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Abstract The optimal transport (OT) problem can be reduced to a linear programming (LP) prob-

lem through discretization. In this paper, we introduced the random block coordinate descent (RBCD)

methods to directly solve this LP problem. Our approach involves restricting the potentially large-scale

optimization problem to small LP subproblems constructed via randomly chosen working sets. By using

a random Gauss-Southwell-q rule to select these working sets, we equip the vanilla version of (RBCD0)

with almost sure convergence and a linear convergence rate to solve general standard LP problems. To

further improve the efficiency of the (RBCD0) method, we explore the special structure of constraints

in the OT problems and leverage the theory of linear systems to propose several approaches for re-

fining the random working set selection and accelerating the vanilla method. Inexact versions of the

RBCD methods are also discussed. Our preliminary numerical experiments demonstrate that the accel-

erated random block coordinate descent (ARBCD) method compares well with other solvers including

Sinkhorn’s algorithm when seeking solutions with relatively high accuracy, and offers the advantage of

saving memory.

Keywords Optimal transport · deep particle method · convex optimization · random block coordinate

descent · convergence analysis.
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1 Introduction

Background and motivation The optimal transport problem was first introduced by Monge in 1781, which

aims to find the most cost-efficient way to transport mass from a set of sources to a set of sinks. Later,

the theory was modernized and revolutionized by Kantorovich in 1942, who found a key link between

optimal transport and linear programming. In recent years, optimal transport has become a popular

and powerful tool in data science, especially in image processing, machine learning, and deep learning

areas, where it provides a very natural way to compare and interpolate probability distributions. For

instance, in generative models [2,30,61], a natural penalty function is the Wasserstein distance (a concept

closely related to OT) between the data and the generated distribution. In image processing, the optimal

transport plan, which minimizes the transportation cost, provides solutions to image registration [25]
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and seamless copy [44]. Apart from data science, in the past three decades, there has been an explosion

of research interest in optimal transport because of the deep connections between the optimal transport

problems with quadratic cost functions and a diverse class of partial differential equations (PDEs) arising

in statistical mechanics and fluid mechanics; see e.g. [12,5,42,29,60] for just a few of the most prominent

results and references therein.

Inspired by this research progress, we have developed efficient numerical methods to solve multi-scale

PDE problems using the optimal transport approach. Specifically, in our recent paper, we proposed a

deep particle method for learning and computing invariant measures of parameterized stochastic dy-

namical systems [61]. To achieve this goal, we designed a deep neural network (DNN) to map a uniform

distribution (source) to an invariant measure (target), where the Péclet number is an input parameter for

the DNN. The network is trained by minimizing the 2-Wasserstein distance (W2) between the measure of

network output µ and target measure ν. We consider a discrete version of W2 for finitely many samples

of µ and ν, which involves a linear program (LP) optimized over doubly stochastic matrices [53].

Solving the LP directly using the interior point method [63] is too costly. Motivated by the domain

decomposition method [56] in scientific computing, which solves partial differential equations using sub-

routines that solve problems on subdomains and has the advantage of saving memory (i.e., using the

same computational resource, it can compute a larger problem), we devised a mini-batch interior point

method. This approach involves sampling smaller sub-matrices while preserving row and column sums.

It has proven to be highly efficient and integrates seamlessly with the stochastic gradient descent (SGD)

method for overall network training. However, we did not obtain convergence analysis for this mini-batch

interior point method in our previous work [61].

The objectives of this paper are twofold. First, we aim to provide rigorous convergence analysis for

the mini-batch interior point method presented in [61], with minimal modifications. Second, we seek to

enhance the mini-batch selection strategy, thereby achieving improved and more robust performance in

computing optimal transport problems. We recognize that the mini-batch interior point method aligns

with the random block coordinate descent (RBCD) method in optimization terminology. Specifically, it

applies the block coordinate descent (BCD) method to the LP problem directly, selects the working set

randomly, and solves subproblems using the primal-dual interior point method [63] or any other efficient

linear programming solver. Encouraged by the demonstrated efficiency of this approach, we will develop

theoretical results for solving LP with RBCD methods and explore various strategies for selecting working

sets.

Theorectical contributions In this work, we first introduce an expected Gauss-Southwell-q rule to guide

the selection of the working set. It enables almost sure convergence and a linear convergence rate in

expectation when solving a general standard LP. Based on this rule, we develop a vanilla RBCD method

- RBCD0, which selects the working set with complete randomness. Then, we investigate the special

linear system present in the LP formulation of OT. We characterize all the elementary vectors of the

null space and provide a strategy for finding the conformal realization of any given vector in the null

space at a low computational cost. Based on these findings, we propose various approaches to refine the

working set selection and improve the performance of RBCD0. A better estimation of the constant in

the linear convergence rate is shown. Moreover, we incorporate an acceleration technique inspired by the

momentum concept to improve the algorithm’s efficiency. Inexact versions of the RBCD methods are

also discussed.

Numerical experiments We perform numerical experiments to evaluate the performance of the proposed

methods. Synthetic data sets of various shapes/dimensions and invariant measures generated from IPM

methods are utilized to create distributions. Our experiments first compare different RBCD methods

proposed in this paper, demonstrating the benefits of refining working set selection and verifying the

effectiveness of the acceleration technique. We also illustrate the gap between theory and practice re-

garding convergence rate, sparse solutions generated by the proposed RBCD methods, and discuss the

choice of subproblem size. In the second set of experiments, we compare the best-performance method,

ARBCD, with Sinkhorn’s algorithm. Preliminary numerical results show that ARBCD is compara-

ble to Sinkhorn’s algorithm in computation time when seeking solutions with relatively high accuracy.
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ARBCD is also comparable to a recently proposed interior point inspired algorithm in memory-saving

settings. We also test ARBCD on a large-scale OT problem, where Gurobi runs out of memory. This

further justifies the memory-saving advantage of ARBCD.

Previous research on (R)BCD BCD and RBCD are well-studied for essentially unconstrained smooth

optimization (sometimes allow separable constraints or nonsmooth separable objective functions): [4,24,

55] investigate BCD with cyclic coordinate search; [41,35,48] study RBCD to address problems with

possibly nonsmooth separable objective functions; other related works include theoretical speedup of

RBCD ([49,38]), second-order sketching ([47,9]). However, much less is known for their convergence

properties when applied to problems with nonseparable nonsmooth functions as summands or coupled

constraints. To our best knowledge, no one has ever considered using the RBCD to solve general LP before

and the related theoretical guarantees are absent. In [39], the authors studied the RBCD method to tackle

problems with a convex smooth objective and coupled linear equality constraints x1+x2+ . . .+xN = 0;

a similar algorithm named random sketch descent method [40] is investigated to solve problems with a

general smooth objective and general coupled linear equality constraints Ax = b. However, after adding

the simple bound constraints x ≥ 0, the analysis in [39,40] may not work anymore, nor can it be easily

generalized. Beck [3] studied a greedy coordinate descent method but focused on a single linear equality

constraint and bound constraints. In Paul Tseng and his collaborators’ work [57,58,59], a block coordinate

gradient descent method is proposed to solve linearly constrained optimization problems including general

LP. In these works, a Gauss-Southwell-q rule is proposed to guide the selection of the working set in

each iteration. Therefore, the working set selected in a deterministic fashion can only be decided after

solving a quadratic program with a similar problem size as the original one. In contrast, our proposed

mini-batch interior point/RBCD method approach selects the working set through a combination of

randomness and low computational cost. Another research direction that addresses separable functions,

linearly coupled constraints, and additional separable constraints involves using the alternating direction

method of multipliers (ADMM) [13,26,64,65]. This method updates blocks of primal variables in a

Gauss-Seidal fashion and incorporates multiplier updates as well.

Existing algorithms for OT Encouraged by the success in applying Sinkhorn’s algorithm to the dual of

entropy regularized OT [15], researchers have conducted extensive studies in this area, including other

types of regularization [10][18], acceleration [23][32] and numerical stability [36]. In [66], a proximal point

algorithm (PPA) is considered to solve the discrete LP. The entropy inducing distance function is in-

troduced to contruct the proximal term and each subproblem has the same formulation as the entropy

regularized OT. This approach is found to stabilize the numerical computation while maintaining the

efficiency of the Sinkhorn’s algorithm. In [52], techniques such as log-domain stabilization, and epsilon

scaling are discussed to further improve the performance of the Sinkhorn’s algorithm. The approach of

iterative Bregman projection is discussed in [6]. It is discovered that the Sinkhorn’s iteration is equiv-

alent to a special case of this method. In [20], a notion of Sinkhorn distance is proposed, which allows

computable differentiation when serving as the loss function when training generative models. Sinkhorn’s

algorithm can also be generalized to solve unbalanced OT in [14], and applied to solve OT over geometric

domains in [54]. In [27], a Riemannian block coordinate descent method is applied to solve projection

robust Wasserstein distance. The problem is to calculate Wasserstein distance after projecting the dis-

tributions onto lower-dimensional subspaces. The proposed approach employs entropy regularization,

deterministic block coordinate descent, and techniques in Riemannian optimization. A domain decom-

position method is considered in [11]. Unlike our method, the decomposition is deterministic, focusing

on one pair of distributions, and the authors try to tackle entropy-regularized OT.

Other works that significantly deviate from the entropy regularization framework include [31], which

computes the Schrödinger bridge problem (equivalent to OT with Fisher information regularization),

and multiscale strategies such as [21], [34] and [51]. In [34], the problem size is reduced using a multiscale

strategy, and a semi-smooth Newton method is applied to solve smaller-scale subproblems. The RBCD

method employed in this study is a regularization-free method. As a result, it avoids dealing with inac-

curate solutions and numerical stability issues introduced by the regularization term. Furthermore, each

subproblem in RBCD is a small-size LP, allowing for flexible resolution choices. Interior-point methods
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and simplex methods are also revisited and enhanced [68,62,37,22]. In particular, the authors of [68]

propose an interior point inspired algorithm with reduced subproblems to address large-scale OT. The

authors of [17] consider an equivalent formulation of minimizing an energy functional to solve OT over

graphs. Backward Euler (equivalent to the proximal point method) is used in the outer loop of the algo-

rithm and Newton-Rapson is used in the inner loop. Other approaches include numerical solution of the

Monge–Ampère equation [8,7], stochastic gradient descent to resolve OT in discrete, semi-discrete and

continuous formulations [19], and an alternating direction method of multipliers (ADMM) approach to

solve the more general Wasserstein barycenter [67].

