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Abstract

Let q be an odd number and q ą 5, and Fq be a finite field of q elements. We prove that
at most finitely many singular moduli of rank 2 Fqrts-Drinfeld modules are algebraic units. In
particular, we develop some techniques of heights of Drinfeld modules to approach it.

Contents

1 Introduction 1

2 Minimal models of Drinfeld A-modules 3

3 Heights 6

4 Arithmetic on quadratic fundamental domain 13

5 Bounding hpJq 16

A More on Complex Multiplication 21

1 Introduction

A singular modulus is the j-invariant of a CM elliptic curve over the complex numbers. It is well-
known that a singular modulus is an algebraic integer. In 2015, Habegger proved the following
theorem [11]:

Theorem 1.1. At most finitely many singular moduli are algebraic units.

His proof employs many classical tools from Diophantine geometry. The main idea of his proof
is to bound the Weil height of a unitary singular modulus. In particular, assuming the singular
modulus is a unit, an upper bound of its Weil height could be obtained by applying an equidistri-
bution theorem from Clozel and Ullmo [8, Section 2.3]. This is the biggest difficulty of the entire
proof as the number of singular moduli with big Galois orbits is hard to control.

In this paper, we consider a function field analogue and prove the same result for Drinfeld Fqrts-
modules.

Let C be a smooth, projective and geometrically irreducible curve over a finite field Fq which
has q elements. Fix a closed point 8 P C and let A be the ring of functions on C regular outside 8.
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For instance, if C is a projective line, then A “ Fqrts for some t transcendental over Fq. A Drinfeld
A-module over some scheme S over A is a pair pGa,L, ϕq such that Ga,L is a line bundle over S and
ϕ is a ring homomorphism from A to EndpGa,Lq with some extra conditions (cf. Definition 2.1).
It is well-known that Drinfeld A-modules of rank 2 are the analogue of elliptic curves. Most of the
concepts and results of elliptic curves could be found for Drinfeld A-modules of rank 2. For example,
we can define singular modulus of Drinfeld Fqrts-modules in the same way as elliptic curves. The
main theorem of this paper is:

Theorem 1.2. Let q be odd and q ą 5. There are at most finitely many singular moduli of rank
2 Drinfeld Fqrts-modules that are algebraic units.

The strategy of proving our main theorem follows that of Habbeger. As we pointed out earlier,
the key tool that Habegger uses to control the number of Galois orbits of quadratic imaginary
numbers close to the roots of the j-function is an equidistribution theorem from Clozel and Ullmo,
which enables him to obtain an upper bound for the Weil height of a unitary singular modulus.
However, this idea does not work well for our case since to the best of the author’s knowledge,
there are not any equidistribution results for Drinfeld A-modules like the one of Clozel and Ullmo.
Instead, our idea to address this issue is to study the arithmetic of quadratic imaginary points.
Though our method for the case of Drinfeld Fqrts-modules is somehow elementary, we can show
that there is at most one quadratic imaginary point in a certain small neighbourhood of a root of
the j-function (cf. Proposition 4.5). Thus, we could also obtain an upper bound for the Weil height
of unitary singular moduli of Drinfeld Fqrts-modules.

On the other hand, Habegger also gives a lower bound for the Weil height of singular moduli
that grows faster than the upper bound he obtained. Many tools for the case of elliptic curves were
already known while the analogues for Drinfeld A-modules are not available. We follow Habegger’s
strategy and prove some analogous results for the case of Drinfeld modules, which will lead us to a
lower bound for the Weil height of singular moduli for Drinfeld Fqrts-modules. That is:

Theorem 1.3. Let J be a singular modulus of rank 2 Drinfeld Fqrts-module with corresponding
discriminant δ with conductor f0. There exists some computable constant Cq with respect to q
such that

hpJq ě pq2 ´ 1q

ˆ

1

2
´

1
?
q ` 1

˙

log
a

|δ| `

ˆ

1

2
`

1
?
q ` 1

˙

log |f0| ´
9

4
log log |f0| ´ Cq.

In Drinfeld A-modules, the analogue of Faltings height is Taguchi height which was introduced
by Taguchi in [21] for the case of finite characteristic and in [22] for the case of generic characteristic.
In particular, we obtain an analogous result of Nakkajima and Taguchi for Drinfeld Fqrts-modules,
which gives an explicit description for the variation of the Taguchi heights of rank 2 Drinfeld Fqrts-
modules under isogeny, where one Drinfeld Fqrts-module of rank 2 has CM by arbitrary order and
the other one has CM by the maximal order. From this point on, we can obtain the variation of
the graded heights of the corresponding Drinfeld Fqrts-modules. As the graded height of Drinfeld
A-modules is the generalization of the Weil height of j-invariants for Drinfeld A-modules, we thus
obtain the above lower bound for the Weil height of singular moduli by applying a theorem of Wei
where he proves the Colmez conjecture for Drinfeld A-modules.

More recently Bilu, Habegger and Kühne proved the stronger result that there are no singular
moduli that are algebraic units in the case of elliptic curves [7]. Their approach is the same as
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Habegger’s while the method in [7] is effective. What makes Habegger’s proof ineffective is the
equidistribution theorem he applied. Compared to this work, a totally different approach using
Gross-Zagier, Gross-Kohnen-Zagier and their generalizations was given by Li [16]. Li could deduce
the same result of [7] as a special case of [16, Theorem 1.1].

This paper is organized as follows:

• In Section 2, we recall the concept of Drinfeld A-modules over arbitrary A-schemes and the
minimal models of Drinfeld A-modules. In particular, we study some properties of the minimal
models.

• In Section 3, three different types of heights are introduced and their relationships are dis-
cussed. In particular, we study the variation of heights of Drinfeld A-modules under isogenies.

• In Section 4, we study the number of quadratic imaginary points near the root of the j-function
of Drinfeld A-modules.

• In Section 5, we bound the Weil height of j-invariants and prove the main theorem.

• The appendix is written to give some results related to CM Drinfeld A-modules that could
not be found in some common literature. In particular, this section is devoted to the proof
of Proposition 3.14.

Acknowledgements The author is very grateful to his advisor Florian Breuer for advising him
such an interesting project and for being supportive in all aspects throughout his PhD study. He
would also thank Marc Hindry and Urs Hartl for inviting him to visit Paris and Münster respectively
where the author had delightful and helpful discussions with them and learnt mathematics from
them. He also appreciate Fabien Pazuki and Fu-Tsun Wei for helpful discussions. Many thanks go
to Philipp Habegger for his suggestion of working on Lemma 5.7.

2 Minimal models of Drinfeld A-modules

In this section, we review the definition of Drinfeld A-modules and the associated minimal models.
In particular, we prove an analogue of a result of Néron models of abelian varieties.

Let C be a smooth, projective and geometrically irreducible curve over Fq, where Fq is a finite
field with q elements. Let 8 P C be a closed point. We set A :“ ΓpCzt8u,OCq to be the ring of
functions regular outside 8. We fix k to be the field of fractions of A. Let Mk denote the set of all
places of k. To each place v P Mk we associate an absolute value | ¨ |v as follows:

|x|v “ q´ degpvqvpxq, @x P k.

Let k8 denote the completion of k with respect to 8 and C8 denote the completion of an algebraic
closure of k8.

Throughout this paper, we denote by log the logarithm function of base q and assume that q is
odd.
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Definition 2.1. Let S be a scheme over SpecpAq with structure morphism i : S Ñ SpecpAq. A
Drinfeld A-module over S is a pair E “ pGa,L, ϕq, where L is an invertible sheaf over S and ϕ is a
homomorphism from A to EndpGa,Lq such that

(1) B ˝ ϕ “ i#, where i# : A Ñ OSpSq and B is the natural homomorphism of taking the constant
term of EndpGa,Lq.;

(2) for any 0 ‰ a P A, the morphism ϕpaq is finite;

(3) at any point of S the degree of ϕpaq is ą 1 for some a P A.

