Noname manuscript No.
(will be inserted by the editor)

Globally Solving Concave Quadratic Program via Doubly
Nonnegative Relaxation

Zheng Qu - Tianyou Zeng - Yuchen Lou

Abstract We consider the problem of maximizing a convex quadratic function over
a bounded polyhedral set. We design a new framework based on SDP relaxation and
cutting plane method for solving the associated reference value problem. The major
novelty is a new way to generate valid cut through the doubly nonnegative (DNN)
relaxation. We establish various theoretical properties of the DNN relaxation. This
includes its equivalence with the Shor relaxation of the equivalent quadratically con-
strained problem, the strong duality and generation of valid cut from an approximate
solution of the DNN relaxation returned by an arbitrary SDP solver. Computational
results on both real and synthetic data demonstrate the efficiency of the proposed new
method and its ability to solve high dimensional problems with dense data. In par-
ticular, our new algorithm successfully solved in 3 days the reference value problem
arising from computational biology for a dataset containing more than 300,000 in-
stances of dimension 100. In contrast, CPLEX or Gurobi is estimated to need years
of computational time for the same dataset on the same computing platform.

Keywords Concave quadratic programming - Doubly nonnegative relaxation -
Cutting plane method - Strong duality - Valid bound - Large-scale nonconvex
programming

Mathematics Subject Classification (2020) 90C20 - 90C22 - 90C26 - 90C59

Z.Qu
Department of Mathematics, the University of Hong Kong.
E-mail: zhengqu@hku.hk

T. Zeng
Department of Mathematics, the University of Hong Kong.
E-mail: logic@connect.hku.hk

Y. Lou
Department of Industrial Engineering and Management Sciences, Northwestern University.
E-mail: yuchenlou2026 @u.northwestern.edu

2 Z.Qu, T. Zeng, Y. Lou

1 Introduction
1.1 Background

We consider the following problem of maximizing a convex quadratic function over
a polyhedral set:
P*(.F) := max P(x)
xeR” 1
(D
s.t. xXeZF.

Here,
&(x)=x"Hx+2p'x

is a convex quadratic function where H € R"*" is a positive semidefinite matrix. The
feasible region .7 is a polyhedral set written in standard form:

F={xeR":Ax=b,x > 0},)

where A € R™*" is a matrix of rank m. We further assume that .# is nonempty and
bounded. Note that problem (1) is equivalent to minimizing a concave quadratic func-
tion over a polyhedral set. For this reason, we shall refer to problem (1) as a concave
quadratic program (QP).

Concave QP has important applications in many areas, including engineering [9,
22], industry [1,4] and medical diagnosis [7,20]. More recently, concave QP finds
new applications in computational biology [14,36]. The biology problem concerned
is the detection of undiscovered protein/genome sequence and a key step in the ap-
proach proposed in [14,36] consists in solving the following problem:

determine whether vg > @*(F) or @*(F) > vg ? 3)

Here, vg is a certain prescribed reference value. For convenience, we shall refer to (3)
as the reference value problem associated with the concave QP problem (1). In this
real application, the dimension » is the number of known protein/genome sequences
of a certain species, and the number of constraints is fixed to m = 22. Depending on
the species considered, the dimension 7 or the number of reference value problems
may be very large. For example, we have the access to a dataset with 317,584 in-
stances of dimension n = 100, and a dataset with 3 instances of dimension n = 841.
The new protein detection problem requires to solve the reference value problem for
all the instances in the dataset.

We randomly selected 100 instances from the 317,584 instances of dimension
n = 100 and tried to solve them with off-the-shelf commercial solvers CPLEX and
Gurobi within 600 seconds. CPLEX failed to give an answer to (3) on 92 instances
and Gurobi failed on 48 instances. The performance of both CPLEX and Gurobi
clearly does not make the grade as the computational time to solve all the 317,584
instances using the best of these two solvers is at least 3 years'. Moreover, the 3
instances of dimension n = 841 can not be handled by CPLEX nor by Gurobi due to
the large dimension.

! If half of the instances require at least 600 seconds to solve on average, in total we need at least
600 x 317584 /2 = 95275200 seconds, which is roughly 3 years.

Globally Solving Concave QP via DNN Relaxation 3

Motivated by the challenge raised above, we develop in this paper a new method
for solving the reference value problem (3) associated with the concave QP prob-
lem (1). This new method also naturally extends to a global solver of (1). We focus
on the efficiency of the algorithm for large dimensional problems. In particular, the
algorithm should be highly efficient so that the 317,584 instances of dimension 100
can be solved in a reasonable amount of time. Moreover, the algorithm should be able
to deal with high dimensional problems so that instances of dimension up to 841 can
be handled as well.

