HEIGHTS AND SINGULAR MODULI OF DRINFELD MODULES
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Abstract

Let g be an odd number and ¢ > 5, and F,; be a finite field of ¢ elements. We prove that
at most finitely many singular moduli of rank 2 F,[¢]-Drinfeld modules are algebraic units. In
particular, we develop some techniques of heights of Drinfeld modules to approach it.
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1 INTRODUCTION

A singular modulus is the j-invariant of a CM elliptic curve over the complex numbers. It is well-
known that a singular modulus is an algebraic integer. In 2015, Habegger proved the following
theorem [11]:

Theorem 1.1. At most finitely many singular moduli are algebraic units.

His proof employs many classical tools from Diophantine geometry. The main idea of his proof
is to bound the Weil height of a unitary singular modulus. In particular, assuming the singular
modulus is a unit, an upper bound of its Weil height could be obtained by applying an equidistri-
bution theorem from Clozel and Ullmo [8, Section 2.3]. This is the biggest difficulty of the entire
proof as the number of singular moduli with big Galois orbits is hard to control.

In this paper, we consider a function field analogue and prove the same result for Drinfeld F,[¢]-
modules.

Let C be a smooth, projective and geometrically irreducible curve over a finite field F, which
has q elements. Fix a closed point o0 € C' and let A be the ring of functions on C regular outside oo.



For instance, if C is a projective line, then A = F,[t] for some ¢ transcendental over F,. A Drinfeld
A-module over some scheme S over A is a pair (G, ¢, ¢) such that G, ¢ is a line bundle over S and
¢ is a ring homomorphism from A to End(G,,.) with some extra conditions (cf. Definition 2.1).
It is well-known that Drinfeld A-modules of rank 2 are the analogue of elliptic curves. Most of the
concepts and results of elliptic curves could be found for Drinfeld A-modules of rank 2. For example,
we can define singular modulus of Drinfeld F,[¢]-modules in the same way as elliptic curves. The
main theorem of this paper is:

Theorem 1.2. Let g be odd and ¢ > 5. There are at most finitely many singular moduli of rank
2 Drinfeld F,[t]-modules that are algebraic units.

The strategy of proving our main theorem follows that of Habbeger. As we pointed out earlier,
the key tool that Habegger uses to control the number of Galois orbits of quadratic imaginary
numbers close to the roots of the j-function is an equidistribution theorem from Clozel and Ullmo,
which enables him to obtain an upper bound for the Weil height of a unitary singular modulus.
However, this idea does not work well for our case since to the best of the author’s knowledge,
there are not any equidistribution results for Drinfeld A-modules like the one of Clozel and Ullmo.
Instead, our idea to address this issue is to study the arithmetic of quadratic imaginary points.
Though our method for the case of Drinfeld F,[t]-modules is somehow elementary, we can show
that there is at most one quadratic imaginary point in a certain small neighbourhood of a root of
the j-function (cf. Proposition 4.5). Thus, we could also obtain an upper bound for the Weil height
of unitary singular moduli of Drinfeld F,[¢]-modules.

On the other hand, Habegger also gives a lower bound for the Weil height of singular moduli
that grows faster than the upper bound he obtained. Many tools for the case of elliptic curves were
already known while the analogues for Drinfeld A-modules are not available. We follow Habegger’s
strategy and prove some analogous results for the case of Drinfeld modules, which will lead us to a
lower bound for the Weil height of singular moduli for Drinfeld F,[¢]-modules. That is:

Theorem 1.3. Let J be a singular modulus of rank 2 Drinfeld F,[¢]-module with corresponding
discriminant ¢ with conductor fo. There exists some computable constant C, with respect to ¢
such that
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In Drinfeld A-modules, the analogue of Faltings height is Taguchi height which was introduced
by Taguchi in [21] for the case of finite characteristic and in [22] for the case of generic characteristic.
In particular, we obtain an analogous result of Nakkajima and Taguchi for Drinfeld F,[t]-modules,
which gives an explicit description for the variation of the Taguchi heights of rank 2 Drinfeld F,[t]-
modules under isogeny, where one Drinfeld F,[t]-module of rank 2 has CM by arbitrary order and
the other one has CM by the maximal order. From this point on, we can obtain the variation of
the graded heights of the corresponding Drinfeld F[¢]-modules. As the graded height of Drinfeld
A-modules is the generalization of the Weil height of j-invariants for Drinfeld A-modules, we thus
obtain the above lower bound for the Weil height of singular moduli by applying a theorem of Wei
where he proves the Colmez conjecture for Drinfeld A-modules.

More recently Bilu, Habegger and Kiithne proved the stronger result that there are no singular
moduli that are algebraic units in the case of elliptic curves [7]. Their approach is the same as



Habegger’s while the method in [7] is effective. What makes Habegger’s proof ineffective is the
equidistribution theorem he applied. Compared to this work, a totally different approach using
Gross-Zagier, Gross-Kohnen-Zagier and their generalizations was given by Li [16]. Li could deduce
the same result of [7] as a special case of [16, Theorem 1.1].

This paper is organized as follows:

e In Section 2, we recall the concept of Drinfeld A-modules over arbitrary A-schemes and the
minimal models of Drinfeld A-modules. In particular, we study some properties of the minimal
models.

e In Section 3, three different types of heights are introduced and their relationships are dis-
cussed. In particular, we study the variation of heights of Drinfeld A-modules under isogenies.

e In Section 4, we study the number of quadratic imaginary points near the root of the j-function
of Drinfeld A-modules.

e In Section 5, we bound the Weil height of j-invariants and prove the main theorem.

e The appendix is written to give some results related to CM Drinfeld A-modules that could
not be found in some common literature. In particular, this section is devoted to the proof
of Proposition 3.14.
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2  MINIMAL MODELS OF DRINFELD A-MODULES

In this section, we review the definition of Drinfeld A-modules and the associated minimal models.
In particular, we prove an analogue of a result of Néron models of abelian varieties.

Let C be a smooth, projective and geometrically irreducible curve over IFy, where F, is a finite
field with ¢ elements. Let oo € C be a closed point. We set A := I'(C\{o0}, O¢) to be the ring of
functions regular outside oco. We fix k to be the field of fractions of A. Let M} denote the set of all
places of k. To each place v € M}, we associate an absolute value | - |, as follows:

||, = ¢~ 8@ v ek,

Let k4 denote the completion of k with respect to o0 and Cg, denote the completion of an algebraic
closure of k.

Throughout this paper, we denote by log the logarithm function of base ¢ and assume that ¢ is
odd.