Remark 2.2. (1) If φ P EndpGa,Lq then φ “
ř

ně0 anτ
n
p , where an P ΓpS,L1´pn

q and τp is the
relative p-Frobenius. So D ˝ ϕ lands in OSpSq.

(2) We denote the subalgebra of Fq-linear endomorphisms of EndpGa,Lq by EndqpGa,Lq. The
elements of EndqpGa,Lq are of the form

ř

n anτ
n
q for an P ΓpS,L1´qnq.

(3) For any φ “
ř

ně0 anτ
n
p P EndpGa,Lq, the sum is locally finite [15, Remark 1.2.4].

(4) If S is connected, then there exists an integer r ą 0 such that degpϕpaqq “ |a|r8 [15, Proposition
2.2.2]. The integer r is called the rank of the Drinfeld module E.

(5) A homomorphism (resp. isogeny) from pGa,L, ϕq to pGa,M, ψq is a (resp. finite) homomorphism
f : Ga,L Ñ Ga,M such that f ˝ ϕpaq “ ψpaq ˝ f for all a P A.

We abbreviate ϕpaq as ϕa for a P A. If S is the spectrum of a field, then the line bundle on S is
unique up to isomorphism in which case we specify a Drinfeld module over S only by ϕ, which we
implicitly take a trivialization and regard such Drinfeld A-modules as a ring homomorphism ϕ such
that (1)-(3) of Definition 2.1 hold. In this paper, we assume for any Drinfeld module pGa,L, ϕq, ϕ
is q-linear and τ :“ τq.

Definition 2.3. (Taguchi) Let S be an integral normal scheme of finite type over A with function
field F . Let ϕ be a Drinfeld A-module over F . A model M “ pGa,L, φ, fq of ϕ over S is an A-
module scheme E “ pGa,L, φq over S such that f : EˆS SpecpF q Ñ ϕ is an isomorphism of Drinfeld
modules over F . A model M of ϕ over S is minimal if given any other model N “ pGa,L1 , φ1, f 1q,
there exists a unique homomorphism N Ñ M which induces an isomorphism on the generic fibre
compatible with f and f 1.

Proposition 2.4. [22, Proposition 2.2] Let S and F be as in Definition 2.3, and we further assume
S is a scheme on which the two concepts of Weil divisors and Cartier divisors coincide. Then there
exists a minimal model over S of ϕ.

Remark 2.5. (1) If ϕ has a minimal model, then the minimal model is unique up to isomophism;

(2) By checking on fibres we see that every model of ϕ over S is smooth over S.

(3) By [22, Remark (4), p.299], each model is isomorphic to a standard one. To avoid confusion
with the term standard Drinfeld module, we call the standard model from [22, Remark (4),
p. 299] the normalized model. That is, a normalized model is a model whose generic fibre is
exactly the given Drinfeld module over F .
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Let ϕ be a Drinfeld A-module of rank r over F which is a field of finite degree over k, and let
R be the integral closure of A in F . For any a P A, we write:

ϕa “ aτ0 ` ¨ ¨ ¨ ` ∆aτ
r degpaq.

Let M “ pGa,L, φq be the normalized minimal model of ϕ over R. Then ∆a P L1´qr degpaq

.

Remark 2.6. We can identify the invertible sheaves over SpecpRq with the fractional ideals of
R in F by isomorphisms of R-modules. Without causing any ambiguity, we implicitly use this
identification in this paper and think of the invertible sheaves over SpecpRq as fractional ideals of
R in F . Thus, we do not distinguish invertible sheaves over SpecpRq and fractional ideals of R in
F . Moreover, we do not distinguish prime ideals of R and the corresponding valuations on F . That
is, if we take a prime ideal v P SpecpRq, by vpIq we mean the valuation of the fractional ideal I at
v.

Proposition 2.7. Let ϕ,R, F be as above.

1. If ϕ has everywhere good reduction on R, then the minimal model M of ϕ over R is a Drinfeld
A-module over R.

2. If ϕ has everywhere good reduction on R, ϕ1 is another Drinfeld module over F and f : ϕ Ñ ϕ1

is an isogeny of Drinfeld modules over F , then f is an isogeny of their normalized minimal
models.

Proof. To prove the first statement, we can assume that M is normalized so that we are left to
show that ϕa is finite for each 0 ‰ a P A. As ϕ has everywhere good reduction on R, we have

vp∆aq “ vpL1´qr degpaq

q for every place v on R [22, Example, p.301]. This means that ∆a corre-
sponds to an isomorphism in EndpGa,Lq. By [15, Proposition 1.2.6] we see ϕa is finite for any a P A.
So the first statement is true.

To prove the second statement, we first write:

ϕ1
a “ aτ0 ` ¨ ¨ ¨ ` ∆1

aτ
r degpaq, @a P A; f “ f0τ

0 ` ¨ ¨ ¨ ` fnτ
n.

For any a P A we have fϕa “ ϕ1
af . By comparing the coefficients we get

fn∆
qn

a “ ∆1
af

qr degpaq

n . (1)

Let M 1 “ pGa,L1 , φ1q be the normalized minimal model of ϕ1. Then f extends uniquely to a
morphism from M to M 1 whose generic fibre is f [22, Proposition 2.5]. We therefore denote the
two morphisms by f interchangeably without causing any ambiguity. Since ϕ has good reduction
everywhere, so does ϕ1. The above argument again implies vp∆1

aq “ vpL11´r degpaqq. From (1) we
see for every place v on R

vpfnq “ vpL1q ´ qnvpLq “ vpL1L´qnq.

Thus by the same argument in the proof of the first statement, f is finite, hence an isogeny.

Remark 2.8. This proposition actually indicates an analogue of a well-known result that if an
abelian variety over a number field has good reduction everywhere then its Néron model is an
abelian scheme, and moreover, an isogeny between abelian varieties with everywhere good reductions
extends to a finite flat homomorphism between their Néron models. In our case, the flatness of f
is in consequence of the finiteness since a homomorphism between two line bundles is quasi-finite if
and only if it is flat [15, Proposition 1.2.5].
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3 Heights

In this section, we study Taguchi heights, Weil heights and graded heights. In particular, we cal-
culate the variation of Taguchi heights and graded heights of rank 2 Drinfeld Fqrts-modules under
an isogeny.

Taguchi heights

Let A, k, k8 and C8 be as in Section 2. In [22], Taguchi introduced his so-called differential
heights of Drinfeld A-modules which are now called Taguchi heights. He defines this concept in
the case when the lattices associated to Drinfeld A-modules are free. Wei generalizes Taguchi’s
definition for arbitrary Drinfeld A-modules [24, Section 5]. We copy the following definition from
Wei. For more details, the reader could refer to [23, Section 4] or [24, Remark 2.10].

Definition 3.1. Let Λ be an A-lattice of rank r in C8, and let O8 be the ring of 8-adic integers
in k8. Choose an orthogonal k8-basis tλiu

r
i“1 of k8 b Λ such that:

(1) λi P Λ for 1 ď i ď r;

(2) |a1λ1 ` ¨ ¨ ¨ ` arλr|8 “ maxt|aiλi|8 : 1 ď i ď ru for all a1, ..., ar P k8;

(3) k8 b Λ “ Λ ` pO8λ1 ` ¨ ¨ ¨ ` O8λrq.

