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Abstract

We propose a reduced-order model-based variational inference method with normalizing flows

for Bayesian elliptic inverse problems. The coefficient of the elliptic PDE is represented by

a finite number of parameters. We aim to estimate the posterior distributions of these

parameters in the framework of variational inference, and the approximation of the posterior

distribution is constructed through a normalizing flow. Moreover, as data of inputs and

outputs of the forward problem are accumulated during the training of the normalizing flow,

we can naturally exploit the low-dimensional intrinsic structure of the forward elliptic PDE

using reduced-order models based on these data, in which information of the true posterior

is incorporated. We construct a low-dimensional set of data-driven basis functions in the

solution space using proper orthogonal decomposition and train a neural network that maps

the parameters to the coefficients of these data-driven basis functions. Then the surrogate

forward map, which is the combination of the reduced-order model and the parameter-to-

coefficient neural network, significantly accelerates the inversion, as repetitive evaluations of

the forward problem are needed in the training of the normalizing flow. We present numerical

examples to show the accuracy and efficiency of the proposed method.

Keyword: Bayesian elliptic inverse problems; variational inference; normalizing flows;

reduced-order models; proper orthogonal decomposition.
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1. Introduction

Inverse problems are frequently encountered in science and engineering communities,

in which we need to infer problem-specific parameters or inputs from indirect and noisy

observations. However, inverse problems are often nonlinear (even if the forward problems

are linear) and ill-posed (or unstable) in the sense that either the existence and uniqueness of

the solution to the inverse problem are not guaranteed or the dependence of the parameters
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on the data (and noise) is sensitive. As a result, pointwise estimates of the parameters may

be erroneous and misleading, and additional regularization is often required. On the other

hand, the Bayesian approach provides an alternative to inverse problems [21, 28, 10, 27, 7, 23].

In the Bayesian framework, we aim to infer the posterior distribution of the unknowns

conditioned on observations, where regularization is naturally imposed in the form of an

appropriate prior distribution. Therefore, Bayesian inversion provides a principled way of

uncertainty quantification in the presence of data and noise. We refer interested readers to

[35] for a comprehensive review of the Bayesian approach to inverse problems.

As the posterior is generally intractable due to the complexity of the system, one often

resorts to computational approximation approaches. Two classical approximation schemes

are the Markov chain Monte Carlo (MCMC) method and the variational inference method. In

a typical MCMC method, samples from the posterior distribution are generated by simulating

a Markov chain whose stationary distribution is the desired posterior distribution. Although

MCMC asymptotically converges to the posterior, its efficiency heavily depends on a good

balance among many factors, e.g., its computational cost, acceptance probability, and mixing

property, making it challenging to solve complicated and large systems in practice using

MCMC algorithms.

Variational inference (VI) [20, 38, 8] is an alternative approximate Bayesian inference

method that is growing in popularity. Unlike MCMC methods, VI seeks the best approxi-

mation to the true posterior from a family of tractable distributions. By transforming the

inference problem into an optimization problem, VI tends to be faster and easier to scale

to large data and complicated models [8]. In recent years, many efforts have been made

to apply VI to solve Bayesian inverse problems [36, 3, 32]. However, VI can also introduce

a large bias if the variational family of distributions is insufficiently flexible [26, 40]. The

success of variational methods, therefore, largely relies on the construction of appropriate

tractable variational family of distributions and efficient optimization procedures [15].

A powerful framework for building flexible approximating distributions is normalizing

flows (NFs) [33, 11, 22, 31]. Starting from a simple base distribution with a tractable

probability density function, NFs apply a sequence of invertible transformations, often pa-

rameterized by neural networks, to obtain a more flexible distribution. These flow-based ap-

proximating distributions enjoy many advantages such as efficient sampling, exact likelihood

evaluation, and low-variance Monte Carlo gradient estimates when the base distribution is

reparameterizible, making them ideal for variational inference. While efficient, current NFs

rely on stochastic optimization for training that requires repetitive evaluations of the target

posterior and gradients. For our Bayesian inverse problem, not only the unknown quantity

is a random field that lives in a high-dimensional space after discretization or can be a para-

metric model with many parameters, but the solution to an elliptic PDE is also involved in

generating the data and evaluating the posterior in variational inference with normalizing

flows. These computational challenges make normalizing flow based variational inference

methods costly to use for Bayesian inverse problems [17].

To break this computational bottleneck, we resort to model reduction [5, 6, 18], which
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aims to construct an intrinsic low-dimensional surrogate model that is both accurate and

efficient. In particular, we consider the proper orthogonal decomposition (POD) method

[37], one of the most commonly used reduced-order model basis generation methods that

is widely applied to inverse problems [9, 12, 24] and optimization problems [16, 41]. In

inverse problems and optimization problems, the first few steps of the iteration provides a

natural collection of data of inputs and outputs of the forward problem. Then the POD

method takes these solution data as input data and returns an ordered set of orthogonal

basis functions that best approximates the input data in the least square sense. We then

obtain a reduced-order model by truncating the basis functions. Provided that the forward

problem has an intrinsic low-dimensional structure, a small number of basis functions are

sufficient to accurately approximate the solution to the forward problem. In other words, a

low-dimensional reduced-order model can be constructed to solve the forward problem both

accurately and efficiently. Therefore, we can greatly enhance the efficiency of solving the

inverse problems and the optimization problems by applying this fast and accurate reduced-

order model to the repetitive evaluation of the forward problem in the subsequent iteration.