1.2 Related work

Problem (1) falls into the class of general nonconvex QP problems. There are three
major techniques to find a global solution of general QP problems: reformulation,
branching and relaxation [18,24]. QP problems can be reformulated in different ways,
including bilinear reformulation [16,17], KKT reformulation [3,6], completely pos-
itive reformulation [2] and mixed-integer LP reformulation [8,34]. After certain re-
formulation of the QP according to the problem structures, branch-and-bound (B&B)
algorithms are employed in nearly all the state-of-the-art global QP solvers. There ex-
ist various branching strategies based on different reformulations [6,34]. Importantly,
the efficiency of the bounding step crucially depends on the quality of the relaxations
utilized. Well-known relaxations include, for example, McCormick relaxation [21],
semidefinite programming (SDP) relaxation [19,23], convex quadratic relaxation by
separable programming or DC (difference of convex functions) programming [12],
and doubly nonnegative relaxation [2].

Regarding the concave QP problem (1), it has also been richly studied in the lit-
erature and is known to be an NP-hard problem [26]. Traditional methods mainly
include enumerative methods [5], cutting plane methods [17,31], successive approx-
imation methods (see Chapter 6 in [13]), and branch-and-bound methods [3,6]. De-
tails and references for early work on concave QP can be found in the survey paper
of Pardalos and Rosen [25] and in the book of Horst and Tuy [13]. More recently,
Zamani [35] proposed a method which combines the cutting plane method and the
branch-and-bound method for concave QP. Telli et al. [29] proposed to approximate
the global optimum by solving a sequence of linear programs constructed from a lo-
cal approximation set. Hladik et al. [10,11] proposed new bounds for concave QP
based on factorization.

1.3 Doubly nonnegative relaxation
We recall the doubly nonnegative relaxation of (1). A square matrix is completely

positive (CP) if it can be written as BB where B is a matrix with nonnegative ele-
ments. Denote by %’ the cone of n-by-n completely positive matrices:

% = {BBT :BeR’f",keN}.

4 Z.Qu, T. Zeng, Y. Lou

It is known that problem (1) can be reformulated as a linear program over the cone

%.

Theorem 1 ([2]) The quadratic program (1) is equivalent to

max (H,X)+2p'x
st. Ax=b
diag(AXA") =bob 4

X x
(%) ew

The CP cone % can be approximated from the outside by a hierarchy of cones of
linear- and semidefinite-representable cones %y O % O --- D €, with Z correspond-
ing to the cone of doubly nonnegative (DNN) matrices, i.e., matrices that are positive
semidefintie and nonnegative. Replacing ¢ by %, we obtain the following doubly
nonnegative relaxation of (1):

&(F):=max (H,X)+2p'x

st. Ax=b
diag(AXA") =bob ®)
X x X x
() (7).
It is easy to see that:
D(F) > *(F). (6)

In the following we call (5) the DNN relaxation of (1) and call ®(.%) the DNN
bound of @*(.%). Note that (5) is a semidefinite program (SDP) and can be solved
numerically by many existing SDP solvers, e.g. [28,30,33]. There are also efficient
solvers specially dedicated to approximate the DNN bound ®(.%), e.g. [15].

1.4 Approach and contribution

We start by searching for a Karush—Kuhn—Tucker (KKT) point X of (1). If (%) > vg,
we conclude that @*(.) > vg and the reference value problem is solved. If & (%) <
Vg, we solve the SDP problem (5) to get the DNN bound &(.%). If

@(ﬁ) < VR, (7)

we conclude that @*(.%) < vg and the reference value problem is solved. If instead

®(.F) > vg, we propose to rely on the classical cutting plane method to proceed.
We will add valid cut to the original problem (1) so that the feasible region is re-

duced successively until we find an answer to (3). The major novelty of our approach

Globally Solving Concave QP via DNN Relaxation 5

is the computation of valid cuts from DNN relaxation. Let ¥ be a KKT point of the
QP problem (1) such that & () < vg. If there is a simplex A > ¥ such that

v > P (FNA) :=max{P(x):x€.FNA}, (8)

then we only need to consider the restricted region #\A instead of % to find an
answer to (3). Valid cut can be added to describe the restricted region % \A if ¥ is a
vertex of A. This cut will exclude the region .# N A which contains the KKT point .
We then deal with a concave QP problem with a strictly smaller feasible region .5\ A
and we can repeat the same process until an answer to (3) is obtained.

It is interesting to note that (8) is in fact a reference value problem. Directly
verifying (8) being impossible, it is common to replace ®*(# NA) in (8) by a com-
putable upper bound of it. In [31], Tuy proposed to generate valid cut using the fol-
lowing computable upper bound of &*(.F NA):

max{P(x) :x€A}.
In [17], Konno proposed another computable upper bound of &*(F NA):
K (FNA) :=max{¥(x,%):x€ A, i€ F},)

where W (x,%) := x H¥+ p'x+ p' & In this paper, we propose to employ the DNN
bound and validate (8) if the following condition holds:

B(FNA) <. (10)
We show in Theorem 2 that
O(FNA) < PK(FNA). (a1

Therefore, the cut generated based on (10) is always deeper than Konno’s cut.