The covolume DApΛq of the A-lattice Λ is defined as follows:

DApΛq :“ q1´gk ¨

ˆ śr
i“1 |λi|8

# pΛ X pO8λ1 ` ¨ ¨ ¨ ` O8λrqq

˙

1
r

“

ˆ śr
i“1 |λi|8

#pΛ{pAλ1 ` ¨ ¨ ¨ `Aλrqq

˙

1
r

,

where gk is the genus of the field k.

Let F {k be a finite field extension and R be the integral closure of A in F . For each infinite
place w of F lying over 8, we can embed F into C8 via w. Let Fw be the completion of F with
respect to w and we embd Fw ãÝÑ C8. A metrized line bundle pL, } ¨ }q on SpecpRq is a projective
R-module L of rank 1, together with norms

} ¨ }w : L bR Fw Ñ R

for all infinite places w of F . The degree degpL, } ¨ }q of a metrized line bundle pL, } ¨ }q on R is

degpL, } ¨ }q :“ log#pL{lRq ´
ÿ

w|8

ϵw log }l}w

for some l P L, and ϵw is the local degree at w. It is independent of the choice of l by the product
formula. We note that by taking a norm we implicitly indicate an extension of the absolute value
| ¨ |8 on k. In this above equation, the extension of absolute value is taken as the one remaining
unchanged on k while our normalization below is different. The reader should note only in this
definition we take the infinite absolute value on F such that it remains the same on k.

Let ϕ be a Drinfeld A-module of rank r over F and M “ pGa,L, φ, fq the minimal model of
ϕ over R, where E “ pGa,L, φq is an A-module scheme and L is an invertible sheaf over SpecpRq.
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Since Ga,L Ñ SpecpRq is smooth of finite type and relative dimension 1, we see Ω1
Ga,L{R is locally

free of rank 1. Let e : SpecpRq Ñ Ga,L be the unit section, then we set

ωE{R :“ e˚pΩ1
Ga,L{Rq.

Thus ωE{R – L´1 which is the inverse of L in PicpRq. Without causing any ambiguity, we treat
ωE{R as a rank 1 projective R-module. Let w be an infinite place of F and Ew be the Drinfeld
module over Fw by extension of scalars R Ñ Fw. Let Λw be the corresponding A-lattice of rank
r in C8 ([10, Theorem 4.6.9] or [15, Proposition 2.1.5]). If x is the coordinate function of Ga{Fw,
then dx is a generator of ωEw{Fw

p– L´1 bR Fwq. We put a metric } ¨ }w on ωEw{Fw
by

}dx} :“ DApΛwq.

Definition 3.2. Let ϕ be a Drinfeld A-module of rank r over F and M “ pGa,L, φ, fq be its
minimal model over R, where E “ pGa,L, φq is an A-module scheme over R. The Taguchi height of
ϕ over F is

hTagpϕ{F q :“
1

rF : ks
degpωE{R, } ¨ }q,

where the metric } ¨ } is given as above.

It is obvious the Taguchi height of a Drinfeld A-module ϕ depends on the choice of the field F .
However, it will remain unchanged when taking a finite field extension of F if ϕ has everywhere
stable reduction over F . Since every Drinfeld A-modules has everywhere potential stable reduction,
we can define the stable Taguchi height of ϕ to be

hstTagpϕq :“ hTagpϕ{F 1q,

where F 1 is a field of finite degree over F on which ϕ has everywhere stable reduction. The following
isogeny lemma is standard.

Lemma 3.3. Let f : ϕ1 Ñ ϕ2 be an isogeny of Drinfeld A-modules over F with everywhere stable
reduction. Then we have:

hstTagpϕ2q ´ hstTagpϕ1q “
1

r
log |degpfq| ´

1

rF : ks
log#pR{Df q,

where Df is the different of f (cf. [22, Section 5.4] or [19, Section 1.3]).

Remark 3.4. Let G be the kernel of the induced homomorphism of the minimal models of ϕ1 and
ϕ2. If f : ϕ1 Ñ ϕ2 is an isogeny of Drinfeld A-modules over F with everywhere good reduction,
then by Proposition 2.7 we see f induces an isogeny between the minimal models. In this case,
according to [14, Equation 4.9.6], Df is the absolute different of G [18, Apendice, Définition 8].

If ϕ is a Drinfeld A-module of rank r over F , we set:

vpϕq :“ ´ min
aPAzt0u

min
i

"

vpaiq

qi ´ 1
: 1 ď i ď r degpaq

*

,

where the ai’s are coefficients in ϕa “ aτ0 `
řr degpaq

i“1 aiτ
i.
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Lemma 3.5. Let f : ϕ1 Ñ ϕ2 be an isogeny of Drinfeld A-modules over F with everywhere good
reduction on R. If v P SpecpRq is a finite place, then

vpDf q “ vpf0q ` vpϕ1q ´ vpϕ2q,

where f0 “ Bpfq is the coefficient of the linear term.

Proof. Let M1 and M2 be the normalized minimal models over R of ϕ1 and ϕ2 respectively. It
will suffice to prove for the local cases, i.e. we may assume that R is a discrete valuation ring.
Suppose v is the valuation on R. Let us first look at the case when the normalized minimal models
M1 “ pSpecpRrXsq, φ1, Idq and M2 “ pSpecpRrY sq, φ2, Idq. We use f to denote the isogeny between
SpecpRrXsq and SpecpRrY sq. We denote f# : RrY s Ñ RrXs the corresponding homomorphism of
rings. Thus we have

f#pY q “ f0X ` f1X
q ` ¨ ¨ ¨ ` fnX

qn P RrXs.

The kernel G of f is then given by SpecpRrXs{pf#pY qqq. By [14, Equations 4.9.5, 4.9.6], the ab-
solute different of G is pf0q Ă R. Thus Df “ pf0q (Remark 3.4). By the construction of minimal
models [22, Proposition 2.2], we note that in this case vpϕ1q “ vpϕ2q “ 0. Hence our claim is true
in this case.

To prove the general cases, let Ga,Li
be the line bundle of the normalized minimal model of ϕi

for i “ 1, 2. We assume Li “ paiq to be a fractional ideal for some ai P F . Thus we have

fj P pa2a
´qj

1 q.

In particular, f0 “ a2a
´1
1 b for some b P R. Now apply the same argument above with the variables

X replaced by a´1
1 X and Y replaced by a´1

2 Y , we see Df “ pbq “ pf0a1a
´1
2 q. Therefore we have

vpDf q “ vpf0q ` vpa1q ´ vpa2q.

This proves our claim.

Logarithmic heights

The absolute value | ¨ |8 on k naturally extends to a unique absolute value on C8, which restricts
to the same values on k8 and we denote it by | ¨ |. If F {k is a finite field extension and w is a place
of F lying over v P Mk, we normalize the absolute value associated to w as

|y|w “ |NFw{kv
pyq|

1
rF :ks

v , @y P F.

Since k has degree of imperfection 1 (see the Remark 3.6 below), for any place v P Mk we have:

F bk kv –
ź

w|v

Fw. (2)

Let MF be the set of places w normalized as above. By p2q we have following two properties:

• Product formula: For every y P F ,
ř

wPMF
log |y|w “ 0.

• Extension formula: rF : ks “
ř

w|vrFw : kvs.
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Remark 3.6. If F is a field of characteristic p ‰ 0, by degree of imperfection of F we mean the
number n such that rF : F ps “ pn. The isomorphism in p2q holds in a more general case of simple
extension. A theorem from Becker and MacLane [1, Theorem 6] tells us any finite extension L{F
can be generated by at most maxt1, nu elements.

Let k be the algebraic closure of k in C8 and we denote by Pnpkq the n-dimensional projective
space over k. If x “ px0 : ¨ ¨ ¨ : xnq P Pnpkq and F is a finite extension of k containing these
coordinates, then the Weil height of x is:

hpxq :“
ÿ

wPMF

max
j

log |xj |w.