In this work, we consider the variational inference with normalizing flows for Bayesian

elliptic inverse problems. We follow the idea of reduced-order models and adopt a reduced-

order model-based and data-driven strategy proposed in [24, 25], which can significantly

reduce the computational cost of training normalizing flows. First, the data of inputs and

outputs of the forward problem are naturally collected in the first few steps of training the

normalizing flow. Then, a set of data-driven basis functions are constructed using the POD

method based on these data to achieve significant dimension reduction in the solution space.

Since the data that are used for constructing the data-driven basis functions are collected

in the process of training the approximate posterior, information of the true posterior is

incorporated in these data. Moreover, the solution space of the elliptic equation has an

intrinsic low-dimensional structure [4, 24, 25]. Thus, we can construct a low-dimensional

reduced-order model that solves the forward elliptic PDE both accurately and efficiently,

where the solution of the elliptic problem is a linear combination of the POD basis functions.

To further enhance efficiency, we use the same solution data to train a neural network that

maps the parameters to the coefficients of the POD basis functions. With the reduced-

order model and the parameter-to-coefficient neural network, we are able to construct a

fast and accurate surrogate forward map. Finally, we apply this surrogate forward map to

the repetitive evaluation of the forward elliptic problem in the subsequent steps of training

the normalizing flow. In this way, this reduced-order model-based strategy can significantly

reduce the computational cost of training normalizing flows for our Bayesian inverse problem.

The rest of the paper is organized as follows. We first describe the setting of the for-

ward model problems and the Bayesian inversion problems in Section 2. Then, we present

the reduced-order model-based variational inference with normalizing flows for solving the

Bayesian elliptic inverse problems in Section 3, where the variational inference, the normaliz-

ing flow, the model-based and data-driven dimension reduction, and implementation details

of the proposed methods will be discussed. We present numerical experiments to study the
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accuracy and efficiency of the proposed methods in Section 4. Concluding remarks are made

in Section 5.

2. Setting of the problems

2.1. Forward problems

In this paper, we consider a classical inverse problem where we infer the diffusion coef-

ficient in an elliptic PDE, which is commonly used for modeling isothermal steady flow in

porous media, hydrology and reservoir simulation. For illustrative purposes, we consider the

following elliptic PDEs with random coefficients a(x, ω):

L(x, ω)u(x, ω) ≡ −∇ · (a(x, ω)u(x, ω)) = f(x), x ∈ D,ω ∈ Ω, (1)

u(x, ω) = 0, x ∈ ∂D, ω ∈ Ω, (2)

where D ∈ Rd is a bounded spatial domain, Ω is a sample space and f ∈ L2(D). We assume

that a(x, ω) is almost surely uniformly elliptic, i.e., there exist amin, amax > 0 such that

P (ω ∈ Ω : a(x, ω) ∈ [amin, amax],∀x ∈ D) = 1. (3)

In general, we assume that a(x, ω) takes a parametric form. For instance, we may parame-

terize a(x, ω) as

log a(x, ω) = ā(x) +
r∑
j=1

aj(x)ξj(ω), (4)

where ξm(ω)’s are random variables and ā(x), am(x)’s are spatial basis functions. Once

a parametric form of the random coefficient a(x, ω) = a(x, ξ(ω)) is given, computing the

solution u(x, ω) to the problem (1)–(2) defines a forward map

F :W ⊂ Rr → U = H1
0 (Ω) :

ξ = (ξ1, . . . , ξr)
T 7→ u(x, ω) = u(x, ξ(ω)), (5)

which is a Banach-space-valued function of the random input vector ξ(ω).

The past few decades have witnessed significant development of efficient numerical meth-

ods for solving elliptic PDEs with random coefficients; see e.g. [14, 2, 30, 1] and the references

therein. One can quantify the uncertainty in the stochastic problem by solving the forward

problem of random elliptic PDEs. A more challenging case is that the random elliptic PDEs

involve multiscale features and/or the dimension of random inputs is high, which leads to

high computational costs. In recent years, some data-driven methods and multiscale model

reduction methods were developed to solve multiscale elliptic PDEs with random coefficients.

We refer the interested readers to [39, 1, 42, 19, 25] and the references therein for related

works.
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2.2. Bayesian inverse problems

While the forward problem of the elliptic PDE problem (1)–(2) assigns an input ξ ∈ W
to an output u ∈ U , we consider in the work the inverse problem of (1)–(2), in which we

would like to recover the unknown parameter ξ ∈ W (and hence the coefficient a(x, ξ)) from

some measurements of the solution u in the domain and at the boundary. Often in practice,

u can only be measured at a finite number of discrete locations with noise, which is the

measurement data denoted by y ∈ Rm in the form of

y = G(ξ) + η, (6)

where the operator G : Rr → Rm is the composition of the forward map F and a discretized

observation operator through which observable quantities (e.g., point-wise evaluation of the

solution) are collected, and η ∈ Rm is the measurement error (or the noise).