Definition 2.1. Let S be a scheme over Spec(A) with structure morphism ¢ : S — Spec(A4). A
Drinfeld A-module over S is a pair E = (Gq ¢, ¢), where £ is an invertible sheaf over S and ¢ is a
homomorphism from A to End(G, ) such that

(1) 0o ¢ = i#, where i* : A — Og(S) and 0 is the natural homomorphism of taking the constant
term of End(G, ¢).;

(2) for any 0 # a € A, the morphism ¢(a) is finite;
(3) at any point of S the degree of ¢(a) is > 1 for some a € A.

Remark 2.2. (1) If ¢ € End(Gq c) then ¢ = >, _a,7,, where a,, € [(S,£P") and 7, is the
relative p-Frobenius. So D o ¢ lands in Og(95).

(2) We denote the subalgebra of F,-linear endomorphisms of End(G, ) by End,(Gs,z). The
elements of End, (G, ) are of the form }; a,7; for a, € I'(S, L"),

(3) For any ¢ = 3}~ any € End(G, ), the sum is locally finite [15, Remark 1.2.4].

(4) If S is connected, then there exists an integer r > 0 such that deg(¢(a)) = |a|l, [15, Proposition
2.2.2]. The integer r is called the rank of the Drinfeld module E.

(5) A homomorphism (resp. isogeny) from (Gg. 2, @) to (Ga m, ¥) is a (resp. finite) homomorphism
f: Gy — Gga such that fo¢(a) =1(a)o f for all a € A.

We abbreviate ¢(a) as ¢, for a € A. If S is the spectrum of a field, then the line bundle on S is
unique up to isomorphism in which case we specify a Drinfeld module over S only by ¢, which we
implicitly take a trivialization and regard such Drinfeld A-modules as a ring homomorphism ¢ such
that (1)-(3) of Definition 2.1 hold. In this paper, we assume for any Drinfeld module (G, 2, ¢), ¢
is g-linear and 7 := 7.

Definition 2.3. (Taguchi) Let S be an integral normal scheme of finite type over A with function
field F. Let ¢ be a Drinfeld A-module over F. A model # = (Gqr,p, f) of ¢ over S is an A-
module scheme E = (G, ¢, ¢) over S such that f : E x gSpec(F) — ¢ is an isomorphism of Drinfeld
modules over F'. A model .Z of ¢ over S is minimal if given any other model A" = (G, 2/, ¢, f/),
there exists a unique homomorphism .4/~ — .# which induces an isomorphism on the generic fibre
compatible with f and f’.

Proposition 2.4. [22, Proposition 2.2] Let S and F be as in Definition 2.3, and we further assume
S is a scheme on which the two concepts of Weil divisors and Cartier divisors coincide. Then there
exists a minimal model over S of ¢.

Remark 2.5. (1) If ¢ has a minimal model, then the minimal model is unique up to isomophism;
(2) By checking on fibres we see that every model of ¢ over S is smooth over S.

(3) By [22, Remark (4), p.299], each model is isomorphic to a standard one. To avoid confusion
with the term standard Drinfeld module, we call the standard model from [22, Remark (4),
p. 299] the normalized model. That is, a normalized model is a model whose generic fibre is
exactly the given Drinfeld module over F.



Let ¢ be a Drinfeld A-module of rank r over F' which is a field of finite degree over k, and let
R be the integral closure of A in F. For any a € A, we write:

bo = at0 4 - + A 77 8@,

rdeg(a)

Let .# = (G, ) be the normalized minimal model of ¢ over R. Then A, € £17¢

Remark 2.6. We can identify the invertible sheaves over Spec(R) with the fractional ideals of
R in F' by isomorphisms of R-modules. Without causing any ambiguity, we implicitly use this
identification in this paper and think of the invertible sheaves over Spec(R) as fractional ideals of
R in F. Thus, we do not distinguish invertible sheaves over Spec(R) and fractional ideals of R in
F'. Moreover, we do not distinguish prime ideals of R and the corresponding valuations on F'. That
is, if we take a prime ideal v € Spec(R), by v(I) we mean the valuation of the fractional ideal I at
.

Proposition 2.7. Let ¢, R, F' be as above.

1. If ¢ has everywhere good reduction on R, then the minimal model .# of ¢ over R is a Drinfeld
A-module over R.

2. If ¢ has everywhere good reduction on R, ¢’ is another Drinfeld module over F and f : ¢ — ¢/
is an isogeny of Drinfeld modules over F', then f is an isogeny of their normalized minimal
models.

Proof. To prove the first statement, we can assume that .# is normalized so that we are left to
show that ¢, is finite for each 0 # a € A. As ¢ has everywhere good reduction on R, we have
v(A,) = U(El_qrdeg(a)) for every place v on R [22, Example, p.301]. This means that A, corre-
sponds to an isomorphism in End(G, ). By [15, Proposition 1.2.6] we see ¢, is finite for any a € A.
So the first statement is true.

To prove the second statement, we first write:

¢ =ar® +~~~+A;Trdeg(a), Vae A; f=for'+ -+ fur™

=
For any a € A we have f¢, = ¢/ f. By comparing the coefficients we get

rdeg(a)

angn = A;fg (1)

Let A4 = (Gurr,¢") be the normalized minimal model of ¢’. Then f extends uniquely to a
morphism from .# to .#' whose generic fibre is f [22, Proposition 2.5]. We therefore denote the
two morphisms by f interchangeably without causing any ambiguity. Since ¢ has good reduction
everywhere, so does ¢’. The above argument again implies v(A?) = v(£1~"98(@)). From (1) we
see for every place v on R

o(fa) = 0(£) = g"0(L) = v(L'L™T),
Thus by the same argument in the proof of the first statement, f is finite, hence an isogeny. O

Remark 2.8. This proposition actually indicates an analogue of a well-known result that if an
abelian variety over a number field has good reduction everywhere then its Néron model is an
abelian scheme, and moreover, an isogeny between abelian varieties with everywhere good reductions
extends to a finite flat homomorphism between their Néron models. In our case, the flatness of f
is in consequence of the finiteness since a homomorphism between two line bundles is quasi-finite if
and only if it is flat [15, Proposition 1.2.5].



3 HEIGHTS

In this section, we study Taguchi heights, Weil heights and graded heights. In particular, we cal-
culate the variation of Taguchi heights and graded heights of rank 2 Drinfeld F,[¢]-modules under
an isogeny.

Taguchi heights

Let A, k, ks and Cy be as in Section 2. In [22], Taguchi introduced his so-called differential
heights of Drinfeld A-modules which are now called Taguchi heights. He defines this concept in
the case when the lattices associated to Drinfeld A-modules are free. Wei generalizes Taguchi’s
definition for arbitrary Drinfeld A-modules [24, Section 5]. We copy the following definition from
Wei. For more details, the reader could refer to [23, Section 4] or [24, Remark 2.10].