As in the number field case, this definition is independent of the choice of both the field F and
the coordinates. The definition of Weil heights of points in affine space is naturally obtained by
embedding the affine space to a projective space. In particular, for x P k and F a finite extension
of k containing x we have

hpxq “
ÿ

wPMF

logmaxt1, |x|wu “
ÿ

wPMF

log`
|x|w.

The proof of following lemma is almost the same as that of [2, Proposition 1.6.6]. We give a proof
here for the convenience of the reader.

Lemma 3.7. Suppose A “ Fqrts. Let α P ksep of degree d and fpXq be the minimal polynomial of
α over A with leading coefficient ad and roots αj , j “ 1, ..., d. Then

dhpαq “ log |ad| `

d
ÿ

j“1

log`
|αj |.

Proof. Let F {k be a finite Galois extension that contains α. Let G :“ GalpF {kq. The set tσpαquσPG

contains every conjugate of α exactly rF : ks{d times. We have

ad
ź

σPG

pX ´ σpαqq
d

rF :ks “ fpXq.

Apply Gauss’s lemma [2, Lemma 1.6.3], we get for any finite place w P MF

|ad|w

ź

σPG

maxt1, |σpαq|wu
d

rF :ks “ 1. (3)
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Thus, we have

rF : kshpαq “
ÿ

wPMF

ÿ

σPG

log`
|σpαq|w,

“
ÿ

w|8

ÿ

σPG

log`
|σpαq|w `

ÿ

w∤8

ÿ

σPG

log`
|σpαq|w

“
ÿ

σPG

ÿ

w|8

log`
|σpαq|w `

ÿ

w∤8

ÿ

σPG

log`
|σpαq|w

“
rF : ks

d

ÿ

w|8

d
ÿ

j“1

log`
|αj |w ´

rF : ks

d

ÿ

w∤8
log |ad|w, by (3)

“
rF : ks

d

ÿ

w|8

d
ÿ

j“1

log`
|αj |w `

rF : ks

d

ÿ

w|8

log |ad|w, by product formula

“
rF : ks

d

¨

˝log |ad| `
ÿ

w|8

d
ÿ

j“1

rFw : k8s

rF : ks
log`

|σwpαjq|

˛

‚,

“
rF : ks

d

¨

˝log |ad| `
ÿ

w|8

rFw : k8s

rF : ks

d
ÿ

j“1

log`
|αj |

˛

‚

“
rF : ks

d

˜

log |ad| `

n
ÿ

j“1

log`
|αj |

¸

.

Now the lemma follows.

Definition 3.8. Let ϕ be a Drinfeld A-module of rank r over F . The global graded degree hGpϕq

(resp. local graded degree hwGpϕ{F q at a place w over F ) of ϕ is

hGpϕq :“
1

rF : ks

ÿ

wPMF

degpwqwpϕq

ˆ

resp. hwGpϕ{F q :“
degpwqwpϕq

rF : ks

˙

.

Remark 3.9. (1) It is obvious the global graded height of ϕ does not depend on the choice of the
field F and it is invariant under isomorphisms, while a local graded height of ϕ will not satisfy
such properties.

(2) The global graded height is a direct interpretation of “finite” Taguchi height (cf. [21, Definition
2.3]).

(3) Let ϕ be a Drinfeld Fqrts-module of rank r over F . Then it is characterised by:

ϕt “ tτ0 ` g1τ ` ¨ ¨ ¨ ` grτ
r, gi P F, gr ‰ 0.

Let m “ lcmtq ´ 1, ..., qr ´ 1u. We set J :“ pj1 : ¨ ¨ ¨ : jrq P Pr´1pkq where

ji “ g
m{pqi´1q

i , for i “ 1, ..., r.

10



If r “ 2, then jϕ :“ j1{j2 is the j-invariant of the Drinfeld A-module ϕ. It plays the same role
as the j-invariant of elliptic curves. The global graded height of ϕ is then given by:

hGpϕq “
ÿ

wPMF

max
1ďiďr

log |gi|
1{pqi´1q
w .

Thus the global graded height coincides the one in [5, Equation 6]. It is obvious that mhGpϕq “

hpJq.

Proposition 3.10. Let ϕ be a Drinfeld A-module of rank r over F such that F {k is a separable
extension. For any σ P Galpksep{kq, we denote by σpϕq the Drinfeld A-module obtained by acting
σ on the coefficients of a Drinfeld A-module ϕ. Then we have

hGpϕq “ hGpσpϕqq.

Proof. By Remark 3.9 (1) we may assume F {k is a Galois extension so that for any σ P GalpF {kq

the Drinfeld A-module σpϕq is defined over F . For any places v P Mk and w P MF such that w lies
over v, we see w ˝ σ is again a place lying over v. Thus σ permutes the places lying over v. By a
result of algebraic number theory, w and w ˝ σ have the same degree. Therefore

hGpσpϕqq “
ÿ

vPMk

ÿ

wPMF

w|v

degpw ˝ σqw ˝ σpϕq “
ÿ

vPMk

ÿ

wPMF

w|v

degpwqwpϕq “ hGpϕq.

Theorem 3.11. Let f : ϕ1 Ñ ϕ2 be an isogeny of Drinfeld A-modules over F with everywhere
good reduction on SpecpRq. Then we have:

hstTagpϕ2q ´ hstTagpϕ1q “
1

r
log |degpfq| ´

ÿ

w|8

wPMF

log |f0|w ` hfinG pϕ2q ´ hfinG pϕ1q,

where f0 is the linear coefficient of f and for i “ 1, 2, hfinG pϕiq is the sum of the local graded heights
running over all finite places of F .

Proof. By applying Lemma 3.3 and Lemma 3.5 we obtain:

hstTagpϕ2q ´ hstTagpϕ1q “
1

r
log |degpfq| ´

1

rF : ks

ÿ

wPMF

w∤8

degpwqpwpf0q ` wpϕ1q ´ wpϕ2qq. (4)

By applying the product formula, we get:
ÿ

wPMF

w∤8

degpwqwpf0q “ ´
ÿ

wPMF

w|8

degpwqwpf0q. (5)

Under our normalization, we have

log |f0|w “
´degpwqwpf0q

rF : ks
. (6)

Now substitute (6) and (5) to (4) we obtain our formula.
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Heights of Drinfeld A-modules with complex multiplication

We first recall the CM theory for Drinfeld modules. Let ϕ be a Drinfeld A-module of rank r
over C8. We say ϕ has complex multiplication if the ring of endomorphisms O :“ Endpϕq is a
projective A-module of rank r, and K :“ O bA k is called the CM field of ϕ. In this case, K{k
is an imaginary extension of degree r. Here by an imaginary extension we mean there is only one
place of K extending the infinite place 8 of k. As with the case of abelian varieties, there is also a
standard theory of complex multiplication for Drinfeld modules:

Theorem 3.12. (Main Theorem of Complex Multiplication) Let ϕ be a Drinfeld A-module of rank
r over C8 with complex multiplication. Let O be the ring of endomorphisms of ϕ and K be the
CM field. The following statements are true:

1. There is a finite extension HO{K such that GalpHO{Kq – PicpOq via the Artin map. The
field HO is the ring class field of O. The prime 8 of K splits completely in HO, and O is
unramified outside C which is the conductor of O, i.e. the largest common ideal of O and
OK .

2. ϕ has good reduction at every finite place of HO.

3. If r “ 2 and A “ Fqrts, then the j-invariant jϕ of ϕ is integral over A and HO “ Kpjϕq.

The reader could find a proof to the above statements in [12], as well as a complete treatment
of theory of complex multiplications for Drinfeld A-modules.

