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Abstract. Wave propagation in random media has broad applications in ma-

terials science and engineering. In this paper, we develop a quasi Monte Carlo
(qMC)-based model reduction method for solving random Helmholtz equa-

tions. In the physical space, we construct multiscale reduced basis functions

by using an optimization method together with the proper orthogonal decom-
position method. Then, in the random space we employ the qMC method for

discretization. Under mild conditions, we prove that the spatial grid size is
only proportional to the wave number, and almost a first-order convergence

rate is achieved in the random space with respect to the number of samples.

Since the exact solution oscillates in both physical and random spaces, our ap-
proach provides an efficient strategy to find its numerical approximation. One

significant advantage of our approach over existing methods is its applicability

to generic random media which cannot be treated as random perturbations of
homogeneous media. These are confirmed by a series of numerical examples.

1. Introduction. Random materials are common in nature and their microstruc-
tures can be characterized only statistically in many instances [31]. A notable
phenomenon is Anderson localization [1], which states the absence of diffusion of
waves in disordered media and later experimentally realized in many materials; see
[32, 29, 26, 28, 34] for examples. Such a disorder was originally characterized by
white noise without any spatial correlation [1], but was later extended to correlated
noises [5]. Experimental realizations include electron waves for electronic systems
[5, 16, 34] which are modeled by the Schrödinger equation and its analogs, and elec-
tromagnetic waves for photonic systems [32, 29, 28] which are modeled by Maxwell’s
equation and its analogs.

Our focus in this work is the electromagnetic wave propagation in random media.
To be specific, we consider the following interior impedance problem associated with
Helmholtz equation with random refractive index:{

−∆u(x, ω)− k2n(x, ω)u(x, ω) = f(x), x ∈ D,ω ∈ Ω,

∂νu− ik
√
n(x, ω)u(x, ω) = 0, x ∈ Γ,

(1)
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where D = [0, 1]d is the spatial domain, Γ = ∂D is the domain boundary, Ω is the
random space, ν is the unit outward normal vector on Γ, k is the wave number,
and n(x, ω) > 0 is the random refractive index. A precise definition of the random
refractive index will be given in Section 3.1.

From the perspective of scientific computation and numerical analysis, there are
very few works on (13); see e.g. [13, 14]. Assuming that random media can be
expressed as random perturbations of homogeneous media, the authors proposed
a multimode representation of the solution and approximated mode functions by
classical numerical schemes. Both the multimode representation and the numerical
approximation contribute to error estimates. It is expected that such a strategy
works well if random media are “close” to homogeneous media, as demonstrated
both theoretically and numerically in [13]. As a matter of fact, in such a setting,
it was found that there is no drastic and unexpected effect on the behavior of wave
motion in the media [8]. Therefore, it is important to consider disordered media
with stronger randomness where phases such as wave localization and intermediate
states can be expected. This motivates the current work.

There are two major difficulties to solving (13) numerically when the wave num-
ber k is high. One is the well-known pollution effect [2], i.e., the solution of the
standard finite element method differs significantly from the best approximation
with increasing wave number k. The other one is the oscillatory profile of the so-
lution in the random space with frequency proportional to wave number k, which
will be demonstrated later.

Motivated by our recent work for random Schrödinger equations [7], we propose
a qMC-based model reduction method to solve the Helmholtz equation in random
media here. Our method consists of offline and online stages. In the offline stage,
we apply an optimization approach to the Helmholtz equation for each realization
of the random media and obtain a set of multiscale basis functions. Then, we apply
the proper orthogonal decomposition for the multiscale basis functions and extract
a small number of multiscale reduced basis functions, which provide a quasi-optimal
approximation to the solution of random Helmholtz equation. In the online stage,
we use these basis functions in the physical space in the Galerkin formulation and
the qMC method to approximate the random space of the solution. Under mild
conditions, we provide a convergence analysis of our method. Finally, we present
numerical experiments to demonstrate the efficiency and accuracy of the proposed
methods. We find the proposed method is efficient in the sense that the number
of basis functions is only proportional to the wave number k and the number of
samples in the qMC method is inversely proportional to a power of k. Our method
still works well for generic random media that have a large fluctuation.

The rest of the paper is organized as follows. In Section 2, we first provide
the construction of multiscale basis functions using an optimization approach for
deterministic Helmholtz equations, and then in Section 3 we propose a qMC-based
model reduction method to solve Helmholtz equations in random media. In Section
4, we provide analysis results of our method. Numerical results in 1D and 2D are
given to demonstrate the convergence and efficiency of the proposed method in
Section 5. Finally, conclusions and discussions are drawn in Section 6.
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2. Multiscale basis functions for Helmholtz equations.

2.1. Construction of multiscale basis functions. First of all, we introduce how
to construct multiscale basis functions for Helmholtz equations by using an opti-
mization approach. To demonstrate the idea, we consider the following deterministic
problem {

−∆u(x)− k2n(x)u(x) = f(x), x ∈ D,

∂νu− ik
√
n(x)u(x) = 0, x ∈ Γ,

(2)

where n(x) > 0 is a deterministic refractive index and the definitions of other
notations are the same as before.

We define the Helmholtz operator H(·) ≡ −∆(·) − k2n(x)(·) and introduce the
following energy notation || · ||V for the Helmholtz operator

||u||V = (Hu, u)D =

∫
D

|∇u|2 − k2n(x)|u|2x. . (3)

The construction of (problem-dependent) multiscale basis functions by using an
optimization approach has been used to solve many types of deterministic par-
tial differential equations (PDEs), including multiscale elliptic PDEs, Schrödinger
equations, and Helmholtz equations; see e.g. [3, 25, 21, 22, 6]. Some local subscale
correction idea was used to solve multiscale elliptic PDEs and Helmholtz equations
in [23, 27]. Though the energy notation || · ||V in (3) does not define a norm, we can
still construct multiscale basis functions for the Helmholtz equation (2) on a coarse
mesh by using an optimization approach.

To construct such localized multiscale basis functions, we first partition the phys-
ical domain D into a set of regular coarse elements with grid size H. For example,
we divide D into a set of non-overlapping triangles TH = ∪{K}, such that no vertex
of one triangle lies in the interior of the edge of another triangle. On each element
K, we define a set of nodal basis {ϕj,K , j = 1, 2, 3}. From now on, we neglect the
subscript K for notational convenience.

Let N denote the set of vertices of TH (removing the repeated vertices due to the
periodic boundary condition) and NH be the number of vertices. For every vertex
xj ∈ N , let ϕHj (x) denote the corresponding nodal basis function, i.e., ϕHj (xj′) =

δjj′ . Since all the nodal basis functions ϕHj (x) are continuous across the boundaries
of the elements, we have

V H = {ϕHj (x) : j = 1, ..., NH} ⊂ H1(D).

Then, we solve optimization problems to obtain the multiscale basis functions.
Specifically, let φj(x), 1 ≤ j ≤ NH , be the minimizer of the following constrained
optimization problem

φj = arg min
φ∈H1(D)

||φ||V (4)

s.t.

