature u

κ(u, ω) = a(ω) + ub(ω). (5.6)

where a and b are parameters of the conductivity correlation. Here both a and b are unknown,
i.e., θ = (a, b).

For generated the measurements, the ground true parameters a and b are set as 0.3
and 4, respectively. The artificial time steps I for EnKF in Algorithm 5 is set as 10. The
measurement locations are distributed on the uniform 11× 6 grid of the domain [0, 1]× [0, 1]
as shown in Fig. 5.1(left). Measurement data are generated from 100 × 100 grid with time
step ∆t = 0.01. For the inversion based on EnKF, ensemble size is set as 300.
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Figure 5.5: The relative errors for the test set against the different truncation DMD basis functions.

The forward model is defined on a uniform 100× 100 fine grid with time step ∆t = 0.02.
To construct the DMD-wiNN model, we use 300 training samples with randomly generated
from the uniform distribution [0, 2]× [0, 10]. The relative test errors for different truncation
basis functions is plotted in Fig. 5.5. The error of test set is not as expected that decreases
against the number r of truncation basis functions. In contrast, the test error increases
when using more basis functions. For capturing the important properties, we select r = 12
basis functions to ensure the effectiveness and efficiency of the optimization problem. The
snapshot space with DMD-wiNN method is generated by the first 25 time levels data obtained
by FEM.

Three different surrogate models (DMD-wiNN, FEm and gPC) are used for the tran-
sient nonlinear diffusion problem. For comparison, the efficiency and accuracy of estimated
parameters is shown in Table 4. The cost only using FEM model is more expensive than
DMD-wiNN and gPC. Although the efficiency of EnKF based on gPC (N=2) is the best,
the estimated accuracy of parameters and state is lower than FEM. As the higher order gPC
model is applied for solving forward model, it improves the estimated accuracy of parameter
but the ADM is close to that of gPC (N=2). In terms of RSθ, the accuracy of the proposed
EnKF based on DMD-wiNN model is much better than that of FEM and gPC. Compared
with gPC, it slightly slower than gPC (N=4). As expected, the computation and the esti-
mated accuracy of parameters for the proposed method outperform that of FEM. The ADM
of the proposed method is better than those of gPC. Due to the underestimation, the ADM
of only using FEM is better than that of other methods.

To further investigate the accuracy of estimated parameters, we plot the prior and pos-

Table 4: CPU time, RSθ and ADM using three different surrogates.

FEM DMD-wiNN gPC (N=2) gPC (N=4)
CPU time (s) 4530.34 163.54 52.96 117.86

RMSEθ 0.1704 0.0287 0.1725 0.1351
spreadθ 0.0287 0.0372 0.0033 0.0121
|RSθ| 0.0282 0.00056 0.0298 0.0181
ADM 0.0149 0.0416 0.0530 0.0579
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Figure 5.6: The prior and posterior distributions for parameters a (top row) and b (bottom row) using three
different surrogate models (DMD-wiNN, FEM and gPC). Red star makers are the references.

terior marginal distributions using samples from DMD, FEM and gPC models in Fig. 5.6.
The prior densities of a and b (Fig. 5.6 (left)) are the same for three different surrogate
models. Due to the range interval of a narrower than b, the underestimation exists in EnKF
using gPC models in Fig. 5.6 (upper right corner). Using FEM model slightly improve the
underestimation of a, but the reference runs outside of the high probability region. The
reference locates in the high probability regions constructed by samples using DMD-wiNN
model. As a big range for b, the posterior density of using gPC becomes wider. For the
prosetrior densities of b, the proposed method still outperforms FEM and gPC.

Figure. 5.7 shows the 95% credible and prediction intervals for model state at u(0.5, 1; t)
against time t. The samplers and realizations are constructed by EnKF based on the four
surrogate methods (DMD-wiNN, FEM, 2 order and gPC (N=4)). We note that The 95%
credible and prediction intervals from gPC are wider that from DMD-wiNN and FEM.
However, measurement data and the references at most time instance are outside of the
prediction using gPC (N=2) model. Using higher order basis function in gPC improves the
accuracy of estimated data as shown in Fig. 5.7 (lower right corner). The measurement data
is close to the prediction interval. The prediction intervals from DMD-wiNN and FEM are
narrower than gPC. The proposed method slightly outperform FEM because measurement
almost locate in the prediction except for the initial time instance. This is due to only a
small part of measurement used for EnKF. As more data information gains in EnKF, the
prediction interval becomes accuracy.
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Figure 5.7: The 95% credible and prediction intervals of state u(0.5, 1; t) against time t are generated from
(DMD-wiNN, FEM and gPC). The black points are measurement data.