Suppose ϕ is a Drinfeld A-module of rank r with CM by an order O in a CM field K. Recall
that a proper ideal I of O is a fractional ideal of O in K such that

tx P K : x ¨ I Ă Iu “ O.

We denote by PrpOq the monoid of proper fractional ideals of O quotient by principal ideals. It is
then obvious PicpOq Ă PrpOq and PicpOq has a natural action on PrpOq. Since ϕ has CM by O,
its associated lattice is isomorphic to a proper ideal Iϕ of O.

Lemma 3.13. Let ϕ1 and ϕ2 be two Drinfeld A-modules of rank r with CM by the same order
O, and I1 (resp. I2) be a proper ideal of O such that the associated lattice of ϕ1 (resp. ϕ2) is
isomorphic to I1 (resp. I2). If I1 and I2 are in the same orbit of PrpOq under the action of PicpOq,
then hGpϕ1q “ hGpϕ2q. In particular, if PrpOq “ PicpOq then all the Drinfeld A-modules with CM
by O have the same graded height.

Proof. Without loss of generality, we assume ϕi has associated lattice Ii where i “ 1, 2. We choose
an invertible ideal J P PicpOq such that I1 “ J´1 ¨I2. Thus I1 is homothetic to the lattice associated
to J ˚ ϕ2 (cf. [12, Proposition 5.10 and Equation (5.18)]). On the other hand, J ˚ ϕ2 is isomorphic
to a Drinfeld A-module ϕ1

2 obtained by a Galois action on the coefficients of ϕ2 [24, Theorem A.1
(2)]. We note that we can always choose suitable I1 and I2 to make J integral so that our argument
makes sense. Now by Remark 3.9 (1) and Proposition 3.10 we complete our proof.

From now on, we always fix A “ Fqrts. A proof of the following result for elliptic curves is due
to Nakkajima and Taguchi [17]. We only make a few arguments here to adapt their formula to
Drinfeld A-modules.
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Proposition 3.14. Let ϕ1 and ϕ2 be two Drinfeld A-modules of rank 2 with CM by OK and
O respectively, where K is an imaginary quadratic field and OK (resp. O) is a maximal (resp.
arbitrary) order. We write O “ A ` f0OK for some f0 P A. If F {K is a finite field extension such
that both ϕ1 and ϕ2 are defined over F with everywhere good reduction then

hstTagpϕ2q ´ hstTagpϕ1q “
1

2
log |f0| ´

1

2

ÿ

v|f0

degpvqef0pvq,

where v runs over all monic prime factors of f0 and for l :“ qdegpvq

ef0pvq “
p1 ´ χpvqqp1 ´ l´vpf0qq

pl ´ χpvqqp1 ´ l´1q
,

and χpvq “ 1 if v splits in K; χpvq “ 0 if v ramifies in K; χpvq “ ´1 if v is inert in K.

Proof. First we note that the Taguchi height of rank 2 Drinfeld A-modules with CM does not de-
pend on the choice of lattice that analytically generates the corresponding Drinfeld A-module. So
we may assume that ϕ1 is given by OK and ϕ2 is given by O, and an isogeny f : ϕ1 Ñ ϕ2 given by
f0OK Ă O.

For the case when χpvq “ 1, from Theorem A.2 we see ϕ1 has ordinary reduction at any place
lying over v. Applying the same argument from [17, Proposition 4] we get ef0pvq “ 0. The
reduction process in the argument for Drinfeld A-modules is given by Theorem A.4. For the case
of supersingular reduction, the argument for our case is exactly the same as [17, Section 2.2] with
only one modification that we take l “ qdegpvq.

Corollary 3.15. Assume the same conditions as in Proposition 3.14. The following formula is true

hGpϕ2q ´ hGpϕ1q “ log |f0| ´
1

2

ÿ

v|f0

degpvqef0pvq ` h8
G pϕ1

2q ´ h8
G pϕ1

1q,

where ϕ1
1 is the Drinfeld A-module given by the lattice OK and ϕ1

2 is given by O, and h8
G pϕ1

iq is the
sum of local graded heights of ϕ1

i at infinite places for i “ 1, 2.

Proof. By Lemma 3.13 we can choose ϕi to be ϕ1
i, i “ 1, 2. It is then a trivial consequence of

Theorem 3.11 and Proposition 3.14.

4 Arithmetic on quadratic fundamental domain

We assume our Drinfeld A-module ϕ has rank 2 with CM for the rest this paper. Let Ω :“ C8zk8

be the Drinfeld upper-half plane so that PGL2pAqzΩ are the C8-points of the coarse moduli space
of rank 2 Drinfeld A-modules over C8. As in the case of elliptic curves, there are bijections:

PGL2pAqzΩ ÝÝÝáâÝÝÝ tLattices of rank 2 in C8{ –u ÝÝÝÝáâÝÝÝÝ C8.

Thus we obtain a natural j-function j : Ω Ñ C8. The set of j-invariants of rank 2 Drinfeld A-
modules with CM is precisely the image of the j-function at imaginary quadratic arguments.
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Unfortunately, the Drinfeld upper-half plane doesn’t have a good geometry as the Poincaré
upper-half plane of complex numbers does. However, we can still define the quadratic fundamental
domain.

Definition 4.1. (cf. [4, Definition 3.4]) The quadratic fundamental domain is

D “ tz P Ω : z satisfies an equation of the form az2 ` bz ` c “ 0,

where a, b, c P A, a is monic, |b| ă |a| ď |c| and

gcdpa, b, cq “ 1u.

(7)

Any rank 2 lattice corresponding to a CM Drinfeld module is homothetic to Λz for some z P DK ,
where Λz denotes the lattice generated by z and 1, and DK :“ DXK for some imaginary quadratic
extension K{k in C8. Unlike the case of elliptic curves, such z is not necessarily unique.

Proposition 4.2. [3, Proposition 1.2.1] Let q be odd and K be a quadratic extension of k. Then
K is a Kummer extension and can be written in the form K “ kp

?
δq for some square-free δ P A.

Let m “ degpδq. Then we have

1. The place 8 ramifies in K if and only if m is odd;

2. The place 8 is inert in K if and only if m is even and the leading coefficient of δ is not a
square in Fq;

3. The place 8 splits in K if and only if m is even and the leading coefficient of δ is a square in
Fq.

Let δ P A be a polynomial of odd degree or, even degree with the leading coefficient not being a
square in Fq, and let

?
δ P k be a root of X2 ´ δ. The field K :“ kp

?
δq is an imaginary quadratic

field by Proposition 4.2. Let OK be its maximal order. If O Ă OK is a suborder of discriminant
δ, then there exsits some f P A such that O “ A ` fOK and such f is called the conductor of
O. The discriminant δ0 of OK is called the fundamental discriminant of K and K “ kp

?
δ0q. The

discriminant of O is δ “ 4f2δ0.

We denote by Tδ the set of triples pa, b, cq with a, b, c P A such that b2 ´ 4ac “ δ and satisfying
(7). For pa, b, cq P Tδ we set

zpa, b, cq “
´b`

?
δ

2a
P K “ kp

?
δq.

The map pa, b, cq ÞÑ jpzpa, b, cqq is a bijection from Tδ to the Galois conjugates of jpzq.

Lemma 4.3. If 8 ramifies in K, then there doesn’t exist any z P DK such that z is in the open
ball of radius 1 of the point u for any u P Fq2zFq.