Organization The rest of the paper is organized as follows. In Section 2, we review the basic idea of opti-

mal transport and Wasserstein distance. In Section 3, we introduce the expected Gauss-Southwell-q rule

and a vanilla RBCD (RBCD0) method for solving general LP problems. An inexact version of RBCD0

is also discussed. In Section 4, we investigate the properties of the linear system in OT and propose sev-

eral approaches to refine and accelerate the RBCD0 method. In Section 5, preliminary numerical results

are presented to demonstrate the performance of our proposed methods. Finally, concluding remarks are

made in Section 6.

Notation. For any matrix X, let X(i, j) denote its element in the ith column and jth row, and let

X(:, j) represent its jth row vector. For a vector v, we usually use superscripts to denote its copies (e.g.,

vk in kth iteration of an algorithm) and use subscripts to denote its components (e.g., vi); for a scalar,

we usually use subscripts to denote its copies. Occasional inconsistent cases will be declared in context.

mod(k, n) means k modulo n. For any vector v, we define supp(v) ≜ {i ∈ {1, . . . , n} | vi ̸= 0}. Given a

matrix X ∈ Rn×n, we define its vectorization as follows:

vec(X) ≜ (X(:, 1)T , X(:, 2)T , ..., X(:, n)T )T .

For any positive integer k ≥ 2, we denote [1, k] ≜ {1, ..., k}. 1n×n represents the n×n matrix of all ones.

2 Optimal transport problems and Wasserstein distance

The Kantorovich formulation of optimal transport can be described as follows,

inf
γ∈Γ (µ,ν)

∫
X×Y

C(x, y) dγ(x, y) (1)

where Γ (µ, ν) is the set of all measures on X × Y whose marginal distribution on X is µ and marginal

distribution on Y is ν, C(x, y) is the transportation cost. In this article, we refer to the Kantorovich

formulation when we mention optimal transport.

Wasserstein distances are metrics on probability distributions inspired by the problem of optimal

mass transport. They measure the minimal effort required to reconfigure the probability mass of one

distribution in order to recover the other distribution. They are ubiquitous in mathematics, especially in

fluid mechanics, PDEs, optimal transport, and probability theory [60]. One can define the p-Wasserstein

distance between probability measures µ and ν on a metric space Y with distance function dist by

Wp(µ, ν) :=

(
inf

γ∈Γ (µ,ν)

∫
Y×Y

dist(ỹ, y)p dγ(ỹ, y)

)1/p

(2)

where Γ (µ, ν) is the set of probability measures γ on Y ×Y satisfying γ(A×Y ) = µ(A) and γ(Y ×B) =

ν(B) for all Borel subsets A,B ⊂ Y . Elements γ ∈ Γ (µ, ν) are called couplings of the measures µ and ν,

i.e., joint distributions on Y ×Y with marginals µ and ν on each axis. p-Wasserstein distance is a special

case of optimal transport when X = Y and the cost function c(ỹ, y) = dist(ỹ, y)p.

In the discrete case, the definition (2) has a simple intuitive interpretation: given a γ ∈ Γ (µ, ν)

and any pair of locations (ỹ, y), the value of γ(ỹ, y) tells us what proportion of µ mass at ỹ should be

transferred to y, in order to reconfigure µ into ν. Computing the effort of moving a unit of mass from ỹ
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to y by dist(ỹ, y)p yields the interpretation of Wp(µ, ν) as the minimal effort required to reconfigure µ

mass distribution into that of ν.

In a practical setting [45], referred to as a point cloud, the closed-form solution of µ and ν may

be unknown, instead only n independent and identically distributed (i.i.d.) samples of µ and n i.i.d.

samples of ν are available. In further discussion, n refers to the size of the problem. We approximate the

probability measures µ and ν by empirical distribution functions:

µ =
1

n

n∑
i=1

δỹi and ν =
1

n

n∑
j=1

δyj , (3)

where δx is the Dirac measure. Any element in Γ (µ, ν) can clearly be represented by a transition matrix,

denoted as γ = (γi,j)i,j satisfying:

γi,j ≥ 0; ∀j,
n∑

i=1

γi,j =
1

n
; ∀i,

n∑
j=1

γi,j =
1

n
. (4)

Then γi,j means the mass of ỹi that is transferring to yj .

We denote all matrices in Rn×n satisfying (4) as Γn, then (2) becomes

Ŵ (f) :=

 inf
γ∈Γn

n,n∑
i,j=1

dist(ỹi, yj)pγi,j

1/p

. (5)

Remark 1 Γn is in fact the set of n× n doubly stochastic matrix [53] divided by n.

Another practical setting, which is commonly used in fields of computer vision [43,33], is to compute

the Wasserstein distance between two histograms. To compare two grey-scale figures (2D, size n0 × n0),

we first normalize the grey scale such that the values of cells of each picture sum to one. We denote

centers of the cell as {yi}ni=1 and {ỹi}ni=1, then we can use two probability measures to represent the two

figures:

µ =

n∑
i=1

r1,iδỹi and ν =

n∑
j=1

r2,jδyj ,

where r1,i, r2,j ≥ 0,∀1 ≤ i, j ≤ n,
n∑

i=1

r1,i =
n∑

j=1

r2,j = 1. The discrete Wasserstein distance (5) keeps the

same form while the transition matrix follows different constraints:

γi,j ≥ 0; ∀j,
n∑

i=1

γi,j = r2,j ; ∀i,
n∑

j=1

γi,j = r1,i. (6)

Note that in both settings, the computation of Wasserstein distance is reduced to an LP, i.e.,

min
∑

1≤i,j≤n

Ci,jγi,j

subject to
n∑

j=1

γi,j = r1,i,
n∑

j=1

γi,j = r2,i, γi,j ≥ 0,
(7)

where r1 ≜ (r1,1, ..., r1,n)
T and r2 ≜ (r2,1, ..., r2,n)

T are two probability distributions, and Ci,j =

dist(x̃i, xj)p. More generally, we can let r1 and r2 be two nonnegative vectors and Ci,j = C(ỹi, yj)

be any appropriate transportation cost from ỹi to yj , so (7) also captures the discrete OT.

However, when the number of particles n becomes large, the number of variables (entries of γ) scales

like n2, which leads to costly computation. Therefore, we will discuss random block coordinate descent

methods to keep the computational workload in each iteration reasonable.
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3 Random block coordinate descent for standard LP

In this section, we first generalize the LP problem (7) to a standard LP (see Eq.(8)). Then we propose

a random block coordinate descent algorithm for resolution. Its almost sure convergence and linear

convergence rate in expectation are analyzed. Last we introduce an inexact version that is implementable.

We consider the following standard LP problem:

min
x∈RN

cTx

subject to Ax = b, x ≥ 0,
(8)

where A ∈ RM×N , b ∈ RM , c ∈ RN , hence M is the number of constraint and N is the total degree of

freedom. Assume throughout that M ≤ N . Suppose that N ≜ {1, . . . , N} and denote X ≜ {x ∈ RN |
Ax = b, x ≥ 0} as the feasible set. Assume that (8) is finite and has an optimal solution. For any x ∈ X
and I ⊆ N , denote

D(x; I) ≜ argmind∈RN

{
cT d | x+ d ≥ 0, Ad = 0, di = 0,∀i ∈ N \ I

}
. (9)

q(x; I) ≜ min
d∈RN

{
cT d | x+ d ≥ 0, Ad = 0, di = 0,∀i ∈ N \ I

}
. (10)

Namely, D(x; I) is the optimal solution set of the linear program in (9) and q(x; I) is the optimal function

value. We have that q(x; I) = cT d for any d ∈ D(x; I). Denote X ∗ as the optimal solution set of (8).

Then the following equations hold for any x ∈ X :

X ∗ = x+D(x;N ), (11)

q(x;N ) = cTx∗ − cTx, ∀x∗ ∈ X ∗. (12)

Remark 2 It is worthy to mention that since d = 0 follows the conditions in (10), ∀(x, I), q(x; I) ≤ 0.

Furthermore, q(x;N ) ≤ q(x; I).
Consider the block coordinate descent (BCD) method for (8):

find dk ∈ D(xk, Ik),
xk+1 := xk + dk,

(13)

where Ik ⊂ N is the working set chosen at iteration k. Next, we describe several approaches to select

the working set Ik.

Gauss-Southwell-q rule Motivated by the Gauss-Southwell-q rule introduced in [58], we desire to select

Ik such that

q(xk; Ik) ≤ vq(xk;N ), (14)

for some constant v ∈ (0, 1]. Note that by (12), we have

q(xk;N ) = cT (x∗ − xk), (15)

where x∗ is an optimal solution of (8). Therefore, (10)-(15) imply that

cT dk ≤ vcT (x∗ − xk)

(13)
=⇒ cT (xk+1 − xk) ≤ vcT (x∗ − xk)

=⇒ cT (xk+1 − x∗) ≤ (1− v)cT (xk − x∗). (16)

(16) indicates that the gap of function value decays exponentially with rate 1−v, as long as we choose Ik
according to the Gauss-Southwell-q rule (14) at each iteration k. A trivial choice of Ik to satisfy (14) is

N and v = 1. However, this choice results in a potential large-scale subproblem in the BCD method (13),

contradicting the purpose of using BCD. Instead, we should set an upper bound on the cardinality of Ik,
namely, a reasonable batch size to balance the computational effort in each iteration and convergence

performance of BCD. Next, we discuss the existence of such an Ik given an upper bound l on |Ik|, which
necessitates the following concept.
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Definition 1 A vector d̄ ∈ RN is conformal to d ∈ RN if

supp(d̄) ⊆ supp(d), d̄idi ≥ 0,∀i ∈ N .