The computation of DNN bound, which is needed in (7) and (10), clearly plays the
decisive role in the overall performance of the procedure described above. With the
aim of developing efficient and robust concave QP solver in the large-scale setting,
we also tackled the following two problems:

1. It is known that the SDP problem in the form of (5) does not have an interior
point. However, the theoretical convergence of the existing popular SDP solvers
(e.g. [28,30,33]) is established by assuming Slater’s condition, i.e., the existence
of an interior point.

2. Any numerical solver using finite floating-point arithmetic is incapable of return-
ing the exact value of &(F). Let v be the value returned by a numerical SDP
solver (e.g. Mosek and SDPNAL+) for solving (5). Then v is only an approxima-
tion (whatever the precision is) of @(.%). In particular, v < vg does not directly
imply (7). Similar problem occurs for computing &(.# N A) and verifying (10).

To fix the first issue, we prove in Lemma 1 that the DNN relaxation (5) has an
equivalent SDP formulation (19), which corresponds to Shor’s relaxation applied to
an equivalent quadratically constrained quadratic program (QCQP) of (1). We then
show in Proposition 1 that under some mild assumptions, Slater’s condition holds

6 Z.Qu, T. Zeng, Y. Lou

for (19) so that all the above mentioned SDP solvers are guaranteed to converge
when applied to solve (19). For the second issue, we establish an explicit formula
in Proposition 2 for computing a valid upper bound of ®*(%) from any inexact
primal dual solution of the SDP problem (19). This result is crucial to allow the use
of arbitrary SDP solver for the computation of the DNN bound, including in particular
those solvers with medium accuracy specially designed for large-scale SDP.

We demonstrate the effectiveness of our approach through extensive computa-
tional experiments on both real and synthetic instances. We compare the perfor-
mance of our algorithm with two of the most powerful commercial solvers CPLEX
and Gurobi and an academic open-source software quadprogIP [34]. Our algorithm
successfully solved the earlier mentioned 317,584 instances of dimension 100 within
3 days using 32 processors in parallel. For the three instances of dimension 841, our
algorithm is able to solve them in a few minutes on a standard laptop. On a variety of
randomly generated instances of dimension 100 to 500, our algorithm also exhibits
superior performance with remarkable differences.

The paper is organized as follows. In Section 2 we study properties of the DNN
relaxation (5), show its connection with Shor’s relaxation, and discuss the computa-
tion of valid bound from inexact SDP solutions. In Section 3 we review the cutting
plane method for the reference value problem, propose new cuts based on DNN re-
laxation, and show its connection with Konno’s cut. In Section 4 we describe in detail
our algorithm. In Section 5 we report numerical results. In Section 6 we conclude.
For clarity of presentation, some details are moved to the Appendix.

1.5 Notations

Throughout the paper we let [n] := {1,...,n}. We use 0 to denote a zero vector or
matrix of appropriate dimension, 1 to denote an all-one vector, and I to denote the
identity matrix of appropriate dimension. For any vector x € R” and matrix X € R™*",
we use x; € R to denote the ith entry of x, X; ; € R to denote the (i, j)th entry of X and
X; € R™ to denote the ith column vector of X. We adopt a MATLAB-like notation to
represent the submatrix of X € R”*", for example Xj.; , is the submatrix of X formed
by the elements at the intersection of the first £ rows and the nth column of X.

For a matrix X, X > 0 means that X is nonnegative, i.e. all the elements in X are
nonnegative, and X >~ 0 means that X is a positive semidefinite matrix. We denote by
" the set of n-by-n symmetric matrices and by .7’} the cone of positive semidefinite
matrices. For two matrices X,Y € ", X = Y means that X —Y € 7/, and X >
Y means that X —Y € R"*". We use diag(h) to represent the diagonal matrix with
diagonal vector being equal to h. We consider the Frobenius inner product (-, -) in the
space of matrices, i.e., (A,B) := tr(ATB).

2 Doubly Nonnegative Relaxation

The DNN relaxation (5) provides an upper bound for the optimal value of (1). How-
ever, it is known from [2, Prop. 8.3] that the feasible region of the SDP problem (5)

Globally Solving Concave QP via DNN Relaxation 7

has no interior. The lack of interior point can be a serious defect from both theoreti-
cal and computational aspects. In particular, strong duality may not hold for problems
with no interior feasible point and convergence of existing SDP solvers is not guar-
anteed without the strong duality property, see [27] for more discussion.

To overcome this issue, we propose to consider the standard Shor relaxation of the
equivalent QCQP problem (see (19)). We prove the strong duality for the SDP prob-
lem obtained from Shor’s relaxation and its equivalence with the SDP problem (5)
obtained from the DNN relaxation. We also establish formula for computing a valid
upper bound of @*(.%) from an approximate solution returned by any arbitrary SDP
solver, which is crucial to make the algorithm adapted to a wide range of inexact SDP
solvers.