Proof. For some u P Fq2zFq, we assume there exists z P DK such that |z ´ u| ă 1. In this case, we
have |z| “ 1 as |u| “ 1. Besides, there exists a triple pa, b, cq satisfying (7) such that b2 ´ 4ac “ δ
and z is root of the equation:

aX2 ` bX ` c “ 0.
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We write K “ kp
?
δ0q, where δ0 P A is square-free. By Proposition 4.2 and since K is an imaginary

quadratic extension of k, we see δ0 is either of odd degree or of even degree with leading coefficients
not a square in Fq. Also we have

|az2 ` bz| “ |c|.

Since |bz| “ |b| ă |a| “ |az2|, we have |a| “ |az2 ` bz| “ |c|, which implies a and c have the same
degree and b has degree less than a and c. Therefore δ has even degree. Since δ “ 4f2δ0, we see
δ0 has even degree, hence with leading coefficients not a square in Fq. This is equivalant to saying
that 8 is inert in K.

Remark 4.4. If δ has even degree with leading coefficient not a square in Fq, then
?
δ P Fq2pp 1

t qq.
Moreover, if there exists some z P DK with discriminant δ such that |z´ u| ă 1, then δ has leading
coefficient 4u2. This also suggests such z can be close only to those u P Fq2zFq such that u2 P Fq.

Proposition 4.5. Let u P Fq2zFq. The number of pa, b, cq P Tδ with degpδq ą 0 such that

|zpa, b, cq ´ u| ă
a

|δ|
´1

is at most 1.

Proof. Since δ has positive degree, we have
a

|δ| ě 1. Thus we have |z ´ u| ă
a

|δ|
´1

ď 1. By the
proof of Lemma 4.3, we have

δ “ α2et
2e ` ¨ ¨ ¨ ` α0, αi P Fq for i “ 0, ..., 2e and e is a positive integer.

Thus we have ?
δ “ λet

e ` ¨ ¨ ¨ ` λ0 ` λ´1t
´1 ` λ´2t

´2 ¨ ¨ ¨

with coefficients in Fq2 . By identifying p
?
δq2 “ δ we obtain:

α2e “ λ2e;

α2e´1 “ λeλe´1 ` λe´1λe;

...

αe “ λeλ0 ` λe´1λ1 ` ¨ ¨ ¨ ` λ1λe´1 ` λ0λe;

...

α0 “ λeλ´e ` λe´1λ´pe´1q ` ¨ ¨ ¨ ` λ´pe´1qλe´1 ` λ´eλe.

First notice λe “ 2u ‰ 0 because |z ´ u| ă 1. We first claim that p2uq´1λi P Fq when i “ 0, 1, ..., e.

Our claim is trivial when i “ e. We proceed by induction and suppose it’s true for λe, ..., λn
when 0 ă n ď e. From the equations above we have

αe`n´1 “ λeλn´1 ` λe´1λn ` ¨ ¨ ¨ ` λnλe´1 ` λn´1λe.

By multiplying p2uq´2 on both sides we obtain

p2uq´2αe`n´1 “ p2uq´1λep2uq´1λn´1 ` ¨ ¨ ¨ ` p2uq´1λn´1p2uq´1λe.

Since all terms other than p2uq´1λep2uq´1λn´1 are in Fq and λe “ 2u, we have p2uq´1λn´1 P Fq.
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Now recall z “ ´b`
?
δ

2a with triple pa, b, cq P Tδ and δ “ b2 ´ 4ac. Then |z ´ u| ă
a

|δ|
´1

is
equivalent to

degpaq ´ degp
?
δ ´ b´ 2auq ą degp

?
δq “ degpaq.

So we have degp
?
δ ´ b´ 2auq ă 0. Suppose

a “

e
ÿ

i“0

ait
i, b “

e
ÿ

i“0

bit
i, with all ai, bi P Fq.

Thus for all i “ 0, ..., e we have λi´2aiu “ bi. Since p2uq´1λi P Fq, we see bi “ 0 and ai “ p2uq´1λi

for all i “ 0, ..., e. Thus, a, b, c are completely determined by |zpa, b, cq ´ u| ă
a

|δ|
´1
.

5 Bounding hpJq

We prove our main theorem in this section.

Upper bound on hpJq

Let ϕ be a CM Drinfeld A-module of rank 2 over C8 and J be its j-invariant of degree d over
A. Let O “ Endpϕq and K “ O bA k. We denote J “ J1, ..., Jd all the Galois conjugates of J and
z1, ..., zd the corresponding points in DK . Then for each i, we have zi satisfying the equation:

aiX
2 ` biX ` ci “ 0, pai, bi, ciq P Tδ

and b2i ´ 4aici “ δ for some δ P A that is the discriminant of O. In this subsection we prove:

Proposition 5.1. Assuming the notations above and J is an algebraic unit, we have

hpJq ď

ˆ

1 `
q2 ´ q

d

˙

pq ` 1q log
a

|δ| `Oqp1q,

where Oqp1q is some constant depending only on q.

We first fix some notations. Let u be a point such that u P Fq2zFq and

|z|A :“ inf
aPA

|z ´ a|,

|z|i :“ inf
xPk8

|z ´ x|.

Lemma 5.2. [3, Proposition 3.2.5] If z P DK , then |z|i “ |z|A “ |z| ě 1.

Lemma 5.3. For each zi, we have hpziq ď log
a

|δ|.

Proof. Let pa, b, cq be a triple in A satisfying p7q such that zi is a root of the equation:

aX2 ` bX ` c “ 0

with discriminant δ. Let z̄i be the conjugate of zi. Then

|zi ¨ z̄i| “
|δ|

|a2|
.
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By Lemma 3.7, we get

2hpziq “ log |a| ` log |zi| ` log |z̄i| “ log
|δ|

|a|
ď log |δ|.

This completes the proof.

Lemma 5.4. [6, Lemma 2.6.9] Suppose z P Ω such that |z|A ą q´1. If u P Fq2zFq and |z´u| ă q´1,
then there exists ζ P C8 with |ζ| ă 1 such that

jpzq “ tqu´2p1 ´ uq´1q´2pz ´ uqq`1p1 ` ζq,

|jpzq| “ qq|z ´ u|q`1.

Let hpJq be the Weil height of J . Therefore, by Lemma 3.7 we have

dhpJq “

d
ÿ

i“1

log`
|Ji| “

d
ÿ

i“1

log`
|jpziq|.

If we assume J is an algebraic unit, then we have:

dhpJq “ dhpJ´1q “

d
ÿ

i“1

log`
|jpziq|´1

“
ÿ

uPFq2 zFq

|zi´u|ă
?

|δ|
´1

log`
|jpziq|´1 `

ÿ

uPFq2 zFq
?

|δ|
´1

ď|zi´u|ďq´1

log`
|jpziq|´1 ` dOqp1q. (8)

The first equality comes from our assumption that J is a unit. To see the third equality holds,
we only need to show that

ÿ

q´1ď|zi´u|

log`
|jpziq|´1 ď dλq, (9)

where λq is a constant depending only on q. We need some arguments to see this. Recall that the
fundamental domain for Drinfeld upper half plane (cf. [9, Theorem 6.4, Proposition 6.6]) is given
by

F :“ tz P C8 : |z| “ |z|i ě 1u.

We note that z is a zero of the j-function if and only if z is conjugate to some u P Fq2zFq under
of Möbius action of GL2pAq [9, (3.9)]. By [9, Corollary 6.7], the zeros of j in F are exactly these
u P Fq2zFq. Moreover, F is closed. This is because if we take a sequence tznu Ă F such that tznu

converges to z P Ω, then for sufficiently large n, |zn ´ z| ă ϵ and |z| “ |zn| ě 1. Therefore

|z|i “ inf
xPk8

|z ´ x| “ inf
xPk8

|z ´ zn ` zn ´ x| “ |zn|i “ |zn| “ |z|,

which implies z P F . Now the inequality (9) can be deduced easily.