∫
D

φ(x)ϕHj′ (x)x. = δjj′ , ∀1 ≤ j′ ≤ NH , (5)

where ϕHj′ (x) are called measurement functions in our method. Notice that we

solve the optimization problem in H1(D) since the impedance boundary condition
is imposed for the Helmholtz equation (2). If the Dirichlet boundary condition is
imposed, we need to modify the searching space by incorporating the boundary
condition accordingly.
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In general, one cannot solve the optimization problem (4)-(5) analytically. There-
fore, we use numerical methods to solve it. Specifically, we partition the physical
domain D into a set of non-overlapping fine triangles with size h = O(k−2). Let
ϕhs (x), s = 1, ..., Nh denote the finite element basis functions defined on fine trian-
gles with size h, where Nh is the number of basis functions. Then, we discretize
φj(x), ϕHj′ (x), 1 ≤ j, j′ ≤ NH by using the fine-scale basis functions ϕhs (x). After

discretization, the optimization problem (4)-(5) reduces to a constrained quadratic
optimization problem; see (56) in A, which can be efficiently solved using Lagrange

multiplier methods. Finally, with these multiscale basis functions {φj(x)}NHj=1, we

can approximate the solution by u(x) =
∑NH
j=1 ujφj(x) and solve the Helmholtz

equation (2) combined with Galerkin projection method.

Remark 2.1. In analogy to the multiscale finite element method [20, 11], the

multiscale basis functions {φj(x)}NHj=1 are defined on coarse elements with size H.
However, they are represented by fine-scale basis with size h, which can be pre-
computed and done in parallel.

2.2. Some properties of the multiscale basis functions. It can be proved
that the multiscale basis functions {φj(x)}NHj=1 decay exponentially fast away from
its associated vertex xj ∈ N under certain conditions. This allows us to localize the
basis functions to a relatively smaller domain and reduce the computational cost.
We first define a series of nodal patches {D`} associated with xj ∈ N as

D0 := supp{ϕj} = ∪{K ∈ TH |xj ∈ K}, (6)

D` := ∪{K ∈ TH |K ∩D`−1 6= ∅}, ` = 1, 2, · · · . (7)

Assumption 2.2. We assume the refractive index n(x) is bounded, i.e., n0 :=
||n(x)||L∞(D) < +∞ and the grid size H of TH satisfies

√
n0kH . 1, (8)

where . means bounded from above by a constant.

The Assumption 2.2 for coarse elements is called the resolution condition. One
can see that the number of basis functions in our method is significantly reduced
compared with the standard finite element method. Moreover, the multiscale finite
element basis functions have the exponentially decaying property, which further
reduces the cost of our method.

Proposition 2.3. Under the resolution condition of the coarse mesh, i.e., (8), there
exist constants C > 0 and 0 < β < 1 independent of H, such that

||∇φj(x)||L2(D\D`) ≤ Cβ
`||∇φj(x)||L2(D), (9)

for any j = 1, 2, ..., NH .

Proof of (9) for a deterministic refractive index can be found in [27]. The main
idea is to combine an iterative Caccioppoli-type argument [23, 22] and some refined
estimates with respect to the patches index.

The exponential decay property enables us to localize the support sets of the
basis functions {φj(x)}NHj=1 so that the corresponding stiffness matrix is sparse and
the computational cost is reduced. In practice, we define a modified constrained
optimization problem as follows

φloc
j = arg min

φ∈H1(D)

||φ||V (10)
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s.t.

∫
Dl∗

φϕHj′x. = δjj′ , ∀1 ≤ j′ ≤ NH , (11)

φ(x) = 0, x ∈ D\Dl∗ , (12)

where Dl∗ is the support set of the localized multiscale basis function φloc
j (x) and

the choice of the integer l∗ depends on the decaying speed of φloc
j (x). In (11) and

(12), we have used the fact that φj(x) has the exponentially decaying property so
that we can localize the support set of φj(x) to a smaller domain Dl∗ . In numerical
experiments, we find that a small integer l∗ ∼ log(L/H) will give accurate results,
where L is the diameter of the domain D. Moreover, the optimization problem
(10)-(12) can be solved in parallel. Therefore, the exponentially decaying property
significantly reduces the computational cost in constructing basis functions and
computing the solution of the Helmholtz equation (2).

3. A qMC-based model reduction method for random Helmholtz equa-
tion.

3.1. Model reduction using multiscale reduced basis functions. In this sec-
tion, we present the numerical method to solve the following Helmholtz equation
with a random refractive index{

−∆u(x, ω)− k2n(x, ω)u(x, ω) = f(x), x ∈ D,ω ∈ Ω,

∂νu− ik
√
n(x, ω)u(x, ω) = 0, x ∈ Γ,

(13)

where D = [0, 1]d is the spatial domain, Γ = ∂D is the domain boundary, Ω is the
random space, ν is the unit outward normal vector on Γ, k is the wave number, and
n(x, ω) > 0 is the random refractive index.

We assume n(x, ω) has an affine form and is parameterized by m random vari-
ables, i.e.,

n(x, ω) = n̄(x) +

m∑
j=1

√
λjξj(ω)ψj(x), (14)

where ξj(ω)’s are independent uniform random variables on [0, 1], ψj(x)’s are phys-
ical components, and λj ’s are the corresponding strengths. In addition, we assume
n(x, ω) is almost surely positive and bounded. Namely, there exist nmax > 0 and
nmin > 0, such that

P (ω ∈ Ω | n(x, ω) ∈ [nmin, nmax], ∀x ∈ D) = 1. (15)

For the random Helmholtz equation (13), it is prohibitively expensive to construct
multiscale basis functions for each realization of the refractive index by solving the
optimization problem (10)-(12). To address this issue, we use a model reduction
method to build a small number of reduced basis functions that enable us to obtain
multiscale basis functions in a cheaper way.

For every xj ∈ N , we first compute a set of samples of multiscale basis functions

associated with the vertex xj . Specifically, let {n(x, ωq)}Qq=1 be samples of the

refractive index that are obtained using the Monte Carlo (MC) method or qMC

method, where Q is the number of samples. Denote ζj0(x) = 1
Q

∑Q
q=1 φ

loc
j (x, ωq)

the sample mean of the basis functions, and φ̃loc
j (x, ωq) = φloc

j (x, ωq)− ζj0(x) is the
fluctuation of the j-th basis function.
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We apply the proper orthogonal decomposition (POD) method [4, 30] to the snap-

shot space V = {φ̃loc
j (x, ωq)}Qq=1 and build a set of basis functions

{ζj1(x), ζj2(x), ..., ζjmj (x)} with mj � Q that optimally approximates V . We have
the following approximating property.

