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Abstract

In this paper, we first give a necessary and sufficient condition for a factor code
with an unambiguous symbol to admit a subshift of finite type restricted to which it is
one-to-one and onto. We then give a necessary and sufficient condition for the standard
factor code on a spoke graph to admit a subshift of finite type restricted to which it is
finite-to-one and onto. We also conjecture that for such a code, the finite-to-one and
onto property is equivalent to the existence of a stationary Markov chain that achieves
the capacity of the corresponding deterministic channel.

1 Introduction

Shifts of finite type (SFT), and more generally sofic shifts, are spaces of bi-infinite sequences
that play a prominent role in symbolic dynamics. Of particular interest are factor codes (onto
sliding block codes) from one such space to another, as they represent ways of encoding blocks
in the domain space into blocks in the range space. However, typically such maps are badly
many-to-one. So, it would be useful to know when one can restrict to a subspace of the
domain such that the code is still onto and one-to-one/finite-to-one. Consider the following
properties. Given an irreducible SFT X, a sofic shift Y , and a factor code, φ : X → Y ,

P1: There exists an SFT Z ⊂ X such that φ|Z is a conjugacy onto Y .

P2: There exists an SFT Z ⊂ X such that φ|Z is finite-to-one and onto Y .

P3: There exists a stationary Markov measure ν on X such that φ∗(ν) = µ0, the unique
measure of maximal entropy (mme for short) on Y .

We are interested in finding checkable, necessary and sufficient conditions for each of these
properties and in determining relationships among these properties. Clearly, P1 implies P2
and P2 implies P3 because, given P2, any mme ν on Z satisfies P3 (see Proposition 4.2).



A factor code φ : X → Y can be viewed as an input-constrained, deterministic, but
typically lossy, channel in the information theoretic sense: an input x determines a channel
output y = φ(x). Our interest in P3 stems from the fact that it is equivalent to the condition
that the Markov capacity achieves the capacity of this channel, i.e., there is an input Markov
measure on X that achieves capacity (See Sections 3 and 4 for more details).

Since Y is the image of an irreducible shift space, it must be irreducible, and it follows
that µ0 is indeed unique and fully supported on Y . However, we do not require ν to be fully
supported on X.

For P1, there are certainly some necessary conditions; for instance if Y has a fixed point,
then X must have a fixed point, and Y must be an SFT.

We consider the special class of factor codes with an unambiguous symbol. This means
that the alphabet of Y is {0, 1} and in the block code Φ that generates φ, there is exactly
one block u s.t. Φ(u) = 1. In Theorem 6.1, we characterize, for this class, all such φ for
which there exists a shift space Z ⊂ X s.t. φ|Z is a conjugacy onto Y and show that such a
Z must necessarily be an SFT, i.e., P1 is satisfied. In Theorem 6.5 we give a refined version
of this result when X is the full 2-shift.

Note that if a factor code φ defined on an irreducible SFT X is finite-to-one but not one-
to-one itself, then P1 is not satisfied. This follows from the fact that if P1 is satisfied for some
Z, then by [LM95, Corrolary 4.4.9], htop(Z) < htop(X), which contradicts [LM95, Corollary
8.1.20]. For a simple example of such a φ with an unambiguous symbol, see Example 8.3.

For P2, we recall from a counterexample [MPW84, pp. 287-289] that P2 is not always
satisfied. Motivated by that counterexample, we consider a subclass of factor codes with an
unambiguous symbol, called standard factor codes on spoke graphs (for the definition, see
Section 7). In Theorem 8.1, for this subclass, we characterize all such φ satisfying P2, and
we show that for any φ in this subclass, P2 is equivalent to the existence of an SFT Z ⊂ X,
such that φ|Z is almost invertible and onto Y .

The same counterexample in [MPW84, pp. 287-289] shows that for standard factor codes
on spoke graphs, P3 is not always satisfied.

We conjecture that for standard factor codes on spoke graphs, P3 and P2 are equivalent,
i.e., if there exists a stationary Markov measure ν on X s.t. φ∗(ν) = µ0, then there exists an
SFT Z ⊂ X such that φ|Z is finite-to-one and onto Y ; if true, then for this class, the same
characterization for P2 holds for P3. In Proposition 9.6, we prove this in several special
cases. The proof combines the Chinese Remainder Theorem and a dominance condition.

We note that P3 is related to the property that a factor code from an irreducible SFT
to an irreducible SFT is Markovian, although in that case one assumes that such ν is fully
supported [BT84], [BP11].

It was shown in [MPW84, Proposition 3.2] that P2 always holds if we relax SFT Z to sofic
Z. Similarly, it was shown in [MPW84, Corollary 3.3] that if we relax stationary Markov ν
to stationary hidden Markov ν, then P3 always holds.

We point the reader to a related paper which considers factor codes φ : X → Y as
deterministic channels and for a given factor code φ, characterizes those subshifts, of entropy
strictly less than that of Y , that can be faithfully encoded through φ [Mac22].

The remainder of this paper is organized as follows. In Section 2, we give a brief back-
ground on symbolic dynamics, focusing on SFTs, sofic shifts and factor codes. In Section 3,
we describe a motivating problem from information theory. In Section 4 we describe factor
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codes as special channels in information theory (as was done in [MPW84]). We introduce in
Section 5 the class of factor codes with an unambiguous symbol and for this class consider
P1 in Section 6. In Section 7 we introduce the subclass of standard factor codes on spoke
graphs and consider P2 for this subclass in Section 8. In Section 9, we consider P3 for this
subclass and prove Proposition 9.6. Finally, in Section 10, we discuss standard factor codes
on another class of graphs.

Acknowledgements: We thank Mike Boyle, Felipe Garćıa-Ramos, Sophie MacDonald,
Tom Meyerovitch, Ronny Roth, and Paul Siegel for helpful discussions.

2 Notation and Brief Background from Symbolic Dy-

namics

We introduce in this section some basic terms and facts in symbolic dynamics. For more
details, see [LM95].

Let A be a finite alphabet. The full A-shift, denoted by XA, is the collection of all
bi-infinite sequences over A. When A = {0, 1, · · · , n − 1}, the full shift is called the full
n-shift and will be denoted by X[n]. For any point x = · · ·x−1x0x1 · · · ∈ XA, we use xi
to denote the i-th coordinate of x and x[i,j] to denote the block xixi+1 · · ·xj. For a block
x1 · · ·xm, we use (x1 · · ·xm)k to denote its k-concatenation and (x1 · · ·xm)∞ to mean its
infinite concatenation. The shift map σ on XA is defined by (σ(x))i = xi+1 for any x ∈ XA.
A subset of XA is a shift space if it is compact and is invariant under σ. For any positive
integer m and a shift space X, we use Bm(X) to denote the set of all allowed blocks of length
m in X, and B(X) := ∪nBn(X) is called the language of X. The N-th higher block shift
of X is the image βN(X) in the full shift over AN where βN : X → (AN)Z is defined by
(βN(x))i = x[i,i+N−1] for any x ∈ X. A shift space X is irreducible if for any u, v ∈ B(X),
there is a w ∈ B(X) such that uwv ∈ B(X).

Let A1, A2 be two alphabets, s, t be two fixed integers and let X be a shift space over
A1. The map φ : X → A2

Z defined by φ(x)i = φ(x[i−s,i+t]) for any i is called a sliding block
code with anticipation t and memory s. A sliding block code φ : X → Y is finite-to-one if
there is an integer M such that |φ−1(y)| ≤ M for every y ∈ Y , and it is one-to-one when
M = 1. Moreover, the sliding block code φ : X → Y is a factor code if it is onto, in which
case Y will be called the factor of X, and φ is a conjugacy if it is one-to-one and onto.

A point diamond for φ is a pair of distinct points in X that differ in finitely many
coordinates and have the same image under φ. If X is irreducible, then φ is finite-to-one iff
it has no point diamonds [LM95, Theorem 8.1.16].

Let G be a directed graph with no multiple edges. For a path γ in G, V (γ) denotes the
sequence of vertices of γ and |γ| is the length, i.e., the number of edges, of γ (for example,
for γ = e1e2 · · · en, V (γ) = I(e1)I(e2) · · · I(en)T (en) and |γ| = n, where for any i, I(ei) and
T (ei) denote the initial vertex and the terminal vertex of ei, respectively). We use V(G) to

denote the vertex set of G and X̂G to denote the vertex shift induced by G. That is, the shift
space whose points are sequences of vertices of bi-infinite paths in G. Let Φ : V(G)→ A be a
labelling of vertices of G over a finite alphabet A. A graph diamond of Φ is a pair of distinct
paths in G that have the same initial vertex, terminal vertex and label. It is well-known
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that, assuming G is irreducible, the factor code generated by Φ is finite-to-one iff Φ has no
graph diamonds [LM95, Section 8.1].

A shift space X can be expressed as X = XF where F is a forbidden set, a list of forbidden
words such that x ∈ X iff x contains no element of F . The choice of the forbidden set of X
is in general not unique. When X = XF for some finite set F , X is called a shift of finite
type (SFT). An SFT X is called M -step (or has memory M) if X = XF for a collection F
of (M + 1)-blocks. A vertex shift is always a 1-step SFT and conversely, by lifting to its
(M + 1)-th higher block shift, an M -step SFT can always be represented as the vertex shift
of a graph. A shift space Y is sofic if there exist an SFT X and a sliding block code φ such
that φ(X) = Y . Clearly, SFTs must be sofic.

There is a general definition of the degree of a factor code on any subshift, see [LM95,
Definition 9.1.2.]. For our purposes, we focus only on the following equivalent definition of
the degree of a 1-block finite-to-one factor code φ : X → Y where X is an irreducible M -step
SFT X: Let N := max{1,M}. The degree of φ is defined as the minimum over all blocks
w = w1w2 · · ·w|w| in Y and all 1 ≤ i ≤ |w| − N + 1 of the number of distinct N -blocks in
X that we see beginning at coordinate i among all the pre-images of w [LM95, Proposition
9.1.12]. A word w that achieves the minimum above with some coordinate i is called a magic
word, and the subblock wiwi+1 · · ·wi+N−1 is called the corresponding magic block.

A factor code φ is almost invertible if its degree is 1. While an almost invertible code
need not be finite-to-one, on an irreducible SFT it must be finite-to-one [LM95, Proposition
9.2.2].