We also note that under our assumption, necessarily we have degpδq ą 0. Indeed, if degpδq “ 0
then zi P Fq2zFq. In this case J “ 0.
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Lemma 5.5. Assuming the notations above, we have
ÿ

|zi´u|ă
?

|δ|
´1

log`
|jpziq|´1 ď 2pq ` 1q log

a

|δ| ´ q.

Proof. Since zi P DK , we have |z|A ě 1 by Lemma 5.2. Thus according to Lemma 5.4 we have

log |jpziq|´1 “ ´q ´ pq ` 1q log |zi ´ u|. (10)

Let L “ kpzi, uq, then rL : ks “ 2 if zi P Fqptqpuq “ Fq2ptq and rL : ks “ 4 otherwise. In the first
case, there is only one w P ML lying over 8 P Mk. Therefore we have |zi ´ u|w “ |zi ´ u| under
our normalization. In the second case, there are two places in ML lying over 8 P Mk, and we take
w to be one of the two. Thus we have |zi ´ u| “ |zi ´ u|2w. Either way, we find

log |zi ´ u| ď 2
ÿ

w

log`
|zi ´ u|w “ 2hpzi ´ uq.

Note the fact that hpαq “ hp1{αq for any α P k and we have

log |zi ´ u| ě ´2hpzi ´ uq ě ´2phpziq ` hpuqq “ ´2hpziq.

Now substitute this inequality to (10) and apply Lemma 5.3 we obtain

log |jpziq|´1 ď 2pq ` 1q log
a

|δ| ´ q.

Since the number of such zi is at most one by Proposition 4.5, we conclude.

Now we are ready to prove Proposition 5.1.

Proof. We are left to estimate
ÿ

uPFq2 zFq
?

|δ|
´1

ď|zi´u|ďq´1

log`
|jpziq|´1.

From (10) and
a

|δ|
´1

ď |zi ´ u| we have

ÿ

uPFq2 zFq
?

|δ|
´1

ď|zi´u|ďq´1

log`
|jpziq|´1 ď

´

´q ` pq ` 1q log
a

|δ|

¯

¨
ÿ

uPFq2 zFq
?

|δ|
´1

ď|zi´u|ďq´1

1.

If the number of u P Fq2zFq such that there exists some zi such that |zi ´ u| ă
a

|δ|
´1

is N , then
we have

ÿ

uPFq2 zFq
?

|δ|
´1

ď|zi´u|ďq´1

ď d´N.

Combining with Lemma 5.5, we get

dhpJq ď 2Npq ` 1q log
a

|δ| ` pd´Nqpq ` 1q log
a

|δ| ` dOqp1q

“ pd`Nqpq ` 1q log
a

|δ| ` dOqp1q.

Thus, we conclude by applying the fact N ď q2 ´ q.
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Lower bound on hpJq

Lemma 5.6. Let ϕ0 be a Drinfeld A-module of rank 2 with CM by the maximal order OK in an
imaginary quadratic field K. We denote the genus of K by gK . Then we have:

hstTagpϕ0q ě

ˆ

1

2
´

1
?
q ` 1

˙

gK ´
5q ´ 3

4pq ´ 1q
.

Proof. By the equation of stable Taguchi height from [24, Section 5.2.1], we get

hstTagpϕ0q “
gK
2

log qK `
1

2
plog q8 ´ log qKq ´ 1 `

γK
2 ln q

,

where qK is the cardinality of the field of constants in K, q8 is the cardinality of the residue field
of K8, and γK is the Euler-Kronecker constant of K [13, Equation (0.2)]. We remind the reader
that the definition of stable Taguchi height in [24, Equation 5.1] is a multiple of our stable Taguchi
height by the constant ln q. From [13, Equation 1.4.6] we get

γK
2 ln q

ě
´gK

?
q ` 1

`
q ´ 3

4pq ´ 1q
.

Now using the fact qK , q8 P tq, q2u we get the lower bound.

Lemma 5.7. Let ef0pvq be as in Proposition 3.14 and f0 P A. Then we have

1

2

ÿ

v|f0

degpvqef0pvq ď
9

4
log log |f0| ` Cq,

where v runs through all the monic prime factors of f0, and Cq is a computable constant depending
on q.

Proof. First we need a Mertens-type formula for function field, i.e. the following inequality:

ÿ

|v|ďx

log |v|

|v|
ď log x` Cq,

where v’s are monic prime polynomials and Cq is a constant regarding q. To see this, we notice
that

ÿ

|v|ďx

log |v|

|v|
“

n:“tlog xu
ÿ

i“1

i

qi
¨ ai,

where ai is the number of monic prime polynomials of degree i. By [20, Theorem 2.2] we obtain

n
ÿ

i“1

i

qi
¨ ai “

n
ÿ

i“1

´

1 `Opq´i{2q

¯

ď log x` Cq.

Recall that

ef0pvq “
p1 ´ χpvqqp1 ´ l´vpf0qq

pl ´ χpvqqp1 ´ l´1q
, where l “ |v|.
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Note that |l| ě 3 and χpvq P t´1, 0, 1u. Thus we get

ef0pvq ď
2

l ´ l´1
ď

9

4l
.

Thus we have

ÿ

v|f0

degpvqef0pvq ď
9

4

ÿ

v|f0

log l

l
“

9

4

¨

˚

˚

˝

ÿ

v|f0
|v|ďlog |f0|

log l

l
`

ÿ

v|f0
|v|ąlog |f0|

log l

l

˛

‹

‹

‚

.

We have proven
ÿ

v|f0
|v|ďlog |f0|

log l

l
ď log log |f0| ` Cq.

For the other term, we have

ÿ

v|f0
|v|ąlog |f0|

log l

l
ď

log log |f0|

log |f0|
¨

ÿ

v|f0
|v|ąlog |f0|

1.

Using the product formula we see there are at most log |f0| monic prime factors of f0. As [20,
Theorem 2.2] is effective, all the constant terms are summed up to a computable constant Cq.

Theorem 5.8. Let J be a singular modulus of rank 2 Drinfeld A-module with corresponding
discriminant δ with conductor f0. There exists some computable constant Cq with respect to q
such that

hpJq ě pq2 ´ 1q

ˆ

1

2
´

1
?
q ` 1

˙

log
a

|δ| `

ˆ

1

2
`

1
?
q ` 1

˙

log |f0| ´
9

4
log log |f0| ´ Cq.

Proof. We recall that for K “ kp
?
δ0q with δ0 square free, the genus gK of K is given by (cf. [4,

Section 3])

gK “

#

log |δ0|´1
2 if degpδ0q is odd,

log |δ0|´2
2 if degpδ0q is even.

We input a result from [5, Equation (23)], which says that

|h8
G pϕ1q ´ h8

G pϕq| ď
q

q ´ 1
´

qr

qr ´ 1
,

where ϕ and ϕ1 are two isogenous Drinfeld A-modules of rank r. Using Corollary 3.15, Lemma
5.6, Lemma 5.7 and the facts that hGpϕq ě hstTagpϕq and hpJq “ pq2 ´ 1qhGpϕq we complete our
proof.

Remark 5.9. (1) We note that [5, Equation (23)] holds true only for reduced Drinfeld modules [5,
definition before Lemma 4.2]. However, Lemma 3.13 ensures in the rank 2 case we can always
choose the graded height of the Drinfeld module with associated lattice being the CM order,
hence reduced.
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(2) One can also take q ě 3 to make our statement independent of q, i.e.

hpJq ě 4p2 ´
?
3q log

a

|δ| `
1

2
log |f0| ´

9

4
log log |f0| ´ C3.