Proposition 3.1. Let λ1 ≥ λ2 ≥ ... ≥ λmj ≥ λmj+1 ≥ ... > 0 be positive ei-
genvalues of the covariance kernel associated with the snapshot space V and the
corresponding eigenfunctions are ζj1(x), ..., ζjmj (x),... Then, the reduced basis func-

tions {ζjl (x)}mjl=1 have the following approximation property∑Q
q=1

∣∣∣∣∣∣φ̃locj (x, ωq)−
∑mj
l=1

(
φ̃locj (x, ωq), ζ

j
l (x)

)
X
ζjl (x)

∣∣∣∣∣∣2
X∑Q

q=1

∣∣∣∣∣∣φ̃locj (x, ωq)
∣∣∣∣∣∣2
X

=

∑Q
s=mj+1 λs∑Q
s=1 λs

, (16)

where X = L2(D) or X = H1(D) and the number mj is determined according to

the ratio ρ =
∑mj
s=1 λs∑Q
s=1 λs

.

In practice, we choose the first mj dominant reduced basis functions such that
ρ is close enough to 1, in order to achieve a desired accuracy, say ρ = 99%. More
details of the POD method can be found in [4, 30]. Notice that reduced basis

functions ζj0(x) and ζjl (x), l = 1, ...,mj approximately capture the mean profile and
fluctuation of multiscale basis functions associated with xj , respectively. Thus, for
each realization of the random potential, the associated multiscale basis functions
can be approximated by the reduced basis functions.

Remark 3.2. Constructing the multiscale reduced basis functions requires addi-
tional computational cost in the offline stage. However, the precomputed reduced
basis functions can be used repeatedly to solve (13) for each realization of the
random potential and different source function f(x), which results in considerable
savings.

The choice of snapshots is critical to the quality of the reduced basis functions in
the POD method. We study the continuous dependence of multiscale basis functions
on the refractive index, which provides guidance on how to determine the number of
samples in the construction of multiscale basis functions. We summarize the result
into the following theorem, whose proof is given in A. For notational simplification,
we carry out the analysis for multiscale basis functions without localization.

Theorem 3.3. For two realizations ω1 and ω2 of the random media n(x, ω), un-
der the assumption that n(x, ω) is almost surely bounded, i.e. (15) is satisfied
and grid sizes are small in the sense that: H < 1; hk < 1 and k2hd‖n(·, ω1) −
n(·, ω2)‖L∞(D) < 1, we have

‖φ(·, ω1)− φ(·, ω2)‖L∞(D) ≤ Ck2h−d−5‖n(·, ω1)− n(·, ω2)‖L∞(D), (17)

where the constant C is independent of h, k and ‖n(·, ω1)− n(·, ω2)‖L∞(D).

Equipped with Theorem 3.3, we can estimate the number of samples in the
construction of multiscale reduced basis functions. Suppose the random refractive
index is of the form (14). For any δ > 0, we choose an integer Qδ and a set of

random samples {n(x, ωq)}Qδq=1 such that

E
[

inf
1≤q≤Qδ

∣∣∣∣n(x, ω)− n(x, ωq)
∣∣∣∣
L∞(D)

]
≤ δ, (18)
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where the expectation is taken over the random variables in n(x, ω) of the form
(14). Since the distribution of the random variables ξj(ω), j = 1, ...,m in (14) is

known, we can find a way to choose the random samples {n(x, ωq)}Qδq=1 so that the

condition (18) is satisfied.

For every xj ∈ N , let {φj(x, ωq)}Qδq=1 be the samples of multiscale basis functions
associated with xj . Then, we have

E
[

inf
1≤q≤Qδ

∣∣∣∣φj(x, ω)− φj(x, ωq)
∣∣∣∣
L∞(D)

]
≤ Ck2h−d−5δ. (19)

Given parameters k and h, we choose δ and Qδ so that the right-hand side of
(19) is small. Then, the space of multiscale basis functions can be well approxi-

mated by the samples of multiscale basis functions {φj(x, ωq)}Qδq=1 with controllable
accuracy and the POD method is further applied to construct multiscale reduced
basis functions.

3.2. Derivation of the qMC-based model reduction method. We now
present the qMC-based model reduction method for solving the random Helmholtz
equation. In our method, we use the multiscale reduced basis functions obtained in
Section 3.1 for approximation in the physical space, while in the random space, we
use the qMC method for discretization.

The implementation of the qMC method is fairly easy. Given a set of qMC
samples, the expectation of the solution is approximated by

E [u(x, ω)] ≈ 1

NqMC

NqMC∑
i=1

u(x, ωi), (20)

where NqMC is the number of qMC samples. Details of the generation of qMC
samples and its convergence analysis will be discussed in Section 4.

Now we focus on how to approximate the solution in the physical space for
each qMC sample ωs. For each node point xj ∈ N , we have constructed a set of

multiscale reduced basis functions {ζjl }
mj
l=0 and represent the wavefunction by

u(x, ωs) =

NH∑
j=1

mj∑
l=0

cjl (ωs)ζ
j
l (x), (21)

where mj is the number of multiscale reduced basis functions associated with node
xj .

We apply the Galerkin method to compute the expansion coefficients cjl (ωs).
Specifically, we substitute the expansion (21) into the Helmholtz equation (13),

multiply both side by the multiscale reduced basis ζj
′

r (x) and take integration.
This gives us a weak form as follows,(

∇
NH∑
j=1

mj∑
l=0

cjl (ωs)ζ
j
l (x) , ∇ζj

′
r (x)

)
D

−

(
k2n(x, ωs)

NH∑
j=1

mj∑
l=0

cjl (ωs)ζ
j
l (x) , ζj

′
r (x)

)
D

−

(
ik
√
n(x, ωs)

NH∑
j=1

mj∑
l=0

cjl (ωs)ζ
j
l (x) , ζj

′
r (x)

)
Γ

=
(
f(x) , ζj

′
r (x)

)
D
,

x ∈ D, j′ = 1, · · · , NH , r = 0, · · · ,mj , (22)

where the impedance boundary condition has been imposed.
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To numerically solve (22), we introduce some notations. Let S, M(ωs) and B(ωs)

be matrices with dimension
∑NH
j=1(mj +1)×

∑NH
j=1(mj +1), and F be a matrix with

dimension
∑NH
j=1(mj + 1)× 1. Their entries are given by

S∑j
i=1(mi+1)+l,

∑j′
i=1(mi+1)+r

=

∫
D

∇ζjl · ∇ζ
j′

r x. ,

M∑j
i=1(mi+1)+l,

∑j′
i=1(mi+1)+r

(ωs) =

∫
D

ζjl n(x, ωs)ζ
j′

r x. ,

B∑j
i=1(mi+1)+l,

∑j′
i=1(mi+1)+r

(ωs) =

∫
Γ

ζjl
√
n(x, ωs)ζ

j′

r x. ,

F∑j′
i=1(mi+1)+r,1

=

∫
D

f(x)ζj
′

r x. .

Then, we can reduce the weak formulation (22) into the following linear algebra
system (

S − k2M(ωs)− ikB(ωs)
)
c(ωs) = F, (23)

where the column vector c(ωs) = (c10(ωs), ..., c
1
m1

(ωs), ..., c
NH
0 (ωs), ..., c

NH
mNH

(ωs))
T

consisting of all expansion coefficients of the solution u(x, ωs) onto the multiscale
reduced basis. Since the multiscale basis functions are defined on coarse grids and
multiscale reduced basis functions are efficient for model reduction, our method
provides considerable savings over the standard finite element methods defined on
fine grids, especially for the Helmholtz equation with a high wavenumber.