The following Theorem confirms the existence of such an Ik that satisfies (14), the proof of which

follows closely to [57, Proposition 6.1].

Theorem 1 Suppose that rank(A)+1 ≤ N . Given any x ∈ X , l ∈ {rank(A)+1, . . . , N} and d ∈ D(x;N ).

There exist a set I ∈ N satisfying |I| ≤ l and a vector d̄ ∈ null(A) conformal to d such that

I = supp(d̄). (17)

q(x; I) ≤ 1

N − l + 1
q(x;N ). (18)

Proof If d = 0, then let d̄ = 0 and I = ∅. We have q(x; I) = q(x;N ) = 0. Therefore, both (17) and

(18) are satisfied. If d ̸= 0 and | supp(d)| ≤ l, then let d̄ = d. Thus, I = supp(d̄) satisfies |I| ≤ l and

q(x; I) = q(x;N ). If | supp(d)| > l, then similar to the discussion in [57, Proposition 6.1], we have that

d = d(1) + . . .+ d(r),

for some r ≤ | supp(d)| − l + 1 and some nonzero d(s) ∈ null(A) conformal to d with | supp(d(s))| ≤ l,

s = 1, ..., r. Since | supp(d)| ≤ N , we have r ≤ N − l + 1. Since Ad(s) = 0 and xi + d
(s)
i ≥ xi + di ≥

0,∀s = 1, ..., r and ∀i ∈ {i | di < 0}, we have that x+ d(s) ∈ X ,∀s = 1, ..., r. Therefore,

q(x;N ) = cT d =

r∑
s=1

cT d(s) ≥ r min
s=1,...,r

{cT d(s)}.

Denote s̄ ∈ argmins=1,...,r{cT d(s)} and let I = supp(d(s̄)), then |I| ≤ l and

q(x;N ) ≥ rcT d(s̄) ≥ rq(x; I) ≥ (N − l + 1)q(x; I),

where the last inequalities holds due to r ≤ N − l + 1 and q(x; I) ≤ 0.

Therefore (17) and (18) hold for this I and d̄ = d(s̄).

However, it is not clear how to identify the set I described in Theorem 1 with little computational

effort for a general A. Therefore, we introduced the following.

Expected Gauss-Southwell-q rule We introduce randomness in the selection of Ik to reduce the potential

computation burden in identifying an Ik that satisfies (14). Consider an expected Gauss-Southwell-q rule:

E[q(xk; Ik) | Fk] ≤ vq(xk;N ), (19)

where v ∈ (0, 1] is a constant, and Fk ≜ {x0, . . . , xk} denotes the history of the algorithm. Therefore,

using the notations of LP (8) and BCD method (13):

(10)(15)(19) =⇒ E[cT dk | Fk] ≤ vcT (x∗ − xk)

=⇒ E[cT (xk+1 − xk) | Fk] ≤ vcT (x∗ − xk)

=⇒ E[cT (xk+1 − x∗) | Fk]− cT (xk − x∗) ≤ vcT (x∗ − xk)

=⇒ E[cT (xk+1 − x∗) | Fk] ≤ (1− v)cT (xk − x∗), (20)

where x∗ is an optimal solution of (8). According to [46, Lemma 10, page 49], cT (xk − x∗) → 0 almost

surely. Moreover, if we take expectations on both sides of (20),

E[cT (xk+1 − x∗)] ≤ (1− v)E[cT (xk − x∗)]

=⇒ E[cT (xk − x∗)] ≤ (1− v)kE[cT (x0 − x∗)].

i.e., the expectation of function value gap converges to 0 exponentially with rate 1− v.
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Vanilla random block coordinate descent Based on the expected Gauss-Southwell-q rule, we formally

propose a vanilla random block coordinate descent (RBCD0) algorithm (Algorithm 1) to solve the LP

(8). Specifically, we choose the working set Ik with full randomness, that is, randomly choose an index

set of cardinality l out of N . Then with probability at least 1

(Nl )
, the index set will be the same as or

cover the working set suggested by Theorem 1. As a result, (19) will be satisfied with v ≥ 1

(Nl )(N−l+1)
.

Algorithm 1 Vanilla random block coordinate descent (RBCD0)

(Initialization) Choose feasible x0 ∈ RN and the batch size l such that rank(A) + 1 ≤ l ≤ N .
for k = 0, 1, 2, . . . do

Step 1. Choose Ik uniformly randomly from N with |Ik| = l.
Step 2. Find dk ∈ D(xk; Ik).
Step 3. xk+1 := xk + dk.

end for

Based on the previous discussions, Algorithm 1 generates a sequence {xk} such that the value of cTxk

converges to the optimal with probability 1. Moreover, the expectation of the optimality gap converges to

0 exponentially. It is important to note that 1

(Nl )(N−l+1)
is only a loose lower bound of v. This bound can

become quite small when N grows large due to the binomial coefficient
(
N
l

)
. However, in our numerical

experiments (c.f. Sec. 5), this lower bound is rarely reached. In Section 4, we will discuss how to further

improve this bound given the specific structure of the OT problem. Before that, we first investigate an

inexact extension of RBCD0.

Inexact extension of Algorithm 1. For any x and I ⊆ N , still denote D(x; I) and q(x; I) as in

(9) and (10). However, note that now x does not have to be feasible. We consider the inexact version

of Algorithm 1, where Step 2 in (1) is only approximately solved. We compute dk such that for any

dk∗ ∈ D(xk; Ik),

cT dk ≤ (1− ϵk)c
T dk∗, xk + dk ≥ 0, ∥Adk∥ ≤ ϵ̂k, dki = 0, ∀i /∈ Ik. (21)

where the inexactness sequences {ϵk} and {ϵ̂k} should be nonnegative. The inexact algorithm is described

as follows.

Algorithm 1(a) Inexact random block coordinate descent (IRBCD)

(Initialization) Choose feasible x0 ∈ RN , the batch size l such that rank(A) + 1 ≤ l ≤ N , and inexactness sequences
{ϵk} and {ϵ̂k}.
for k = 0, 1, 2, . . . do

Step 1. Choose Ik uniformly randomly from N with |Ik| = l.
Step 2. Find dk such that (21) holds.
Step 3. xk+1 := xk + dk.

end for

Next, we analyze the sequence generated by Algorithm 1(a) and summarize the results in the following

theorem.

Theorem 2 Consider Algorithm 1(a). Given δ > 0, suppose that 0 ≤ ϵk ≤ ϵ < 1 and
∑∞

k=1 ϵ̂k ≤ δ.

Then we have that

1. ∥Axk − b∥ ≤ δ and xk ≥ 0 a.s. for any k ≥ 0,

2. cTxk ≥ cTx∗ − κδ for any k ≥ 0,

3. E[cTxk − (cTx∗ + κδ)] ≤ (1− (1− ϵ)v)kE[cTx0 − (cTx∗ + κδ)],

where κ is a constant only depending on the matrix A and vector c, and v is the constant in the expected

Gauss-Southwell-q rule.
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Proof The proof of 1 is straightforward. Note that for any k ≥ 0, we have in a.s. sense for any k ≥ 0,

∥Axk − b∥ =

∥∥∥∥∥Ax0 − b+

k−1∑
t=0

Adt

∥∥∥∥∥ ≤ ∥Ax0 − b∥+
k−1∑
t=0

∥Adt∥
(21)

≤
k−1∑
t=0

ϵ̂t ≤ δ.

xk ≥ 0 a.s. is also a direct result of (21) (xk+dk ≥ 0). Now we prove 2. First we argue that D(xk;N ) ̸= ∅.
This is true by the duality theory in linear programming and the fact that Axk ∈ S and the dual feasibility

set AT p ≤ c is nonempty. Suppose that xk+1
∗ ∈ D(xk;N ). Then we have

∥Axk+1
∗ − b∥ = ∥Axk − b∥ ≤ δ.

We want to estimate cTxk+1
∗ . Suppose that p1, . . . , ps are all the extreme points of the dual feasible

region {p | AT p ≤ c} and denote bk = Axk. Then by the theory of LP, we have

cTxk+1
∗ = max

i=1,...,s
(bk)T pi = bT pi

∗

Note that we also have cTx∗ = maxi=1,...,s b
T pi, then

cTxk+1
∗ − cTx∗ ≤ (bk − b)T pi

∗
≤ ∥bk − b∥∥pi

∗
∥ ≤

(
max

i=1,...,s
∥pi∥

)
δ. (22)

Similarly we can show

cTxk − cTx∗ ≥ cTxk+1
∗ − cTx∗ ≥ −

(
max

i=1,...,s
∥pi∥

)
δ,

which concludes 2 if we let κ ≜ maxi=1,...,s ∥pi∥. According to Theorem 1 and discussion about the exact

algorithm, we still have that the expected Gauss-Southwell-q rule (19) holds with v ≥ 1

(Nl )(N−l+1)
. Then

E[cT dk | Fk]
(21)

≤ (1− ϵk)E[cT dk∗ | Fk]
(19)

≤ (1− ϵk)vq(x
k;N )

=⇒ E[cTxk+1 − cTxk | Fk] ≤ (1− ϵ)v(cTxk+1
∗ − cTxk)

(22)
=⇒ E[cTxk+1 − cTxk | Fk] ≤ (1− ϵ)v(cTx∗ + κδ − cTxk)

=⇒ E[cTxk+1 − (cTx∗ + κδ) | Fk] ≤ (1− (1− ϵ)v)[cTxk − (cTx∗ + κδ)],

=⇒ E[cTxk − (cTx∗ + κδ)] ≤ (1− (1− ϵ)v)kE[cTx0 − (cTx∗ + κδ)], for any k ≥ 0.

Remark 3 (i). Theorem 2 justifies the inexact algorithm. In particular, if we let δ be small, then we showed

that the expected objective function value sequence also converges to the vicinity of the optimal one

linearly. During the implementation, we could either let ϵ̂k to be a sequence proportional to 1/kα, α > 1,

or choose them equally as a sufficiently small number so that their accumulation is also insignificant.