Definition 3.1. Let A be an A-lattice of rank r in Cy, and let Oy be the ring of co-adic integers
in ky. Choose an orthogonal kgy-basis {\;}7_; of ko ® A such that:

(1) jeAfor 1 <i<r;

(2) |a1 A1 + - + apAr|oo = max{|a;Ni|oo : 1 < i <7} for all ay,...,a, € koo
(3) ko ® A=A+ (OpA + -+ Op ).

The covolume D 4(A) of the A-lattice A is defined as follows:

G

o o l—gr . H;:1 |>‘i|oo B _ H::l |>\i|oo B
Da(d):=q <#(A N (OpAL + -+ + O@Ar))> B (#(A/(A)\l ot AAT))) ’

where gj, is the genus of the field k.

Let F/k be a finite field extension and R be the integral closure of A in F. For each infinite
place w of F lying over o0, we can embed F into Cy, via w. Let F,, be the completion of F' with
respect to w and we embd F,, — Co. A metrized line bundle (L, - |) on Spec(R) is a projective
R-module £ of rank 1, together with norms

H'Hw:‘c@)RFw*’R

for all infinite places w of F. The degree deg(L, | - ||) of a metrized line bundle (£, | -|) on R is

deg(L, | - ) :=log #(L/IR) = Y ewlog |l

w|oo

for some [ € L, and €, is the local degree at w. It is independent of the choice of [ by the product
formula. We note that by taking a norm we implicitly indicate an extension of the absolute value
| - |0 on k. In this above equation, the extension of absolute value is taken as the one remaining
unchanged on k while our normalization below is different. The reader should note only in this
definition we take the infinite absolute value on F' such that it remains the same on k.

Let ¢ be a Drinfeld A-module of rank r over F' and A4 = (G, z, ¢, f) the minimal model of
¢ over R, where E = (G, ¢, ) is an A-module scheme and £ is an invertible sheaf over Spec(R).



Since G, ¢ — Spec(R) is smooth of finite type and relative dimension 1, we see Qéa /R is locally
free of rank 1. Let e : Spec(R) — G, . be the unit section, then we set

WE/R = 6*(9(%;(1,5/}%).

Thus wg/p = L£~! which is the inverse of £ in Pic(R). Without causing any ambiguity, we treat
wg/r as a rank 1 projective R-module. Let w be an infinite place of F' and E,, be the Drinfeld
module over F,, by extension of scalars R — F,,. Let A, be the corresponding A-lattice of rank
r in Cy ([10, Theorem 4.6.9] or [15, Proposition 2.1.5]). If z is the coordinate function of G,/F,,
then dz is a generator of wg, /p, (= L7' ®g F,y). We put a metric | - [, on wg,/r, by

[dz| := Da(Ay).

Definition 3.2. Let ¢ be a Drinfeld A-module of rank r over F' and # = (Gqz, ¢, f) be its
minimal model over R, where E = (G, ¢, ¢) is an A-module scheme over R. The Taguchi height of
¢ over F'is

g8/ ) 1= o degomy |- ).

where the metric || - | is given as above.

It is obvious the Taguchi height of a Drinfeld A-module ¢ depends on the choice of the field F.
However, it will remain unchanged when taking a finite field extension of F' if ¢ has everywhere
stable reduction over F. Since every Drinfeld A-modules has everywhere potential stable reduction,
we can define the stable Taguchi height of ¢ to be

h%tag(qs) = hTag(¢/Fl)7

where F’ is a field of finite degree over F' on which ¢ has everywhere stable reduction. The following
isogeny lemma is standard.

Lemma 3.3. Let [ : ¢1 — ¢ be an isogeny of Drinfeld A-modules over F' with everywhere stable
reduction. Then we have:

1
h%ag(¢2) - hs’It‘ag((rbl) = ;1og|dcg(f)| - IOg #(R/Df)v

1
[F: k]
where Dy is the different of f (cf. [22, Section 5.4] or [19, Section 1.3]).

Remark 3.4. Let G be the kernel of the induced homomorphism of the minimal models of ¢; and
¢o. If f: ¢1 — ¢ is an isogeny of Drinfeld A-modules over F' with everywhere good reduction,
then by Proposition 2.7 we see f induces an isogeny between the minimal models. In this case,
according to [14, Equation 4.9.6], D is the absolute different of G [18, Apendice, Définition 8].

If ¢ is a Drinfeld A-module of rank 7 over F', we set:

. | v(ay) .
v(¢) == — min min<{ — 1 <i<rdeg(a);,
(9) acA\{0} i {ql -1 8l >}
where the a;’s are coefficients in ¢, = a7% + Zzzdleg(a) a; .



Lemma 3.5. Let f : ¢1 — ¢2 be an isogeny of Drinfeld A-modules over F' with everywhere good
reduction on R. If v € Spec(R) is a finite place, then

v(Dy) = v(fo) + v(d1) — v(d2),
where fo = 0(f) is the coefficient of the linear term.

Proof. Let .# and .#> be the normalized minimal models over R of ¢; and ¢o respectively. It
will suffice to prove for the local cases, i.e. we may assume that R is a discrete valuation ring.
Suppose v is the valuation on R. Let us first look at the case when the normalized minimal models
Ay = (Spec(R[X]), ¢1,1d) and A4 = (Spec(R[Y]), p2,1d). We use f to denote the isogeny between
Spec(R[X]) and Spec(R[Y]). We denote f# : R[Y] — R[X] the corresponding homomorphism of
rings. Thus we have

fEY) = foX + X9+ -+ f,X7 € R[X].

The kernel G of f is then given by Spec(R[X]/(f#(Y))). By [14, Equations 4.9.5, 4.9.6], the ab-
solute different of G is (fy) € R. Thus Dy = (fy) (Remark 3.4). By the construction of minimal
models [22, Proposition 2.2], we note that in this case v(¢1) = v(¢2) = 0. Hence our claim is true
in this case.

To prove the general cases, let G, ., be the line bundle of the normalized minimal model of ¢;
for i = 1,2. We assume £; = (a;) to be a fractional ideal for some a; € F. Thus we have

fy € (azai?).

In particular, fo = agal_lb for some b e R. Now apply the same argument above with the variables
X replaced by a;' X and Y replaced by a; 'Y, we see Dy = (b) = (foaiay'). Therefore we have

v(Dy) = v(fo) +v(a1) — v(az).
This proves our claim. O

Logarithmic heights

The absolute value ||4 on k naturally extends to a unique absolute value on C,,, which restricts
to the same values on ko, and we denote it by |-|. If F'/k is a finite field extension and w is a place
of F' lying over v € M}, we normalize the absolute value associated to w as

[ylw = Np, w, )]s, Vy e F.