In the framework of Bayesian inversion, the parameter ξ is treated as a random variable

(vector) with a prior distribution pξ(ξ). Equation (6) and the distribution of η together

give the likelihood py|ξ(y|ξ). For simplicity and concreteness, we assume in this paper that

η ∼ N (0, σ2Im) is a zero-mean Gaussian with diagonal covariance σ2Im, so that

py|ξ(y|ξ) ∝ exp (−Φ(ξ; y)) , Φ(ξ; y) :=
‖y− G(ξ)‖2

2σ2
. (7)

According to the Bayes’ rule, the posterior distribution of ξ conditioned on the data y is

given by the following formula:

pξ|y(ξ|y) ∝ py|ξ(y|ξ)pξ(ξ). (8)

Then, the Bayesian inversion can be performed by estimating the posterior via, e.g., the

MCMC method.

As mentioned in Section 1, it is challenging to use MCMC type methods for solving

the Bayesian inverse problem of complicated and large systems. Moreover, the complicated

forward problem (1)–(2) poses another challenge for the Bayesian elliptic inverse problem.

Instead of a simple explicit probabilistic model that prescribes the likelihood of data given

the parameter of interest, one needs to solve the elliptic PDE (1)–(2) for each random co-

efficient to compute the likelihood function (7) whenever a new ξ comes at hand, which

forms the computational bottleneck for the Bayesian elliptic inverse problem. To address

these challenges, we propose a reduced-order model-based variational inference with normal-

izing flows to obtain an accurate approximation of the posterior of Bayesian elliptic inverse

problems while keeping the overall computational cost low at the same time.

3. Reduced-order model-based variational inference with normalizing flows

In the following, we use the notational convention that (v)j denotes the j-th element of

v for any vector v.
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3.1. Variational inference

In the framework of variational inference [33], we approximate the posterior distribution

pξ|y(ξ|y) by qθ(ξ), where θ denotes the trainable parameters in the variational approxima-

tion. In the following, we drop the subscripts of pξ|y, pξ for brevity of notation. Naturally,

we want to construct qθ(ξ) by minimizing the KL-divergence DKL

[
qθ(ξ)||p(ξ|y)

]
. However,

as the exact posterior p(ξ|y) is unknown, we cannot compute the KL-divergence directly.

Instead, we can derive that

DKL

[
qθ(ξ)||p(ξ|y)

]
= log p(y) + F (θ; y), (9)

where

F (θ; y) = Eqθ
[

log qθ(ξ)
]
− Eqθ

[
log p(y, ξ)

]
= Eqθ

[
log qθ(ξ)

]
− Eqθ

[
log p(y|ξ)

]
− Eqθ

[
log p(ξ)

]
, (10)

and −F (θ; y) is called the evidence lower bound (ELBO). In the following, we shall drop

the dependence of F (θ; y) on y for notational brevity. Since log p(y) is fixed w.r.t. qθ(ξ),

minimizing DKL[qθ(ξ)||p(ξ|y)] is equivalent to minimizing F (θ). Moreover, we can minimize

F (θ) using the stochastic backpropagation method.

3.2. Normalizing flows

We construct the approximation qθ(ξ) using the normalizing flow approach, which refers

to the transformation of a probability density through a sequence of invertible mappings

[33]. We consider the finite flow, which means the sequence of invertible mappings is of finite

length. We obtain ξK by transforming ξ0 with initial distribution q0 through K invertible

mapping fk, k = 1, . . . , K, i.e.,

ξK = fK ◦ · · · ◦ f1(ξ0). (11)

Let qK(ξK) be the probability density of ξK . Then

log qK(ξK) = log q0 −
K∑
k=1

log

∣∣∣∣det
∂fk
∂ξk−1

∣∣∣∣ , (12)

where det ∂fk
∂ξk−1

is the determinant of the Jacobian matrix of fk w.r.t. ξk−1, k = 1, . . . , K.

The law of the unconscious statistician (LOTUS) indicates that any expectation EqK [g(ξ)]

can be written as an expectation under q0 as follows:

EqK
[
g(ξ)

]
= Eq0

[
g(fK ◦ · · · ◦ f1(ξ0))

]
. (13)

In practice, we usually take the initial density q0 ∼ N
(
µ0, diag(σ0)

)
and construct q0(ξ0) by

the following formula

ξ0 = f0(ξ̂0) = σ0 � ξ̂0 + µ0,
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where σ0,µ0 ∈ Rr, � is the elementwise multiplication, and ξ̂0 ∼ q̂0, with q̂0 the density of

standard Gaussian distribution. Then log q0 = log q̂0 −
∑r

j=1 log |(σ0)j|.
We take ξ := ξK and qθ(ξ) := qK(ξK). Then

F (θ) =Eq̂0 [log q̂0]− Eq̂0

[
r∑
j=1

log |(σ0)j|

]
− Eq̂0

[
K∑
k=1

log

∣∣∣∣det
∂fk
∂ξk−1

∣∣∣∣
]