5.3. Recover the source locations and the nonlinear permeability field
In this subsection, we still consider the nonlinear advection diffusion model in Eq. (5.3)

with the homogeneous Neumman boundary condition of Eq. (5.1). In this example, we
prescribe an initial condition as shown in Fig. 5.8 (left) and the form is given by Eq. (5.4),
where the standard deviations αi and centers xi, i = 1, 2, · · · , 5, are given in Table 5. The
form of the source term is similar to the initial condition, i.e.,

f(x, t, ω) =
2∑

i=1

1

βi

√
2π

exp(− 1

2β2
i

∥x− xi(ω)∥2). (5.7)

where β1 = 0.04 and β2 = 0.07. The source locations x1 = (x1, y1) and x2 = (x2, y2) are
both unknown.

Figure 5.8 (right) shows the reference source. The upper left corner and lower right corner
display the two reference locations for generating measurement. The reference values are set

Table 5: Standard deviations and center lo-
cations for the initial condition in Eq. (5.4).

i 1 2 3 4 5
αi 0.07 0.05 0.07 0.05 0.05
xi 0.2 0.25 0.35 0.45 0.55
yi 0.15 0.15 0.2 0.2 0.12
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Figure 5.8: The initial condition (left) and reference source (right).
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Figure 5.9: The relative errors for the test set against different truncation DMD basis functions (left) and
measurement locations (right).

as (0.1, 0.9) and (0.8, 0.2). The advection velocity for this problem is w = 0.3̂i + 0.1ĵ. The
diffusion coefficient κ is the nonlinear function of u given by Eq. (5.6). In this subsection, κ,
x1 and x2 are all the unknowns, i.e., θ = (a, b, x1, y1, x2, y2).

For this example, the ground true parameters a and b are set as 0.3 and 4, respectively.
The artificial time steps I for EnKF is set as 10. The measurement locations are distributed
on the uniform 6×11 grid of the domain [0, 1]×[0, 1] as shown in Fig. 5.9 (left). Measurement
data are generated from 100 × 100 grid with time step ∆t = 0.01. For the inversion based
on EnKF, ensemble size is set as 600. The forward model is defined on a uniform 100× 100
fine grid with time step ∆t = 0.02. 800 training samples with randomly generated from the
uniform distribution [0, 1]× [0, 10]× [0, 1]4 are used to build the DMD-wiNN model.

As the truncation basis functions of DMD-wiNN increase, the relative errors of the test
set are plotted in Fig. 5.9 (right). We expect that the errors decreases as the basis functions
increase. In fact, the error slightly increases when adding basis functions. To retain the
main properties, we select r = 12 basis functions for the DMD-wiNN model. Although
r = 4 shows a slightly smaller error, the predictive ability may decreases for the practical
application. To construct the reduced order model, the snapshot space for the DMD-wiNN
method is generated by the first 25 time levels data obtained by FEM.

We also investigate the efficiency and accuracy of estimated parameter and state using
three different surrogate models (DMD-wiNN, FEM and gPC). The results is illustrated
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Figure 5.10: Box plot: Reference (red star), the edges of the box (unfilled rectangle) are the 25th (bottom)
and 75th (top) percentiles, and 95% credible intervals (dash line) for each element of θ generated by different
surrogate models (DMD-wiNN, FEM and gPC).

in Table 6. As the dimension of estimated parameter increases, the computation cost of
three different surrogate models increases. This is due to the ensemble size become big
for generating the accuracy estimation. The proposed method provides a more accuracy
estimation both for parameter and state than that of using gPC model. Higher order gPC
can improve the underestimation of estimated parameter in terms of spread. The RSθ of
using DMD-wiNN model is smaller than using FEM. It implies that DMD-wiNN model
outperfroms other three surrogates for the estimated parameters. The ADM shows the
accuracy of estimated state. Because no extra model error exists in FEM model, the ADM
of using FEM is the smallest.