The topological entropy of a shift space X is

htop(X) := lim
m→∞

1

m
log |Bm(X)|.

For a probability measure µ on X, let h(µ) denote its measure theoretic entropy. By the
variational principle [Wal82, Theorem 8.6],

htop(X) = sup
µ
{h(µ) : µ is a shift-invariant Borel probability measure on X}. (1)

A measure of maximal entropy (mme) µ0 of X is a probability measure on X such that the
supremum in (1) is achieved.

Given S ⊂ Z≥0, an S-gap shift X(S) is a subshift of X[2] such that any x ∈ X(S) is
a concatenation of blocks of the form 0s1 with s ∈ S, where points with infinitely many
0’s to both sides are allowed when S is infinite. Let λ be the unique positive solution to∑

m∈S x
−m−1 = 1. Then htop(X(S)) = log λ [DJ12], and the unique mme µ0 of X(S) is

determined by
µ0(X0X1 · · ·Xi+1 = 10i1)

µ0(X0 = 1)
= λ−i−1 for any i ∈ S

and

µ0(X1 · · ·Xn = x1 · · ·xn|X−m · · ·X−1X0 = x−m · · ·x−11) = µ0(X1X2 · · ·Xn = x1 · · ·xn|X0 = 1)

for any m,n and any allowed block x−m · · ·x−11x1 · · ·xn [GP19, Corollary 3.9].
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It has been proven in [DJ12] that X(S) is an SFT if and only if S is finite or cofinite.
Indeed, the forbidden set of X(S) is

F =


{10m1 : m ∈ {0, 1, 2, · · · ,maxS} \ S} ∪ {01+maxS} when S is finite

{10m1 : m ∈ Z≥0 \ S} when S is cofinite,

(2)

which will be called the standard forbidden set of X(S) in this paper.

3 A Problem in Information Theory

A central object in information theory is a discrete channel. Here, there is a space X of
input sequences, a space Y of output sequences, each over a finite alphabet, and for each
x ∈ X a probability measure λx on Y which gives the distribution of outputs, given that x
was transmitted. One assumes that the map x 7→ λx is at least measurable and the channel
is stationary in the sense that λσx = σ∗λx where σ is the left shift defined on X and σ∗ is
the induced shift for measures.

Typically, X and Y are full shifts and in the simplest case, that of a discrete memoryless
channel, λx(y1 . . . yn) = Πn

i=1p(yi|xi); here, for each element a of the alphabet of X, p(·|a) is
a probability distribution on the alphabet of Y ; the channel is memoryless in the sense that
conditioned on the input xi, the output yi is independent of all other inputs. For example,
the binary symmetric channel (BSC) is the memoryless channel where X and Y are the full
2-shift and

p(b|a) =

{
ε b 6= a

1− ε b = a.

Here, ε is a parameter, known as the crossover probability.
Given a stationary (i.e., shift invariant) input measure ν on X, one defines the stationary

output measure κ(ν) on Y by κ(ν) =
∫
λxdν. The mutual information of κ(ν) and ν is

defined as
I(κ(ν), ν) = h(κ(ν))− h(κ(ν)|ν) = h(ν)− h(ν|κ(ν))

where h(·) denotes entropy, and h(·|·) denotes conditional entropy (the second equality fol-
lows from the chain rule for entropy, which is a fundamental equality in information theory);
in information theory, shift-invariant measures are viewed as stationary processes, and these
entropies are often referred to as entropy rates.

There are several notions of channel capacity, which all agree under relatively mild as-
sumptions. The stationary capacity (capacity for short) of a discrete noisy channel is defined

Cap = sup
stationary ν

I(κ(ν), ν).

For a discrete memoryless channel, the capacity can be computed effectively because
it agrees with the sup when restricted only to i.i.d. (i.e., stationary Bernoulli) measures,
turning it into a finite dimensional optimization problem, and, while there is no known
closed form expression for capacity in general, the optimum can be effectively approximated
by the well-known Blahut-Arimoto algorithm [Bla72, Ari72].
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We define the k-th order Markov capacity

Capk = sup
stationary k-th order Markov ν

I(κ(ν), ν).

We are interested in the problem: when does Markov capacity achieve capacity, i.e., when
does Capk = Cap for some k?

It is known, using the ergodic decomposition, that under mild assumptions, Cap (resp.,
Capk) coincides with the maximum mutual information over all stationary, ergodic input
measures (resp., stationary, irreducible, k-th order Markov input measures) [Gra11, Fei59].

Again, with mild assumptions on the channel, one shows that limk→∞Capk = Cap [CS08];
informally, “Markov capacity asymptotically achieves capacity.” This is important because
for fixed k, computation of Capk is a finite dimensional optimization problem. According to
the discussion above, for discrete memoryless channels, Cap0 = Cap; informally, “Bernoulli
capacity achieves capacity.” But for channels with memory, even just one step of memory,
except in certain cases such as input-constrained noiseless channels below, it is believed that
Capk 6= Cap for all k. However, we are not aware of any such result.

If X is not a full shift, then the channel is called input-constrained. Typically, the input
constraint X is an SFT or sofic shift. Such a shift space can be considered a noiseless channel
in itself, in a trivial way: Y = X and for each x ∈ X, λx = δx, the point mass on {x}. The
capacity of this channel is easily seen to be the topological entropy, htop(X), otherwise known
as the noiseless capacity, which can be easily computed.

Now, consider the input-constrained binary symmetric channel. This is the BSC, where
the inputs are required to belong to a given SFT or sofic shift X over {0, 1}. While the
capacity of the BSC and the noiseless capacity of X are known explicitly, the capacity of
the X-constrained BSC is not known. And while Markov capacity asymptotically achieves
capacity of this channel, it is believed that Markov capacity does not achieve capacity, i.e,
for all k, Capk 6= Cap. However, this has not been proven.

4 Factor Codes as Channels

This brings us to a main point of our paper: for a class of channels, albeit rather simple in
practice, we can rigorously decide whether or not Markov capacity achieves capacity. An
example of this was given in [MPW84, pp. 287-289]. Specifically, we view a factor code
φ : X → Y as an input-constrained, deterministic channel; here, λx = δφ(x), so the input
determines the output uniquely. Intuitively, for this channel input sequences are distorted
in a deterministic way. It follows that, in this case, for any invariant input measure ν,
h(κ(ν)|ν) = h(φ∗(ν)|ν) = 0 where φ∗ is the induced map (of φ) on stationary measures on
X. So

Cap = sup
stationary ν

h(φ∗(ν)).

According to [MPW84, Corollary 3.2], there exists a stationary input measure ν (in fact,
a stationary hidden Markov input measure) such that φ∗(ν) = µ0, the unique mme on Y .
Thus, by the variational principle [Wal82, Theorem 8.6], Cap = htop(Y ) (an alternative to
this argument is to show that the map ν 7→ φ∗(ν) is onto the set of all stationary measures
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on Y : given stationary µ on Y , use the Hahn-Banach theorem to find a not-necessarily-
stationary ν ′ on X s.t. φ∗(ν ′) = µ and let ν be any weak limit point of the sequence
(1/n)(ν ′ + σν ′ + . . .+ σn−1ν ′)).

In summary, we have:

Proposition 4.1. Let φ : X → Y be a factor code from an irreducible SFT X to a sofic
shift Y . Let µ0 be the unique measure of maximal entropy on Y . For the input-constrained,
deterministic channel defined by φ,

(1) Cap (resp. Capk) coincides with the maximum mutual information over all station-
ary, ergodic input measures (resp., stationary, irreducible, k-th order Markov input
measures);

(2) limk→∞Capk = Cap;

(3) Cap = htop(Y );

(4) A stationary measure ν on X achieves Cap iff φ∗(ν) = µ0 iff h(φ∗(ν)) = htop(Y ).

The following simple result gives a relation between P2 and P3.

Proposition 4.2. With the same assumptions as in Proposition 4.1, if there is an SFT
Z ⊂ X such that φ|Z is finite-to-one and onto Y , then there is an irreducible stationary
Markov measure ν on Z of order at most the memory of Z such that φ∗(ν) = µ0.

Proof. Let ν be the unique mme of any irreducible component of Z with maximum topo-
logical entropy. It is stationary, irreducible, and Markov. Since φ|Z is finite-to-one and onto
Y ,

h(φ∗(ν)) = h(ν) = htop(supp ν) = htop(Z) = htop(Y ).

Since µ0 is the unique mme on Y , we have φ∗(ν) = µ0.

Proposition 4.3. Let φ : X → Y be a factor code from an irreducible SFT X to a sofic shift
Y . Let ν be an irreducible stationary Markov measure on X and assume that φ∗(ν) = µ0, the
unique mme on Y (in particular, Markov capacity achieves capacity of the input-constrained
deterministic channel determined by φ).

The following are equivalent:

(1) φ|supp(ν) is finite-to-one and onto;

(2) htop(supp(ν)) = htop(Y );

(3) h(ν) = htop(Y );

(4) For every periodic point in supp(ν) the weight per symbol, for ν, is e−htop(Y ) (the weight
per symbol of a periodic point (p0 . . . pn−1)

∞ for a k-th order Markov measure ν on X
is defined to be ν(p0 . . . pn−1|p−k . . . p−1)1/n).
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Proof. (1) ⇒ (2) : This follows directly from Corollary 8.1.2 of [LM95].
(2) ⇒ (3) :

htop(Y ) = htop(supp(ν)) ≥ h(ν) ≥ h(φ∗(ν)) = h(µ0) = htop(Y ).

This yields (3).
(3) ⇒ (1) : Apply [Par97, Theorem 2].
((2) and (3)) ⇒ (4) : The condition that for some c ≥ 0, for every periodic point in

supp(ν) the ν-weight per symbol is e−c, is equivalent to the condition that h(ν) = c and that
ν is an mme for supp(ν). This is essentially contained in [PT82, Proposition 44].

It follows from Propositions 4.2 and 4.3 that P2 holds iff P3 holds with a measure ν
that is also irreducible stationary Markov and satisfies any of the equivalent conditions in
Proposition 4.3. We will return to this point in Section 9.

5 Factor Codes with an Unambiguous Symbol

We begin with a brief introduction to factor codes with an unambiguous symbol. Such factor
codes are also known as factor codes with a singleton clump [PQS03].