− Eq̂0 [log p(y|ξK)]− Eq̂0 [log p(ξK)], (14)

where θ = {σ0,µ0, all trainable parameters in fk, k = 1, . . . , K}. The expectation Eq̂0 in

(14) is computed using the mini-batch Monte Carlo estimation. Hence the gradient of F (θ)

w.r.t. θ can be computed via

∇θF (θ) =Eq̂0 [∇θ log q̂0]− Eq̂0

[
r∑
j=1

∇θ log |(σ0)j|

]
− Eq̂0

[
K∑
k=1

∇θ log

∣∣∣∣det
∂fk
∂ξk−1

∣∣∣∣
]

− Eq̂0 [∇θ log p(y|ξK)]− Eq̂0 [∇θ log p(ξK)]. (15)

In the following, we introduce three useful types of normalizing flows that will be used

in this paper.

Planar flows. We first introduce the planar flow [33]. Let

fk(ξ) = ξ + ukh(wT
k ξ + bk), (16)

where uk,wk ∈ Rm, bk ∈ R and h is an element-wise nonlinear function. Let

ψk(ξ) = h′(wT
k ξ + bk)wk. (17)

Then

log

∣∣∣∣det
∂fk
∂ξk−1

∣∣∣∣ =
∣∣1 + uTkψk(ξk−1)

∣∣. (18)

In our numerical experiments, h will be chosen to be tanh nonlinearity.

Real-valued non-volume preserving transformations. We can also consider the real-

valued non-volume preserving (RealNVP) transformations [11]. At each layer k of Real-

NVP, the invertible mapping fk is constructed as follows. Let S ⊂ {1, . . . , r} and Sc =

{1, . . . , r}\S. Then

(ξk)Sc = (ξk−1)Sc , (19)

(ξk)S = (ξk−1)S � exp
(
β((ξk−1)Sc)

)
+α((ξk−1)Sc), j ∈ S, (20)

where (ξ)S is the entries of ξ with indices in S, and α : Rr−|Sc| → R|S|, β : Rr−|Sc| → R|S|

are neural networks. The logarithm of the determinant of the Jacobian matrix fk is

log

∣∣∣∣det
∂fk
∂ξk−1

∣∣∣∣ =
∑
j

(β)j. (21)
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In our numerical experiments, the network structure of α is Linear → ReLU → Linear,

and the network structure of β is Linear → tanh → Linear → log sigmoid. S and Sc are

partitioned as sets of odd and even numbers at the first layer, respectively. Through each

layer of the flow, S and Sc are interchanged alternatively.

Inverse autoregressive flows. We will also study the inverse autoregressive flows (IAF)

[22]. We first describe the autoregressive structure. Consider a series z = {zj}Jj=1. Let

f(z) = (f1, . . . , fJ) be a vector-valued autoregressive function of z. The autoregressive

structure of f means that ∂fj/∂zi = 0 for i ≥ j. As to IAF, at each layer, fk is constructed

in the following way:

α,β ← autoregressiveNN(ξk−1), (22)

γ = sigmoid(β), (23)

ξk = γ � ξk−1 + (1− γ)�α, (24)

where α : Rr → Rr and β : Rr → Rr are autoregressive neural networks. The logarithm of

the determinant of the Jacobian matrix fk is

log

∣∣∣∣det
∂fk
∂ξk−1

∣∣∣∣ =
∑
j

log(γ)j. (25)

In our numerical experiments, the structure of the autoregressive neural network [13] is

Masked Linear → ReLU → Masked Linear. Also, note that the order of the input of the

autoregressive neural network plays a role. Hence in our experiments, the order of indices is

taken to be 1→ · · · → r at the first layer and it is reversed through each layer of the flow.

3.3. A reduced-order model-based surrogate forward map

At each optimization step, we need to evaluate the likelihood p(y|ξK) for N times, where

N is the mini-batch size in the Monte Carlo estimation of F . In other words, we need

to solve the forward problem for N times at each optimization step. Therefore, it will

significantly enhance the efficiency of the Bayesian inversion if we can accelerate the solution

of the forward problem. In this paper, we adopt the reduced-order model-based and data-

driven strategy proposed in [24, 25], which is constructing a surrogate forward map by using

POD for model reduction and then training a parameter-to-coefficient map using a neural

network. We refer interested readers to [5, 37] for more details of the POD method and to

[25] for other types of constructions of the parameter-to-solution map. To make this paper

self-contained, we introduce the main idea of this strategy in this subsection.