Choice of the sequence ϵ̂k is less stringent if we occasionally project the iterates to the feasible region so

that the accumulated error is offset.

(ii). In the proof we implicitly assume that the dual feasible region exists at least one extreme point. This

can be implied if A has linearly independent rows. In fact, we can eliminate redundant rows of A. After

this operation, the feasible region remains the same; the analysis and implementation of the algorithms

are also similar.

(iii). Inexact versions of the algorithms proposed in Section 4 are of similar fashion and we will omit

detailed and repetitive explanations.
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4 Random block coordinate descent and optimal transport

Denote the cost matrix C ≜ (Ci,j)i,j in (7). Then calculating the OT between two measures with finite

support (problem (7)) is a special case of (8), where c = vec(C), and N = n2. The constraint matrix A

has the following structure:

A ≜


In In . . . In
1T
n

1T
n

. . .

1T
n


︸ ︷︷ ︸

n blocks

, (23)

where In is an n × n identity matrix, 1n is an n dimensional vector of all 1’s (then M = 2n). Right

hand side b in (8) has the form b ≜ ((r1)T , (r2)T )T , where r1, r2 ∈ Rn
+ can be two discrete probability

distributions. Next, we discuss the property of matrix A and null(A).

Property of matrix A A nonzero d ∈ RN is an elementary vector of null(A) if d ∈ null(A) and there is no

nonzero d′ ∈ null(A) that is conformal to d and supp(d′) ̸= supp(d). According to the definition in (23),

we say that a nonzero matrix X is an elementary matrix of null(A) if vec(X) is an elementary vector of

null(A). For simplicity, a matrix M1 being conformal to M2 means vec(M1) being conformal to vec(M2)

for the rest of this paper.

Now we define a set EA:

X ∈ EA ⊆ Rn×n ⇐⇒ X ̸= 0, and after row and column permutations, X is

a multiple of one of the following matrices:

E2 =


1 −1

−1 1

0
. . .

0


n×n

, E3 =



1 −1

−1 1

−1 1

0
. . .

0


n×n

, ...,

En−1 =



1 −1

−1 1

−1 1
. . .

−1 1

0


n×n

, En =


1 −1

−1 1

−1 1
. . .

−1 1


n×n

.

First, we state a Lemma about EA, the proof of which is trivial and thus omitted.

Lemma 1 Every matrix in EA is an elementary matrix of null(A).

Then we show every element in the null space of A is related to a matrix in EA.

Lemma 2 For any nonzero D such that vec(D) ∈ null(A), there exists X ∈ EA such that X is conformal

to D.

Proof We prove this by contradiction and induction. We assume a nonzero D such that vec(D) ∈ null(A)

and no X ∈ EA is conformal to D.

Note that vec(D) ∈ null(A) implies

m∑
i=1

D(i, j̄) =

n∑
j=1

D(̄i, j) = 0,∀ī, j̄. (24)
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Then without loss of generality, suppose that

D(1, 1) > 0.

Otherwise since D is nonzero we can permute row/column to let D(1, 1) ̸= 0 and by (24) all entries in

the first row/column after permutation cannot have the same sign.

By (24), the first column of D must have one negative element. Suppose D(2, 1) < 0 WLOG. The

second row of D must have one positive element, so suppose D(2, 2) > 0 WLOG. Since no X ∈ EA is

conformal to D, we must have D(1, 2) ≥ 0 otherwise D is conformal to E2. Therefore, the 2×2 principal

matrix of D has the following sign arrangement (after appropriate row/column permutations),(
+ +/0

− +

)
,

where we use +, +/0, −, and −/0 to indicate that the corresponding entry is positive, nonnegative,

negative, and nonpositive respectively.

If n = 2, then the above pattern is impossible as the first column sums to some positive number,

leading to a contradiction with (24). Suppose that n ≥ 3. For math induction, we assume that,

(Hk) : after appropriate row/column permutations, the k × k principal matrix of D has the following

sign arrangement (2 ≤ k ≤ n− 1), 

+ +/0 +/0 . . . +/0

− + +/0
. . .

...

−/0 − +
.. . +/0

...
. . .

. . .
. . . +/0

−/0 . . . −/0 − +


, (25)

namely, 
D(i, i) > 0, 1 ≤ i ≤ k;

D(i+ 1, i) < 0, 1 ≤ i ≤ k − 1;

D(i, j) ≥ 0, 1 ≤ i ≤ j ≤ k;

D(i, j) ≤ 0, 1 ≤ j < i ≤ k.

kth column of D needs to have at least one negative element, otherwise, it contradicts with (24).

WLOG, we suppose D(k + 1, k) < 0.

We now claim that the rest of the elements in the (k + 1)th row has to be non-positive, namely

D(k + 1, i) ≤ 0, ∀i = 1, ..., k − 1. Otherwise, let i0 be the largest index in {1, · · · , k − 1} such that

D(k + 1, i0) > 0. Then the submatrix D(i0 + 1 : k + 1, i0 : k) takes the form,

− + +/0 . . . +/0

−/0 − +
.. .

...
...

. . .
. . .

. . . +/0

−/0 . . . −/0 − +

+ −/0 . . . −/0 −

 , (26)

and it is conformal to Ek−i0+1 after row/column permutations. To see this, we can move the first column

of (26) to the last. For the whole matrix D, it is equivalent to move the i0th column and insert it between

k and k + 1th column and shift the resulting submatrix to the upper left corner through permutation

operations.

While due to (24), (k + 1)th row of D needs to have at least one positive element and we have just

shown that D(k + 1, i) ≤ 0, ∀i = 1, ..., k, so WLOG we suppose D(k + 1, k + 1) > 0 . Similar argument

shows if there is no X ∈ EA is conformal to D, so D(i, k + 1) ≥ 0, ∀i = 1, ..., k.

Therefore, the (k+1)× (k+1) principal matrix of D has exactly the same sign pattern as indicated

by (25), after appropriate row/column permutations. So we have the induction (Hk) ⇒ (Hk+1).
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However, when the n × n matrix D follows (Hn), it has the sign pattern as (25) after row/column

permutations. Then the summation of the last column is strictly positive as indicated by the sign pattern,

which contradicts with (24).

Finally, we show that EA characterizes all the elementary matrices.

Theorem 3 Given any D ∈ Rn×n, if vec(D) ∈ null(A), then D has a conformal realization [50, Section

10B], namely:

D = D(1) +D(2) + . . .+D(s), (27)

where D(1), . . . , D(s) are elementary matrices of null(A) and D(i) is conformal to D, for all i = 1, . . . , s.

In particular, D(i) ∈ EA, ∀i = 1, ..., s. Therefore, EA includes all the elementary matrices of null(A).

Proof By Lemma 2, we suppose that X(1) ∈ EA and X(1) is conformal to D. Then X(1) can be scaled

properly by α1 = min(i,j)∈supp(X(1))∩supp(D) |D(i, j)/X(1)(i, j)| > 0 such that | supp(D − α1X
(1))| <

| supp(D)| and D−α1X
(1) is conformal to D. Denote D(1) ≜ α1X

(1) and D̄(1) = D−D(1), both of them

are conformal to D.

By apply the same procedure to D̄(1), we get D̄(2) such that | supp(D̄(2))| < | supp(D̄(1))|. We can

repeat this process and eventually, we have that the conformal realization (27) holds since | supp(D)| ≤ n2

and | supp(D̄(k))| is strictly decreasing.

If D is an elementary matrix, in previous construction of (27), we notice that D = D(1) + D̄(1) and

both of them are conformal to D. If D̄(1) ̸= 0, we have supp(D(1)) ̸= supp(D) while D(1) is conformal

to D. This contradicts the assumption of D as an elementary matrix. When D̄(1) = 0, D = D(1) is a

multiple of the special matrix in the description of EA after a certain row/column permutation. Summing

up, EA includes all the elementary matrices of null(A).

Remark 4 For a given D such that vec(D) ∈ null(A), a simple algorithm following the proof in Theorem 3

to find an elementary matrix X conformal to D ̸= 0 will cost at most O(n2) operations. We can select an

appropriate α > 0 such that D−αX is conformal to D and | supp(D−αX)| < | supp(D)|. By repeating

this process, we can find the conformal realization in supp(D) ≤ n2 steps. Therefore, the total number

of operations needed to find the conformal realization is O(n4). In comparison, the approach proposed

by [59] finds a conformal realization with support cardinality less than l (usually, l is much smaller than

n2) and requires O(n3(n2 − l)2) operations.

Working set selection By analyzing the structure of elementary matrices of null(A), we will have a

better idea of potential directions along which the transport cost is minimized by a large amount. This

is supported by the following theorem, where we continue using notations introduced in Section 3.

Theorem 4 Consider the linear program (8) where A ∈ RM×N and b ∈ RM are defined as in (23) (M =

2n, N = n2). Given any X ∈ Rn×n and D ∈ Rn×n such that vec(X) ∈ X , and vec(D) ∈ D(vec(X);N ).

There exists an elementary matrix D̄ of null(A) conformal to D such that for any set I ∈ N satisfying

I ⊇ supp(vec(D̄)),

We have

q(vec(X); I) ≤
(

1

n2 − 3

)
q(vec(X);N ). (28)

Proof Since vec(D) ∈ D(vec(X);N ), vec(D) ∈ null(A). Then based on Theorem 3, we have the conformal

realization:

D = D(1) +D(2) + ...+D(s).

Moreover, proof of Theorem 3 indicates that we can construct this realization with s ≤ n2 − 3, because

the support of D(i) has cardinality at least 4. Then similar to discussion in Theorem 1, we may find

s̄ ∈ {1, . . . , s} such that D̄ = D(s̄), I ⊇ supp(vec(D(s̄))), and

q(vec(X);N ) ≥ (n2 − 3)q(vec(X); I).
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Now we discuss two approaches to carefully select the support set Ik at iteration k of the block

coordinate descent method (13):

1. Diagonal band. Given 3 ≤ p ≤ n, denote

G ≜

{
(i, j) ∈ Z2

∣∣∣ i ∈ [j, j + p− 1] if j ∈ [1, n− p+ 1]

i ∈ [1, ..., j + p− n− 1] ∪ [j, n] if j ∈ [n− p+ 2, n]

}
,

and construct matrix G ∈ Rn×n such that

G(i, j) =

{
1, if (i, j) ∈ G,
0, otherwise.