Let X be a shift space over an alphabet A and D = b1b2 · · · bk be an allowed block in X.
Define Φ : Ak → {0, 1} by

Φ(x[1,k]) =

{
1 if x[1,k] = D

0 otherwise.
(3)

Then, the factor code φ : X → Y ⊂ X[2] induced by Φ is called a factor code with an
unambiguous symbol. Here, Y is the image of φ.

In the remainder of this paper, we focus on the case when X is an irreducible SFT. Note
that in this case, by passing to a higher block shift, in the preceding definition we can and
sometimes will assume that k = 1 and that X is an SFT with memory 1.

The following propositions give some properties of Y .

Proposition 5.1. Let φ : X → Y be a factor code with an unambiguous symbol. Then Y is
an S-gap shift.

Proof. The elements of Y are arbitrary concatenations of strings of the form 10s with s ∈ S
such that there exists some allowed block w of length k + s+ 1 satisfying the following:

(1) w[1,k] = D;

(2) w[s+2,s+k+1] = D;

(3) for all 2 ≤ i ≤ s+ 1, w[i,k+i−1] 6= D.

Hence, Y is an S-gap shift.
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Proposition 5.2. Let φ : X → Y be a factor code with an unambiguous symbol. If X = X[2],
then

(1) 10k−11 is not allowed in Y iff D is purely periodic (i.e., D = u` for some ` ≥ 2 and
some block u);

(2) For any j ≥ k, 10j1 is allowed in Y .

Proof. To prove (1), first observe that 10k−11 is allowed iff the image of DD is 10k−11.
If 10k−11 is not allowed, then the image of DD has a prefix of the form 10c1 for some
0 ≤ c ≤ k − 2. Let d = c + 1 ≤ k − 1. Then for all 0 ≤ i ≤ k − 1, bi = bi+d (here and
below in this proof, subscripts are read modulo k). It follows that for all integers m,n and
all 0 ≤ i ≤ k − 1, bi = bi+md+nk. Let e = gcd(d, k). Then e = md+ nk for some m,n. Thus,
for all 0 ≤ i ≤ k − 1, bi = bi+e. It follows that D = b1 · · · bk = (b1 · · · be)k/e. Since e < k,
k/e ≥ 2. So, D is purely periodic.

Conversely, assume that D is purely periodic. Then the image of the block DD is not
10k−11 and so 10k−11 is not allowed.

We now prove (2). For j ≥ k, we show 10j1 is allowed in Y by finding a binary block
x1x2 · · ·xj−k+1 such that

Φ(b1 · · · bkx1x2 · · · xj−k+1b1 · · · bk) = 10j1. (4)

If b1 · · · bk = 0k, then one immediately verifies that Φ(b1 · · · bk1j−k+1b1 · · · bk) = 10j1. By
reversing the roles of 0 and 1 in the domain a similar argument works when b1 · · · bk = 1k.

Now assume that b1 · · · bk 6= 0k and b1 · · · bk 6= 1k. Express b1 · · · bk uniquely by

b1b2 · · · bk = (b1 · · · bm)sb1 · · · bt (m ≥ 2, s ≥ 1, 0 ≤ t < m) (5)

where ms+ t = k and m is the smallest positive integer such that b1 · · · bk can be expressed
by (5). We consider the following two cases:
Case 1: j − k + 1 ≥ m.

In this case, we claim that (4) is satisfied by letting x1x2 · · ·xj−k+1 = 1j−k+1. To see this,
assume to the contrary that

Φ((b1 · · · bm)sb1 · · · bt1j−k+1(b1 · · · bm)sb1 · · · bt) 6= 10j1.

This means that there is an extra 1 in addition to the two 1’s at the first and the last position
in the image. Hence, there is an extra b1 · · · bk in the input in addition to the two at the initial
and tail end (these two b1 · · · bk’s will be called the head and the tail, respectively). Since
x1 · · ·xj−k−1 = 1j−k+1 and b1 · · · bk 6= 1k, this extra b1 · · · bk must start with some b1 · · · bt in
the head or end with some b1 · · · bt in the tail. Thus, it must intersect the “intermediate”
subblock x1 · · ·xj−k+1 in at least m bits. Therefore, either

x1x2 · · ·xm = bt+1 · · · bmb1 · · · bt. (6)

or

xj−k−m+2 · · ·xj−k+1 = b1 · · · bm. (7)

9



Recalling that x1 · · ·xj−m+1 = 1j−k+1, either (6) or (7) implies b1b2 · · · bk = 1k, a contradic-
tion.
Case 2: 1 ≤ j − k + 1 < m.

In this case, an extra b1 · · · bk in the input must intersect the head, the tail and the
“intermediate” subblock x1x2 · · ·xj−k+1 simultaneously. Thus, this extra b1 · · · bk must start
with some b1 · · · bt in the head and end with some b1 · · · bt in the tail. Therefore, (4) holds
as long as {

x1 6= bt+1 and xj−k+1 6= bm if j − k > 0

x1 6= bt+1 if j − k = 0,
(8)

which is always possible for some binary x1x2 · · ·xj−k+1.

6 Characterization of the One-to-One Condition for

Factor Codes with an Unambiguous Symbol

In this section, we address P1 for factor codes with an unambiguous symbol. Through this
section, a factor code with an unambiguous symbol always refers to the one induced by Φ in
(3) unless otherwise specified.

We have the following theorem which characterizes the existence of a subshift of finite
type, on which the restriction of φ is one-to-one and onto.

Theorem 6.1. Let φ : X → Y be a factor code with an unambiguous symbol defined on an
irreducible shift space X. Let S be such that Y is an S-gap shift. Then, there is a shift space
Z ⊂ X s.t. φ|Z is a conjugacy from Z onto Y if and only if either of the following conditions
holds:

(C1) S is a finite set;

(C2) there is a fixed point (i.e., fixed via the shift) in X other than D∞.

Moreover, Z and Y must be SFTs if either (C1) or (C2) holds.

(Note: D∞ may or may not be in X and even if D∞ ∈ X, it may or may not be a fixed
point.)

Remark 6.2. Note that to say that S is finite means that there exists some M such that
every allowed block in X of length M contains D as a subblock. Sometimes, one says that
in such a case D is a “Rome”.

Remark 6.3. According to Proposition 4.2, when (C1) or (C2) holds, the capacity of the
deterministic channel, defined by φ, is achieved by a Markov chain.

Proof of Theorem 6.1: Only if part: If S is finite, we are done. So assume that S is infinite.
Then 0∞ ∈ Y . Since there exists a shift space Z ⊂ X s.t. φ|Z is a conjugacy from Z onto Y ,
Z must have a fixed point z s.t. φ(z) = 0∞. Finally, noting that D∞ /∈ X or φ(D∞) 6= 0∞,
we conclude that z must be different from D∞.
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If part: Assume Condition (C2) of the theorem. Up to recoding, we may assume that

X is a (1-step) vertex shift X̂G, D is a vertex of the graph G and there is a vertex A in G
such that A is distinct from D and G has a self-loop τ at A. Using irreducibility of X, there
are paths in G, β+ from D to A and β− from A to D, neither of which contains D in its
interior. Let N := |β+β−| − 1.

Now Y is a gap shift with gap set of the form S := F ∪ {N,N + 1, · · · }, where each
element of F is less than N . For each s ∈ S, choose πs to be a first-return cycle of length
s from D to itself (“first-return” means that it does not contain D in its interior). We will
assume that for s ≥ N , we choose πs = β+τ s−Nβ−. For y ∈ Y , let Oy := {j ∈ Z : yj = 1}
and define η : Y → X as follows:

(D1) if i ∈ Oy, define (η(y))i = D;

(D2) if j, j′ ∈ Oy and {l ∈ Z : j < l < j′} ⊂ Oc
y, define (η(y))[j,j′] = V (πj

′−j);

(D3) If Oy has a maximum element s, define (η(y))[s,∞) = V (β+τ∞);

(D4) if Oy has a minimum element s, define (η(y))(−∞,s] = V (τ∞β−);

(D5) if Oy = ∅, define η(y) = A∞.

Observe that η is injective because if y, y′ ∈ Y and y 6= y′, then for some i, WLOG we
assume yi = 1 and y′i = 0 and so (η(y))i = D and (η(y′))i 6= D. Furthermore, we claim that
η is a sliding block code. To see this, note that η is shift-invariant by virtue of its definition,
and (η(y))i is a function of y[−N+i,N+i].

So, η is an injective sliding block code from Y into X = X̂G. Let Z be its image. Then,
η−1 is a bijective sliding block code from Z onto Y . Moreover, by the construction of η, for
every y ∈ Y ,

φ ◦ η(y) = y. (9)

It follows that η−1 = φ|Z . This completes the proof of the if part assuming Condition (C2).
Now assume Condition (C1). The proof follows along the same lines except that the

definition of η is even easier: S = F is a finite set, and we only need the first two cases,
(D1) and (D2), of the definition of η because for any y ∈ Y , Oy is a nonempty set with no
maximum and no minimum.

Finally, we show that Y must be an SFT (and thus Z must also be an SFT) when (C1)
or (C2) holds. To see this, first note that an S-gap shift is an SFT iff S is either finite or
cofinite [DJ12]. If (C1) holds, there is nothing to prove. If (C2) holds, then, the proof of the
“if part” above in particular shows that Y is an S-gap shift with S := F ∪ {N,N + 1, · · · }
where N is a positive integer and F is a finite subset of non-negative integers. Thus, S is
cofinite and therefore Y is an SFT.

Example 6.4. Let F1 = {111}, X = XF1 and Φ : {0, 1}4 → {0, 1} be a 4-block code defined
by

Φ(x[1,4]) =

{
1 if x[1,4] = 1010

0 otherwise.
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We let φ : X → Y be the factor code with an unambiguous symbol induced by Φ. According
to Proposition 5.1, Y is an S-gap shift. Applying a similar argument as in the proof of
Proposition 5.2 to φ, one can verify that 3 /∈ S and {4, 5, 6, 7 · · · } ⊂ S. Furthermore, a
direct examination gives

0 /∈ S, 1 ∈ S and 2 /∈ S.

Thus, Y is an S-gap shift with S = {1, 4, 5, 6, 7 · · · }. Equivalently, Y is an SFT with the
forbidden set F = {11, 1001, 10001}. Moreover, since 0∞ ∈ X, Condition (C2) is satisfied
and we conclude from Theorem 6.1 that there is an SFT Z ⊂ X such that φ|Z is a conjugacy
from Z to Y .