Since k has degree of imperfection 1 (see the Remark 3.6 below), for any place v € M}, we have:

F@uky =[] Fu. (2)
wlv
Let Mg be the set of places w normalized as above. By (2) we have following two properties:
e Product formula: For every y € F, > 1, log|yl, = 0.

e Extension formula: [F: k] = . [Fuw : kv].

w\v[



Remark 3.6. If F is a field of characteristic p # 0, by degree of imperfection of F' we mean the
number n such that [F : FP] = p™. The isomorphism in (2) holds in a more general case of simple
extension. A theorem from Becker and MacLane [1, Theorem 6] tells us any finite extension L/F
can be generated by at most max{1l,n} elements.

Let k be the algebraic closure of k in Co, and we denote by P"(k) the n-dimensional projective

space over k. If x = (z0 : -+ : x,) € P*(k) and F is a finite extension of k containing these
coordinates, then the Weil height of x is:

h(x) := Z mjaxlog|a:j|w.

weMp

As in the number field case, this definition is independent of the choice of both the field F' and
the coordinates. The definition of Weil heights of points in affine space is naturally obtained by
embedding the affine space to a projective space. In particular, for z € k and F a finite extension
of k containing = we have

h(z) = Y. logmax{l,|z[w} = Y log" [z]u.

wEMF wEMF

The proof of following lemma is almost the same as that of [2, Proposition 1.6.6]. We give a proof
here for the convenience of the reader.

Lemma 3.7. Suppose A = F,[t]. Let o € kP of degree d and f(X) be the minimal polynomial of
a over A with leading coeflicient a4 and roots o, j = 1,...,d. Then

d
dh(a) = log|aa| + ) log™ |ay].

j=1

Proof. Let F/k be a finite Galois extension that contains a. Let G := Gal(F/k). The set {o(a)}seq
contains every conjugate of « exactly [F : k]/d times. We have

aa [[(X — 0(a)®F = £(X).

oeG

Apply Gauss’s lemma [2, Lemma 1.6.3], we get for any finite place w € Mg

_d__
[aal ] ] max{1, o (@)} 75 = 1. 5
oeG



Thus, we have

[P klhe) = ) 3 log™ (@),
weMp ceG
=3 Y logto(a)lw + Y] Y, log* |o(a)
w|oo o€G wtoo o€G
= 3 St (@) + Y Y log" o)l
o0eG wlw wioo oG
F k] F k]
ZZI +| ]|w_ 210g|ad|wa v (3)
wloo j=1 wfoo
= F K Z Zl g ag]w + [ Z log |ag|w, by product formula
w|oo j=1 woo
F:k
=[ y ] log|ad\+2 2 log low()l |
w|oo j=1
F k
= [ I log |aq| + Z Z log™ ||
w|oo
- <1og laq| + Z log* |aj|>
Now the lemma follows. O

Definition 3.8. Let ¢ be a Drinfeld A-module of rank r over F'. The global graded degree h¢(¢)
(resp. local graded degree hit(¢/F) at a place w over F) of ¢ is

() degw)uls))

2 deg(w (resp hé(p/F) = 7 H

weJV[p

Remark 3.9. (1) It is obvious the global graded height of ¢ does not depend on the choice of the
field F' and it is invariant under isomorphisms, while a local graded height of ¢ will not satisfy
such properties.

(2) The global graded height is a direct interpretation of “finite” Taguchi height (cf. [21, Definition
2.3]).

(3) Let ¢ be a Drinfeld F,[t]-module of rank = over F. Then it is characterised by:
¢ =10 + 1T+ + g7, gi € Flgr # 0.

Let m =lem{q—1,....,¢" — 1}. Weset J := (j; : --- : j,) € P""1(k) where

10



If r = 2, then j, := j1/jo is the j-invariant of the Drinfeld A-module ¢. It plays the same role
as the j-invariant of elliptic curves. The global graded height of ¢ is then given by:

_ 11/ =)
ha(®) = ), max log|gil,/" Y.

U)EMF
Thus the global graded height coincides the one in [5, Equation 6]. It is obvious that mhg(¢) =
h(J).

Proposition 3.10. Let ¢ be a Drinfeld A-module of rank r over F' such that F/k is a separable
extension. For any o € Gal(k*P/k), we denote by o(¢) the Drinfeld A-module obtained by acting
o on the coefficients of a Drinfeld A-module ¢. Then we have

ha(¢) = ha(o(9)).

Proof. By Remark 3.9 (1) we may assume F/k is a Galois extension so that for any o € Gal(F/k)
the Drinfeld A-module o(¢) is defined over F. For any places v € M}, and w € Mp such that w lies
over v, we see w o ¢ is again a place lying over v. Thus ¢ permutes the places lying over v. By a
result of algebraic number theory, w and w o o have the same degree. Therefore

= D, 2, deglwooywoo(p)= >, >, deg(w)w(9) = ho(e)-

’UGMk wEMF ’1161\4)C ’LUEMF
wlv wlv

O

Theorem 3.11. Let f : ¢1 — ¢2 be an isogeny of Drinfeld A-modules over F' with everywhere
good reduction on Spec(R). Then we have:

hg(d2) — hag(91) = 10% |deg(f)| = . log|folw + B (¢2) — hi¥ (1),

w|oo
weEMp

where f is the linear coefficient of f and for i = 1,2, hlil*(¢;) is the sum of the local graded heights
running over all finite places of F.

Proof. By applying Lemma 3.3 and Lemma 3.5 we obtain:
Wrag(62) — Wag(1) = ~ 1og |deg()| = g 2. des(w)(wlfo) +w(@) —w(d2).  (4)
wEMp

w{oo

By applying the product formula, we get:

2 deg(w 2 deg(w (5)

weMp weMp
wfoo w|oo

Under our normalization, we have

_ —deg(w)w(fo)
Now substitute (6) and (5) to (4) we obtain our formula. O

11



Heights of Drinfeld A-modules with complex multiplication

We first recall the CM theory for Drinfeld modules. Let ¢ be a Drinfeld A-module of rank r
over Co,. We say ¢ has complex multiplication if the ring of endomorphisms @ := End(¢) is a
projective A-module of rank r, and K := O ®4 k is called the CM field of ¢. In this case, K/k
is an imaginary extension of degree r. Here by an imaginary extension we mean there is only one
place of K extending the infinite place oo of k. As with the case of abelian varieties, there is also a
standard theory of complex multiplication for Drinfeld modules:

Theorem 3.12. (Main Theorem of Complex Multiplication) Let ¢ be a Drinfeld A-module of rank
r over Co, with complex multiplication. Let O be the ring of endomorphisms of ¢ and K be the
CM field. The following statements are true:

1. There is a finite extension Ho/K such that Gal(Hpo/K) = Pic(O) via the Artin map. The
field Hp is the ring class field of O. The prime oo of K splits completely in Hp, and O is

unramified outside C which is the conductor of O, i.e. the largest common ideal of O and
Ok.

2. ¢ has good reduction at every finite place of Hp.
3. If r = 2 and A = Fy[t], then the j-invariant j, of ¢ is integral over A and Ho = K (jy).