(29)

Therefore, G has the following structure:

p




1 1 . . . 1
... 1

. . .
...

1
...
. . . 1

1 1 1

1
. . .

... 1
. . . 1

...
. . .

1 1 . . . 1


n×n

 (p− 1)

It is like a band of width p across the diagonal, hence the name. Then we may construct D̄k ∈ Rn×n

and Ik as follows:

Obtain D̄k by uniformly randomly permuting all columns and rows of G.

Let Ik ≜ supp(vec(D̄k)).
(30)

Note that |Ik| = np.

2. Submatrix. Given m < n, obtain D̄k and Ik such that

Uniformly randomly pick two sets of m different numbers out of {1, ...n}:
i1, ..., im and j1, ..., jm.

Let D̄k(i, j) =

{
1 if i ∈ {i1, ..., im} and j ∈ {j1, ..., jm},
0 otherwise.

Let Ik ≜ supp(vec(D̄k)).

(31)

In this case, the support of D̄k is a submatrix of size m×m. Therefore, |Ik| = m2.

Next, we discuss two random block coordinate descent algorithms to solve the LP problem (8) with A

given in (23) whose working set selections are based on the two approaches discussed above.

Algorithm 2 Random block coordinate descent - diagonal band (RBCD-DB)

(Initialization) Choose feasible X0 ∈ Rn×n and band width p ∈ [3, n]. Let x0 = vec(X0).
for k = 0, 1, 2, . . . do

Step 1. Choose Ik according to (30).
Step 2. Find dk ∈ D(xk; Ik).
Step 3. xk+1 := xk + dk.

end for

The following result describes the convergence property of Algorithm 2.
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Theorem 5 Consider the LP problem (8) with A given in (23). Then sequence {xk} and {Ik} generated

by Algorithm 2 satisfies the expected Gauss-Southwell-q rule (19), i.e.,

E[q(xk; Ik) | Fk] ≤ vq(xk;N ),

with v ≥ n(p−2)
(n2−3)(n!)2 . Therefore, cT (xk − x∗) → 0 almost surely and E[cT (xk − x∗)] converges to 0

exponentially with rate 1− v.

Proof Given xk, Theorem 4 guarantees that there exists Dk ∈ EA such that if Ik ⊇ supp(vec(Dk)), then

(28) holds for I = Ik and vec(X) = xk, i.e.,

q(xk; Ik) ≤
(

1

n2 − 3

)
q(xk;N ). (32)

Next, we will estimate the probability that Ik ⊇ supp(vec(Dk)) holds.

Suppose that after row/column permutations and scaling of Dk, we obtain Et, 2 ≤ t ≤ n. Then after

appropriate row and column swapping, Dk can be written as

t





0

∗ ∗
∗ ∗

∗
. . .

∗ ∗
. . . ∗

∗ ∗ 0
. . .

0


n×n

. (33)

That is, elements (2, 1) and (3, 1) are nonzeros; elements (j, j) and (mod(j+2, n), j) are nonzeros, for all

j = 2, ..., t− 1; elements (t, t) and (mod(t+1, n), t) are nonzeros; all other elements are zeros. Obviously,

support of this matrix is covered by the support of G in (29). Moreover, by moving the whole support in

matrix (33) downwards or to the bottom right corner, we can create at least n(p− 2)− 1 more different

matrices whose support are all covered by G. These n(p − 2) matrices can be obtained by permuting

rows and columns of Dk in n(p − 2) in different ways. Therefore, the probability that Ik will cover the

support of Dk is at least n(p−2)
(n!)2 , and we have that

E[q(xk; Ik) | xk] =
∑

supp(vec(Dk))⊆I

q(xk; I)P (Ik = I) +
∑

supp(vec(Dk))⊈I

q(xk; I)P (Ik = I)

≤
(

1

n2 − 3

)
q(xk;N )P (supp(vec(Dk)) ⊆ Ik) + 0

≤
(

n(p− 2)

(n2 − 3)(n!)2

)
q(xk;N )

Therefore, the expected Gauss-Southwell-q rule (19) holds with v at least n(p−2)
(n2−3)(n!)2 .

Remark 5 It can be shown that if n is large enough and p is chosen between O(log(n)) and O(n), then

the lower bound for constant v derived in Theorem 5 is better than the one estimated for Algorithm 1,

i.e., 1

(Nl )(N−l+1)
. In fact, we have the following results.

Lemma 3 Suppose that K̄ ≥ 2 and η > 0 satisfies

2K̄ − 3

2(K̄ − 1)
+ log

(
K̄

2

)
> 2/η,
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and n satisfies

n ≥ 4(
2K̄−3
2(K̄−1)

+ log
(

K̄
2

))
η − 2

,
n

log(n)
≥ ηK̄.

Then for any p ∈ [η log(n), n
K̄
], and p ≥ 3, we have n(p−2)

(n2−3)(n!)2 ≥ 1

(n
2

np)(n2−np+1)
.

Proof See Appendix.

Let n ≥ 30, η = 1, K̄ = 8. Then according to Lemma 3, for log(n) ≤ p ≤ n/8, the lower bound n(p−2)
(n2−3)(n!)2

is larger. We believe that this is a fairly reasonable range of p when n grows large. This lower bound

is improved because we have knowledge of the structure of the elementary matrix when solving OT

problems.

As for the submatrix approach, we often find it quite efficient in numerical experiments. The optimal so-

lution in the submatrix approach can also be decomposed in EA. More precisely, consider that Ik is chosen

according to (31) associated with a submatrix of size m×m. Then, the decomposition of dk ∈ D(xk; Ik)
(more rigorously its matrix form) only involves multiples and permutations of the elementary matrices

in {E2, E3, · · · , Em}. However, global convergence with a fixed-width submatrix is not guaranteed. In

fact, there is a counterexample (see B). Therefore, we propose an algorithm that combines these two

approaches together.

Algorithm 3 Random block coordinate descent - submatrix and diagonal Band (RBCD-SDB)

(Initialization) Choose feasible X0 ∈ Rn×n, submatrix row/column dimension m, band width p ∈ [3, n] and selection
parameter s ∈ [0, 1]. Let x0 = vec(X0).
for k = 0, 1, 2, . . . do

Step 1. With probability s, choose Ik according to (30); otherwise, choose Ik according to (31).
Step 2. Find dk ∈ D(xk; Ik).
Step 3. xk+1 := xk + dk.

end for

The convergence of Algorithm 3 is guaranteed by the next theorem.

Theorem 6 Consider the LP problem (8) with A given in (23). Then sequence {xk} and {Ik} generated

by Algorithm 3 satisfies the expected Gauss-Southwell-q rule (19), with v ≥ sn(p−2)
(n2−3)(n!)2 . Therefore, c

T (xk−
x∗) → 0 almost surely and E[cT (xk − x∗)] converges to 0 exponentially with rate 1− v.

Proof Given xk, Theorem 4 shows that there exists Dk ∈ EA such that if Ik ⊇ supp(vec(Dk)), then (28)

holds with I = Ik and vec(X) = xk. We estimate the probability that Ik ⊇ supp(vec(Dk)).

First, consider the case that after row/column permutations and scaling of Dk, we obtain Et, 2 ≤ t ≤
m. If Ik is chosen according to (30), then similar to discussion in Theorem 5, Ik will cover the support

of Dk with probability at least n(p−2)
(n!)2 . If Ik is chosen according to (31), then Ik will cover the support

of Dk with probability(
n−t
m−t

)2(
n
m

)2 =

(
(n− t)!/((m− t)!(n−m)!)

n!/(m!(n−m)!)

)2

=

(
m!/(m− t)!

n!/(n− t)!

)2

.

Therefore, in this case, the probability pt that Ik cover the support of Dk is:

pt ≥
sn(p− 2)

(n!)2
+ (1− s)

(
m!/(m− t)!

n!/(n− t)!

)2

.

Then we consider the case that when we get Et, m + 1 ≤ t ≤ n after row/column permutations and

rescaling of Dk. In this case, if Ik is chosen according to (30), Ik will cover the support of Dk with

probability at least n(p−2)
(n!)2 ; if Ik is chosen according to (31), this probability is 0. Therefore, in this

case we have pt ≥ sn(p−2)
(n!)2 . In general, the probability that Ik cover the support of Dk is at least

min{pt} ≥ sn(p−2)
(n!)2 . Similar to discussion in Theorem 4, (19) will hold with v ≥ sn(p−2)

(n2−3)(n!)2 .
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Accelerated random block coordinate descent Algorithm 4 is an accelerated random block coordinate

descent (ARBCD) algorithm. It selects the working set Ik in a different way from Algorithm 3 inter-

mittently for acceleration purposes. At certain times, we construct Ik based on the iterates generated

by the algorithm in the past, i.e., xend − xstart. This vector reflects the progress achieved by running

the RBCD-SDB for a few iterations and predicts the direction in which the algorithm could poten-

tially make further improvements. This choice is analogous to the momentum concept often employed

in acceleration techniques in optimization, such as in the heavy ball method and Nesterov acceleration.

Algorithm 4 has a similar convergence rate as Algorithm 3 (note that the acceleration iteration occurs

occasionally). We will verify its improved performance in the numerical experiments.