When the domain of φ is X[2], then Condition (C2) in Theorem 6.1 holds and there is
always an SFT Z ⊂ X to which the restriction of φ is one-to-one and onto Y . Note that Y
must be an S-gap shift with S cofinite. Our next result gives an explicit description of Z for
some special cases.

Theorem 6.5. Let φ : X = X[2] → Y be a factor code with an unambiguous symbol, F be
the standard forbidden set of Y and F be the bitwise complement of F . Then, the following
are equivalent:

(1) At least one of the symbols from {0, 1} occurs at most once in D;

(2) Either φ|XF or φ|XF is one-to-one and onto Y ;

(3) Either φ|XF or φ|XF is finite-to-one and onto Y ;

(4) Either φ|XF or φ|XF is onto Y .

(Note: When (1) holds, φ|XF and φ|XF may not both satisfy (2) (resp., (3) and (4)). For
example, suppose k = 4 and D = b1b2b3b4 = 0000. Then, one verifies that φ|XF is one-to-one
and onto, but φ|XF is not. See Example 6.6 for more details.)

Proof. When k = 1, Y = X = X[2] and φ is trivially a conjugacy. Hence, we assume k ≥ 2
throughout the remainder of the proof.

(1) ⇒ (2) : We consider the following two cases.
Case 1: b1 · · · bk = 0k or b1 · · · bk = 1k.

Assume b1 · · · bk = 0k. Then, Y is an S-gap shift with S = {0, k, k+1, · · · }. Equivalently,
Y is an SFT with forbidden set

F = {101, 1001, · · · , 10k−11}.

Note that any y ∈ Y can be uniquely expressed by y = · · · 1m10n11m20n21m3 · · · with
mi ≥ 1, ni ≥ k. Define

x := · · · 0m1+k−11n1−k+10m2+k−11n2−k+10m3+k−1 · · · .

Then, x ∈ XF and φ(x) = y. Hence, φ|XF is onto.
We then claim that φ|XF is one-to-one. To see this, consider x, x′ ∈ XF and x 6= x′.

Then, for some i, WLOG we assume xi = 1, x′i = 0. Now, xi = 1 implies (φ(x))[i,i+k−1] = 0k;
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on the other hand, recalling that F = {101, 1001, · · · , 10k−11}, we deduce from x′i = 0 that
there is an i ≤ l ≤ i + k − 1 such that x′[l−k+1,l] = 0k and therefore (φ(x′))l = 1. Thus,

φ(x) 6= φ(x′) and φ|XF is one-to-one.
By reversing the roles of 0 and 1 in the domain it follows that φ|XF : XF → XF is also

one-to-one and onto when b1 · · · bk = 1k.

Case 2: There is only one 0 or only one 1 in b1b2 · · · bk.
We first assume that bj = 1 for some 1 ≤ j ≤ k and bi = 0 for any 1 ≤ i ≤ k and

i 6= j. Let M := max{j − 1, k − j}. Then Y is an S-gap shift with S = {M,M + 1, · · · }.
Equivalently, Y is an SFT with the forbidden set F = {11, 101, · · · , 10M−11}. By expressing
any x ∈ XF by

x = · · · 10m−110m010m11 · · ·

with ml ≥ M for all l ∈ Z, one directly verifies that φ(x) = σj−k(x). Thus, φ|XF must be
one-to-one and onto Y .

By reversing the roles of 0 and 1 in the domain it follows that φ|XF → XF is also
one-to-one and onto when there is only one 0 in b[1,k].

(2) ⇒ (3): Obvious.

(3) ⇒ (4): Obvious.

(4) ⇒ (1): We prove by way of contradiction. Suppose there are at least two 1’s and at
least two 0’s in b[1,k]. Then, k ≥ 4 and 11 ∈ F . We will show that both φ|XF and φ|XF are

not onto by finding a y ∈ Y and two blocks B1 ∈ F and B2 ∈ F such that any x ∈ φ−1(y)
contains B1 and B2. Indeed, if such a y exists, then y /∈ φ(XF) and y /∈ φ(XF) and therefore
both φ|XF and φ|XF are not onto, contradicting (4).

We consider the following cases:
Case 1: Both 00 and 11 are subblocks of b1b2 · · · bk.

Choose y ∈ Y with y0 = 1. Then, for any x ∈ φ−1(y), x[−k+1,0] = b[1,k]. Since 11 ∈ F ,
00 ∈ F and they are both subblocks of x, we conclude that φ|XF and φ|XF are not onto.

Case 2: Neither 00 nor 11 is a subblock of b1b2 · · · bk.
In this case, b1b2 · · · bk is a binary block with 0 and 1 occurring alternately. We assume

WLOG that b1b2 · · · bk = 010101 · · · .
If k is odd, one verifies that b1 = bk = 0, F = {10j1 : j ∈ {0, 2, 3, · · · k − 2}} and

F = {01j0 : j ∈ {0, 2, 3, · · · , k − 2}}. Consider y ∈ Y such that y[0,k] = 10k−11. For any
x ∈ φ−1(y), x[−k+1,k] = (b1b2 · · · bk)2; in particular, x[−1,2] = bk−1bkb1b2 = 1001 ∈ F and
x[0,1] = bkb1 = 00 ∈ F . Thus, both φ|XF and φ|XF are not onto.

If k is even, F = {10j1 : j ∈ {0, 2, 3, · · · , k−1}} and F = {01j0 : j ∈ {0, 2, 3, · · · , k−1}}.
Consider y ∈ Y such that y[0,k+1] = 10k1. Then for any x ∈ φ−1(y), either x[−k+1,k+1] =
b1b2 · · · bk0b1b2 · · · bk or x[−k+1,k+1] = b1b2 · · · bk1b1b2 · · · bk. In the former case, x[0,3] = 1001 ∈
F and x[0,1] = 00 ∈ F ; in the latter case, x[0,1] = 11 ∈ F and x[−1,2] = 0110 ∈ F . Therefore
φ|XF and φ|XF are not onto in both cases.
Case 3: Exactly one of 00 or 11 is a subblock of b1b2 · · · bk.

We assume WLOG that 11 is a subblock of b1b2 · · · bk yet 00 is not. If for any 2 ≤ j ≤
k − 2, 01j0 is not a subblock of b1b2 · · · bk, then b1b2 · · · bk = 1m1(01)m21m3 where either
m1 ≥ 2,m2 ≥ 2,m3 ≥ 0 or m1 ≥ 0,m2 ≥ 2,m3 ≥ 1. In either case, one directly verifies
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that 11 ∈ F , 010 ∈ F . Consider any y ∈ Y with y0 = 1. Then, any x ∈ φ−1(y) satisfies
x[−k+1,0] = b1b2 · · · bk and therefore it contains both 11 and 010. Thus, both φ|XF and φ|XF
are not onto.

Otherwise, there exists 2 ≤ j ≤ k − 2 such that 01j0 is a subblock of b1b2 · · · bk. If
b1b2 · · · bk−j−1 6= bj+2 · · · bk, then 10j1 ∈ F and therefore 01j0 ∈ F . Let y ∈ Y be such that
y0 = 1. Then, for any x ∈ φ−1(y), x[−k+1,0] = b1b2 · · · bk and therefore x contains both 11 ∈ F
and 01j0 ∈ F . Hence, both φ|XF and φ|XF are not onto.

If b1b2 · · · bk−j−1 = bj+2 · · · bk, then

b1b2 · · · bk =


1s1(01j)m1 with 0 ≤ s1 ≤ j,m1 ≥ 2 and s1 + m1(j + 1) = k

or

1s2(01j)m201t2 with 0 ≤ s2 ≤ j,m2 ≥ 1, 0 ≤ t2 ≤ j − 1 and s2 + m2(j + 1) + t2 + 1 = k,

and 10i1 ∈ F for any j + 1 ≤ i ≤ 2j.

Subcase 3.1: b1b2 · · · bk = 1s1(01j)m1 for some 0 ≤ s1 ≤ j and m1 ≥ 2.

If s1 = 0, b1b2 · · · bk = (01j)m1 and it is purely periodic. In this case, we infer from
Proposition 5.2 (1) that 10k−11 is not allowed in Y but 10k1 is. Consider y ∈ Y
with y[0,k+1] = 10k1. For any x ∈ φ−1(y), either x[−k+1,k+1] = b1b2 · · · bk0b1b2 · · · bk =
(01j)m10(01j)m1 or x[−k+1,k+1] = b1b2 · · · bk1b1b2 · · · bk = (01j)m11(01j)m1 . In the former
case, x[0,1] = 00 ∈ F ; in the latter case, x[−j−1,1] = 01j+10 ∈ F . Since b1b2 · · · bk
contains 11 ∈ F , we conclude that both φ|XF and φ|XF are not onto.

If s1 6= 0, b1b2 · · · bk is not purely periodic. Hence, we infer from Proposition 5.2 (1)
that 10k−11 is allowed in Y . A similar argument as in Case 2 for odd k implies that
both φ|XF and φ|XF are not onto.

Subcase 3.2: b1b2 · · · bk = 1s2(01j)m201t2 for some 0 ≤ s2 ≤ j, m2 ≥ 1 and 0 ≤ t2 ≤
j − 1.

If s2 = j and t2 = 0, b1b2 · · · bk = (1j0)m2 . By reversing the roles of 0 and 1, a similar
argument as in Subcase 3.1 for s1 = 0 implies that both φ|XF and φ|XF are not onto.

If s2 6= j or t2 6= 0, a similar argument as in Subcase 3.1 for s1 6= 0 again implies that
both φ|XF and φ|XF are not onto.

Example 6.6. Let Φ : {0, 1}2 → {0, 1} be a 4-block code defined by

Φ(0000) = 1 and Φ(b1b2b3b4) = 0 if b1b2b3b4 6= 0000.

Let φ : X = X[2] → Y be the factor code induced by Φ. Using Proposition 5.2, one verifies
that Y is an S-gap shift with S = {0, 4, 5, 6, · · · }. Equivalently, Y is an SFT with the
forbidden set F = {101, 1001, 10001}. Noting that 1∞ ∈ X, we deduce from Theorem 6.1
that there is an SFT Z ⊂ X such that φ|Z is a conjugacy. Note that φ|XF is not onto: since

010 ∈ F and Φ−1(100001) = 000010000, 100001 is not allowed in the image of φ|XF and
therefore φ|XF is not onto. It follows from Theorem 6.5 that we can choose Z to be XF . The
reader can verify this directly.
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B

B′1

B′2

Figure 1: A spoke graph with two regular spokes and one degenerate spoke, where dots
denote vertices.