Assume that we use the full-order model to solve the forward problem for the first M1

optimization steps. Then we have NM1 pairs of data {(ξjK , u(x, ξjK))}NM1
j=1 , where u(x, ξjK)) =

F(ξjK). With {u(x, ξjK)}NM1
j=1 the snapshot ensemble, the POD method can extract a set of

orthogonal basis functions {ψj(x)}mj=1 that optimally approximate the snapshot ensemble

8



in the L2 sense. To be concrete, {ψj(x)}mj=1 is the solution to the following constrained

optimization problem:

min
{ψj(x)}mj=1

NM1∑
j=1

‖u(·, ξjK)−
m∑
i=1

< u(·, ξjK), ψi(·) >D ψi(·)‖2L2(D), (26)

s.t. (ψi, ψj) = δij, i, j = 1, . . . ,m, (27)

where < ·, · >D is the L2 inner product on L2(D). To solve (26)–(27), the methods of

snapshots [34] computes the correlation matrix A corresponding to the snapshots with entries

Aij =< u(·, ξiK), u(·, ξjK) >D, i, j = 1, . . . , NM1.

Then A is semi-positive-definite. Let λ1 ≥ λ2 ≥ · · · ≥ λNM1 ≥ 0 be the eigenvalues of A in

the descending order and φ1, . . . ,φNM1 be the corresponding eigenvectors. Then the POD

basis can be constructed as

ψj =
1√
λj

NM1∑
i=1

(φj)iu(·, ξiK), (28)

where j = 1, . . . ,m and λj > 0. Moreover, the approximation error is

NM1∑
j=1

‖u(·, ξjK)−
m∑
i=1

< u(·, ξjK), ψi(·) >D ψi(·)‖2L2(D) =

NM1∑
j=m+1

λj. (29)

Since the solution space of the elliptic problem has an intrinsic low-dimensional structure

[4, 24, 25], the eigenvalues {λj}NM1
j=1 decay fast, and thus we can choose a small m, with

m� NM1, so that the m POD basis functions corresponding to the first m eigenvalues are

sufficient to construct an accurate reduced-order model. In our numerical experiments, we

pre-choose a small fixed number m when constructing the reduced-order model. Note that

{ξjK}
NM1
j=1 are sampled from the normalizing flow in the first M1 steps and the normalizing

flow starts to approximate the true posterior in the first M1 steps of the training. Hence the

data set {ξjK}
NM1
j=1 provides information of the true posterior. Therefore, we can expect that

the reduced-order model constructed from {(ξjK , u(x, ξjK))}NM1
j=1 is accurate enough for the

repetitive evaluation of the forward problem in the Bayesian inversion.

With the constructed basis functions {ψj(x)}mj=1, each snapshot u(x, ξjK) can be approx-

imated by

u(x, ξjK) ≈ ũ(x, ξjK) :=
m∑
i=1

ci(ξ
j
K)ψi(x), (30)

where

ci(ξ
j
K) =< u(·, ξjK), ψi(·) >D . (31)
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Let cj = (c1(ξ
j
K), . . . , cm(ξjK))T . Then, we can train a neural network ϕ : ξ 7→ c with input

data {ξjK}
NM1
j=1 and output data {cj}NM1

j=1 . Given any ξ ∈ Rr, let cϕ(ξ) = ϕ(ξ). Then the

reduced-order model-based surrogate forward map F̃ can be constructed as

F̃(ξ) =
m∑
j=1

(cϕ(ξ))jψj. (32)

Let G̃ be the composition of F̃ and the discretized observation operator. We can obtain the

solution at the observation points using G̃. In our numerical experiments, we choose the

neural network ϕ to be a fully connected neural network.

3.4. Algorithm

The procedure of our method can be summarized in the following Algorithm 1.

Algorithm 1 Reduced-order model-based variational inference with normalizing

flows

1: Input: obervations y, prior distribution p(ξ), mini-batch size N .

2: for i = 1 : M1 do

3: Draw {ξ̂i,n0 }Nn=1 ∼ q̂0.

4: Compute ξi,nK = fK ◦ · · · ◦ f1 ◦ f0(ξ̂i,n0 ) for n = 1, . . . N .

5: Compute the solution at observation points G(ξi,nK ) for n = 1, . . . N .

6: Compute F (y) in (14) using Monte Carlo estimation with {G(ξi,nK )}Nn=1, i.e.,

F (θ) ≈ 1

N

N∑
n=1

(
log q̂0(ξ̂

i,n
0 )−

r∑
j=1

log |(σ0)j| −
K∑
k=1

log

∣∣∣∣det
∂fk
∂ξk−1

(ξi,nk−1)

∣∣∣∣
− log p(y|ξi,nK )− log p(ξi,nK )

)

7: ∆θi ∝ −∇θF (y).

8: end for

9: Train a surrogate forward map F̃ and then obtain G̃ using {ξi,nK , n = 1, . . . , N}M1
i=1 and

{F(ξi,nK ), n = 1, . . . , N}M1
i=1 based on the reduced-order model and the parameter-to-

coefficient map described in Section 3.3.

10: for i = M1 + 1 : M1 +M2 do

11: Draw {ξ̂i,n0 }Nn=1 ∼ q0.

12: Compute ξi,nK = fK ◦ · · · ◦ f1 ◦ f0(ξ̂i,n0 ) for n = 1, . . . N .

13: Compute the solution at observation points G̃(ξi,nK ) for n = 1, . . . N .

14: Compute F (y) in (14) using Monte Carlo estimation with {G̃(ξi,nK )}Nn=1.

15: ∆θi ∝ −∇θF (y).