Algorithm 4 Accelerated random block coordinate descent (ARBCD)

(Initialization) Choose feasible X0 ∈ Rn×n, submatrix row/column dimension m, band width p ∈ [3, n], selection
parameter s ∈ [0, 1], and acceleration interval T . Let x0 = vec(X0), xstart = xend = x0. Binary variable acc.
for k = 0, 1, 2, . . . do

Step 1. Choose Ik as following.
if mod(k + 1, T ) ̸= 0 or | supp(xend − xstart)| ≤ m2 then

acc = false. With probability s, choose Ik according to (30); otherwise, choose Ik according to (31).
else

acc = true. Choose Ik uniformly randomly from supp(xend − xstart) so that |Ik| = m2.
end if
Step 2. Find dk ∈ D(xk; Ik).
Step 3. Update xk+1 := xk + dk;
Step 4. Update xend = xk+1.
if acc = true. then

Update xstart = xk+1.
end if

end for

5 Numerical experiments

In this section, we conduct numerical experiments on various examples of OT problems1. In Section 5.1,

we compare various random block coordinate descent methods with different working set selections

proposed in this article. Then, we compare the one with the best performance - ARBCD with Sinkhorn

in Section 5.2.1 and an interior point inspired algorithm in Section 5.2.2. Finally, a large-scale OT problem

is solved using ARBCD in Section 5.3.

5.1 Comparison between various random block coordinate descent methods with the different working

set selection rules

In this subsection, we apply the proposed random block coordinate descent methods (Alg. 1 - Alg. 4)

to calculate the Wasserstein distance between three pairs of distributions. We compare these algorithms

to illustrate the difference between various working set selection rules. Additionally, we inspect the

differences between the theoretical and actual convergence rates, as well as the solution sparsity.

Experiment settings We compute the Wasserstein distance between a pair of 1-dim probability distri-

butions (standard normal and uniform over [−1, 1]), a pair of 2-dim probability distributions (uniform

over [−π, π]2 and an empirical invariant measure obtained from IPM simulation of reaction-diffusion

particles in advection flows, detailed configurations can be found in [61], Section 4.2, 2D cellular flow,

κ = 2−4), and a pair of 3-dim distributions (uniform over [−1, 1]3 and 3-dimensional multivariate normal

distribution). When computing the Wasserstein distance between the pair of 1-dim probability distribu-

tions, we utilize their histograms (c.f. Section 2): Let n = 1001. Centers of the cells are yi = ỹi = i−501
500 ,

1 All experiments are conducted using Matlab R2021b on Dell OptiPlex 7090 with CPU: Intel(R)
Core(TM) i9-10900 @ 2.80GHz (20 CPUs), ∼2.8GHz and RAM: 65536Mb. Data and codes are uploaded to
https://github.com/yue-xie/RBCDforOT.
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i = 1, .., 1001; Ci,j = dist(ỹi, yj)2, 1 ≤ i, j ≤ 1001; r1,i =
ϕ(yi)∑1001

i=1 ϕ(yi)
, i = 1, ..., 1001, where ϕ(y) is the

pdf of standard normal; r2 = (1/1001, ..., 1/1001)T ∈ R1001. When calculating the Wasserstein distance

between the second and third pairs, we apply the point cloud setting (c.f. Section 2): Let n = 1000. For

each pair, use i.i.d. samples {ỹi} and {yj}, 1 ≤ i, j ≤ 1000 to approximate the two continuous probability

measure respectively. Let Ci,j = dist(ỹi, yj)2 and r1 = r2 = (1/1000, ..., 1/1000)T ∈ R1000. In all cases,

we normalize the cost matrix C such that its maximal element is 1. Figure 1 captures these three pairs

of distributions. For all cases, we first use the linprog in Matlab to find a solution with high precision

(dual-simplex, constraint tolerance 1e-9, optimality tolerance 1e-10).

Fig. 1 Three pairs of distributions
In 1-d case, we compare the histograms of two distributions; in 2-d and 3-d settings, we compare the samples/point clouds
of two distributions.

Methods We specify the settings of the four algorithms. All algorithms are started at the same feasible

x0 = vec(r1(r2)T ) in each experiment. We solve the LP subproblems via linprog in Matlab with high

precision (dual-simplex, constraint tolerance 1e-9, optimality tolerance 1e-7).

RBCD0. Algorithm 1: Vanilla random block coordinate descent. Let l = 1002. Stop the algorithm after

5000 iterations.

RBCD-DB. Algorithm 2: Random block coordinate descent - diagonal band. Let p = ⌊1002/n⌋. Stop
the algorithm after 5000 iterations.

RBCD-SDB. Algorithm 3: Random block coordinate descent - submatrix and diagonal band. Let

m = 100, p = ⌊m2/n⌋ and s = 0.1. Stop the algorithm after 5000 iterations.

ARBCD. Algorithm 4: Accelerated random block coordinate descent. Letm = 100, p = ⌊m2/n⌋, s = 0.1

and T = 10. Stop the algorithm after 5000 iterations. Note that the degree of freedom of the subproblem

per iteration is 1002, about 1/100 the size of the original one.

Comments on Figure 2 We can see from Figure 2 that different approaches to choosing the working

set of the same size can significantly affect the performance of random BCD types of methods. The

curves of RBCD-DB are below those of RBCD0 in the long run, demonstrating that RBCD-DB has

a better average performance. The reason for this is that RBCD0 generates the working set with full

randomness, while RBCD-DB takes the structure of the elementary matrices into account. The latter
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Fig. 2 Comparison of algorithms to compute Wasserstein distance I
X-axis is the number of operated iterations. Y-axis is the optimality gap fk−f∗ = cT xk−cT x∗ (first row) or corresponding
feasibility error ∥Xk ·1−r1∥+∥(Xk)T ·1−r2∥ (second row). First row of subplots in this figure shows the trajectory/progress
of Alg. 1, Alg. 2, Alg. 3 and Alg. 4 when computing the Wasserstein distance between the three pairs of prob. in 1-d, 2-d,
and 3-d respectively. Each algorithm is run 5 times and the curves showcase the average behavior. Second row of subplots
shows the corresponding average feasibility error against computation time for the algorithms in this experiment.

1-d case 2-d case 3-d case

iter. (f̄k − f∗)Cmax v̂ iter. (f̄k − f∗)Cmax v̂ iter. (f̄k − f∗)Cmax v̂

0 0.6237 N/A 0 9.3538 N/A 0 3.3456 N/A
1000 0.0083 4.3e-3 1000 0.6254 2.7e-3 1000 0.4746 2.0e-3
2000 0.0054 4.3e-4 2000 0.4773 2.7e-4 2000 0.3821 2.2e-4
3000 0.0045 1.8e-4 3000 0.4183 1.3e-4 3000 0.3438 1.1e-4
4000 0.0039 1.4e-4 4000 0.3846 8.3e-5 4000 0.3371 2.0e-5
5000 0.0036 8.0e-5 5000 0.3762 2.2e-5 5000 0.3350 6.2e-6

Table 1 Data of RBCD0, Cmax is the maximal value of elements in C

makes an educated guess at the working set that decreases the objective function by a large amount. The

submatrix approach (31) works very well in practice, as illustrated by the better performances of RBCD-

SDB and ARBCD compared to RBCD-DB. In the long run, ARBCD outperforms RBCD-SDB,

verifying the acceleration effect. It is important to note that the algorithm settings are set by default. We

expect and have observed similar behaviors of the algorithms when changing their algorithm settings.

Also note that the feasibility error of algorithms are controlled at a low level according to the figure.

On the other hand, the curves in these numerical experiments suggest sublinear convergence rates. This

observation does not contradict the theoretical linear convergence rate as long as v is small enough. We

will verify that the numerical experiments do not violate the lower bounds we derived for the constant

v in the linear convergence rates.

About Table 1 & 2 In these two tables we record the optimality gap f̄k − f∗ every 1000 iterations for

both RBCD0 and RBCD-DB. f̄k is the average function value at iteration k, as we run the algorithms

repeatedly for 5 times. The column v̂ denotes the estimation of the constant v in the expected Gauss-

Southwell-q rule (19). It is calculated by the formula: v̂ = 1− 1000
√
(f̄k − f∗)/(f̄k−1000 − f∗). Values of v̂

in both Table 1 & 2 are far larger than the lower bounds for v: 1

(Nl )(N−l+1)
and (n−1)(p−2)

(n2−3)(n!)2 , corresponding

to RBCD0 and RBCD-DB respectively, where N = n2. They also decrease as we run more iterations,

indicating that the optimality gap shrinkage becomes less when the iterate is closer to the solution. We

intend to study this phenomenon in our future work.
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1-d case 2-d case 3-d case

iter. (f̄k − f∗)Cmax v̂ iter. (f̄k − f∗)Cmax v̂ iter. (f̄k − f∗)Cmax v̂

0 0.6237 N/A 0 9.3538 N/A 0 3.3456 N/A
1000 0.0130 3.9e-3 1000 0.6002 2.7e-3 1000 0.4601 2.0e-3
2000 0.0057 8.2e-4 2000 0.3920 4.3e-4 2000 0.3414 3.0e-4
3000 0.0036 4.6e-4 3000 0.3074 2.4e-4 3000 0.2878 1.7e-4
4000 0.0026 3.3e-4 4000 0.2592 1.7e-4 4000 0.2544 1.2e-4
5000 0.0020 2.6e-4 5000 0.2276 1.3e-4 5000 0.2316 9.4e-5

Table 2 Data of RBCD-DB

Fig. 3 Sparsity of solutions
Y-axis records ∥xk∥0, i.e., the number of nonzero elements in xk. This figure shows the sparsity of xk in RBCD-SDB
and ARBCD when computing the Wasserstein distance given the three pairs of probability distributions. Each curve
represents the average over 5 repetitions.

Sparse solutions We can observe from Figure 3 that the iterates in RBCD-SDB and ARBCD become

sparse quickly and remain so. The reason for this is that the solutions of OT problems are usually sparse

(for the point cloud setting, at least one of the optimal solutions satisfies ∥x∗∥ = n because extreme

points of the LP in this setting are permutation matrices divided by n), and these two algorithms can

locate solutions with high accuracy relatively fast. As a result, the storage need for these two algorithms is

considerably reduced after they have been run for a while. In the point cloud setting, storage complexity

is typically expected to decrease from O(n2) to O(n) (note that the degree of freedom of the subproblem

per iteration is typically chosen as O(n) because of the diagonal band approach with p ≥ 3).