7 Standard Factor Codes Defined on Spoke Graphs

In this section, we consider a class of factor codes with an unambiguous symbol motivated
by the example in [MPW84, pp. 287-289].

A graph U is called a spoke if U consists of a state B, a simple path γ+ from B to a state
B′ 6= B, a simple path γ− from B′ to B, a simple cycle C including B′ s.t. γ+, γ− and C are
all disjoint (except that they all share the state B′ and γ+, γ− share the state B). We also
allow degenerate spokes with one simple cycle C at B, which we indicate by γ+ = γ− = ∅.

A graph G is a spoke graph if it consists of a central state B and finitely many distinct
spokes Ui, i ∈ T such that for any i 6= j ∈ T , Ui and Uj only intersect at B. Let γ+i , γ

−
i , B

′
i

and Ci denote the γ+, γ−, B′ and C of the spoke Ui. Let T0 , {i ∈ T : γ+ = γ− = ∅} denote
the indices of degenerate spokes and T1 , T \ T0 denote the indices of regular spokes. See
Figure 1 for an example of a spoke graph with two regular spokes and one degenerate spoke.

Let Φ : V(G)→ {0, 1} be defined by

Φ(x) =

{
1 if xi = B

0 otherwise.
(10)

For a block x1 · · ·xm with xi ∈ V(G) for any 1 ≤ i ≤ m, we use Φ(x1 · · · xm) to denote
Φ(x1)Φ(x2) · · ·Φ(xm).

Consider the factor code φ : X̂G → Y ⊂ X[2] induced by Φ. We call φ the standard factor
code on G. The image Y of φ is a gap shift with gap set

S := ∪i∈TSi

15



where

Si :=

{di − 1} if i ∈ T0

{n ∈ Z≥0 : n = ai (mod di), n ≥ mi} if i ∈ T1,

di := |Ci| i ∈ T0 ∪ T1,
mi := |γ+i |+ |γ−i | − 1 i ∈ T1,
ai := mi mod di 0 ≤ ai ≤ di − 1.

Let D = l.c.m.({di : i ∈ T1}) and n(i) := D/di. It is then immediate that for i ∈ T1,

Si = {n ∈ Z≥0 : n = b
(j)
i (mod D), 1 ≤ j ≤ n(i), n ≥ mi},

where b
(j)
i := ai + (j − 1)di and 0 ≤ b

(j)
i < D for any i ∈ T1 and any 1 ≤ j ≤ n(i). For each

i ∈ T1, denote

Ki := {b(1)i , b
(2)
i , · · · , bn(i)i } and Ki mod D := ∪n(i)j=1{n : n = b

(j)
i (mod D)}.

Then the gap set S can be expressed by

S = (∪i∈T1{n ∈ Z≥0 : n ∈ Ki mod D,n ≥ mi}) ∪ {|Ci| − 1 : i ∈ T0}.

8 Characterization of the Finite-to-one Condition for

Standard Factor Codes on Spoke Graphs

Here, we characterize P2 for standard factor codes on spoke graphs.

Theorem 8.1. Let G be a spoke graph and φ be the standard factor code on G. Then, the
following are equivalent:

(1) There is a W ⊂ T1 such that ∪i∈WKi = ∪i∈T1Ki and {Ki : i ∈ W} are pairwise
disjoint.

(2) There is an irreducible SFT Z ⊂ X̂G such that φ|Z is almost invertible and onto Y .

(3) There is an irreducible SFT Z ⊂ X̂G such that φ|Z is finite-to-one and onto Y .

(Note 1: If di ≥ 2 for all i ∈ T0 ∪ T1, then the vertex shift of a spoke graph does not have
a fixed point. If T1 6= ∅, then the image Y always has a fixed point 0∞. So, under these
assumptions, φ|Z cannot be a conjugacy.
Note 2: In (2) and (3), it is not necessary to assume that Z is irreducible since otherwise
we can replace Z with an irreducible component with maximal topological entropy.)

Proof. (1) ⇒ (2): Suppose there is a set W ⊆ T1 s.t. ∪i∈WKi = ∪i∈T1Ki and {Ki : i ∈ W}
are pairwise disjoint.
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The graph G The graph H

U1 U2

U3

U4

U ′1

U ′2

U ′3 U ′4

Figure 2: An example of G and H, where dots denote vertices and Ui’s, U
′
i ’s are spokes in G

and H, respectively. For this example, T0 = {3, 4}, T1 = {1, 2},W = {2} and H1 = U ′2, H2 =
U ′1 ∪ U ′3, H3 = U ′4.

Denote

S(0) = ∪i∈W{n ∈ Z≥0 : n ∈ Ki mod D,n ≥ mi},
S(1) = ∪i∈T1{n ∈ Z≥0 : n ∈ Ki mod D,n ≥ mi},
S(2) = {|Ci| − 1 : i ∈ T0}.

We first construct a new graph H from the graph G through the following three steps:

(A) Let H be the graph consisting of the central state B ∈ V(G) and all the spokes Ui ⊂ G
with i ∈ W ;

(B) For each r ∈ S(1) \S(0), add to H a simple cycle, denoted C(r), of length r+ 1 starting
and ending with B;

(C) For each s ∈ S(2) \S(1), choose an i(s) ∈ T0 such that |Ci| = s+ 1. Add the degenerate
spoke Ui(s) to H.

See Figure 2 for an example of the construction of H.
Let H1, H2, H3 denote subgraphs consisting of spokes added to H in Steps (A), (B) and

(C), respectively. It is worth noting that any r ∈ S(1)\S(0) corresponds to a “gap” in regular
spokes of G that is missing from {Ui : i ∈ W}, and any s ∈ S(2) \S(1) corresponds to a “gap”
in degenerate spokes of G that is missing from {Ui : i ∈ T1}.

The following properties are immediate from the construction of H:
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(a) H is a spoke graph. It consists of the central state B and several spokes intersecting at
B, where spokes in H1 are regular spokes and spokes in H2∪H3 are degenerate spokes.

(b) H1 ∪H3 is a subgraph of G;

(c) If η1 and η2 are two different simple cycles at B in H, then |η1| 6= |η2|.

Now, define a one-block map Ψ : V(H)→ V(G) as follows:

• For v ∈ V(H1 ∪H3), let Ψ(v) = v;

• For any r ∈ S(1) \ S(0), choose a cycle C̃(r) in G starting and ending with B with no

B in its interior such that |C̃(r)| = |C(r)|. Define

Ψ(V (C(r))) := V (C̃(r)).

Note that for any two distinct vertices v1, v2 ∈ V(H), Ψ(v1) = Ψ(v2) only if there exist
r1, r2 ∈ S(1) \S(0) with r1 6= r2 such that v1 ∈ V (C(r1)) and v2 ∈ V (C(r2)), where C(r1) and
C(r2) are constructed in Step (B).

Let ψ : X̂H → X̂G be the sliding block code induced by Ψ and define Z := ψ(X̂H). Note
that any point z ∈ Z is a concatenation of strings of the form

Bu1u2 · · ·ukB, · · · v−3v−2v−1B, Bw1w2w3 · · · , · · · i−2i−1i0i1i2 · · · (11)

where uj’s, vj’s, wj’s and ij’s are vertices in G distinct from B. Thus, to show that ψ is
one-to-one, it suffices to show that any string in (11) has a unique Ψ-pre-image, and we
prove this by considering the following cases:

(1) Any allowed block of the form Bu1u2 · · ·ukB in X̂G must be the Ψ-image of some block
of the form Bx1x2 · · ·xkB with xi ∈ V(H) for any 1 ≤ i ≤ k. Noting from Property
(c) that each Bx1x2 · · ·xkB is uniquely determined by its length, we conclude that the
Ψ-pre-image of Bu1u2 · · ·ukB is unique.

(2) For simplicity, among the infinite paths in (11), we consider only those of the form

· · · v−3v−2v−1B in X̂G. Such a string must be the Ψ-image of some string of the
form · · ·x−3x−2x−1B with xi ∈ V(H1). Since Ψ is the identity map on V(H1 ∪ H3),
· · · v−3v−2v−1B has a unique Ψ-pre-image.

Let Z := ψ(X̂H). Then Z is an irreducible SFT because it is conjugate to X̂H . We now
prove that φ|Z is almost invertible and onto Y . Note that by definition Φ ◦ Ψ maps the
central state B to 1 and maps all other vertices in H to 0. So φ ◦ ψ is the standard factor
code on the spoke graph H.

To see that φ ◦ ψ is onto, first note that the image (φ ◦ ψ)(X̂H) is a gap shift with gaps
of the form

S ′ := S(0) ∪ (S(1) \ S(0)) ∪ (S(2) \ S(1))

= S(0) ∪ S(1) ∪ S(2)

= S(1) ∪ S(2)
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where we use the fact that S(0) ⊂ S(1) in the last equation. Since ∪i∈WKi = ∪i∈T1Ki, we
have S ′ = S where S is such that Y is an S-gap shift. Therefore φ ◦ ψ is onto.

We now show that φ ◦ ψ is finite-to-one. We first note from the construction of H that
for any t ∈ S, there is a unique cycle of length t + 1 in H starting and ending with B,
whose interior does not contain B. Hence, for any t ∈ S, there is a unique path in H whose
image under Φ ◦Ψ is 10t1. This implies that φ ◦ψ has no graph diamond and therefore it is
finite-to-one.

Since the central state B is the only vertex in H whose (Φ◦Ψ)-image is 1, and since φ◦ψ
is a finite-to-one 1-block code on a 1-step SFT, its degree is 1 (by [LM95, Theorem 9.1.11
(3) and Proposition 9.1.12]) and therefore it is almost invertible.

Finally, since φ ◦ ψ is almost invertible and onto Y, and ψ is a conjugacy from X̂H to Z,
we conclude that φ|Z : Z → Y is almost invertible and onto.

(2) ⇒ (3): As we said in Section 2, any almost invertible factor code on an irreducible
SFT is finite-to-one [LM95, Proposition 9.2.2].