16: end for

17: Output: qθ := qK
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4. Numerical Experiments and Results

In this section, we show numerical examples to demonstrate the performance of the

proposed method for Bayesian elliptic inverse problems. We consider the following model

problem:

−∇ · (a(x, ω)u(x, ω)) = 0, x = (x1, x2) ∈ [0, 1]2, (33)

∂u

∂n

∣∣∣∣∣
x1=0

=
∂u

∂n

∣∣∣∣∣
x1=1

= 0, u|x2=0 = x1, u|x2=1 = 1− x1. (34)

A Gaussian prior with zero mean and covariance function

c(x,x′) = σ2
a exp

(
−‖x1 − x

′
1‖2

2`21
− ‖x2 − x

′
2‖2

2`22

)
(35)

is assumed on log a(x, ω), where we choose σa = 1. The logarithm of the diffusion coefficient

is approximated by a truncated Karhunen-Loève (KL) expansion

log(a(x, ω)) =
r∑
j=1

ξjλjvj(x), (36)

where ξ = (ξ1, . . . , ξr)
T are r i.i.d. Gaussian random variables and {λj, vj(x), j = 1, . . . , r}

are the eigenvalues and eigenfunctions of the covariance function (35). We set the true

values of ξ to be ξ∗ = (1, . . . , 1)T . We also impose a zero-mean Gaussian prior on ξ, i.e.,

p(ξ) ∼ N (0, σ2
ξIr), where we choose σξ = 0.5.

We want to obtain the posterior distributions of ξ. For the reference solution, we use

the Hamiltonian Monte Carlo (HMC) method [29] since it is asymptotically correct as the

number of samples increases. More details of the HMC method will be included in Appendix

A. For the HMC method, the number of leap-frog steps is 10 and the time step size is ∆t. We

run 5 sampling processes in parallel. In each sampling process, we draw 5000 samples, the

first 1000 of which are discarded. In total, we collect 20000 samples in the HMC method. For

the numerical solution, we use Algorithm 1 with the three types of normalizing flows, i.e., the

Planar flow, RealNVP, and IAF. The flow lengths are K = 32 for the Planar flow, K = 10

for the RealNVP, and K = 5 for the IAF, respectively. Recall that the first M1 training

steps in Algorithm 1 are implemented using the full-order model (FOM) for the computation

of F and that the subsequent M2 training steps in Algorithm 1 are implemented using the

reduced-order model (ROM) for the computation of F .

All the computations are performed using the CPU-version Pytorch on a laptop with a

CPU of 2.60 GHz and 16GB RAM.

4.1. Homogeneous case

We first consider the homogeneous case where `1 = `2 = 0.2 in the covariance function

(35), and we choose r = 20 in (36). The observation data are generated on a 31×31 uniform

11



grid with triangular finite element basis functions. Measurements are collected on a 11× 11

uniform grid. We list in Table 1 the values of some parameters of Algorithm 1.

Table 1: Values of some parameters in Algorithm 1 in the homogeneous case

parameters values

Number of POD basis functions m in (30) 20

mini-batch size N 1000

Number of training steps using FOM M1 10

Number of training steps using ROM M2 10000

learning rate 0.001

Example 4.1. We choose the noise level σ = 0.1 in observation data (7). In this case, the

time step size for HMC is chosen to be ∆t = 0.16. We show in Table 2 the average training

times per training step using FOM and ROM, respectively. We also show the losses and the

marginal posterior distributions of the normalizing flows in Figure 1. We can see from Table

2 that there is a great speed-up of the training when we use the surrogate forward map.

Moreover, the results in Figure 1 show that our algorithm works well with all three types of

the normalizing flows for this problem in the homogeneous case with σ = 0.1.

Table 2: Average training times (sec) per training step using FOM and ROM in the homogeneous case with

σ = 0.1

Planar RealNVP IAF

FOM 98.36 98.37 99.67

ROM 0.04100 0.02762 0.02465
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Figure 1: Losses and marginal posterior distributions of the normalizing flows in the homogeneous case with

σ = 0.1

Example 4.2. We then choose the noise level σ = 0.01 in the observation data (7). In this

case, the time step size for HMC is chosen to be ∆t = 0.016. We show in Table 3 the average

training times per training step using FOM and ROM, respectively. We also show the losses

and the marginal posterior distributions of the normalizing flows in Figure 2. We can still

observe a great acceleration of the training when the surrogate forward map is used. On the
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other hand, Figure 2 shows that our algorithm also works well with all three types of the

normalizing flows for this problem in the homogeneous case with σ = 0.01, but the results

using RealNVP and IAF are slightly better than that using the Planar flow (see e.g. the

posterior distributions of ξ8 and ξ15).