Choice of m We run RBCD-SDB and ARBCD with different m for a fixed n to test the optimal

setting of subproblem size. As is shown in Figure 4, the best choice of m happens at a smaller value (10

or 30 percent of n) in 1-d case. In Figure 5, we observe similar phenomenon in 2-d case. The optimal

setting of m shifts to a larger value in 3-d case. We conclude that the optimal setting of m may vary

depending on many factors such as specific problem and subproblem solver efficiency. Based on the given

results, we suggest choosing a smaller m in practice, especially when there is limitation of computation

resources.

Fig. 4 Choice of m under various n
Wall-clock time of algorithm RBCD-SDB and ARBCD to compute solutions of accuracy level f∗ × 10−3. Algorithms
are stopped if the solution accuracy is within the tolerance. Repetition is 3 and the average time is reported. p = ⌊m2/n⌋.
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n = 501

m 50 150 250 350 450
RBCD-SDB iter. 2.00e+04 3.55e+02 55.0 17.7 7.67

err. 7.28e-07 4.95e-07 4.88e-07 4.01e-07 1.71e-07
ARBCD iter. 1.95e+4 3.01e+02 58.0 22.3 8.33

err. 5.68e-07 4.90e-07 4.92e-07 9.08e-08 9.49e-08

n = 1001

m 60 100 300 500 700 900
RBCD-SDB iter. 2.00e+04 1.14e+04 2.21e+02 47.7 20 7.67

err. 3.55e-06 4.93e-07 4.93e-07 2.96e-07 3.51e-07 1.65e-07
ARBCD iter. 2.00e+04 9.67e+03 1.74e+02 47.3 22.3 8.33

err. 2.06e-06 4.94e-07 4.60e-07 4.09e-07 3.39e-07 1.17e-08

n = 1501

m 75 150 450 750 1050 1350
RBCD-SDB iter. 2.00e+04 6.80e+03 1.69e+02 50.3 19.3 7.67

err. 3.90e-06 4.93e-07 4.89e-07 4.18e-07 3.63e-07 1.70e-07
ARBCD iter. 2.00e+04 3.11e+03 1.67e+02 46.3 20 8

err. 1.85e-06 4.93e-07 4.86e-07 4.15e-07 3.08e-07 2.35e-07

Table 3 Data of Figure 4

The average iterations and solution errors are recorded for reference. Feasibility errors are kept at a low level (below 1e-15)
and omitted.

5.2 Comparison between ARBCD and algorithms in the literature

Experiment settings We generated 8 pairs of distributions/patterns based on synthetic and real datasets.

Descriptions are as follows. Note that we use histogram settings (c.f. Section 2) for datasets 1 and 2, and

point cloud settings (c.f. Section 2) for other datasets. We use cost function C(x, y) = ∥x− y∥2.
Dataset 1: Uniform distribution to standard normal distribution over [−1, 1]. Similar to the 1-d case in

Section 5.1. n = 200.

Dataset 2: Uniform distribution to a randomly shuffled standard normal distribution over [−1, 1].2

n = 1000.

Dataset 3: Uniform distribution over [−π, π]2 to an empirical invariant measure. Similar to the 2-d case

in Section 5.1. n = 1000.

Dataset 4: Distribution of
√
Σu to distribution of 2

√
Σv− (1; 1; 1), where Σ =

 1 0.5 0.25

0.5 1 0.5

0.25 0.5 1

, u and

v conform uniform distributions on [0, 1]3 and are independent. n = 1000.

Dataset 5: Similar to Dataset 4, with Σ =

 1 0.8 0.64

0.8 1 0.8

0.64 0.8 1

. n = 1000.

Dataset 6: Distribution of Σu to distribution of Σv, where Σ =

(
1 0 1 1

0 1 1 −1

)T

, u conforms a uniform

distribution on [0, 2π]2 and v conforms a uniform distribution on [−1, 1]2. n = 1000.

Dataset 7: Distribution of (1; 1; . . . ; 1)T︸ ︷︷ ︸
10

u to distribution of (1; 2; 3; . . . ; 10)T v + (1; 1; . . . ; 1)T , where u

conforms uniform distribution over [0, 2π] and v conforms uniform distribution over [−1, 1]. n = 1000.

Dataset 8: Distibution of a “cylinder” to a ”spiral”, see Figure 6. n = 1000.

In all cases, we normalize the cost matrix C such that its maximal element is 1. For all cases, we use

the linprog in Matlab to find a solution with high precision (dual-simplex, constraint tolerance 1e-9,

optimality tolerance 1e-10).

2 Similar to the 1-d case in Section 5.1. We randomly shuffled the weights of the normal distribution histogram.
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Fig. 5 Choice of m in various dimensions
Numerical experiments from 1-d to 3-d cases. Solutions of accuracy level f∗ × 10−3. Repetition is 5 and the box plot of
time is shown. p = ⌊m2/n⌋.

5.2.1 Comparison with Sinkhorn

Methods Implementation of Sinkhorn and ARBCD are specified as follows.

Sinkhorn. The algorithm proposed in [15] to compute Wasserstein distance. Let γ be the coefficient of the

entropy term.We let γ = ϵ/(4 log n) as suggested in [16]. We consider the settings ϵ = 10−4, 10−3, 0.01, 0.1.

Iterations of Sinkhorn are projected onto the feasible region using a rounding procedure: Algorithm

2 in [1]. Note that this projection step is added only for evaluation purposes because Sinkhorn does
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Fig. 6 Visualization of dataset 8

not provide feasible solutions if early stopped. It does not affect Sinkhorn’s main steps or Sinkhorn’s

convergence at all. A similar approach is used for evaluation in [28]. In addition, we take all the updates

to log space and use the LogSumExp function to avoid numerical instability issues. We stop Sinkhorn

after 300000 iterations when n = 200 and 100000 iterations if n = 1000.

ARBCD. Algorithm 4: Accelerated random block coordinate descent. Let m = 40 when n = 200 and

m = 100 when n = 1000. Let p = ⌊m2/n⌋, s = 0.1 and T = 10. Stop the algorithm after 10000 iterations.

To be fair, we also project the solution in each iteration onto the feasible region via the rounding pro-

cedure. LP subproblems are solved via linprog in Matlab with high precision (dual-simplex, constraint

tolerance 1e-9).

Comments on Figure 7 We can observe the following from Figure 7: although Sinkhorn with larger

ϵ may converge fast, the solution accuracy is also lower. In fact, this is true for all Sinkhorn-based

algorithms because the optimization problem is not exact - it has an extra entropy term. Therefore, the

larger γ or ϵ is chosen, the less accurate the solution becomes. The discrepancy in accuracy does matter,

as can be seen by inspecting the solution quality in Figure 8. On the other hand, when ϵ is set smaller, the

convergence of Sinkhorn becomes slower. As can be seen from the plots, when ϵ = 0.1 or 0.01, Sinkhorn

converges faster than ARBCD; when ϵ = 10−3, Sinkhorn is comparable to ARBCD; when ϵ = 10−4,

Sinkhorn is slower than ARBCD. In conclusion, if relatively higher precision is desired, ARBCD

is comparable with Sinkhorn. Moreover, note that here we solve the subproblems in ARBCD using

Matlab built-in solver linprog. ARBCD can be faster if more efficient subproblem solvers are applied.

5.2.2 Comparison with an interior point-inspired algorithm

In this experiment we continue using the 8 datasets, except that Dataset 1 has n = 1000.

Methods Implementation of ARBCD and IPM are specified as follows.

ARBCD. Algorithm 4. Let m = 150, p = ⌊m2/n⌋, s = 0.1 and T = 10. We stop the algorithm when

(fk − f∗)/f∗ ≤ 10−3 or when iteration reaches the maximum 10000. Other settings are similar to the

experiment in Section 5.2.1. The algorithm outputs the last iterate.

IPM. A recent interior point-inspired algorithm proposed in [68]. The Matlab code is directly from

the github page in this paper (https://github.com/INFORMSJoC/2022.0184). We have made minimal

modification for comparison. We stop the algorithm when (fk−f∗)/f∗ ≤ 10−3 or when the iteration hits

2000. Run four different settings separately, where the initial reduced problem’s sizes are approximately

11(2n− 1), n2/10, n2/2 and n2 (n = 1000) correspondingly. For fairness, we also project the solution in

each iteration onto the feasible region via the rounding procedure. The algorithm outputs the solution

with the best function value gap.
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Fig. 7 Comparison of algorithms to compute Wasserstein distance II
X-axis is the wall-clock time in seconds. Y-axis is the optimality gap fk − f∗ = cT xk − cT x∗. This figure shows the
trajectory/progress of Algorithm 4: ARBCD and Sinkhorn with different settings when computing the Wasserstein
distance between eight pairs of probability. ARBCD is run 5 times in each experiment and the curves showcase the
average behavior.

Comments on Table 4 We could see that the performance of ARBCD is better than IPM1, comparable

to IPM2 and IPM3. IPM4 has the best performance but its subproblem size is also large. In fact, our

observation of the memory storage is IPM4 ≥ IPM3 ≥ IPM2 ≥ IPM1 ≈ ARBCD. This is consistent

with the subproblem size column. In practice, memory consumption of IPM4 is large, contradicting the

goal of the authors in [68] to save memory. In [68], the authors suggest the setting of IPM1. We also

find that when implementing IPM1,IPM2,IPM3, the algorithms develop numerical instabilities, which

is reported as N/A in the table. This is consistent with the result in [68] (Figure 4) where ratio of the

IPM algorithm finding an ideal solution is below 1.