(3)⇒ (1): Suppose that there is an irreducible SFT Z ⊂ X such that φ|Z is finite-to-one
and onto. Let k be the degree of φ|Z and L be the maximum length of words in a forbidden
list of blocks from X that defines Z. Then, it follows from our definition of the degree of
finite-to-one codes in Section 2 that there exist a word of the form u := 0e110e21 · · · 10en such
that each ei ∈ S, an integer L ≤ M ≤ |u|, and an index 1 ≤ j ≤ |u| −M + 1 such that the
set

E := {v[j,j+M−1] : v ∈ B(Z),Φ(v) = u}

has cardinality k. Note that u is a magic word and u[j,j+M−1] is the corresponding magic
block.

For notational convenience, in the remainder of this proof, for any block w with length
|u|, we use the following notation:

w := w[1,j−1], w̃ := w[j,j+M−1], ŵ := w[j+M,|u|]

where u, j and M are defined as above.
Denote elements in E by a(1), a(2), · · · , a(k) and for any 1 ≤ l ≤ k, define

B(l) := {v ∈ B(Z) : Φ(v) = u, ṽ = a(l)} and R := ∪1≤l≤kB(l).

Note that R is the set of all φ|Z-pre-images of u. By a higher block recoding similar to
[LM95, Proposition 9.1.7], the following observation follows from [LM95, Proposition 9.1.9
(part 2)].

Observation 1: Let uxu be a word in B(Y ) and let A := {z ∈ B(Z) : Φ(z) = uxu}. Note that
any element in A is of the form v(l)wv(l

′) where 1 ≤ l, l′ ≤ k and v(l) ∈ B(l), v(l
′) ∈ B(l′). Then,

there exists a permutation τ = τuxu of {1, 2, · · · k} such that for any pair (l, l′), v(l)wv(l
′) ∈ A

for some w only if l′ = τ(l).

For any 1 ≤ l ≤ k, define

F (l) := {i ∈ T1 :vV (γ+i (Ci)
Lγ−i )w ∈ B(Z) for some v ∈ B(l) and some w ∈ R}
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to be the index set of regular spokes that can follow some pre-images of u in B(l) and precede
some pre-images of u in R. We claim that for any 1 ≤ l ≤ k, {Ki : i ∈ F (l)} are pairwise
disjoint and ∪i∈F (l)Ki = ∪i∈T1Ki. We assume WLOG that l = 1 in the following.

To show {Ki : i ∈ F (1)} are pairwise disjoint, we suppose to the contrary that there
exists f ∈ Ki1 ∩Ki2 for some i1, i2 ∈ F (1) with i1 6= i2. Choose n(f) = f(mod D) such that
n(f) ≥ max{di1L+mi1 , di2L+mi2}. Then, n(f) ∈ S and according to the definition of F (1),
there are v, x ∈ B(1), w ∈ B(l1), y ∈ B(l2) for some 1 ≤ l1, l2 ≤ k such that

Φ(vV (γ+i1(Ci1)
(n(f)−mi1

)/di1γ−i1)w) = Φ(xV (γ+i2(Ci2)
(n(f)−mi2

)/di2γ−i2)y) = u10n(f)1u,

and ṽ = x̃ = a(1), w̃ = a(l1), ỹ = a(l2).

Then, we infer from Observation 1 that l1 = l2 and therefore w̃ = ỹ = a(l1). Now, the two
words

ṽv̂V (γ+i1(Ci1)
(n(f)−mi1

)/di1γ−i1)ww̃ and x̃x̂V (γ+i2(Ci2)
(n(f)−mi2

)/di2γ−i2)yỹ (12)

are both φ|Z-pre-images of ũû10n(f)1uũ, and they both start with a(1) and end with a(l1).
Since a(1) and a(l1) both have length M , which is no less than L, we deduce that the two words
in (12) can be extended to a point diamond, contradicting the fact that φ|Z is finite-to-one.

To show ∪i∈F (1)Ki = ∪i∈T1Ki, assume to the contrary that there is a g ∈ ∪i∈T1Ki but
g /∈ ∪i∈F (1)Ki. Choose n(g) := g (mod D) such that n(g) > max{di : i ∈ T0} and n(g) ≥
max{diL+mi : i ∈ T1}. Then, n(g) ∈ S and we deduce from the definition of F (1) that the
set

Q := {z[j,j+M−1] : z ∈ B(Z),Φ(z) = u10n(g)1u}
does not contain a(1). Noting that Q ⊂ {a(1), a(2), · · · , a(k)} since u is a magic word, the
cardinality of Q is at most k − 1. This contradicts the fact that φ|Z has degree k, and
therefore ∪i∈F (1)Ki = ∪i∈T1Ki.

Now let W = F (1). Then, we immediately infer from above that W is the desired set and
therefore complete the proof.

Remark 8.2. Our proof indeed shows that Conditions (2) and (3) in Theorem 8.1 are
equivalent for any 1-block factor code with an unambiguous symbol defined on a 1-step
SFT.

Example 8.3. Let G be the graph in Figure 3 where B is the central state. Let φ be the
standard factor code on G. Then, one verifies that Φ (which generates φ) has no graph
diamond and so φ is finite-to-one; on the other hand, φ is not one-to-one: both (V1V2)

∞ and

(V2V1)
∞ are preimages of 0∞. In this case, there is no subshift Z ⊂ X̂G such that φ|Z is

one-to-one and onto.

B V1 V2

γ+

γ−

Figure 3: The graph G, which is a representation of XF .
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Example 8.4. Let G be the 3-spoke graph defined by

d1 = d3 = 6, d2 = 3, m1 = m2 = 1, m3 = 4

and φ be the standard factor code onG. Then, T0 = ∅, T1 = {1, 2, 3}, D = l.c.m.(d1, d2, d3) =
6 and

K1 = {1}, K2 = {1, 4}, K3 = {4}.
Here the image Y of φ is an S-gap shift with

S = {n ∈ Z≥0 : n = 1 mod 3}.

There are two ways to choose W :
(1) W = {1, 3}. It can be readily checked that ∪i∈WKi = ∪i∈T1Ki and K1 ∩K3 = ∅. So,

by Theorem 8.1 there is an SFT Z ⊂ X̂G such that φZ is finite-to-one and onto Y . In this

case, the proof chooses Z to be X̂U1∪U3 .

(2) W = {2}. Here, the proof of Theorem 8.1 chooses Z to be X̂U2 .
This shows that there are two irreducible Markov measures ν1 and ν2, with ν1 supported

on X̂U1∪U3 and ν2 supported on X̂U2 , that both achieve the capacity of the channel given by
the standard factor code on G.

Example 8.5. Let G be the 4-spoke graph defined by

m1 = m2 = m3 = 1, m4 = 10, d1 = 2, d2 = 3, d3 = 4, d4 = 6

and φ be the standard factor code on G. Then,

T0 = ∅, T1 = {1, 2, 3, 4}, D = l.c.m.(d1, d2, d3, d4) = 12

and

K1 = {1, 3, 5, 7, 9, 11}, K2 = {1, 4, 7, 10}, K3 = {1, 5, 9}, K4 = {4, 10}.

Let Y be the image of φ. Since K1 ∩ K4 = ∅ and K1 ∪ K4 = ∪i∈T1Ki, it follows from

Theorem 8.1 that there is an SFT Z ⊂ X̂G such that φ|Z is finite-to-one and onto Y . Note
that in this example, we cannot simply choose H in the proof of Theorem 8.1 to be the
graph obtained from G by deleting U2 and U3. This is because 1041 is allowed in Y , but not

allowed in φ(X̂U1∪U4): the only Φ-preimage of 1041 is V (γ+2 C2γ
−
2 ) and it comes only from the

spoke U2. Instead, we let H be the graph obtained from G by deleting U2 and U3, and then
adding to H a cycle of length 5 starting and ending with B. Then, according to the proof
of Theorem 8.1, X̂H is conjugate to some SFT Z ⊂ X̂G and φ|Z is finite-to-one and onto Y .

Example 8.6. An example for which the conditions in Theorem 8.1 are not satisfied is given
in Section 3 of [MPW84]. Here, G is the 4-spoke graph defined by

m1 = m2 = 1, m3 = 2, m4 = 6, d1 = 2, d2 = 3, d3 = 6, d4 = 6.

Let φ be the standard factor code on G. It was shown in [MPW84] that for this φ, P3 is not
true and therefore P2 is not true.
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9 Conjecture: P2 and P3 are equivalent for Standard

Factor Codes on Spoke Graphs

Having characterized the condition under which P2 is satisfied for standard factor codes on
spoke graphs, we now turn to the question whether P2 is equivalent to P3 for these codes.
Recall from Proposition 4.2 that P2 always implies P3 for a general factor code. For the
converse, we have the following.

Conjecture 9.1. Let G be a spoke graph and φ be the standard factor code on G. Then P3
implies P2.

Remark 9.2. It will be shown that if P3 holds, i.e., there is a k-th order Markov measure ν
on X̂G s.t. φ∗(ν) = µ0, the unique mme on Y , then ν(V (Ci)|V ((Ci)

k)) = Q−di , where Ci is
the cycle (disjoint from B) on the spoke Ui, Q = ehtop(Y ) and di is the length of Ci. This is
Part (a) of the proof of Proposition 9.4 (see Equation (13)). Hence, the ν-weight-per-symbol
of each such V ((Ci)

∞) is a constant Q−1. If it is true that the weight-per-symbol of each of
the periodic points V ((γ+i γ

−
i )∞) is also Q−1, then one would have Condition 4 of Proposition

4.3 and P2 would be true. It may be that there is another Markov measure ν ′ on X̂G s.t.
φ∗(ν ′) = µ0 such that this condition is satisfied.

In the remainder of this section, we will prove some special cases of Conjecture 9.1. To
this end, we begin with some lemmas.

Lemma 9.3. (Consequence of Strong Form of Chinese Remainder Theorem)
Let k be a positive integer. If for any 1 ≤ i < j ≤ k, there exists xi,j s.t. xi,j = ai (mod di)
and xi,j = aj (mod dj), then there exists x such that x = al (mod dl) for any 1 ≤ l ≤ k.

Proof. For any 1 ≤ i < j ≤ k, let gi,j = gcd(di, dj). Then gi,j divides xi,j − ai and xi,j − aj
so gi,j divides ai − aj. Hence, the generalized Chinese Remainder Theorem [Le56, Theorem
3-12] asserts that there is a common solution to x = ai (mod di), i = 1, 2, · · · , k.