Before ending this section, we explain why we chose the qMC method to approx-
imate the random space of the solution. Since the parameterization of a random
refractive index may have a high dimension, i.e., m is large in (14), non-intrusive
methods, such as stochastic collocation methods [24], become expensive to solve
PDEs with random coefficients. Polynomial chaos expansion methods [17, 33] are
also frequently used in the literature to solve PDEs with random coefficients. This
type of method is very efficient if the solution is sufficiently smooth in the random
space with small dimensionality. It also suffers from the curse of dimensionality.
The performance of the MC method does not depend on the dimension of the ran-
dom space. However, its convergence rate is merely O( 1√

n
). The convergence rate of

the qMC method is better both theoretically and numerically; see (48) in Theorem
4.8. Therefore, we choose the qMC method and its implementation is almost the
same as the MC method.

4. Convergence analysis. In this section, we aim to study the convergence analy-
sis of the proposed method, where the emphasis is put on computing the expectation
of functionals of the wavefunction.

4.1. Regularity of the wavefunction with respect to the random variables.
The impedance boundary condition ensures the wellposedness of the problem (13).
However, the stability constant (denoted by Cstab) and its possible dependence on
the wave number k are not known in general. The following property plays an
important role in our analysis, where the analysis can be found in [19].

Proposition 4.1. If Γ is convex and 2n(x, ω)+x ·∇xn(x, ω) ≥ µ > 0 for almost all
x ∈ D with probability 1, then the problem (13) has a unique solution u = u(x, ω)
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and the solution satisfies the following inequality with respect to x and for each ω
almost surely.∣∣∣∣u(·, ω)

∣∣∣∣
H1(D)

+ k
∣∣∣∣n(·, ω)u(·, ω)

∣∣∣∣
L2(D)

≤ Cstab||f ||L2(D). (24)

The stability constant Cstab is independent of k, f(x), u(x, ω), and ω but depends
on µ and the diameter of D.

In practice, we are interested in the expected value of a spatial linear functional
G(u(x, ω)). For instance, G(·) is an identity operator or an integral operator.

Assumption 4.2. The spatial linear functional G ∈ (Hs(D))′ for some s ≥ 0, in
which (Hs(D))′ means the dual space of Hs(D).

Notice that the random refractive index (14) is parameterized by m random
variables. Denote ξ(ω) = (ξ1(ω), · · · , ξm(ω))T for convenience. According to the
Doob-Dynkin lemma the solution u(x, ω) can be represented by these random vari-
ables, i.e. u(x, ω) = u(x, ξ(ω)). Let ν = (ν1, · · · , νm) denote a multi-index of
non-negative integers, with |ν| =

∑m
j=1 νj and |ν|∞ = max1≤j≤m νj . The value of

νj determines the number of derivatives to be taken with respect to ξj .
Let F (·, ξ(ω)) = G(u(·, ξ(ω))). Then, we want to compute

E[F (·, ξ(ω))] =

∫
[0,1]m

F (·, ξ(ω))dξ. (25)

To carry out the error analysis for the qMC method in computing (25), it is
crucial to bound the mixed first derivatives of F (·, ξ(ω)) with respect to ξ(ω). Let
∂νF (·,ξ(ω))

∂ξν denote the mixed derivative of F (·, ξ(ω)) with respect to all variables

specified by the multi-index ν, where νj = 0 or 1.
Note that (24) implies (for k ≥ 1), almost surely we have

||u(·, ξ(ω))||L2(D) ≤ (
Cstab
knmin

)||f ||L2(D), ||u(·, ξ(ω))||H1(D) ≤ (
Cstab
nmin

)||f ||L2(D).

(26)

Thus, we have the following proposition that

Proposition 4.3. For k ≥ 1 and s = 0 or s = 1, the solution to the problem
(13)satisfies the following inequality with respect to x and for each ξ(ω) almost
surely.

||u(·, ξ(ω))||Hs(D) ≤ ks−1(
Cstab
nmin

)||f ||L2(D). (27)

The stability constant Cstab is independent of k, f(x), u(x, ω), and ω but depends
on µ and the diameter of D. The constant nmin is defined in Eq.(15).

Then we can obtain the following theorem about the bound of ∂νF (·,ξ(ω))
∂ξν .

Theorem 4.4. Under the Proposition 4.1, Assumption 4.2 and the assumption
(15) on the refractive index n(x, ω), the mixed first derivatives of F (·, ξ(ω)) with
respect to ξ(ω) can be bounded as follows∣∣∂νF (·, ξ(ω))

∂ξν
∣∣ ≤ ||G||L2(D)′ |ν|!k|ν|−1(

Cstab
nmin

)|ν|+1
( m∏
j=1

b
νj
j

)
||f ||L2(D), (28)

where ν = (ν1, · · · , νm) is a multi-index with νj = 0 or 1, |ν| =
∑m
j=1 νj, and

bj = ||ψj ||L∞(D).
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Proof. We prove by induction on |ν|. First of all, we consider the case |ν| = 0.
According to the definition F (·, ξ(ω)) = G(u(·, ξ(ω))), we have

|F (·, ξ(ω))| = |Gu(·, ξ(ω))| ≤ ||G||L2(D)′ ||u(·, ξ(ω))||L2(D). (29)

Then, by using the estimate (27) for ||u(·, ξ(ω))||L2(D) we get

|F (·, ξ(ω))| ≤ ||G||L2(D)′k
−1(

Cstab
nmin

)||f ||L2(D). (30)

Now we consider the case |ν| = 1. We compute the first order derivative of
F (·, ξ(ω)) with respect to ξj and obtain

∂F

∂ξj

(
·, ξ(ω)

)
=

∂

∂ξj
G
(
u(·, ξ(ω))

)
= G

(
uj(·, ξ(ω))

)
, (31)

where uj
(
·, ξ(ω)

)
= ∂u(·,ξ(ω))

∂ξj
.

To estimate uj
(
·, ξ(ω)

)
, we differentiate the Helmholtz Eq.(13) with respect to

ξj , where the refractive index is given by (14). Also we assume that n ≡ 1 on Γ so
boundary perturbations are forbidden. We get that

−∆uj − k2n(x, ω)uj = k2ψj(x)u, x ∈ D,ω ∈ Ω, (32)

∂νuj − ik
√
n(x, ω)uj =

ik

2

nj(x, ω)√
n(x, ω)

= 0, x ∈ Γ, (33)

where we have used the condition that nj(x, ω) = ∂n(x,ω)
∂ξj

= 0 on the boundary.