2.1 Reduction at vertex

To start with, we consider an equivalent form of (1) by a change of coordinates.
Let % be a vertex of .%. Let {i},...,in} be the indices of basic variables of ¥ and
{j1y--+sJn—m} be the indices of nonbasic variables. Note that the choice of basic
variables is not unique if X is a degenerate vertex. Let B := (A,~1 --~A,~m) be the
basis matrix and N := (A}, --- Aj,_,,) be the nonbasis matrix. Following the stan-
dard notations in linear programming, for any x € R"” we denote by xp the subvector

(%i;,---,Xi,) € R™and by xy the subvector (x;,...,x;,_,) € R"™". Further, we par-
tition accordingly the matrix H and vector p into blocks:
Hpp Hpn PB
, . 12
(H;N HNN> <PN .

Hereinafter, with a given vertex X and a choice of basis matrix B and nonbasis matrix
N, we denote:

F = (B_IN)T, w=B"'b, v:wTHBBw+2pgw,

Q = Hyy + FHppF " — FHpy — HgyF ', (13)
d=pn +H;—NW*FPB 7FTHBBW.

Then we have
ﬂ:{(i)ER":FTy—i—s:w,yZO,szO}. (14)

Here the vector y € R”~" corresponds to the nonbasis vector x and the vector s € R™
corresponds to the basis vector xz. By replacing the basic variables in the objective
function of (1) using the expression xp = B~ 'b— B~ 'Nxy, we arrive at the following
concave QP problem:

max y' Qy+2d'y+v
st. Fly+s=w (15)
y>0,5s >0.

8 Z.Qu, T. Zeng, Y. Lou

The DNN relaxation of (15) yields the following SDP:

max (H,X)
Xe:])nJrl

st. (FTT 0)Xpp1=w,

F
diag [(FTT 0)X [1] | =wow (16)
0
C.x)=1
X>0, X0
where
0 0d 000
AH=[000],Cc=(0 00
d' o’ v 070" 1

It can be verified that (15) is equivalent to (1) and (16) is equivalent to (5). In par-
ticular, the optimal value of (15) is equal to @*(%#) and the optimal value of (16) is
equal to P(.F).

2.2 Equivalence with the Shor relaxation

The program (15) can be further simplified to the following form:

max y Qy+2d y+v
yER"*’”

S.t. FTygw (17
y=>0.

Adding redundant constraints to (17), we obtain the following QCQP problem:

max y' Qy+2d'y+v

yeRn—m
s.t. FTy <w,y>0
(FTy=w)(Fy-w)" >0 (18)
w' >0

(Fly—w)y' <0.

Globally Solving Concave QP via DNN Relaxation 9

It is easy to see that the optimal value of (18) is equal to @*(.%). The standard Shor
relaxation of the QCQP problem (18) yields the following SDP problem:

max (Q,Y)+2d y+v
Ye(yfnfm
yeRl‘l*m
s.t. FTy <w,y>0
F'YF—wy'F—FTyw" +ww' >0
Y>0

wy —FTY >0
Yy
> 0.
(yT 1)‘0

Lemma 1 The DNN relaxation (16) is equivalent to the Shor relaxation of the QCQP
problem (18), i.e., the optimal value of (19) is equal to ®(F).

19)

Proof Let (Y,y) be a feasible solution to (19). Let

Y yw' —YF y
X=|(wy —FTYF'YF—FTyw" —wy'F+ww! w—FTy
yT wl —y'F 1

Clearly we have X > 0. It can be checked easily that we have

(FI 0)Xu1=w,

and
F
(FTT 0)X [I]|=ww
0
Besides,
y y T I I T
X=|(w—FTy| |w=FTy| +|-F" (Y—ny) —-F'| =0
1 1 0 0
Therefore, X is a feasible solution to (16) and
(A,X)=(Q,Y)+2d"y+v. (20)

Now let X be any feasible solution of (16) such that

T T
r ék ék t ék ék

X = Z oy | s s + Z s s ,
k=1 1 1 k=r+1 \ 0

10 Z.Qu, T. Zeng, Y. Lou

where ¢,...0- > 0and Y, o = 1. By [2, Prop. 8.3], we know that

k W*FTékv Vke[r]a
STV -FTEN, Vke{r+1,...1}.

Let
r t r
y=Y% o EF(EN)T + Y ENENT, y= Y o,
k=1 k=r+1 k=1
Then
, k k T . k k T
X=Y o |w—FT& | |w—FT&| + Y |-FT&||-FT&r
k=1 1 1 k=r+1 0 0
Y yw! —YF y
=|wy —F'YF'YF—FTyw" —wy F+ww w—FTy

yT wl —yTF 1

And so (Y,y) is a feasible solution to (19) satisfying (20). O

Remark 1 The proof of Lemma 1 shows how to construct an optimal solution of (19)
from an optimal solution of (16), and vice versa.

Remark 2 The size of the largest SDP matrix in (16) is n+ 1, while the size of the
largest SDP matrix in (19) is n —m + 1. This already suggests that (19) could be
computationally more interesting than (16). Moreover, we will show in the next sub-
section that strong duality holds for (19).