Note that in this case the noise level in the observation data σ = 0.01 is small and thus

the observation data in this case provide more information about ξ∗ than those in the case

where σ = 0.1. As a result, the posterior distributions of ξ are more localized around ξ∗. So

a more accurate forward map for ξ around ξ∗ is needed to obtain the posterior distributions

of ξ in this case. It can be seen from Figure 2 (a) that the losses of IAF and RealNVP are

smaller than that of the Planar flow in the first M1 steps. Therefore {ξi,nK , n = 1, . . . , N}M1
i=1,

which are the training data collected in the first M1 steps for the construction of the surrogate

forward map, are closer to ξ∗ in the training using IAF and RealNVP than in the training

using the Planar flow. Thus a more accurate surrogate forward map for ξ around ξ∗ is

constructed for IAF and RealNVP than for the Planar flow. As a consequence, the results

using IAF and RealNVP are slightly better than that using the Planar flow.

Table 3: Average training times (sec) per training step using FOM and ROM in the homogeneous case with

σ = 0.01

Planar RealNVP IAF

FOM 97.30 99.00 98.15

ROM 0.04137 0.02703 0.02471

14



100 101 102 103 104

training step

0

1000

2000

3000

4000 Planar
RealNVP
IAF

(a) Losses

ξ4

0

1

2

ξ8

0

1

2

ξ13

0

1

2

ξ15

0 1 2

0

1

2

0 1 2 0 1 2 0 1 2 0 1 2

ξ18

HMC Planar

(b) Marginal posterior distributions of Planar

ξ4

0

1

2

ξ8

0

1

2

ξ13

0

1

2

ξ15

0 1 2

0

1

2

0 1 2 0 1 2 0 1 2 0 1 2

ξ18

HMC RealNVP

(c) Marginal posterior distributions of RealNVP

ξ4

0

1

2

ξ8

0

1

2

ξ13

0

1

2

ξ15

0 1 2

0

1

2

0 1 2 0 1 2 0 1 2 0 1 2

ξ18

HMC IAF

(d) Marginal posterior distributions of IAF

Figure 2: Losses and marginal posterior distributions of the normalizing flows in the homogeneous case with

σ = 0.01

4.2. Heterogeneous case

We then consider the heterogeneous case where `1 = 0.1 and `2 = 0.4 in (35), and we

choose r = 30 in (36). The observation data are generated on a 61 × 61 uniform grid with

triangular finite element basis functions. Measurements are collected on a 21 × 21 uniform

grid. We list in Table 4 the values of some parameters in Algorithm 1.

15



Table 4: Values of some parameters in Algorithm 1 in the heterogeneous case

parameters values

Number of POD basis functions m in (30) 30

mini-batch size N 1000

Number of training steps using FOM M1 10

Number of training steps using ROM M2 10000

learning rate 0.001

Example 4.3. We choose the noise level σ = 0.1 in observation data (7). In this case, the

time step size for HMC is chosen to be ∆t = 0.128. We show in Table 5 the average training

times per training step using FOM and ROM, respectively. We also show the losses and

marginal posterior distributions of the normalizing flows in Figure 3. We can still see from

Table 5 that the training is greatly accelerated when the surrogate forward map is used.

Figure 3 also shows that our algorithm works well with all three types of the normalizing

flows for this problem in the heterogeneous case with σ = 0.1.

Table 5: Average training times (sec) per training step using FOM and ROM in the heterogeneous case with

σ = 0.1

Planar RealNVP IAF

FOM 349.8 350.6 350.7

ROM 0.1067 0.09256 0.08726
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Figure 3: Losses and marginal posterior distributions of the normalizing flows in the heterogeneous case with

σ = 0.1

Example 4.4. We then choose the noise level σ = 0.01 in the observation data (7). In this

case, the time step size for HMC is chosen to be ∆t = 0.016. We show in Table 6 the average

training times per step using FOM and ROM, respectively. We also show the losses and the

marginal posterior distributions of the normalizing flows in Figure 4. A great speed-up of

the training is still observed when using the surrogate forward map. Figure 4 also shows that
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our algorithm works well with all three types of the normalizing flows for this problem in the

heterogeneous case with σ = 0.01, and the results using RealNVP and IAF are still slightly

better than that using the Planar flow. The reason is similar to that in the homogeneous

case with σ = 0.01.

Table 6: Average training times (sec) per training step using FOM and ROM in the heterogeneous case with

σ = 0.01

Planar RealNVP IAF

FOM 349.5 348.2 351.3

ROM 0.1069 0.09165 0.08709
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Figure 4: Losses and marginal posterior distributions of the normalizing flows in the heterogeneous case with

σ = 0.01

In summary, the first M1 training steps of the training provide a natural collection of the

solution data that are used for constructing the reduced-order model. Since these solution

data are collected in the process of the training of the posterior distributions, some posterior

information of the unknowns is incorporated in these solution data, which makes the con-

structed reduced-order model accurate enough for the Bayesian inverse problem. Moreover,
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the training is greatly accelerated once the reduced-order model is used for the computa-

tion of the loss function. Our numerical results in the Examples 4.1–4.4 confirm the above

advantages of our algorithm.

5. Conclusion

In this paper, we propose a reduced-order model-based variational inference method

with normalizing flows for Bayesian elliptic inverse problems. We study the case where the

coefficient of the elliptic PDE is represented by a finite number of parameters and we obtain

the posterior distributions of these parameters in the framework of variational inference,

where the posterior distribution is constructed by normalizing flows.