Then, together with (32), (33) and (27), we obtain

||uj(·, ξ(ω))||L2(D) ≤ k−1(
Cstab
nmin

)k2||ψj ||L∞(D)||u||L2(D),

≤ k(
Cstab
nmin

)||ψj ||L∞(D)(
Cstab
knmin

)||f ||L2(D),

= (
Cstab
nmin

)2||ψj ||L∞(D)||f ||L2(D). (34)

Hence combining with (30) and (34), we have∣∣∂F
∂ξj

(·, ξ(ω))
∣∣ ≤ ||G||L2(D)′(

Cstab
nmin

)2
(
||ψj ||L∞(D)

)
||f ||L2(D). (35)

Next, we consider the mixed second-order derivative with respect to ξj , ξl for
j 6= l,

| ∂2

∂ξj∂ξl
F (·, ξ(ω))| = |G(ujl(·, ξ(ω)))| ≤ ||G||L2(D)′ ||ujl(·, ξ(ω))||L2(D), (36)

where ujl(·, ξ(ω)) = ∂2u(·,ξ(ω))
∂ξj∂ξl

. This enables us to estimate the case |ν| = 2. We

repeat the same procedure and differentiate (32) and (33) with respect to ξl, which
gives us

−∆ujl − k2n(x, ω)ujl = k2ψj(x)ul + k2ψl(x)uj , x ∈ D,ω ∈ Ω, (37)

∂νujl − ik
√
n(x, ω)ujl = 0, x ∈ Γ. (38)

By using the stability condition (27) for the solution of (37) and (38), we have
the following estimate
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||ujl(·, ξ(ω))||L2(D)

≤ k−1(
Cstab
nmin

)
(
k2||ψj ||L∞(D)||ul(·, ξ(ω))||L2(D) + k2||ψl||L∞(D)||uj(·, ξ(ω))||L2(D)

)
. (39)

We substitute the estimates for the first-order derivatives ||ul(·, ξ(ω))||L2(D) and
||uj(·, ξ(ω))||L2(D) (see (34)) into the above inequality and obtain

||ujl(·, ξ(ω))||L2(D) ≤ 2k(
Cstab
nmin

)3||ψj ||L∞(D)||ψl||L∞(D)||f ||L2(D). (40)

Let us denote bj = ||ψj ||L∞(D). We repeat the same argument for the other
mixed derivatives and eventually prove the estimate (28).

If the fluctuation in the random refractive index (14) is small, we can naturally
obtain the following result.

Corollary 4.5. If the random refractive index (14) is a small perturbation to a
mean refractive index, i.e., k||ψj ||L∞(D) = O(1), j = 1, ...,m, the bound for the
mixed first derivatives of F (·, ξ(ω)) with respect to ξi(ω) can be improved to∣∣∂νF (·, ξ(ω))

∂ξν
∣∣ ≤ C||G||L2(D)′ |ν|!k−1(

Cstab
nmin

)|ν|+1||f ||L2(D), (41)

where C is a constant independent of k, ν = (ν1, · · · , νm) is a multi-index with
νj = 0 or 1, and |ν| =

∑m
j=1 νj.

4.2. Main result of the error analysis. In the framework of uncertainty quan-
tification, we are interested in computing some statistical quantities of the wave-
function u(x, ω). As such, we provide the error analysis of our method in computing
functionals of u(x, ω).

Let G(·) be a continuous linear functional on L2(D), then there exists a constant
CG such that

|G(u)| ≤ CG‖u‖L2(D),

for all u(, ω) ∈ L2(D) almost surely for all ω ∈ Ω. Consider the following integral

Im(F ) =

∫
ξ∈[0,1]m

F (ξ)dξ (42)

with F (·, ξ) = G(u(·, ξ)). We approximate the integral over the unit cube by ran-
domly shifted lattice rules

Qm,n(∆;F ) ,
1

NqMC

NqMC∑
i=1

F
(
frac(

iz

NqMC
+ ∆)

)
,

where z ∈ Nm is the (deterministic) generating vector and ∆ ∈ [0, 1]m is the random
shift which is uniformly distributed over [0, 1]m. Notice that m is the dimension of
the random vector ξ in the random potential and n is the number of the sample
points in implementing the qMC method. The interested reader is referred to [10]
for more details of the randomly shifted lattice rules in the qMC method.

Lemma 4.6. Let F be the integrand in (42). Given NqMC ∈ N with NqMC ≤ 1030,
weights γ = (γu)u⊂N, a randomly shifted lattice rule with n points in m dimensions
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can be constructed by a component-by-component algorithm such that, for all λ ∈
(1/2, 1], √

E∆|Im(F )−Qm,NqMC (·;F )|2 ≤ 9C∗Cγ,m(λ)N
−1/(2λ)
qMC , (43)

with

Cγ,m(λ) =

 ∑
∅6=u⊆{1:m}

γλu
∏
j∈u

%(λ)

1/(2λ) ∑
u⊆{1:m}

(|u|!)2T 2|u|

γuε2|u|

∏
j∈u

λj‖ψj‖2C0(D̄)

1/2

.

(44)

Proof. The proof of this result is essentially an application of the Koksma-Hlawka
inequality, which is the same as the proofs of Theorem 15, Theorem 16, and Theorem
17 in [18], or Theorem 5.10 in [10] with the following modification of estimates:

%(λ) = 2

( √
2π

π2−2η∗(1− η∗)η∗

)λ
ζ(λ+

1

2
), η∗ =

2λ− 1

4λ
(45)

with ζ(x) =
∑∞
j=1 j

−x the Riemann zeta function, and C∗ = ‖G‖L2(D).

To analyze the error of our method, we need to make some assumptions on the
regularity of the physical components ψj(x) in the random refractive index (14) and

the decay rate of bj =
√
λj ||ψj ||L∞(D).

Assumption 4.7. (a) There exist C > 0 and Θ > 1 such that bj ≤ Cj−Θ for
j ≥ 1;

(b) The physical components ψj(x) are continuous and there exist C > 0 and

η ∈ [0, Θ−1
2Θ ) such that ‖ψj‖L∞(D) ≤ Cλ−ηj for j ≥ 1;

(c) The sequence defined by
√
λj‖ψj‖L∞(D), j ≥ 1 satisfies∑

j≥1

(√
λj‖ψj‖L∞(D))

)p
<∞ for some p ∈ (0, 1], and

∑
j≥1

√
λj‖ψj‖L∞(D)

< 1
k

√
%(λ) for λ ∈ (1/2, 1].

Denote uH the solution obtained by our method using the multiscale reduced
basis functions in the physical space and the qMC method in the random space.
Under the Assumption 4.7 for the random potential, we have the following error
estimate.

Theorem 4.8. Consider the approximation of E[G(u)] via the qMC multiscale finite
element method, denoted by QNqMC (·;G(uH)), where we assume u ∈ L2(Ω;H2(D)).
A randomly shifted lattice rule QNqMC is applied to G(u). Then, we can bound the
root-mean-square error with respect to the uniformly distributed shift ∆ ∈ [0, 1]m by√

E∆
[
(E[G(u)]−Qn(·;G(uH)))

2
]
≤ C

(
H2 +N−rqMC

)
, (46)

for 0 < χ ≤ (1/2− η)Θ− 1/2, and with r = 1/p− 1/2 for p ∈ (2/3, 1] and r = 1− δ
for p ≤ 2/3, with δ arbitrarily small. Here the constant C is independent of k and
NqMC .