The reader could find a proof to the above statements in [12], as well as a complete treatment
of theory of complex multiplications for Drinfeld A-modules.

Suppose ¢ is a Drinfeld A-module of rank r with CM by an order O in a CM field K. Recall
that a proper ideal I of O is a fractional ideal of O in K such that

{zeK:z-ITcl}=0.

We denote by Pr(O) the monoid of proper fractional ideals of O quotient by principal ideals. Tt is
then obvious Pic(OQ) < Pr(0) and Pic(O) has a natural action on Pr(Q). Since ¢ has CM by O,
its associated lattice is isomorphic to a proper ideal I, of O.

Lemma 3.13. Let ¢; and ¢o be two Drinfeld A-modules of rank r with CM by the same order
O, and I (resp. I2) be a proper ideal of O such that the associated lattice of ¢1 (resp. ¢s) is
isomorphic to I; (resp. I). If I; and I3 are in the same orbit of Pr(O) under the action of Pic(O),
then hg(¢1) = hg(¢2). In particular, if Pr(Q) = Pic(O) then all the Drinfeld A-modules with CM
by O have the same graded height.

Proof. Without loss of generality, we assume ¢; has associated lattice I; where i = 1,2. We choose
an invertible ideal J € Pic(O) such that I = J~!-I5. Thus I; is homothetic to the lattice associated
to J # ¢ (cf. [12, Proposition 5.10 and Equation (5.18)]). On the other hand, J * ¢ is isomorphic
to a Drinfeld A-module ¢, obtained by a Galois action on the coefficients of ¢o [24, Theorem A.1
(2)]. We note that we can always choose suitable I; and I5 to make J integral so that our argument
makes sense. Now by Remark 3.9 (1) and Proposition 3.10 we complete our proof. O

From now on, we always fix A = F,[t]. A proof of the following result for elliptic curves is due
to Nakkajima and Taguchi [17]. We only make a few arguments here to adapt their formula to
Drinfeld A-modules.
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Proposition 3.14. Let ¢; and ¢ be two Drinfeld A-modules of rank 2 with CM by Ok and
O respectively, where K is an imaginary quadratic field and Ok (resp. O) is a maximal (resp.
arbitrary) order. We write O = A + fyOk for some fp € A. If F/K is a finite field extension such
that both ¢; and ¢, are defined over F' with everywhere good reduction then

Pa(62) — Wg(01) = 3 Tosfol — 5 37 des(v)es, (v),
v|fo

where v runs over all monic prime factors of fy and for [ := gde&(®)

e (v) = (1 — y(v))(1 — =20
! (= x@)1 =171

and x(v) =1 if v splits in K; x(v) = 0 if v ramifies in K; x(v) = —1 if v is inert in K.

Proof. First we note that the Taguchi height of rank 2 Drinfeld A-modules with CM does not de-
pend on the choice of lattice that analytically generates the corresponding Drinfeld A-module. So
we may assume that ¢; is given by Ok and ¢ is given by O, and an isogeny f : ¢1 — ¢2 given by
foOK c 0.

For the case when x(v) = 1, from Theorem A.2 we see ¢; has ordinary reduction at any place
lying over v. Applying the same argument from [17, Proposition 4] we get ey (v) = 0. The
reduction process in the argument for Drinfeld A-modules is given by Theorem A.4. For the case
of supersingular reduction, the argument for our case is exactly the same as [17, Section 2.2] with
only one modification that we take [ = gde8(v), O

Corollary 3.15. Assume the same conditions as in Proposition 3.14. The following formula is true

ho(62) — ha(n) = log |fol — 5 ) des(v)es, (v) + hE(0h) — hE(&),
vl fo

where ¢} is the Drinfeld A-module given by the lattice O and ¢4 is given by O, and hE (¢}) is the
sum of local graded heights of ¢} at infinite places for i = 1,2.

Proof. By Lemma 3.13 we can choose ¢; to be ¢}, i = 1,2. It is then a trivial consequence of

Theorem 3.11 and Proposition 3.14. U

4  ARITHMETIC ON QUADRATIC FUNDAMENTAL DOMAIN

We assume our Drinfeld A-module ¢ has rank 2 with CM for the rest this paper. Let  := Cg\ko
be the Drinfeld upper-half plane so that PGL3(A)\Q2 are the Cy-points of the coarse moduli space
of rank 2 Drinfeld A-modules over C,. As in the case of elliptic curves, there are bijections:

PGL,(A)\Q

{Lattices of rank 2 in Cy,/ =} === Cq.

Thus we obtain a natural j-function j : 2 — C,. The set of j-invariants of rank 2 Drinfeld A-
modules with CM is precisely the image of the j-function at imaginary quadratic arguments.
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Unfortunately, the Drinfeld upper-half plane doesn’t have a good geometry as the Poincaré
upper-half plane of complex numbers does. However, we can still define the quadratic fundamental
domain.

Definition 4.1. (cf. [4, Definition 3.4]) The quadratic fundamental domain is

D = {z € Q: z satisfies an equation of the form az* + bz + ¢ = 0,
where a,b,c € A, a is monic, |b| < |a|] < |c| and (7)
ged(a, b, ¢) = 1}

Any rank 2 lattice corresponding to a CM Drinfeld module is homothetic to A, for some z € D,
where A, denotes the lattice generated by z and 1, and D := D n K for some imaginary quadratic
extension K /k in Cy. Unlike the case of elliptic curves, such z is not necessarily unique.

Proposition 4.2. [3, Proposition 1.2.1] Let ¢ be odd and K be a quadratic extension of k. Then
K is a Kummer extension and can be written in the form K = k(+/9) for some square-free § € A.
Let m = deg(d). Then we have

1. The place oo ramifies in K if and only if m is odd;

2. The place o is inert in K if and only if m is even and the leading coefficient of ¢ is not a
square in [Fy;

3. The place oo splits in K if and only if m is even and the leading coefficient of § is a square in
F,.

Let § € A be a polynomial of odd degree or, even degree with the leading coefficient not being a
square in [Fy, and let V6 € k be a root of X2 —§. The field K := k(\/g) is an imaginary quadratic
field by Proposition 4.2. Let Ok be its maximal order. If O < Ok is a suborder of discriminant
d, then there exsits some f € A such that O = A + fOk and such f is called the conductor of
O. The discriminant § of O is called the fundamental discriminant of K and K = k(1/80). The
discriminant of O is § = 4f25,.

We denote by T the set of triples (a, b, c) with a,b, c € A such that b? — 4ac = ¢ and satisfying
(7). For (a,b,c) € Ty we set

—b++/6
—_— €

z(a,b,c) = K = k(V0).

The map (a,b,c) — j(z(a,b,c)) is a bijection from Ts to the Galois conjugates of j(z).