Lemma 9.4. Let ν be a k-th order Markov measure on X̂G such that P3 holds. Define
Πi := ν(V (γ+i (Ci)

Dk/di)|B), P := {i ∈ T1 : Πi > 0} and Rj := {i ∈ T1 : j ∈ Ki} = {i ∈ T1 :
di divides j −mi}. Then

(a) For each 0 ≤ j < D,

Q−Dk =
∑

i∈Rj∩P

ΠiQ
mi+1(1−Q−di) (13)

where Q := ehtop(Y );

(b) ∪i∈T1\PKi ⊂ ∪i∈PKi;

(c) For each pair j, j′, if Rj′ ∩ P ⊂ Rj ∩ P , then Rj′ ∩ P = Rj ∩ P .
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Proof. Fix a congruence class 0 ≤ j < D and let µ0 be the unique mme on Y .
Since φ(ν) = µ0, for all n ≥ maxi∈T mi/D,

µ0(10Dk+j+Dn1) =
∑
i∈Rj

ν(V (γ+i (Ci)
(1/di)(Dk+j+Dn−mi)γ−i )).

Let
Qi := ν(V (Ci)|V (γ+i (Ci)

(1/di)Dk)).

Since µ0(1) = ν(B), using the formula for the unique mme µ0 we have

Q−(Dk+j+Dn+1) =
∑
i∈Rj

Πi(Q
1/di
i )−mi(Q

1/di
i )Dn+j(1−Qi)

=
∑

i∈Rj∩P

Πi(Q
1/di
i )−mi(Q

1/di
i )Dn+j(1−Qi)

and so

Q−(Dk+1) =
∑

i∈Rj∩P

Πi(Q
1/di
i )−mi

(
Q

1/di
i

Q−1

)Dn+j

(1−Qi).

Letting n→∞, we have for all i ∈ Rj ∩ P ,

Q
1/di
i

Q−1
= 1. (14)

This yields equation (13) and proves (a).
Since Y is a gap shift, µ0 is fully supported and so gives positive measure to each allowed

gap. Thus, ∪i∈T1\PKi ⊂ ∪i∈PKi, proving (b).
To see (c), we first derive from (13) that∑

i∈Rj′∩P

ΠiQ
mi+1(1−Q−di) = Q−Dk =

∑
i∈Rj∩P

ΠiQ
mi+1(1−Q−di).

Thus, ∑
i∈(Rj∩P )\(Rj′∩P )

ΠiQ
mi+1(1−Q−di) = 0

which immediately implies (Rj ∩ P ) \ (Rj′ ∩ P ) = ∅.

Lemma 9.5. Let P be defined as in Lemma 9.4 and i1, i2 ∈ P with Ki1 ∩Ki2 6= ∅. Then,
for any j ∈ Ki1 \Ki2, there exists i3 ∈ P such that

(1) j ∈ Ki3;

(2) Ki2 ∩Ki3 = ∅.
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Proof. For notational convenience, we rewrite j by j1 and define S(i1, i2, j1) := (Rj1 ∩ P ) \ {i1, i2},
where Rj1 is defined in Lemma 9.4.

We first show that S(i1, i2, j1) 6= ∅. Suppose to the contrary that S(i1, i2, j1) = ∅. Then,
Rj1∩P = {i1}. Since Ki1∩Ki2 6= ∅, there exists j2 ∈ Ki1∩Ki2 and therefore Rj2∩P ⊃ {i1, i2}.
Hence, Rj1 ∩ P ( Rj2 ∩ P , contradicting Lemma 9.4 (c).

We then claim that there exists i3 ∈ S(i1, i2, j1) such that Ki2 ∩Ki3 = ∅. If not, then

Ki2 ∩Ki 6= ∅ for any i ∈ S(i1, i2, j1).

Recalling that j2 ∈ Ki1 ∩Ki2 and j1 ∈ Ki1 ∩ (∩i∈S(i1,i2,j1)Ki), we derive from Lemma 9.3 that
there exists j4 ∈ Ki1 ∩Ki2 ∩ (∩i∈S(i1,i2,j1)Ki). Hence,

Rj1 ∩ P = {i1} ∪ S(i1, i2, j1) ( {i1, i2} ∪ S(i1, i2, j1) ⊂ Rj4 ∩ P,

contradicting Lemma 9.4 (c).

With these lemmas in hand, we prove the following.

Proposition 9.6. Let G be a spoke graph, φ be the standard factor code on G and P be
defined as in Lemma 9.4. If there is a stationary Markov measure ν on X̂G s.t. φ∗(ν) = µ0,

the unique mme of the output Y , then there is an SFT Z ⊂ X̂G such that φ|Z is finite-to-one
and onto Y if any of the following hold:

(a) ∩i∈PKi 6= ∅ (in particular, this holds when mi = 1 for all i or the {di} are pairwise
co-prime (by the Chinese Remainder Theorem));

(b) For any i1, i2 ∈ P , Ki1 ∩Ki2 6= ∅;

(c) There are subsets E1 and E2 of P such that {Ki : i ∈ E1} and {Ki : i ∈ E2} are both
pairwise disjoint and ∪i∈E1∪E2Ki = ∪i∈T1Ki. In particular, this condition is satisfied if
there are only two distinct di’s;

(d) |P | ≤ 5.

Proof. According to Theorem 8.1, it suffices to show that there is a W ⊂ T1 such that
∪i∈WKi = ∪i∈T1Ki and {Ki : i ∈ W} are pairwise disjoint.

Proof of (a): Let A := ∪i∈PKi. Note that P 6= ∅ by the existence of ν. Let j ∈ ∩i∈PKi.
Apply Lemma 9.4(c) to this j and an arbitrary j′ ∈ A to get that for all i ∈ P , i ∈ ∩j′∈ARj′

and so each Ki = A. By Lemma 9.4 (b), A = ∪i∈T1Ki. Hence, W can be taken to consist of
only one element, namely any element of P .

Proof of (b): Since Ki’s are pairwise intersecting, an application of Lemma 9.3 to
{Ki : i ∈ P} implies that ∩i∈PKi 6= ∅ which is Case (a).

Proof of (c): We assume WLOG that the Ki’s are distinct. Denote

F := {i ∈ E1 : Ki ∩Ki′ = ∅ for all i′ ∈ E2}. (15)

We claim that for any i ∈ E1 \ F , Ki ⊂ ∪i′∈E2Ki′ . To see this, assume to the contrary that
there are i1 ∈ E1 \ F and j ∈ Ki1 such that j /∈ ∪i′∈E2Ki′ . Recalling that Ki1 ∩Ki2 = ∅ for
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i1, i2 ∈ E1 with i1 6= i2, we have Rj ∩ P = {i1}. On the other hand, i1 ∈ E1 \ F implies
that there exists j′ ∈ Ki1 and i3 ∈ E2 such that j′ ∈ Ki1 ∩Ki3 . Hence, Rj′ ∩ P ⊃ {i1, i3} )
{i1} = Rj ∩ P , contradicting Lemma 9.4 (c).

Now let W := F ∪E2. Clearly {Ki : i ∈ W} are pairwise disjoint by the definition of F .
Since Ki ⊂ ∪i′∈E2Ki′ for any i ∈ E1 \ F , ∪i∈WKi = ∪i∈PKi = ∪i∈T1Ki, proving (c).

Proof of (d): By adding repeated spokes (for which the choice of the set W is not
affected), we can regard the cases |P | < 5 as special cases of |P | = 5. Hence, we assume
|P | = 5 in the following.

Let P = {1, 2, 3, 4, 5}. A pair i, i′ ∈ P is called an intersecting pair if Ki 6= Ki′ and
Ki ∩Ki′ 6= ∅. We consider the following cases.
Case 1: For any intersecting pair i, i′ ∈ P , either Ki ⊂ Ki′ or Ki′ ⊂ Ki.

In this case, we define a partial order 4 in the following way: if i, i′ is an intersecting
pair and Ki ⊂ Ki′ , then Ki 4 Ki′ ; if i, i′ is not a intersecting pair, then Ki and Ki′ are
incomparable.

The partial order 4 partitions the set {Ki : i ∈ P} into several classes such that

1. each class is a chain with a unique maximal element (under 4);

2. if Ki and Ki′ are from different classes, then Ki ∩Ki′ = ∅.

Hence, letting W be the indices of all the maximal elements, we have {Ki : i ∈ W} are
pairwise disjoint and ∪i∈WKi = ∪i∈PKi = ∪i∈T1Ki.
Case 2: There exists an intersecting pair i, i′ ∈ P such that both Ki * Ki′ and
Ki′ * Ki.

First note that in this case, we necessarily have di 6= di′ . We may assume that i = 1,

i′ = 2 and
l.c.m.(d1, d2)

d1
≥ 3. Let j1 ∈ K1 ∩ K2, j2 , (j1 + d1) mod (l.c.m.(d1, d2)) and

j3 , (j2 + d1) mod (l.c.m.(d1, d2)) where 0 ≤ j2, j3 < l.c.m.(d1, d2). Then j2, j3 ∈ K1 \K2.
Furthermore, there is also a j4 ∈ K2 \K1. Applying Lemma 9.5 to j2, j3, j4, we deduce that
there exist l1, l2, l3 ∈ {3, 4, 5} such that

j2 ∈ K1 ∩Kl1 , Kl1 ∩K2 = ∅, (16)

j3 ∈ K1 ∩Kl2 , Kl2 ∩K2 = ∅,
j4 ∈ K2 ∩Kl3 , Kl3 ∩K1 = ∅. (17)

Note that we necessarily have l3 6= l1 and l3 6= l2. We now claim that l1 6= l2. To see this,
suppose that l1 = l2 = l. Then j2 ∈ Kl, j3 ∈ Kl. Since j3 = (j2 + d1) mod (l.c.m.(d1, d2))
and j2 ∈ K1, j3 ∈ K1, we have Kl ⊂ K1. Hence, j1 ∈ K1 ∩K2 ∩Kl, contradicting the fact
that K2 ∩Kl = ∅. (See Figure 4, where for any r, s, a • (resp. a ×) on the (r, s) position
means that jr ∈ Ks (resp. jr /∈ Ks)).