Proof. Under the assumption u ∈ L2(Ω;H2(D)), we have, see for example [27] for
Helmholtz equation,

|E[G(u)− G(uH)]| ≤ CH2. (47)
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When applying the qMC method, we adopt the standard framework, i.e., the
Koksma-Hlawka inequality. Under Assumption 4.7, we have, based on Theorem 4.4
and Lemma 4.6, √

E∆|Im(F )−Qm,NqMC (·;F )|2 ≤ CN−rqMC , (48)

where r = 1/p − 1/2 for p ∈ (2/3, 1] and r = 1 − δ for p ≤ 2/3, with δ arbitrarily
small. The detailed derivation is essentially the same as the proof of Theorem 20
in [18]. A combination of the above estimates completes the proof.

Remark 4.9. In Section 5, we will show that the proposed method works well for
a large class of random potentials, even when the eigenvalues in the KL expansion
have a relatively slow decay rate. Therefore, Assumption 4.7 is a rather technical
assumption for the convergence analysis of the proposed method.

5. Numerical examples. In this section, we conduct numerical experiments to
test the accuracy and efficiency of our method. Specifically, we will present conver-
gence tests with respect to the physical grid size, the number of multiscale reduced
basis functions on each coarse mesh node, and the number of qMC samples.

In what follows, we compare the relative error between expectations of the nu-
merical solution unum and the reference solution uref in both L2 norm and H1 norm

ErrorL2 =
||E[unum]− E[uref]||L2

||E[uref]||L2

,

ErrorH1 =
||E[unum]− E[uref]||H1

||E[uref]||H1

.

Here E[unum] =
∫

Ω
unum(x, ω)dρ(ω), E[uref] =

∫
Ω
uref(x, ω)dρ(ω), Ω is the ran-

dom space, and ρ(ω) is the probability measure induced by the randomness in
n(x, ω). The reference solution refers to the numerical wavefunction using a very
fine mesh and a large amount of qMC samples. In numerical experiments, we use
MATLAB’s Statistics Toolbox to generate the Sobol sequence to implement the
qMC method. When we use the POD method to construct multiscale reduced basis
functions, we observe similar decay behaviors of the associated eigenvalues at each
coarse grid point. Therefore, we choose the same reduced basis number mj for all
the coarse grid points.

Consider the 1D Helmholtz equation over D = [0, 1]{
−u′′(x, ω)− k2n(x, ω)u(x, ω) = f(x), x ∈ D,ω ∈ Ω,

u′(x, ω)− ik
√
n(x, ω)u(x, ω) = 0, x = 0, 1,

(49)

where the pure robin boundary condition is imposed and the random refractive
index n(x, ω) is defined as

n(x, ω) = 1 + σ

m∑
j=1

sin(2πjx)ξj(ω). (50)

In the random refractive index (50), σ is used to control the strength of the ran-
dom media and to make sure n(x, ω) ≥ 0 all the time, and ξj(ω)’s are independent
random variables uniformly distributed in [0, 1].
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5.1. Multi-query results in online stage. In this section, we first demonstrate
the property of our multiscale reduced basis. First of all, our basis can be used in
the online stage for different source terms f(x), which means that once we have
constructed our multiscale reduced basis in the offline stage, we can use the same
basis for computing the Helmholtz equation in the multi-query setting. We choose
f(x) belongs to F = {sin(aiπx + biπ) cos(ciπy + diπ)}10

i=1, where ai, bi, ci and di
are uniformly distributed over the interval [0, 1]. The wave number k = 128, the
random dimension m = 5 and the random strength σ = 1

6 in (50). For the reference

solution, we choose h = 1
16384 and the qMC sample number to be 16000. In our

method, we choose the POD modes mj = 3, the sampling number in the offline
training stage to be 200 and the number of qMC samples in the online stage to be
5120. In Figure 1, we can see that our method is stable and accurate for different
source terms.
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Figure 1. Numerical results for 10 different source terms. Left is
the relative error in L2 norm and right is the relative error in H1

norm.

5.2. Convergence in the physical space. In this experiment, we choose f(x) =
sin(πx+ π) cos(πx+ π). Beside, we choose k = 128, m = 5 and σ = 1

6 in (50).

Convergence with respect to the coarse grid size H. In our numerical test, for
the reference solution, we choose the fine mesh to be hk2 = 1, which means that
h = 1

16384 . And the qMC sample number NqMC = 16000. In our method, we choose
the POD modes mj = 3, the sampling number in the offline training stage to be
200 and the number of qMC samples in the online stage to be 5120.

In Table 1, we compute the relative errors of the expectation of the wavefunction
in both L2 norm and H1 norm for a series of coarse meshes with grid size ranging
from H = 1

128 to H = 1
1024 . We also show the convergence results in Figure 2. Nice

convergence in the physical space is observed.

Verification of the exponential decay of multiscale basis functions. For the same
problem as above, we choose four different realizations of the multiscale basis func-
tions centered at x = 1/2, i.e. φ(x, ξ(ωi)), i = 1, 2, 3, 4, which are generated in the
offline training stage of our previous experiment when H = 1

256 . In Figure 3(a), we
plot |∇φ(x, ξ(ωi))|/||∇φ(x, ξ(ωi))||L2(D), i = 1, 2, 3, 4. In Figure 3(b), we plot the

quantity Erelative =
||∇φ(x,ξ(ωi))||L2(D)−||∇φ(x,ξ(ωi))||L2(D`)

max(||∇φ(x,ξ(ωi))||L2(D)−||∇φ(x,ξ(ωi))||L2(D`)
) with respect to the
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H ErrorL2 Order ErrorH1 Order
1/128 0.00191722 0.04086631
1/256 0.00091108 1.07 0.02404165 0.77
1/512 0.00040158 1.18 0.01436555 0.74

1/1024 0.00006602 2.60 0.00515569 1.48

Table 1. Relative L2 and H1 errors for the expectation of the
wavefunction when k = 128.
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Figure 2. The numerical test for physical space. The slopes for
the L2 norm and H1 norm are 1.58 and 0.97, respectively. Left is
the relative error in L2 norm and right is the relative error in H1

norm.

patch size ` (defined in Eq.(7)), which shows the decay rate of Erelative with respect
to `.

One can see that each realization of the multiscale basis functions decays expo-
nentially fast away from the center x = 1/2. Since the multiscale basis functions
have exponential decay property, the approximated multiscale basis using the re-
duced basis functions (see Section 3.1) still has the same property.

Convergence with respect to the number of multiscale reduced basis functions. We
study how the approximation error depends on the number of multiscale reduced
basis functions used at each coarse mesh node xk, i.e., changing the POD modes
mj . Again, we solve (49) with the refractive index defined by (50) when k = 128
and σ = 1

6 . For the reference solution, we choose the grid size to be h = 1
16384 and

the number of qMC samples to be NqMC = 16000. In our method, we choose the
number of samples in the offline training stage to be 200 and the number of qMC
samples in the online stage to be 5120. We fix the coarse grid size H = 1

256 and
record the relative errors as a function of the number of multiscale reduced basis
functions.