2.3 Strong duality

We consider the SDP relaxation in the form of (19). Let us express (19) in the fol-
lowing abstract way:

max (0,7)
Fegmmt
s.t (W(i’j),f/>§0, 0<i<j<n @1
WO Py =1
Y>=0

Here,

Globally Solving Concave QP via DNN Relaxation 11

and {W(i~j) 10 <i< j<n} are matrices for representing the polyhedral constraints
in (19):

0 —e/'
= <j<n-—
(—e]T O) i=0, 1<j<n—m
o' F
~ | — — <5<
<F]~T _ow; i=0, n—m+1<j<n
—eel —eiel
W) aiej —eje; 0 1<i<j<n—m
0 0
ol Lo BT
Fiej Teiby —wjei I1<i<n—-m<j<n
Swel 0 Sis <
A RO .
— —F WiF; +Ww;iF;
i 7 [Jh _ 1<i i<
(W,FjT—i-ijT —2w,~w,~> nomtlsi<jsn

Here, ey,...,e,_, are the standard basis vectors of R"~" and F = Fiopgm, Wj =
Wj_ntm for eachn —m+1 < j < n. The dual of (19) can thus be written as:
min V

s.t. O+ Z,li7jW(i,j) w0 =<0)
1<j
2ij <0, 0<i<j<n.

We shall need the following assumptions.
Assumption 1 There is t, > 0 such that

t,= max 1"y
yERll—lTl (23)
s.t. FTygw,yZO.

Assumption 2 There is 0 < p, < 1 such that
{yeR"™: Fly<w—p.,y>p.} #0.
Remark 3 Assumption 1 holds if .%# is bounded.

Remark 4 Assumption 2 is equivalent to requiring that the set {y € R" " : FTy <
w,y > 0} has a nonempty interior. If this is not true, then there is some i € [n] such
that x; = 0 for any x € .% and so that the variable x; can be replaced by 0. In other
words, Assumption 2 can be always made true by removing superfluous variables
from (1) if necessary.

Now we establish the strong duality between (21) and its dual (22). For this, we
shall prove that (21) and (22) have a nonempty interior under the above two assump-
tions.

Lemma 2 Under Assumption 2, there exists a solution (Y,y) strictly feasible to (19).

12 Z.Qu, T. Zeng, Y. Lou

Proof Let y° € R" ™ such that F Ty < wand y° > 0. Let € > 0 and y’ = y* + €¢; for
each i € [n—m]. Choose & > 0 sufficiently small so that {y',...)"~} are all in the
set {y c R"™:FTy<w,y>0}. Let
Y'=y'()", vie {0}U[n—m].
Then for each i, (Y',y') is a feasible solution to (19). Let
1 n—m . n—m

_ _ i
_n—m—i—llg‘) Y n—m+li:0y

0 n—m
Clearly (Y,y) is feasible to (19). Since the vectors { (yl > ey (y 1) } are linearly

independent, the rank of the matrix yYT { is n—m+ 1. It follows that (Y,y) is

strictly feasible to (19).

Lemma 3 Under Assumption 1, the dual SDP problem (22) is strictly feasible.

Proof Under Assumption 1 and by strong duality, there is a € R’ such that
E:=Fa>1, a'w=t,.

‘We have

Thus

n—m n

Z Z ajfnerW(i’j) + Z &+ éj)W(i’j)

i=1 j=n—m+1 1<i<j<n—m
E1T +1&T —t*l) —e,-eT—eje»T 0
= T + (&i+&)) J '
(—1 0 1§i<jZ§n7m 1 ! 0" 0
_ (2diag(§) —1,1
“\ =1 0)¢
It follows that

nim i aj—n+mW("~J'> + Z (gl + éj)W(i’j) + ZHIEWO

i=1 j=n—m+1 1<i<j<n—m

_ <2diag(§) —r*1>.

—t17 2ne?

Globally Solving Concave QP via DNN Relaxation 13

Since
(—1.1) T (2diag(&))”! (—1.1) = 372 (Z :) < S(n=m) <nt,
i=1
we know that
n—m n . .
Y Y a4+ Y (E+EWED) 42w - 0.
i=1 j=n—m+1 1<i<j<n—m

Perturb the left hand side with sufficiently small € > 0, we still have

n—m n
Y Y @onim oW+ Y (& EHWE) 2w - .
i=1 j=n—m+1 1<i<j<n—m

Note that the coefficients above can be scaled by arbitrary positive constant without
changing the sign of semidefinite inequality. Therefore, if we take

Aij=—0(ajnim+€), 1<i<n—m<j<n,
dij=—a(&+Ej), 1<i<j<n-—m,

v =nt?,

for sufficiently large o, and take other A; ; (where i = 0 or i > n —m) to be negative
and sufficiently close to 0, we see that there exist {A;;: 0 <i < j <n} C R_ and
v € R such that

Q+ Zli7jW(i’j) —vw?<o0.

i<j

We then deduce the strong duality result for the SDP relaxation (19).

Proposition 1 Under Assumption 1 and 2, both the SDP problem (19) and its dual
SDP problem (22) have an optimal solution and the strong duality holds.

2.4 Valid DNN bound from inexact SDP solution

Hereinafter, we will assume both Assumption 1 and 2. By Lemma 1, in order to
compute the DNN bound &(.%), we can solve the SDP problem (19).