Lemma 4.3. If co ramifies in K, then there doesn’t exist any z € Dk such that z is in the open
ball of radius 1 of the point u for any u € F2\F,.

Proof. For some u € F2\F,, we assume there exists z € Dk such that |z — u| < 1. In this case, we
have |2| = 1 as |u| = 1. Besides, there exists a triple (a, b, ¢) satisfying (7) such that b* — 4ac = §
and z is root of the equation:

aX?+bX +¢c=0.
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We write K = k(1/dg), where dp € A is square-free. By Proposition 4.2 and since K is an imaginary
quadratic extension of k, we see dg is either of odd degree or of even degree with leading coefficients
not a square in F,. Also we have

laz® + bz| = |c].

Since |bz| = |b] < |a| = |az?|, we have |a| = |az? + bz| = |c|, which implies a and ¢ have the same
degree and b has degree less than a and c. Therefore § has even degree. Since § = 424y, we see
do has even degree, hence with leading coefficients not a square in F,. This is equivalant to saying
that oo is inert in K. O

Remark 4.4. If § has even degree with leading coeflicient not a square in F,, then Vo e F2 ((%))
Moreover, if there exists some z € Dg with discriminant ¢ such that |z —u| < 1, then § has leading
coefficient 4u?. This also suggests such z can be close only to those u € F,2\F, such that u? € F,.

Proposition 4.5. Let v € Fp\F,. The number of (a,b,c) € T5 with deg(d) > 0 such that

-1
|z(a,b,c) —u| < /|0]  is at most 1.

Proof. Since § has positive degree, we have 4/|0] = 1. Thus we have |z —u| < |(5|_1 < 1. By the
proof of Lemma 4.3, we have

8= aoet®* + - +ag, a; € F, for ¢ = 0, ...,2e and e is a positive integer.

Thus we have
VO = At 4+ Ao+ At Aot 2

with coefficients in Fg2. By identifying (V/6)? = 6 we obtain:

Qe = /\3;
A2e—1 = AeAe—l + )\e—l)\e;

Qe = AeAg + Ao 1 A1+ -+ A a1 + AoAe;

ag = AeA_e + )\e_1>\,(e,1) + e+ /\,(671))\6_1 + AeAe.
First notice A\, = 2u # 0 because |z —u| < 1. We first claim that (2u)~')\; € F, when i = 0,1, ..., e.

Our claim is trivial when ¢ = e. We proceed by induction and suppose it’s true for A, ..., A\,
when 0 < n < e. From the equations above we have

Fetn—1 = AeAn—1 4+ Ae—1An + -+ Ande1 + An—1Ae.
By multiplying (2u)_2 on both sides we obtain
(2u)72ac+n—l = (2U)71>\c(2u)71>\n_1 4+ (2u)71/\n—1(2u)71)\c.

Since all terms other than (2u)~'A.(2u)~*\,_1 are in F, and A, = 2u, we have (2u)~'\,_1 € F,.
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Now recall z = %a\/g with triple (a,b,¢) € Ts and § = b? — 4ac. Then |z — u| < |(5|71 is

equivalent to

deg(a) — deg(V6 — b — 2au) > deg(V/6) = deg(a).
So we have deg(v/d — b — 2au) < 0. Suppose
a=Y ait’, b= bit', with all a;,b; € F,.
i=0 i=0
Thus for all i = 0, ..., e we have \; —2a;u = b;. Since (2u)~'\; € F,, we see b; = 0 and a; = (2u) "\,

for all i = 0,...,e. Thus, a,b, ¢ are completely determined by |z(a, b, c) — u| < «/|6|71. O

5 BOUNDING h(J)

We prove our main theorem in this section.

Upper bound on h(J)

Let ¢ be a CM Drinfeld A-module of rank 2 over Cy, and J be its j-invariant of degree d over
A. Let O = End(¢) and K = O ®4 k. We denote J = Jy, ..., J; all the Galois conjugates of J and
z1, ..., 2q the corresponding points in Dg. Then for each i, we have z; satisfying the equation:

(Li)(2 +b;X +¢; =0, (ai, b, Ci) eTs
and b? — 4a;c; = & for some § € A that is the discriminant of O. In this subsection we prove:

Proposition 5.1. Assuming the notations above and J is an algebraic unit, we have

h(J) < (1 + qu_ q) (g +1)1log~/]8] + O4(1),

where O,4(1) is some constant depending only on g.

We first fix some notations. Let u be a point such that u € F2\[F, and

;= inf |z —
|24 := inf |2 —a,

|z|; := inf |z — .
z€k
Lemma 5.2. [3, Proposition 3.2.5] If z € Dk, then |z|; = |z|a = |z| = 1.

Lemma 5.3. For each z;, we have h(z;) < log+/|d|.
Proof. Let (a,b,c) be a triple in A satisfying (7) such that z; is a root of the equation:
aX?+bX +c=0

with discriminant §. Let Z; be the conjugate of z;. Then

1oL

|zi - zi| = PEl
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By Lemma 3.7, we get

This completes the proof. O

2h(z;) = log |a| + log|z;| + log |z;| = log

0
9] < log |9].
a

Lemma 5.4. [6, Lemma 2.6.9] Suppose z €  such that |z]4 > ¢~ *. Ifu € Fp2\F, and [z—u| < ¢!
then there exists ¢ € Cy, with |¢| < 1 such that

)

j(2) =t (1 = w2 (2 —w) (1 + (),

5(2)] = ¢z — u|.

Let h(J) be the Weil height of J. Therefore, by Lemma 3.7 we have

d d
dh(J) = Z log™ | Ji| = Z log™ [7(2:)].
i=1 i=1

If we assume J is an algebraic unit, then we have:

d
dh(J) = dh(J~") = ) log* [j(z;)| !
i1

Do dogt iz + > log™ [j(z:)| 7" +dOg(1).  (8)

uE]Fqg\]Fq uE]qu\]Fq

—1 —1
|zi—ul<+/]0] VIl <lzi—ul<q™!

The first equality comes from our assumption that J is a unit. To see the third equality holds,
we only need to show that

D1 logt (=)t < d)y, (9)

g '<lzi—y

where A, is a constant depending only on q. We need some arguments to see this. Recall that the
fundamental domain for Drinfeld upper half plane (cf. [9, Theorem 6.4, Proposition 6.6]) is given
by
F:={2zeCqy:|z| = |2 = 1}.

We note that z is a zero of the j-function if and only if z is conjugate to some u € F2\F, under
of Mébius action of GLy(A) [9, (3.9)]. By [9, Corollary 6.7], the zeros of j in F are exactly these
u € Fp2\F,. Moreover, F is closed. This is because if we take a sequence {z,} < F such that {z,}
converges to z € Q, then for sufficiently large n, |z, — z| < € and |z| = |2,,| = 1. Therefore

|zi = inf |z —z| = inf |z2— 2, + 2, — 2| = |2a]i = |2a]| = |2],
z€kop re€ko
which implies z € F. Now the inequality (9) can be deduced easily.