In Figure 4, we plot the relative L2 and H1 errors with respect to the number
of multiscale reduced basis functions. It is observed that results when mj = 3 have
already been good enough in the sense that relative errors are less than 0.1%. These
numerical results indicate that multiscale reduced basis functions can efficiently
approximate the solution.
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Figure 3. Exponentially decaying properties of the multiscale
basis functions for four different realizations. Left: ∇φ/||φ||L2

with respect to the distance to x = 0. Right: Erelative =
||∇φ(x,ξ(ωi))||L2(D)−||∇φ(x,ξ(ωi))||L2(D`)
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) .
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Figure 4. Relative errors with respect to the number of the mul-
tiscale reduced basis functions. Left is the relative error in L2 norm
and right is the relative error in H1 norm.

5.3. Convergence in the random space. Again, we solve the 1D Helmholtz
equation (49) on D = [0, 1], but we shall focus on the convergence of our method
in random space.

Convergence with respect to the number of qMC samples. In this numerical exper-
iment, parameters of the random refractive index are the same as those in Section
5.2, i.e., σ = 1

6 and k = 128. For the reference solution, we choose the grid size to

be h = 1
16384 and the number of qMC samples to be NqMC = 16000. In our method,

we choose the coarse grid size to be H = 1
2048 and the number of multiscale reduced

basis functions to be mj = 4, such that the error in the physical space is small
enough. To study the convergence rate of the qMC method, we change the number
of the qMC samples successively from NqMC = 160 to NqMC = 5120 and compute
the relative L2 errors. We also compute the relative errors of the MC method with
the same setting in the physical space and the same number of samples.

In Figure 5, we show the convergence results of our method. We find that the
convergence rate of the qMC method is close to 1, which is consistent with results
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in Lemma 4.6 and in Theorem 4.8. Meanwhile, we compare the performance of the
qMC method and the MC method. One can see that the convergence rate of the
MC method is close to 1

2 , which is also consistent with the error estimate of the
MC method. This result clearly shows that the qMC method is more accurate and
efficient than the MC method.

102 103 104

Sampling Number

10-5

10-4

10-3

10-2

10-1
E

rr
or

L
2

qMC

O(n -1)
MC

O(n -0.5)

Figure 5. Comparison of the qMC method and the MC method.
Convergence rates for qMC and MC are 0.97 and 0.53, respectively.

Estimation of sampling numbers in the construction of multiscale reduced basis
functions. In Eqns.(18)-(19), we obtain qualitative estimates on the choice of
sampling numbers in the construction of multiscale reduced basis functions. In
this experiment, we first generate Q qMC samples of the random refractive in-

dex: {n(x, ωq)}Qq=1. Then, for each sample n(x, ωq), we compute the corresponding
multiscale basis functions. Finally, we construct multiscale reduced basis functions
using the POD method. In the online stage, we solve (13) using the obtained multi-
scale reduced basis functions. The numerical setting for the reference solution is the
same as before. For our method, we choose H = 1

128 , mj = 3, and NqMC = 2560.
In Table 2, we show relative errors of numerical solutions obtained using different

sampling numbers of the random potential. When the sampling number Q is small,
say Q = 10, the error is big and the corresponding multiscale reduced basis functions
cannot approximate the random space of the wavefunction well. When we increase
Q, i.e., add more samples of the random potential in the construction of multiscale
reduced basis functions, we obtain much better results. Notice that mj is fixed to be
3. This means when Q is of order 100, the sampling number of the random potential
is large enough to ensure the excellent approximation accuracy of multiscale reduced
basis functions. One interesting topic on this issue is an optimal sampling strategy
in the construction of multiscale reduced basis functions, which will be explored in
a subsequent work.
Dependence of the number of qMC samples on wave number k and dimension of the
random space m. We choose the random refravtive index n(x, ω) as follows,

n(x, ω) = 1 +
1

9

m∑
j=1

sin(2πjx)ξj(ω). (51)
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qMC number ErrorL2 ErrorH1

10 0.13959960 0.50448116
100 0.02439249 0.07893179
200 0.02438763 0.07892388
400 0.02435734 0.07886723

Table 2. Relative L2 and H1 errors in terms of sampling numbers
of the qMC method in the offline stage.

We set the random dimension to be m = 8. Four values of k = 16, 32, 64 and 128
are tested. In Table 3, we list the number of qMC samples with respect to k for the
same accuracy requirement. We find that the number of qMC samples increases
linearly with respect to the increase of wave number k.

W qMC number ErrorL2 ErrorH1

16 320 0.00022253 0.00071914
32 1280 0.00024222 0.00085771
64 1280 0.00025691 0.00085576

128 2560 0.00026058 0.00078906
Table 3. Number of qMC samples for different k under the same ac-

curacy requirement.

Secondly, we fix k = 128 and change the dimension of the random space from
m = 1, m = 2, m = 4, to m = 8. The reference solution and numerical solution are
obtained in the same way as above. In Table 4, we list the number of qMC samples
with respect to m for the same accuracy requirement. One can see that the number
of qMC samples grows quadratically when m increases.

Dimension m qMC number ErrorL2 ErrorH1

1 160 0.00002016 0.00021496
2 320 0.00002353 0.00032777
4 1280 0.00003841 0.00024367
8 5120 0.00002785 0.00033547

Table 4. Number of qMC samples for different dimension m under the

same accuracy requirement.

These numerical results show that the qMC method is very efficient in 1D
Helmholtz equation with random refractive index. Moreover, the qMC method
can be implemented in a parallel fashion to further improve its efficiency.

5.4. Numerical performance for 2D case. To further demonstrate the perfor-
mance of our method, we present numerical results for a 2D Helmholtz equation
over D = [0, 1]2{

−∆u(x, ω)− k2n(x, ω)u(x, ω) = f(x), x ∈ D,ω ∈ Ω,

∂νu− ik
√
n(x, ω)u(x, ω) = 0, x ∈ Γ.

(52)
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We first choose k = 10 and the random refractive index

n(x, y, ω) = 1 + σ

m∑
j=1

sin(2πjx) cos(πjy)ξj(ω). (53)

The source term f(x) is given by f(x) = sin(πx) cos(πy). We test the random
dimension to be m = 6 and the random strength σ = 1

7 . For our numerical solution,

we set the coarse mesh H = 1
4k = 1

40 . We choose the POD modes mj = 2, the
sampling number in the offline training stage to be 200 and the number of qMC
samples in the online stage to be 5120. For the reference solution, we set the fine
mesh to be h = 1

2k2 = 1
200 and the qMC sampling number to be 16000. In Figure

6 and Figure 7, we show the profile of expectation for the numerical solution as
well as the error between the solution between the numerical solution and reference
solution for both the real part and the imaginary part. The relative error is 0.0015
in L2 norm and is 0.018 in H1 norm, respectively.
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Figure 6. Expectation of numerical solution for both the real part
and the imaginary part when k = 10. Left is the real part of
numerical solution and right is imaginary part of numerical solu-
tion.
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Then, we choose k = 32 and the random refractive index

n(x, y, ω) = 1 +
1

5

4∑
j=1

sin(2πjx) cos(πjy)ξj(ω). (54)

For our numerical solution, we take the coarse mesh H = 1
32 . We choose the

POD modes mj = 3, the sampling number in the offline training stage to be 200
and the number of qMC samples in the online stage to be 4000. In Figure 8, we
show the profiles of the expectation for the numerical solutions.