With the strong duality property of (19), we rest assured for the convergence of a
wide range of SDP solvers. We mention in particular the interior point type methods
and the augmented Lagrangian type methods. There are many powerful solvers that
implement these methods: Mosek, Gurobi, SDPT3, SDPNAL+, etc.

However, it is important to note that any numerical solver using finite floating-
point arithmetic is incapable of returning the exact value of @(.%). Indeed, such
numerical solvers terminate when a solution with sufficiently small infeasibility gap
and primal dual optimality gap is found. The value returned by the numerical SDP

14 Z.Qu, T. Zeng, Y. Lou

solver is only an approximation of the true value ®(.%). Additional care needs to be
taken in order to get a valid upper bound of &*(F).

To be more precise, consider applying any suitable SDP numerical solver to the
primal SDP problem (21) and its dual SDP problem (22). Let € > 0 and assume that
the pair of primal dual solution (¥;1,Vv) returned by the SDP solver satisfies the
following infeasibility and duality gap condition

WD Py <e, 0<i<j<n
WO Py =1

Y0

O+ Xycjdi WD — v <l
A<0

(O, 7)—v|<e.

(24)

As long as € > 0, there is no guarantee that the approximate primal optimal value
(Q,Y) or the approximate dual optimal value V is larger than @*(.%). We next show
how to obtain a valid upper bound of ®*(.%) from (¥; 4, V) satisfying (24).

Lemma 4 Let (1*,v*) be an optimal solution of the dual problem (22), then
(F)— DP(F
i<y Ps
where
D, (F) :=min{P(x) : x € F}
=min{y ' Qy+2d y+v:F'y <w,y>0},
and 0 < p, < 1 is the constant in Assumption 2.

Proof Lety € R"™ such that FTy —w< —prandy > p,. Let
T
)
y

(WD) §) < max(—2p,,—2p2) = —2p2, 0<i< j<n.

In view of Proposition 1, we have v* = @(ﬁ) Hence,

Then

i<j
9‘)_22}%[)3—"
i<j
<y Qy+2dTy+v—ZZl,]p*
i<j

< <Q,?>+Z/1i’fj<W(i’j>,?> VI (Wo.T)
i<j
=(0+ Y 45w —vwo ¥) <o.

i<j

Globally Solving Concave QP via DNN Relaxation 15

Lemma 5 For any feasible solution ¥ of (21), we have
trace(¥) < 1412, (26)
where t, > 0 is the constant in Assumption 1.

Proof Let

be a feasible solution of (21). In the proof of Lemma 3, we have shown that
n—m n . T T _
Z Z aj—n+mW('=J> = (é 1 +11T§ gl))
i=1 j=n—m+1 I

where ;4 > 0forall j€ {n—m+1,...,n} and & > 1. Therefore, since (W /), ¥) <
0, we have
ETv1<nl1Ty<i

Since Y > 0 and £ > 1, it follows that trace(Y) < 2. O

Proposition 2 Let € > 0 and let (Y;A,V) be a pair of approximate primal and dual
solutions satisfying the gap conditions in (24). Then,

(@(9)2;?(9))6 <B(F)<e(P+1)+v

Proof Let (Y*,1*,v*) be an optimal primal dual solution pair. Then,
D(F)=v* *(WO)
= (v’

(0.7)+

—0-Y AW)+ (0,9) + Y AW
i<j i<j
4 . .
> (0. +eY A
i<j
@) .. (P(F)—D(F))e
2 0.0+ 2)

i<j i<j
(24)
< etrace(Y*) +v
(26)

<£(1+t)+v.
O

Proposition 2 enables to obtain a valid upper bound of &*(.%) from any approx-
imate primal dual solution (Y, A, V) returned by any SDP solver. The correction term
to be added is £(tf + 1), where € depends on the feasibility gap and the duality gap
and t, is defined in (23).

16 Z.Qu, T. Zeng, Y. Lou

2.5 Upper bound of the DNN bound

In this subsection, we establish an upper bound for the DNN bound &(.%). This
result will be useful in the later section when we discuss the generation of cuts.

Proposition 3 Let A € RV and P e U™ "™ 1, m=m pe nopnegative ma-
trices such that

—Q—P+AFT+FAT = 0. (27)

Then,

D(F) §v+max{2(d—|—Aw)Ty:FTygw,yZO}.