25



j4 × • ×
j3 • × •
j2 • × •
j1 • • ×

(i, j) K1 K2 Kl K4 K5

Figure 4: Relationship between K1, K2 and Kl if l1 = l2 = l.

Hence, l1, l2 and l3 are distinct. We may assume that l1 = 3, l2 = 4 and l3 = 5. The
current relation between {K1, K2, K3, K4, K5} is given in Figure 9, where ? means that
whether this position is • or × is unknown up to now.

j4 × • × × •
j3 • × ?1 • ×
j2 • × • ?2 ×
j1 • • × × ×

(i, j) K1 K2 K3 K4 K5

Figure 5: Relationship between K1, K2, K3, K4, K5 with some unknowns.

We then claim that j3 /∈ K3 and j2 /∈ K4 (i.e., ?1 =?2 = × in Figure 9). To verify this
claim, assume WLOG that j3 ∈ K3. Then j2 ∈ K1 ∩ K3 and j3 ∈ K1 ∩ K3. Noting that
j3 − j2 = d1 mod (l.c.m.(d1, d2)), we must have K3 ⊃ K1, which contradicts the fact that
j1 ∈ K1 \K3. Hence, j3 /∈ K3. A similar argument shows that j2 /∈ K4, proving the claim.

Now the relationship between {K1, K2, K3, K4, K5} is partially characterized in Figure 6.

j4 × • × × •
j3 • × × • ×
j2 • × • × ×
j1 • • × × ×

(i, j) K1 K2 K3 K4 K5

Figure 6: Relationship between K1, K2, K3, K4, K5.

We then claim that K3 ∩ K4 = ∅. To see this, suppose to the contrary that there is a
j5 ∈ K3 ∩K4. Since j2 ∈ K1 ∩K3, j3 ∈ K1 ∩K4, we infer from Lemma 9.3 that there is a
j6 ∈ K1 ∩K3 ∩K4, contradicting Lemma 9.4 (c).

Now let E1 := {1, 5}, E2 := {2, 3, 4}. Since {Ki : i ∈ E1} and {Ki : i ∈ E2} are both
pairwise disjoint, the desired result follows from Part (c).

Remark 9.7. When |P | ≤ 4, by carefully going through a similar argument as in the proof
of (d), one can show that for any i 6= j ∈ P , Ki ∩Kj = ∅ or Ki ⊂ Kj or Kj ⊂ Ki.
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10 Standard Factor Codes Defined on Another Class

of Graphs

We believe that our approach in the proof of Theorem 8.1 also works for more general graphs.
Note that for a graph G with one (regular) spoke, Theorem 8.1 implies that P2 always holds.
In this section, as an example we show that P2 also holds for standard factor codes defined
on a different kind of spoke graph. To be specific, let G be a graph which consists of a
central state B, a simple path γ+ from B to B′ 6= B, a simple path γ− from B′ to B, and
two simple cycles C1 and C2 including B′ s.t.

(a) |Ci| > 0 for i = 1, 2;

(b) γ+ and γ− only intersect at B and B′;

(c) γ+, γ−, C1 and C2 share the vertex B′ and there is no other common vertex among
γ+, γ−, C1 and C2.

Here, we implicitly assume that γ+ 6= ∅ and γ− 6= ∅.
Just as in Section 7, a standard factor code φ on G is induced by a one-block map

Φ : V(G)→ {0, 1} that maps the central state B to 1 and any other vertex to 0.
Let Y be the image of φ. We have the following.

Proposition 10.1. Let G be the graph defined above and φ be the standard factor code on
G. Then, there is an SFT Z ⊂ X̂G s.t. φ|Z is finite-to-one and onto Y .

We need the following lemma.

Lemma 10.2. Suppose d1, d2 are two positive integers. Let

E = {n ∈ Z≥0 : n = s · d1 + t · d2, s, t ∈ Z≥0},

u : =
l.c.m.(d1, d2)

d2
.

Then for any n ∈ E, the equation

x · d1 + y · d2 = n s.t. x, y ∈ Z≥0, 0 ≤ y < u (18)

has a unique solution.

Proof. We first show that (18) has a solution. Suppose n = s·d1+t ·d2 for some s, t ∈ Z≥0. If
t < u, then x = s, y = t is a solution to (18); otherwise, if t ≥ u, then there exist nonnegative
integers k, r with 0 ≤ r < u such that t = ku+ r. Hence, we have

n = s · d1 + t · d2
= s · d1 + (ku+ r)d2

= s · d1 + k · (l.c.m.(d1, d2)) + rd2

=

(
s+ k · l.c.m.(d1, d2)

d1

)
d1 + rd2, (19)
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Since d1 | l.c.m.(d1, d2) and 0 ≤ r < u, we conclude from (19) that x = s+k · l.c.m.(d1,d2)
d1

, y = r
is a solution to (18).

We now prove that (18) has no more than one solution. Suppose to the contrary that there
exist two different pairs of integers (x1, y1) and (x2, y2) that satisfy (18) and WLOG y1 < y2.
Now we have x1 · d1 + y1 · d2 = x2 · d1 + y2 · d2 = n, which implies (y2 − y1)d2 = (x1 − x2)d1.
Hence, d1 | (y2 − y1)d2 and it follows that

(y2 − y1)d2 ≥ l.c.m.(d1, d2) (20)

since d2 | (y2 − y1)d2. On the other hand, recalling that y1, y2 < u, we have y2 − y1 < u and

(y2 − y1)d2 < u · d2 =
l.c.m.(d1, d2)

d2
· d2 = l.c.m.(d1, d2),

contradicting (20).

Proof of Proposition 10.1: We first note that the image Y of φ is a gap shift with gap
set

S := {n ∈ Z≥0 : n = m+ s · d1 + t · d2 with s, t ∈ Z≥0},

where m = |γ+|+ |γ−| − 1 and di = |Ci| for i = 1, 2.
Let u := l.c.m.(d1, d2)/d2 and denote the vertices on the cycle C2 and path γ+ by

V (C2) = f1f2 · · · fd2 ,
V (γ+) = Bg1g2 · · · g|γ+|−1f1,

where f1 = B′. We then construct a new graph H from G through the following steps:

(A) Let H be the graph obtained from G by deleting the cycle C2;

(B) If u > 1, add to H a simple path β from B to B′ such that

|β| = |γ+|+ (u− 1)d2,

V (β) = Bg′1g
′
2 · · · g′|γ+|−1f

(1)
1 f

(1)
2 · · · f

(1)
d2
· · · · · · f (u−1)

1 f
(u−1)
2 · · · f (u−1)

d2
B′;

(C) For each 1 ≤ j ≤ u− 2, add to H an edge from f
(j)
d2

to B′.

See Figure 7 for an example of G and H when m = 3, |C1| = 4 and |C2| = 3.
We now construct a sliding block code ψ : XH → XG such that ψ is one-to-one and φ ◦ψ

is finite-to-one and onto. It will follow that Z := ψ(XH) is an SFT and φ|Z is finite-to-one
and onto.

Let Ψ : V(H)→ V(G) be the 1-block map defined by

(a) For any vertex v on γ+, γ− or C1, Ψ(v) = v;

(b) For any 1 ≤ i ≤ |γ+| − 1, Ψ(g′i) = gi; for any 1 ≤ j ≤ d2 and 1 ≤ k ≤ u − 1,

Ψ(f
(k)
j ) = fj.
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Figure 7: An example of G and H with m = 3, |C1| = 4, |C2| = 3.

Let ψ be the sliding block code induced by Ψ. To show that ψ is one-to-one it suffices to show
that there exists some M such that whenever ψ(x) = y, then x0 can be uniquely determined
from y[−M,M ]. We show this by considering the following possibilities for y0:

(1) If y0 is on γ− or C1 and y0 6= B′, then x0 = y0;

(2) If y0 = gi for some i, let

N1 := min{l ≥ 0 : yl = g|γ+|−1} ≤ |γ+| − 2.

Then x0 = g′i if yN1+2 = f2 and x0 = gi otherwise;

(3) If y0 = fj for some j, let

N2 := min{` ≥ 0 : y−` = g|γ+|} ≤ (u− 1)d2.

If y1 6= fl for any 1 ≤ l ≤ d2, then x0 = f1; otherwise, x0 = f
(k)
j where k = dN2/d2e.

This shows that ψ meets the criterion above to be one-to-one with M := max{|γ+|, (u−1)d2}.
Now we show that φ ◦ ψ : X̂H → Y is finite-to-one and onto. Note that by definition

φ ◦ ψ maps the central state B of H to 1 and maps any other vertex to 0.
To this end, first observe that any k ∈ S must satisfy k = m + s · d1 + t · d2 for some

s, t ∈ Z≥0. Noting from Lemma 10.2 that there is a unique pair (x, y) with x, y ∈ Z≥0 and
0 ≤ y < u such that s · d1 + t · d2 = x · d1 + y · d2, we conclude that

(Φ ◦Ψ)−1(10k1) =

{
V (γ+(C1)

xγ−) if y = 0,

V (β(C1)
xγ−) if 0 < y < u.
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In particular, any block of the form 10k1 with k ∈ S has a unique preimage under Φ◦Ψ. Simi-
larly, one can show that |(Φ◦Ψ)−1(0∞1)| = 1, |(Φ◦Ψ)−1(10∞)| = u, and |(Φ◦Ψ)−1(0∞)| = d1.
Since each element y ∈ Y is a concatenation of blocks of the form 10k, 0∞1, 10∞ and 0∞ with
k ∈ S,

1 ≤ |(φ ◦ ψ)−1(y)| ≤ max(u, d1).

So φ ◦ ψ is finite-to-one and onto Y .

Remark 10.3. The subshift of finite type Z is not unique: indeed, by interchanging the
role of C1 and C2, we can construct another SFT Z ′ ⊂ X̂G such that φ|Z′ is finite-to-one and
onto Y .

11 Concluding Remarks

In this paper, we have interpreted input-constrained deterministic channels as factor codes
on irreducible SFTs. We introduced two properties, P1 and P2 (stronger than P1), of such
factor codes sufficient for Markov capacity to achieve capacity of the corresponding channel.
We characterized P1 for a class of factor codes and P2 for a more specialized class of factor
codes. For the latter class, we conjectured that P2 is equivalent to the condition that Markov
capacity achieves capacity and gave several special cases to support this conjecture.
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