5.3 Test on a large-scale OT problem

In this subsection, we generate a pair of 1-dim probability distributions with large discrete support sets

(n = 12800). For the first distribution, locations of the discrete support (xi, i = 1, . . . , n) are evenly

aligned between [−1, 1], and their weights/probability are uniformly distributed (i.e., 1/n). For the other

distribution, locations of the discrete support are determined as x̃i = xσ(i) + ui, where σ(i) is a random

permutation of i = 1, . . . , n, and ui is a random variable that conforms to a uniform distribution over

[−0.5, 0.5]. Weights/probability are determined as wi =
ϕ(x̃i)∑n
i=1 ϕ(x̃i) , where ϕ(x) is the pdf of the standard

normal. The benchmark optimal solution is quickly computed via a closed-form formula for 1-d OT

problem (f∗ = 6.236× 10−3). For ARBCD, we use the setting m = ⌈
√
10n⌉, p = ⌊m2/n⌋, s = 0.1 and

T = 10.
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Fig. 8 Transport plan given by different algorithms (dataset 1)
This figure shows the transport plan for dataset 1. In each plot, the bottom distribution is uniform and the top is standard
normal. Each line segment in between represents mass transported between a pair of points. The darker the line is, the more
mass is transported. To plot the plans more clearly, we select every other mass point from −1 to 0 (so only include 50 mass
points). The overall transport plans from −1 to 1 are symmetric plots so we show them in this way due to presentation
clarity.

Comments on Figure 9 The figure showcases the average behavior of ARBCD within 10000 iterations.

It is able to locate a solution such that (fk − f∗)/f∗ ≤ 0.1. The convergence is linear by observing the

trajectory. We also want to point out that Gurobi 10.01 (academic license) runs out of memory on the

desktop we use for numerical experiments. Indeed, saving memory is one of the merits that motivate us

to consider RBCD methods.

6 Conclusion

In this paper, we investigate the RBCD method to solve LP problems, including OT problems. In

particular, an expected Gauss-Southwell-q rule is proposed to select the working set Ik at iteration k.

It guarantees almost sure convergence and linear convergence rate and is satisfied by all algorithms

proposed in this work. We first develop a vanilla RBCD, called RBCD0, to solve general LP problems.

Its inexact version is also investigated. Then, by examining the structure of the matrix A in the linear

system of OT, characterizing elementary matrices of null(A) and identifying conformal realization of any

matrix D ∈ null(A), we refine the working set selection. We use two approaches - diagonal band and

submatrix - for constructing Ik and employ an acceleration technique inspired by the momentum concept
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Dataset # method time(s) iter. gap feas.err. subproblem size

ARBCD 82.63 2326.7 4.9386e-07 4.1753e-17 22500
IPM1 7.539 198 3.36713-08 1.8924e-17 20890

1 IPM2 342.6 2000 4.3408-04 2.0889e-17 96550
IPM3 5.044 19 1.2319-07 5.7525e-17 485194
IPM4 11.01 21 2.8982e-07 8.3340e-17 1000000

ARBCD 240.3 10000 8.6011e-09 8.4518e-17 22500
IPM1 413.9 2000 1.0562-04 2.5704e-17 20890

2 IPM2 0.8815 16 1.1066-10 2.6584e-17 96550
IPM3 5.923 20 1.7153-09 5.5638e-17 485194
IPM4 11.02 20 3.0871e-09 7.6026e-17 1000000

ARBCD 30.80 375 1.2787e-04 2.3256e-17 22500
IPM1 N/A N/A N/A N/A 21055

3 IPM2 67.43 2000 0.0146 2.1107e-17 92666
IPM3 313.7 2000 0.0110 1.3510e-17 465075
IPM4 6.696 13 1.2655e-04 6.3473e-17 1000000

ARBCD 145.2 4404.3 2.0519e-05 1.8927e-17 22500
IPM1 N/A N/A N/A N/A 21312

4 IPM2 N/A N/A N/A N/A 95639
IPM3 345.7 2000 0.0083 1.5114e-17 474798
IPM4 7.716 15 2.0397e-05 7.2654e-17 1000000

ARBCD 56.24 569.3 2.0412e-05 2.1927e-17 22500
IPM1 N/A N/A N/A N/A 19988

5 IPM2 N/A N/A N/A N/A 94468
IPM3 320.6 2000 0.0050 1.4802e-17 492856
IPM4 7.616 15 8.6357e-06 6.6523e-17 1000000

ARBCD 22.20 265 2.3475e-04 2.3622e-17 22500
IPM1 N/A N/A N/A N/A 20143

6 IPM2 417.6 2000 0.0032 1.4814e-17 94072
IPM3 337.9 2000 0.0065 1.3566e-17 482269
IPM4 5.438 11 1.4044e-04 6.2801e-17 1000000

ARBCD 63.88 342.3 7.4215e-05 2.0341e-17 22500
IPM1 N/A N/A N/A N/A 20139

7 IPM2 N/A N/A N/A N/A 99792
IPM3 278.4 2000 0.0221 1.9256e-17 486651
IPM4 5.136 11 5.7172e-05 5.5542e-17 1000000

ARBCD 71.44 439.3 1.9715e-05 2.4507e-17 22500
IPM1 N/A N/A N/A N/A 10702

8 IPM2 N/A N/A N/A N/A 97305
IPM3 219.1 2000 9.3439e-04 2.3205e-17 499786
IPM4 5.303 10 1.7165e-05 7.5243e-17 1000000

Table 4 Comparison between ARBCD and IPM

For ARBCD, the average iterations/time/gap/feasibility error are recorded for reference. For IPM, results of four different
settings are recorded. The initial reduced problem size is reflected by the subproblem size column.

to improve the performance of RBCD0. In our numerical experiments, we compare all proposed RBCD

methods and verify the acceleration effects as well as the sparsity of solutions. We also demonstrate

the gap between the theoretical convergence rate and the practical one. We discuss the choice of the

subproblem size. Furthermore, we run ARBCD, the best among all other methods, against others and

also on large-scale OT problems. The results show the advantages of our method in finding relatively

accurate solutions to OT problems and saving memory. For future work, we plan to extend our method

to handle continuous measures and further improve it through parallelization and multiscale strategies,

among other approaches.
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A Proof of Lemma 3

Proof Suppose that

log((n2)!/(n2 − np)!) ≥ 2 log(n!) + log(np)! (34)

Then

(n2)!/(n2 − np)!)/(np)! ≥ (n!)2

=⇒
(n2

np

)
/(n!)2 ≥ 1

=⇒
(
n2

np

)
(n!)2

· n(p−2)(n2−np+1)

n2−3
≥ 1

=⇒ n(p−2)

(n2−3)(n!)2
≥ 1(

n2

np

)
(n2−np+1)

,

where the third inequality holds because p ≤ n/2 and n ≥ pK̄ ≥ 6. So we only need to prove (34). Note that

log
(n2)!

(n2 − np)!
=

n2∑
x=n2−np+1

log(x) ≥
∫ n2

n2−np
(log x)dx

= n2 log(n2)− n2 −
(
(n2 − np) log(n2 − np)− n2 + np

)
= n2 log(n2)− (n2 − np) log(n2 − np)− np
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(p=n/K)
= 2np logn+

K − 1

K
· n2 · log

K

K − 1
− np

≥ 2np logn+
2K − 3

2K − 2
· np− np. (35)

The last inequality holds because log(1 + x) ≥ x − x2/2 for x ∈ (0, 1) and p = n/K. Meanwhile, right hand side of (34)
satisfies the following:

2 log(n!) + log(np)!

≤ 2(n+ 1) log(n+ 1)− 2n+ (np+ 1) log(np+ 1)− np

≤ 2(n+ 1)(logn+ log 2)− 2n+ (np+ 1)(log(np) + log 2)− np

= (np+ 2n+ 3) logn+ (np+ 1) log p+ 2(n+ 1) log 2− 2n− np+ (log 2)(np+ 1)

(p= n
K )

= 2np logn+ (2n+ 4) logn+ (log 4)n+ (log 2)np+ log 8− 2n− (1 + logK)np− logK

(K≥K̄≥2,n≥6)

≤ 2np logn+ (2n+ 4) logn+ (log 2)np− (1 + logK)np (36)

In order to show (34), we only need to confirm (36) ≤ (35). By observation, this is equivalent to(
2K−3
2K−2

+ log
(

K
2

))
np ≥ (2n+ 4) logn

(p≥η logn,K̄≤K)⇐=
(

2K̄−3
2K̄−2

+ log
(

K̄
2

))
ηn ≥ 2n+ 4

⇐⇒ 4(
2K̄−3
2K̄−2

+log
(

K̄
2

))
η−2

≤ n.

The last inequality is assumed.

B A counterexample of interest

Example 1 Consider LP problem (7) with n = 3, r1 = r2 = (1/3, 1/3, 1/3)T . Let

C =

(1 + ϵ1)2 (2− ϵ3)2 (1− ϵ2)2

(1− ϵ2)2 (1 + ϵ1)2 (2− ϵ3)2

(2− ϵ3)2 (1− ϵ2)2 (1 + ϵ1)2

 ,

where 0 < ϵi ≪ 1, i = 1, 2, 3 such that 2(1 + ϵ1)2 < (1− ϵ2)2 + (2− ϵ3)2. It can be easily seen that the optimal solution is

γ∗ = 1
3

0 0 1
1 0 0
0 1 0

. Suppose that γ0 = 1
3

1 0 0
0 1 0
0 0 1

. If we use the submatrix approach (31) with m = 2 (largest number less

than n) to select a working set Ik, then the algorithm will be stuck at γ0. It is not globally convergent. This cost matrix
corresponds to the following case of transporting a three-point distribution to another one:

ỹ1

y1 ỹ2

y2

ỹ3

y3

Fig. 10 A counterexample of interest
The dashed hexagon has an edge length of 1. Transport point distribution ỹ1, ỹ2 and ỹ3 to that of y1, y2 and y3.
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49. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Mathematical Programming

156(1), 433–484 (2016)
50. Rockafellar, R.T.: Network flows and monotropic optimization, vol. 9. Athena scientific (1999)
51. Schmitzer, B.: A sparse multiscale algorithm for dense optimal transport. Journal of Mathematical Imaging and Vision

56, 238–259 (2016)
52. Schmitzer, B.: Stabilized sparse scaling algorithms for entropy regularized transport problems. SIAM Journal on

Scientific Computing 41(3), A1443–A1481 (2019)
53. Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. The annals of math-

ematical statistics 35(2), 876–879 (1964)
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