Proof Letey, ..., ey be the standard basis vectors of R”. Let X € .#"+! be a feasible
solution of (16). Then X satisfies

(A X) =w}, Vi€ [m]

(B',X) =w;, Vic[m] (28)
c.x)=1,
where
' FF" Fel 0 ' 0 0 %F,-
A= eF ee! 0|, B:=| 0 0 3e|, Vie[m]. (29)
0" 07 0 1ET el 0

Letany A;,...,A, € R. We have
(A,X) = (A,X)+ ixi (w? — (A1, X))
- }i’:lza,»wi (i — (B, X)) + ilxiw% 1-©x) @o
=(H- i)L,Ai +2 i Aiw;B' — iliW?G X),

i=1 i=1 i=1

and
H- Z)yiAi +2 Z)uiW,'Bi — Z)inizC
i i pmy

m m
O~ Y AEF' —MF - —AuFy d+) AiwiF;
i=1 i=1
—;L]FIT —/11 0 l]Wl
—lmF,I 0 - —An AW
dT + Z liwiET AMwy o AW V— A,-w?

i=1 i=1

Globally Solving Concave QP via DNN Relaxation 17

Let any € > 0. Denote 0 = Q — el + P and

m m
—0+ Y AFE MFi—Ar - dpFp = An = Y AwiFi + Aw
i=1 i=1
/'LlFleAlT A 0 —Aw
S= : : - : : GD
AmE,] — AT 0 - An — AW
Z l;w,-F,»T +w AT —Awr o =AW Z l,-wl-z
i=1 i=1
Further, let
P A - A,D
0
T = Do S, A=
A,,T, 0 00 0
0" 0 00
Then
R m X m X m
H— Z)yiAl + 2 A,,'WiBl - Z l,-wlzC
i=1 i=1 i=1 32)

B 0 A el 0
e (g)0

Plugging (32) into (30) we obtain

(H,X) = <—S—T+ (A(())T AOO) + (ﬁ g) X> 33)

Since (FT I O) Xn+1 =wand X, 11 > 0, we have

0 A
<(AT 00> ,X> :2(d+AW)TX1:n—m7n+l
0

§max{2(d+Aw)Ty:FTy§W,yEO}.

Since X >0and T > 0, we have (—7,X) <0. By (27), there exists A (&) € R", such
that

—O0+AFT +FAT = Adiag(A ' (e))A . (34)

In view of Lemma 6 (which will be formally stated later), if A = A(¢€), then S = 0
and

(A,X) < <<§-Ir g) ,X> +max{2(d+Aw)Ty Fly<w,y> O} .
Since the later condition holds for any € > 0, we deduce that

(H,X) §v+max{2(d+Aw)Ty:FTySw,yEO}.

18 Z.Qu, T. Zeng, Y. Lou

Now we verify the auxiliary result used in the proof of Proposition 3.

Lemma 6 The matrix S defined in (31) is positive semidefinite if Ay, ..., A, are all
positive and

m m
0+ (AR +FAT) = Y 4 A (35)
i=1 i=1
Proof Letany y € R"™™, z€ R™ and p € R. Then we have
y

O'z"p)S|z
p

m m
=y' <_Q+ Yy liF,-Fl-T> y+2Y z (xiF,Ty —Al-Ty)
i=1

i=1

i=1 i=1

m m m
=y’ (Q +))LiE'FiT> y+2y" <Z wii =Y Wi/’LiFi> p
i i=1 i=1

+2y" (Z wii =Y WVL’E‘) p+Y Ailpwi—z)*
' =1

i=1

= m
+) A [212 +2z (FiTy A 'ATy - pWi):| + Y Awip?
=l i=1

m m m
>y! (—Q+)3)“iFiFiT> y+2y! <Zwi/‘i > Wi}”"F’) p
i=1 i=1 i=1

— i Ai (FiTy — QLi_IAiTy - pw,-) ’ + i liw,-zp2
i=1 i=1
y' (—Q - i liE-F,-T> y— i Ai (ETy - ?LflAiTy) ’
i=1

i=1

=y (—Q + i (FiAiT +AiFiT>> y=y' (i)“ilAiAiT> y
i=1

3 Generation of Valid Cuts

In this section we review the idea of cutting plane algorithms and present classical
as well as novel methods for the generation of valid cuts at any given KKT point.
Recall that we have, at our disposal, a reference value vg and the task is to determine
whether

VR > P (F) or @ (F)>vg ? (36)

Globally Solving Concave QP via DNN Relaxation 19

3.1 Cutting plane method

Let x be a vertex of % which is a KKT point of (1). If ®&(X) > vg, then we have
@*(F) > vg and the question (36) is solved. So let us assume that P(X) < vg.

Let (B,N) be a pair of basis and nonbasis matrices associated with ¥. Compute
(Q,d,F,w,v) as in (13). Note that

v=P(X) < vg.

Rewrite the original problem (1) into its reduced form (17). Since & is a KKT point,
we can assume that the basis matrix B is such that d < 0 (see Appendix B for the
selection of such B).
Let
R={yecR"™:Fy<wy>0},
and
0(y) ==y Qy+2d y+v, VyeR"".
To generate a valid cutting plane, we search for a nonnegative vector 6 € R’\"™ such
that
max{@(y):y e ZNA(0)} < vg. 37
Here
n—m
A(0):= {y ER": Y yifi<ly> 0}
i=1
is a simplex.
The nonnegative vector 0 satisfying (37) yields a valid cut {x € R": 8 "xy > 1}.
Indeed, (37) is equivalent to that
Vg >max x Hx+ 2pTx
st. Ax=b
x>0

0 xy<1.