In our method, the first few steps of training the normalizing flow provide a natural col-

lection of data of inputs and outputs of the forward elliptic problem. We can then construct

a fast and accurate reduced-order model using the POD method based on these data since

these data provide information of the true posterior and the underlying elliptic problem

has a low-dimensional structure, which allows us to achieve significant dimension reduction

in approximating the solution space. To further enhance efficiency, we train a parameter-

to-coefficient map using a neural network and combine it with the reduced-order model to

obtain a surrogate forward map. The surrogate forward map significantly reduces the com-

putational cost in computing the solutions of the elliptic PDEs with random coefficients and

thus accelerates the repetitive evaluations of the forward problem that are needed in the

training of the normalizing flow. We present numerical results to demonstrate the accuracy

and efficiency of the proposed method for solving elliptic Bayesian inverse problems. We

find that the the reduced-order model-based surrogate forward map can greatly reduce the

computational cost in the training process and the variational inference approach with a

normalization flow can accurately compute the posterior distributions of the parameters in

the random elliptic PDEs.
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Appendix A. The HMC method for Bayesian inversion

The HMC method is one of the state-of-the-art MCMC methods suitable for complex

high dimensional target distributions with strong dependencies between parameters, which

is the case for Bayesian inverse problems. Leveraging geometric information from the target

distribution, the HMC method [29] extends the parameter space with auxiliary momentum

variables ζ, and introduces a Hamiltonian dynamics system to propose samples of model

parameters within the Metropolis framework, greatly enhancing the exploration efficiency

in the parameter space compared to simple random walk proposals. More specifically, the

HMC method generates proposals jointly for ξ and ζ using the following system of differential

equations
dξ

dt
=
∂H

∂ζ
,

dζ

dt
= −∂H

∂ξ
. (A.1)

where the Hamiltonian function is defined as H(ξ, ζ) = U(ξ) +K(ζ).

Here in the Bayesian elliptic inverse problem, the potential energy U is defined as U(ξ) =

− log py|ξ(y|ξ) − log pξ(ξ), and the kinetic energy K(ζ) = 1
2
ζTM−1ζ corresponds to the

negative log-density of a zero-mean multivariate Gaussian distribution with covariance M

(also known as the mass matrix and is often set to be the identity). As the analytical solution

of the Hamiltonian dynamics (A.1) is usually unavailable, proposals in the HMC method are

often made by numerical simulation via the leap-frog scheme. Specifically, given the sample

(ξ(t), ζ(t)) at time t, we generate the sample at time t+ 1 by the following scheme

ζ(t+
1
2
) = ζ(t) − ∆t

2
∇ξU(ξ(t)),

ξ(t+1) = ξ(t) + ∆t∇ζK(ζ(t+
1
2
)),

ζ(t+1) = ζ(t+
1
2
) − ∆t

2
∇ξU(ξ(t+1)),

(A.2)

where ∆t is the step size. Starting from the current state (ξ, ζ), where ξ is the current

parameter and ζ is resampled from the multivariate Gaussian distribution N (0,M), the

proposed state (ξ∗, ζ∗) at the end of a simulated trajectory of length L is accepted with

probability

αHMC = min
(

1, exp[−H(ξ∗, ζ∗) +H(ξ, ζ)]
)
. (A.3)

From this point of view, the HMC method can be viewed as a Metropolis algorithm that

samples from the joint distribution

p(ξ, ζ) ∝ exp

(
−U(ξ)− 1

2
ζTM−1ζ

)
. (A.4)

The marginal distribution of ξ then follows the target posterior distribution since ξ and

ζ are separated (i.e., independent). Note that the Hamiltonian is preserved for analytical

solutions of (A.1), and the discretization error in (A.2) can be controlled by appropriate

choice of the step size ∆t. Therefore, the HMC method is often able to generate distant,
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uncorrelated proposals with a high acceptance probability, allowing for efficient exploration

of the parameter space.

For the Bayesian elliptic inverse problem, we need repetitive computation of solution

u(x, ξ) to the elliptic PDE in order to evaluate the potential energy

U(ξ) = − log py|ξ(y|ξ)− log pξ(ξ) (A.5)

in the Hamiltonian, and the gradient with respect to the parameter ∇ξU(ξ), so that we

can get HMC proposals as in (A.2). Note that the key to the evaluation of ∇ξU(ξ) is the

evaluation of derivatives ∂u(x,ξ)
∂ξj

= uξj(x, ξ), for j = 1, ..., r, where u(x, ξ) is the solution of

the elliptic PDE problem (1)–(2). Moreover, uξj(x, ξ) satisfies

−∇ ·
(
a(x, ξ)∇uξj(x, ξ)

)
= ∇ ·

(
aξj(x, ξ)∇u(x, ξ)

)
, x ∈ D, (A.6)

uξj(x, ξ) = 0, x ∈ ∂D, (A.7)

which is the same elliptic PDE as (1)–(2) with a right-hand side that depends on the solution

u(x, ξ) corresponding to the current sample of ξ. This could easily become prohibitively

expensive in practice since so many PDEs have to be solved for each sampling step.
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