Now we are ready to prove our main theorem. We restate our theorem:

Theorem 5.10. Let q be odd and q ą 5. There are only finitely many singular moduli of rank 2
Drinfeld Fqrts-modules that are algebraic units.

Proof. Let J be a singular modulus that is an algebraic unit. By Proposition 5.1 and Theorem 5.8
we have

hpJq ď

ˆ

1 `
q2 ´ q

d

˙

pq ` 1q log
a

|δ| `Oqp1q (11)

and

hpJq ě pq2 ´ 1q

ˆ

1

2
´

1
?
q ` 1

˙

log
a

|δ| `

ˆ

1

2
`

1
?
q ` 1

˙

log |f0| ´
9

4
log log |f0| ´ Cq, (12)

where δ is the discriminant of the endomorphism ring of a CM Drinfeld module whose j-invariant
is J . By easy calculation and taking d large enough if necessary, we find that for q ą 5

ˆ

1 `
q2 ´ q

d

˙

pq ` 1q log
a

|δ| ă pq2 ´ 1q

ˆ

1

2
´

1
?
q ` 1

˙

log
a

|δ|.

If we set

λ1 :“

ˆ

1 `
q2 ´ q

d

˙

pq ` 1q, λ2 :“ pq2 ´ 1q

ˆ

1

2
´

1
?
q ` 1

˙

,

then the above inequality tells us that λ2 ´ λ1 ą 0. Combining (11) and (12) we get

pλ2 ´ λ1q log
a

|δ| ă Oqp1q ` Cq ´

ˆ

1

2
`

1
?
q ` 1

˙

log |f0| `
9

4
log log |f0|.

We note that
´

1
2 ` 1?

q`1

¯

log |f0| ´ 9
4 log log |f0| ě 0. Thus, for any such δ there exists a constant

upper bound for log
a

|δ|. Lemma 5.3 implies that this is also a constant upper bound for hpziq for
zi. We note that zi has degree 2. Thus the Northcott theorem implies our theorem.

Appendix A More on Complex Multiplication

We use notations as in section 2. This appendix is mainly devoted for the proof of Proposition
3.14. Actually the results stated here are already known for elliptic curves. The results below may
be already known to many experts. Because of a lack of literature for Drinfeld modules, the details
are worked out here for the convenience of the reader.

Let ϕ1 and ϕ2 both be rank r Drinfeld A-module over C8 with complex multiplication. Let
F {k be a finite field extension such that both ϕ1 and ϕ2 are defined over F with everywhere good
reduction. Let R be the integral closure of A in F and denote M1, M2 the minimal model over R
of ϕ1, ϕ2 respectively. If f : M1 Ñ M2 is an isogeny, then it induces an isogeny of Drinfeld modules
after taking reduction at a prime v P SpecpRq.
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Lemma A.1. Let ϕv1 and ϕv2 be Drinfeld modules over kpvq obtained by taking reduction on M1

and M2 respectively at v, where kpvq is the residue field at v. Let HomF pϕ1, ϕ2q denote the set
of isogenies over F between ϕ1 and ϕ2, similarly for Homkpvqpϕv1, ϕ

v
2q. Then there is a canonical

injection of A-modules:
HomF pϕ1, ϕ2q ãÝÑ Homkpvqpϕv1, ϕ

v
2q.

Proof. It is easy to check the map is a morphism of A-modules. By Proposition 2.7 and [22,
Proposition 2.5] we obtain

HomF pϕ1, ϕ2q “ HomRpM1,M2q.

Let f P HomRpM1,M2q be an isogeny. Then it is finite, which implies it has leading coefficient
that is non-zero after reduction at v. This proves the injectivity.

From now on, we assume A “ Fqrts and ϕ is a rank 2 Drinfeld A-module over C8 with CM by
the maximal order OK , where K Ă C8 is a quadratic imaginary field over k. Further we assume ϕ
is obtained through the A-lattice OK and ϕ is defined over F . Let P P A be a prime element.

Theorem A.2. For any place v P SpecpRq, the reduction of ϕ at v is ordinary if and only if v X k
splits in OK .

Proof. Let P “ v X k and π̄ be the Frobenius morphism of ϕv. From Lemma A.1 we see

K “ EndF pϕ1q bA k ãÝÑ Endkpvqpϕvq bA k :“ D.

By [10, Proposition 4.12.17] we deduce that ϕ is ordinary at v if and only if K “ Endkpvqpϕvq bA k.
This is equivalent to saying that OK “ Endkpvqpϕvq. We can embed A into Endkpvqpϕvq via the
Drinfeld module ϕv. Let E :“ kpπ̄q. Then there is only one prime P of E containing π̄ and P lies
over P [10, Theorem 4.12.8].

If ϕ has ordinary reduction at v, then E – K as π̄ R k. Again by [10, Proposition 4.12.17]
there are more than one primes of E lying over P . Thus P splits in OK . Next we show the other
way around. First, we write POK “ PP 1. Assume the reduction of ϕ at v is supersingular. So
it is a consequence that dimkD “ r2 “ 4. Since ϕ has good reduction at v, ϕv has rank 2 over
kpvq. Thus we have 2 “ rankpϕvq “ t ¨ rE : ks, where t is an integer such that t2 “ dimE D. As
dimkD “ 4 “ dimE D ¨ rE : ks, we have t “ 2. Therefore, E “ k. In particular, π̄ P A. In this case,
it is clear that P “ pP q Ă A. On the other hand, we can obtain a Drinfeld OK-module ψ over F
by extending ϕ to EndF pϕq. By taking reduction at v again, we obtain a Drinfeld OK-module ψv

over kpvq. It is trivial π̄ is the Frobenius element of ψv. As π̄ P A Ă K, there is only one prime
ideal of K containing π̄. However, π̄ P POK “ PP 1. This is a contradiction.

Corollary A.3. If POK “ PP 1 where P and P 1 are different prime ideals of OK both lying
over P , then for any place v P SpecpRq over P the natural morphism EndF pϕq Ñ Endkpvqpϕvq is
an isomorphism.

Reduction process

Let M be the minimal model of ϕ. We set M rP s :“ KerpϕP : ϕ Ñ ϕq. We suppose moreover
that POK “ PP 1 with P and P 1 different. Then it is easy to see:

M rP spĀq “ M rP spC8q – OK{POK “ P{POK ‘ P 1{POK – OK{P ‘ OK{P 1.

There is a natural morphism θ : M rP spĀq Ñ ϕvrP spFqq by taking reduction at v P SpecpRq such
that v lies over P .
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Theorem A.4. If we assume further that π P P Ă OK “ EndF pϕq “ EndRpM q is the lifting of
the Frobenius element π̄, then θ is a surjection, and the kernel of θ is isomorphic to OK{P.

Proof. Since POK “ PP 1, by Theorem A.2 ϕvrP spFqq is non-trivial and finite. We embed A into
Endkpvqpϕvq “ OK via ϕv. As an OK-module, we have ϕvrP spFqq – OK{I for some proper ideal
I Ă OK . Therefore, we have ϕvP ¨ OK{I “ 0, which implies P P I. It is clear

#tϕvrP spFqqu ă #tM rP spC8qu.

So either I “ P or I “ P 1. Since π̄ acts on ϕvrP spFqq non-trivially, we see I “ P 1. Therefore,
the kernel of θ is P 1{POK that is isomorphic to OK{P.

Remark A.5. (1) If we identify OK “ EndF pϕq “ EndRpM q, then P is the collection of isogenies
whose reduction has linear coefficient 0.

(2) Another approach to Theorem A.4 using canonical subgroup of Drinfeld modules has be shown
to the author by Urs Hartl. The two approaches essentially have the same core.
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