We also note that under our assumption, necessarily we have deg(d) > 0. Indeed, if deg(d) =0
then z; € F2\F,. In this case J = 0.
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Lemma 5.5. Assuming the notations above, we have
Y, logT i) < 2(g+ 1) log /16 — -
|zi—ul<y/J3]
Proof. Since z; € Dk, we have |z|4 > 1 by Lemma 5.2. Thus according to Lemma 5.4 we have
log |j(z:)| ™" = —¢ — (¢ + 1) log |2; — ul. (10)

Let L = k(z;,u), then [L : k] = 2 if z; € Fy(t)(u) = Fp2(t) and [L : k] = 4 otherwise. In the first
case, there is only one w € My, lying over o0 € M. Therefore we have |z; — u|, = |z; — u| under
our normalization. In the second case, there are two places in My, lying over co € M}, and we take
w to be one of the two. Thus we have |z; — u| = |2; — u|?. Either way, we find

log |z; — u| < QZzlog+ |zi — u|w = 2h(2z; —u).
w

Note the fact that h(a) = h(1/a) for any « € k and we have
log|z; —u| = —2h(z; —u) = =2(h(2;) + h(u)) = —2h(z;).
Now substitute this inequality to (10) and apply Lemma 5.3 we obtain
log |j(z:)| " < 2(g + 1) log /]6] — ¢-
Since the number of such z; is at most one by Proposition 4.5, we conclude. O
Now we are ready to prove Proposition 5.1.

Proof. We are left to estimate

S gt i)l

UGIF(IQ \]Fq

VI8l <lzi—ul<g ™t
From (10) and «/|5|_1 < |z; — u] we have

> gl < (—a @+ DlogVRl) YL

’lLG]Fq2\Fq ’IJ,E]F(IQ\IFLI

—1 —1
VI8l <lzi—ul<q! VI8l T <lzi—ul<q !

-1
If the number of u € F2\F, such that there exists some z; such that |z, —u| < 4/|d] ~ is N, then

we have
> <d-—N.
uG]FqQ\]Fq

—1
VI8l <lzi—ul<g!

Combining with Lemma 5.5, we get
dh(J) < 2N(q + 1)1og~/]6] + (d — N)(q + 1) log/]0| + dO,(1)
= (d+ N)(q + 1)log+/]8| + dO,(1).
Thus, we conclude by applying the fact N < ¢® — gq. O
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Lower bound on h(J)

Lemma 5.6. Let ¢° be a Drinfeld A-module of rank 2 with CM by the maximal order O in an
imaginary quadratic field K. We denote the genus of K by gx. Then we have:

s 0 1 1 9q — 3
)= (3 o) - Ty

Proof. By the equation of stable Taguchi height from [24, Section 5.2.1], we get

YK
2Ing’

s K 1
hag(0°) = % log gxc + 5 (log g0 — log gic) — 1+

where gi is the cardinality of the field of constants in K, ¢, is the cardinality of the residue field
of Ko, and 7k is the Euler-Kronecker constant of K [13, Equation (0.2)]. We remind the reader
that the definition of stable Taguchi height in [24, Equation 5.1] is a multiple of our stable Taguchi
height by the constant Ing. From [13, Equation 1.4.6] we get

VK o T9k 473
2lng ~ \Jq+1 4(¢—1)

Now using the fact qr, g0 € {q,¢*} we get the lower bound. O
Lemma 5.7. Let e, (v) be as in Proposition 3.14 and fy € A. Then we have
1 9
5 D deg(v)eg, (v) < 7 loglog|fol +Cq,
vl fo

where v runs through all the monic prime factors of fy, and C; is a computable constant depending
on q.

Proof. First we need a Mertens-type formula for function field, i.e. the following inequality:

Z log vl < logz + Cy,

|v]
lv|<z
where v’s are monic prime polynomials and C, is a constant regarding gq. To see this, we notice

that
n:=|logz| .

log [v| i
LT &

lv|<z i=1

where a; is the number of monic prime polynomials of degree i. By [20, Theorem 2.2] we obtain

n

i; é ca; = Z; (1 + O(q*i/z)) <logz+C,.
Recall that
es, (V) = (1—x()(1 - l*v(fo))
N (D) )

, where [ = |v].
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Note that |I] = 3 and x(v) € {—1,0,1}. Thus we get

ef,(v) <

Thus we have

©
0]
‘5
0%
Al
I
| ©

log | log |
Ydewen < N =1 X G N

v|fo v|fo v|fo v|fo
[v|<log | fol |v[>log | fol

We have proven
log
> 2 <logloglfol + €,
v|fo

[v|<log | fol

For the other term, we have

Z log! < 10g10g|fo|_ Z 1.

o log | fol olfo
o] >10g | fol jo|>log | fol

Using the product formula we see there are at most log |fy| monic prime factors of fy. As [20,
Theorem 2.2] is effective, all the constant terms are summed up to a computable constant Cy. [

Theorem 5.8. Let J be a singular modulus of rank 2 Drinfeld A-module with corresponding
discriminant ¢ with conductor fy;. There exists some computable constant C, with respect to ¢
such that

1 1 1 1 9
> (-1 (= - - - = —C,.
h(J) = (¢ —1) <2 NG 1) log 4/10] (2 + NG 1) log | fo 4loglog|fo\ Cq

Proof. We recall that for K = k(1/8y) with &y square free, the genus gx of K is given by (cf. [4,
Section 3])
{logaol_l if deg(dp) is odd,
9k =

2
% if deg(50) is even.

We input a result from [5, Equation (23)], which says that

T

(0 = ()] < 5 -~
where ¢ and ¢’ are two isogenous Drinfeld A-modules of rank r. Using Corollary 3.15, Lemma
5.6, Lemma 5.7 and the facts that ha(¢) = b, (¢) and h(J) = (¢* — 1)ha(¢) we complete our
proof. O

Remark 5.9. (1) We note that [5, Equation (23)] holds true only for reduced Drinfeld modules [5,
definition before Lemma 4.2]. However, Lemma 3.13 ensures in the rank 2 case we can always
choose the graded height of the Drinfeld module with associated lattice being the CM order,
hence reduced.
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(2) One can also take ¢ = 3 to make our statement independent of g, i.e.

1 9
W(T) = 42 = V/3)log \/[0] + 5 log | fo| — 7 loglog | fo| — Cs.
Now we are ready to prove our main theorem. We restate our theorem:

Theorem 5.10. Let g be odd and ¢ > 5. There are only finitely many singular moduli of rank 2
Drinfeld F,[¢]-modules that are algebraic units.