The 95% credible intervals for parameter θ by the final posterior samplers are plotted in
Fig. 5.10. The X-axis of each subfigure denotes DMD-wiNN, FEM, 2 order and gPC (N=4)
model and the Y-axis is the estimate value of each parameter. For EnKF using FEM and

Table 6: CPU time, RSθ and ADM using three different surrogates.

FEM DMD-wiNN gPC (N=2) gPC (N=4)
CPU time (s) 9857.12 400.63 143.67 815.37

RMSEθ 0.1099 0.0993 0.7704 0.4253
spreadθ 0.0286 0.0375 0.0013 0.0173
|RSθ| 0.0113 0.0085 0.5935 0.1806
ADM 0.0147 0.0699 0.1077 0.1048
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Figure 5.11: The 95% prediction and credible intervals of state u(0.6, 0.1; t) with respect to t are generated
from three different reduced model (DMD-wiNN, FEM and gPC). The black points are measurement data.

gPC models, the uncertainty is underestimated and leads to a narrow creadible interval. The
references (red star makers) are outside the credible intervals and far from them when using
gPC models. The credible intervals of x1, x2 and y2 constructed by using DMD-wiNN model
contain the references and other’s close to the references. This implies that the proposed
method can work well for the unknowns of nonlinear PDEs.

Figure 5.11 illustrates the 95% credible and prediction intervals for estimated state at
u(0.6, 0.1; t) with the final ensemble posterior samplers and realizations constructed by DMD-
wiNN, FEM and gPC models. The black solid line is the reference values and black points
are measurement data. Estimated states at different time instance are almost outside of
the prediction intervals constructed by gPC models. The prediction interval is tight using
FEM model and outperforms that of gPC. We note that the most reference states and
measurements are both contained in this interval (upper right corner). As expected, the
measurement data and the references are all within the credible interval from DMD-wiNN.
Due to t ∈ (0.5, 1] outside of the training region, it demonstrates the good predictive ability
of DMD-wiNN model.

The uncertainty is from the difusion coeficient and source locations. So we also compute
the correlations between these unknwons in Fig. 5.12 with samples generated from EnKF
based on DMD-wiNN model. Figure 5.12 plots all of the one and two-dimensional posterior
marginals of θ. The first parameter a of diffusion function and the Y-axis y2 of second source
location exist slightly positive correlation. Moreover, the negative correlations of a and y1, a
and x2 are apparent. The X-axis x1 and x2 for the two source locations also exists negative
correlation. The others appear uncorrelated and mutually independent based on the shape
of their 2-D marginals in Fig. 5.12.
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Figure 5.12: 1-D and 2-D posterior marginals of θ generated by EnKF using DMD-wiNN model.

6. Conclusions

In the paper, we develop a new low rank EnKF based on DMD-wiNN surrogate model for
the parameterized time-dependent nonlinear PDEs. The proposed method can be decoupled
into offline and online stages. In the offline stage, parameterized equations for each parameter
in training set is first solved to generate the snapshots and get the data matrixes. Then the
reduced operator matrixes is obtained by performing SVD. We adopt the wiNN to construct
the efficient surrogate models of the reduced operator matrixes, which includes the reduced
Koopman operator matix and SVD-modes. In the online stage, we perform EnKF updates
to explore the posterior distributions of estimated parameters. For each sample, we just
perform operations on low-dimensional matrixes to obtain the efficient surrogate model of
the likelihood functions. For the analysis step in EnKF, we apply SVD for the ensemble
deviation of simulated data. Then the second-order derivative of the forward model in the
inversion process is generated by the low-rank approximation of ensemble samples. This
can avoid the rank-deficient of Kalman gain when ensemble covariance is singular. For the
applicability of the proposed EnKF to non-Gaussian models, we can integrate this method
with normal-score transformation. The effectiveness and efficiency of the proposed method
were validated by applications of Bayesian inversion in nonlinear dynamic systems.

The idea of DMD-wiNN model and low rank EnKF methods were combined together
to solve the Bayesian inverse problems. For the three experiments, we only use the half
of total time for training in the proposed method. Numerical results showed that the pro-
posed method leads to a better predictive data than using FEM and gPC models. Future
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works will focus on complex nonlinear dynamic systems with high-dimensional unknowns
and extend the prective ability for different uncertainty quantification problems, such as
data assimilation, among others.
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