Figure 8. Expectation of numerical solution for both the real part
and the imaginary part when k = 32. Left is the real part of
numerical solution and right is imaginary part of numerical solu-
tion.

5.5. Test the dependence of random perturbation. In this section, we use
the same random refractive index as in [13] with 1D physical space. Using the same
notation as above examples, our random refractive index is defined by:

n(x, ω) = (1 + σΘ(x, ω))2. (55)

In (55), σ is the random perturbation, and Θ(x, ω) is a random field defined by
white noise without spatial correlation, which is at each physical point the value
of Θ is chosen from a uniform distribution in [−1, 1]. The wave number we test is
k = 32 and the fine and coarse mesh is h = 1

16384 and H = 1
128 , respectively. In

our method, we choose mj = 3 and the offline sampling number to be 200. For
the reference solution, we choose the online sampling number NqMC = 16000 which
is also used for the numerical online stage. In Table 5, we list the relative errors
in L2 norm and H1 norm for 5 different σ’s. We find that the performance of our
multiscale reduced basis method is not severely affected by the random perturbation
in the random refractive index.

6. Conclusions and discussions. In this paper, we have proposed a multiscale
reduced basis method to solve the Helmholtz equation with random refractive index
for different wave numbers. The physical space of the solution is approximated by a
set of localized multiscale basis functions based on an optimization approach. The
POD method is then applied to extract a smaller number of multiscale reduced basis
functions to further reduce the computational cost without loss of approximation
accuracy. The number of samples to learn the multiscale reduced basis functions



QMC-BASED MODEL REDUCTION METHOD FOR HELMHOLTZ EQUATION 317

Perturbation σ ErrorL2 ErrorH1

0.1 0.00068960 0.00889012
0.3 0.00109772 0.01433205
0.5 0.00172031 0.02219552
0.7 0.00275215 0.02849249
0.9 0.00112581 0.01552095

Table 5. Relative Error for 5 different random perturbation σ

is also analyzed, which provides guidance in practical computations. The qMC
method is employed to approximate the random space of the solution. The approx-
imation accuracy of the proposed method is analyzed. Finally, we present several
numerical examples to demonstrate the accuracy and efficiency of the proposed
method.

As the similar oscillatory nature between Helmholtz and Schrödinger equation,
in the future we can explore some work in random Schrödinger equation. In the
physics community, the random Schrödinger equation in higher dimensions (2D
and 3D) has been frequently used to study Anderson localization; see [15] for ex-
ample. Though the random potential is assumed to be white noise without spatial
correlation in the original paper [1], correlated random potentials are also found
to generate localized states; see [9] for example. For Anderson localization in 2D
Schrödinger equations with random potentials, we have done some exploration in
[7]. In the mathematics community, it is also known that the existence or nonex-
istence of Anderson localization for some types of 3D Schrödinger equations with
random potentials remains open [12]. It is thus quite interesting to explore this
issue from a numerical perspective.
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Appendix A. Continuous dependence of multiscale basis functions on the
random media. In this appendix, we prove Theorem 3.3, which plays an impor-
tant role in determining the number of snapshots in constructing the multiscale
reduced basis functions.

Proof. Let ϕhs (x), s = 1, ..., Nh denote the finite element basis functions defined
on fine mesh with size h and Nh is the number of fine-scale finite element basis
functions. When we numerically solve (10) - (12), we represent the multiscale basis

function as φi(x) =
∑Nh
s=1 csϕ

h
s (x) and obtain the following quadratic programming

problem with equality constraintsmin
c

1

2
cTQc,

s.t. Ac = b,
(56)
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where c = [c1, ..., cNh ]T is the coefficients and Q is a symmetric positive definite
matrix on the fine triangulation Th with the (i, j) component

Qij = (∇ϕhi ,∇ϕhj )− k2
(
n(x, ω)ϕhi , ϕ

h
j

)
. (57)

In (56), A is an Nh-by-NH matrix with Aij = (ϕhi , ϕ
H
j ) and b is an Nh-by-1

vector with only the i−th entry being 1 and others being 0.
Under the assumption that n(x, ω) is uniformly bounded and h is small, we know

that Q is a positive definite matrix. Moreover, we know that A has full rank, i.e.,
rank(A) = NH . Therefore, the quadratic optimization problem (56) has a unique
minimizer, satisfying the Karush-Kuhn-Tucker condition. Specifically, the unique
minimizer of (56) can be explicitly written as

c = Q−1AT (AQ−1AT )−1b. (58)

For two samples ω1 and ω2, we define δQ = Q1 −Q2. Then

(δQ)ij = k2
(
(n(·, ω1)− n(·, ω2))ϕhi , ϕ

h
j

)
, (59)

and thus

‖δQ‖∞ ≤ k2hd‖n(·, ω1)− n(·, ω2)‖L∞(D). (60)

By assumption ‖δQ‖∞ ≤ 1, we have

Q−1
2 =

∞∑
n=0

(
Q−1

1 δQ
)n
Q−1

1 ,

and thus

c2 − c1 =
[
Q−1

2 −Q
−1
1

]
AT (AQ−1

1 AT )−1b+Q−1
2 AT

[
(AQ−1

2 AT )−1 − (AQ−1
1 AT )−1

]
b,

= Q−1
1 δQQ−1

1 AT (AQ−1
1 AT )−1b

−Q−1
2 AT (AQ−1

1 AT )−1(AQ−1
1 δQQ−1

1 AT )(AQ−1
1 AT )−1b+ o(‖δQ‖∞),

= Q−1
1 δQQ−1

1 AT (AQ−1
1 AT )−1b

−Q−1
1 AT (AQ−1

1 AT )−1(AQ−1
1 δQQ−1

1 AT )(AQ−1
1 AT )−1b+ o(‖δQ‖∞).

Therefore,

|c2 − c1|∞

≤ C‖A‖∞‖Q−1
1 ‖

2
∞‖(AQ−1

1 AT )−1‖∞|b|∞
(

1 + ‖A‖2∞‖Q−1
1 ‖∞‖(AQ

−1
1 AT )−1‖∞

)
‖δQ‖∞.

By their definitions, we have

‖A‖∞ ≤ Chd−1H, |b|∞ = 1, ‖Q−1
1 ‖∞ ≤ Ch

−d, ‖Q1‖∞ ≤ C max{hd−2, k2hd} ≤ Chd−2.

Substituting these into the above inequality yields

|c2 − c1|∞ ≤ CHh−2d−5‖δQ‖∞.

Due to the assumption H < 1, we have

‖φ(·, ω2)− φ(·, ω1)‖L∞(D) ≤ |c2 − c1|∞ ≤ Ck2h−d−5‖n(·, ω2)− n(·, ω1)‖L∞(D),

which completes the proof.
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