Proof. Let J be a singular modulus that is an algebraic unit. By Proposition 5.1 and Theorem 5.8
we have

h(J) < <1+ qt") (q+ 1) log /1] + Oy(1) (11)

and

hJ) > (2 — 1) (; - ﬁi 1) log /]3] (; + \/ai -

where ¢ is the discriminant of the endomorphism ring of a CM Drinfeld module whose j-invariant
is J. By easy calculation and taking d large enough if necessary, we find that for ¢ > 5

<1+ qu—q) (g +1)log~/]d] < (¢* — 1) (; - \/al+1)1ogﬁ.

A= <1+q2d_q>(q+1), Ao = (¢ — 1) (;— ! )

then the above inequality tells us that A2 — A1 > 0. Combining (11) and (12) we get

9
>log|f0|—4loglog|f0—0q, (12)

If we set

1 1
()\2—>\1)10g'\/|5| <Oq(1)+Cq— (2+ \/a+1

We note that (% + ﬁ) log | fo| — %log log |fo| = 0. Thus, for any such ¢ there exists a constant

9
) log | fo| + 1 log log | fol-

upper bound for log 4/|6]. Lemma 5.3 implies that this is also a constant upper bound for h(z;) for
z;. We note that z; has degree 2. Thus the Northcott theorem implies our theorem. O

APPENDIX A MORE ON COMPLEX MULTIPLICATION

We use notations as in section 2. This appendix is mainly devoted for the proof of Proposition
3.14. Actually the results stated here are already known for elliptic curves. The results below may
be already known to many experts. Because of a lack of literature for Drinfeld modules, the details
are worked out here for the convenience of the reader.

Let ¢1 and ¢2 both be rank r Drinfeld A-module over Cy, with complex multiplication. Let
F/k be a finite field extension such that both ¢; and ¢o are defined over F with everywhere good
reduction. Let R be the integral closure of A in F' and denote .#7, .#5 the minimal model over R
of ¢1, ¢o respectively. If f : .4y — .#5 is an isogeny, then it induces an isogeny of Drinfeld modules
after taking reduction at a prime v € Spec(R).
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Lemma A.1. Let ¢} and ¢3 be Drinfeld modules over k(v) obtained by taking reduction on .4
and .#> respectively at v, where k(v) is the residue field at v. Let Homp (1, ¢2) denote the set
of isogenies over F' between ¢; and ¢, similarly for Homy,) (47, #5). Then there is a canonical
injection of A-modules:

HOII]F(¢17 ¢2) - Homk(v) (d)lljv ¢12))

Proof. It is easy to check the map is a morphism of A-modules. By Proposition 2.7 and [22,
Proposition 2.5] we obtain

Homp(¢1, ¢2) = Homp (A, M>).

Let f € Hompg (.41, #>) be an isogeny. Then it is finite, which implies it has leading coefficient
that is non-zero after reduction at v. This proves the injectivity. O

From now on, we assume A = I [t] and ¢ is a rank 2 Drinfeld A-module over Co, with CM by
the maximal order O, where K < C, is a quadratic imaginary field over k. Further we assume ¢
is obtained through the A-lattice Ok and ¢ is defined over F'. Let P € A be a prime element.

Theorem A.2. For any place v € Spec(R), the reduction of ¢ at v is ordinary if and only if v N k
splits in Ok

Proof. Let P = v n k and 7 be the Frobenius morphism of ¢¥. From Lemma A.1 we see
K = Endp(¢1) ®a k — Endy(,(¢") ®a k := D.

By [10, Proposition 4.12.17] we deduce that ¢ is ordinary at v if and only if K = Endy(,)(¢") ®a4 k.
This is equivalent to saying that Ox = Endy,)(¢"). We can embed A into Endy,)(#”) via the
Drinfeld module ¢*. Let E := k(7). Then there is only one prime & of E containing 7 and & lies
over P [10, Theorem 4.12.8].

If ¢ has ordinary reduction at v, then E >~ K as & ¢ k. Again by [10, Proposition 4.12.17]
there are more than one primes of E' lying over P. Thus P splits in O. Next we show the other
way around. First, we write POg = PP’. Assume the reduction of ¢ at v is supersingular. So
it is a consequence that dimy D = r? = 4. Since ¢ has good reduction at v, ¢ has rank 2 over
k(v). Thus we have 2 = rank(¢?) =t - [E : k], where t is an integer such that t*> = dimg D. As
dimg D = 4 = dimg D [E : k], we have t = 2. Therefore, E = k. In particular, 7 € A. In this case,
it is clear that & = (P) < A. On the other hand, we can obtain a Drinfeld Og-module ¢ over F
by extending ¢ to Endp(¢). By taking reduction at v again, we obtain a Drinfeld Og-module 9"
over k(v). Tt is trivial 7 is the Frobenius element of ). As T € A < K, there is only one prime
ideal of K containing 7. However, 7 € POx = PP’. This is a contradiction. O

Corollary A.3. If PO = PP’ where & and &2’ are different prime ideals of Ok both lying
over P, then for any place v € Spec(R) over P the natural morphism Endp(¢) — Endy(,(¢") is
an isomorphism.

Reduction process

Let .# be the minimal model of ¢. We set #[P] := Ker(¢p : ¢ — ¢). We suppose moreover
that PO = 2%’ with & and &’ different. Then it is easy to see:

%[P](A) = /Z[P]((Coc) >~ OK/POK = :@/POK &) gZ’/POK >~ OK/QZ@OK/:@/.

There is a natural morphism 6 : .#Z[P](A) — ¢°[P](F,) by taking reduction at v € Spec(R) such
that v lies over P.
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Theorem A.4. If we assume further that 7 € & < Ok = Endp(¢) = Endg(A#) is the lifting of
the Frobenius element 7, then 6 is a surjection, and the kernel of  is isomorphic to Ok /2.

Proof. Since POy = 2%’ by Theorem A.2 ¢"[P](F,) is non-trivial and finite. We embed A into
Endy(.,)(¢") = Ok via ¢”. As an Og-module, we have ¢"[P](IF,) = Ox/I for some proper ideal
I © Ok. Therefore, we have ¢% - Og /I = 0, which implies P € I. Tt is clear

#{0"[P](Fq)} < #{4[P](Cx)}-

So either I = & or I = . Since 7 acts on ¢*[P](F,) non-trivially, we see I = 9?'. Therefore,
the kernel of 8 is #'/POk that is isomorphic to Ok /Z. O

Remark A.5. (1) If we identify O = Endp(¢) = Endg(.#), then & is the collection of isogenies
whose reduction has linear coefficient 0.

(2) Another approach to Theorem A.4 using canonical subgroup of Drinfeld modules has be shown
to the author by Urs Hartl. The two approaches essentially have the same core.
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