(38)

Therefore, we have
(I)*(yNﬂ) < o* (g) < max (VR, o* (yNﬂ)) 5

where Zy ¢ is the intersection of the original feasible region .% and the cut {x € R" :
QT)CN > 1}1

<g\g\/_yg = fﬁ{x eR": 6TxN > 1}.
It is important to note that ¥ ¢ .#y ¢ and hence Fy g is strictly included in .%. In
order to determine (36), it suffices to determine whether

VR > @ (Fng) or D(Fyg)>vr ? (39)

We then need to deal with a problem with a strictly smaller feasible region Fy g.
Repeating this procedure of adding valid cuts, the feasible region is reduced at each
iteration until we find an answer to (39).

In the following, we present different methods to find a positive vector 0 satisfy-
ing (37).

20 Z.Qu, T. Zeng, Y. Lou

3.2 Tuy’s and Konno’s cut revisited

We first give a brief review of Tuy and Konno’s work [16,17,31]. Tuy [31] proposed
to use the following value

max {¢(y):y € A(0)} =max (¢ (6, 'e1),...,0 (6, nen—m)) (40)
as an upper bound of max {¢(y) :y € ZNA(0)}. Let § >0 and
T = Qi L i=1,...,n—m. 1)

—di+\/di2+Qii(VR—5_V)
Then we have
max{¢(y):y € ZNA(T)} <max{d(y):y€A(T)} =vg — 5 < wg. (42)

This cut is known as Tuy’s cut. The perturbation parameter 0 > 0 ensures that vg is a
strict upper bound of the maximum value of the region Z N A(7) so that {y e R" " :
71y > 1} is a valid cut. Note that one can choose § > 0 to be arbitrarily small.

Next we recall the method proposed by Konno in [16], for improving any valid
cut including in particular Tuy’s cut. Denote by %, C R"™" the region obtained after
adding Tuy’s cut:

= {yeR"™:Fly<wy>01'y>1}.

It is clear that we can assume %; # 0. Let any 6 > 0 and define ¢; 4 to be:

$ro:=max ¢(y)

st. YEZHNA(O). @)
Define the function y : R"™" x R"™™ — R as follows:
Y(.9) =5 Qy+d ' y+d y+v, VyjER"
This is a relaxed bilinear form of ¢. Since Q > 0, it can be checked that:
w055) < P00 (950,000, wse R, @)
and
$ro=max Y(§,y) 43)

st J,y e ZNA(D).

For a proof of (44) and (45), see Appendix A. Konno [16] proposed to relax (45) as
follows: x
¢rp :=max Y(§,y)
s.t. VE X,y A(0).

It is clear that ‘ﬁfe > ¢ o. Define the function g : R"™™ — R as follows:

(46)

g(y):=maxy Qy+d'j+d y+v, YyeR"™,

JeR:

Globally Solving Concave QP via DNN Relaxation 21

It is easy to see that g is a convex function and

0K = max g(y) =max (g(6; 'e1),....8(6, en—m)) .- (47)
’ yeA(8)

In order to obtain ¢X,, it suffices to find the values of {g(8, '¢;) : i € [n —m]} and
each of these n — m values can be computed by solving an LP program.
In the following discussion we assume that

K. < wg. (48)

In fact, if (48) does not hold, then by (47), g(ff'e,‘) > vg for some i € [n—m] and
there is y € % such that
W(ya Ti_lei) Z VR,

which together with (44) implies that

max(¢(y),ve) = max(¢(y),¢(7; 'e)) = vi.

Hence, we conclude that ¢*(.%) > vg and the reference value problem is solved.
Given (48), we let § > 0 be a perturbation parameter” satisfying

& <vr—07s, (49)
and Ok be the smallest 8 > 0 such that
(ﬁTK,G =vp—0 < VR. (50)

Then {y € R : 87y > 1} is a valid cut, which will be referred to as Konno’s cut.
In view of (49) and (50), Konno’s cut is deeper than Tuy’s cut, i.e.,

GKST.

In addition, Konno [17, Thm 3.3] showed that the search of 8 can be done by solving
exactly n —m LP programs, see Appendix C for details.

In the remaining of this section, we will present a new method to further improve
Konno’s cut. Recall that the key idea in generating Konno’s cut is to give a com-
putable upper bound on ¢; o = max{¢(y) : y € Zr N A(0)}. For finding deeper cuts,
we next propose two computable upper bounds of d);‘, ¢ Which are tighter than qxfe.

2 By abuse of notation, the same symbol § is used in several places to denote possibly different pertur-
bation parameters.

22 Z.Qu, T. Zeng, Y. Lou

3.3 Tighter bound from LP relaxation

We start with an estimate of gﬁfe.
Lemma 7 If Z; is nonempty, then for any 6 > O we have
(559 >min f+v
st. Q< —Apt! — 1Ay +AFT+FAT—% (deT+edT) 51
d<BO+2A0—2Aw
Ao >0,A>0.

Proof Let B = ¢X, —v. In view of (47),

g(87le;) —v= max (Qle,'—i—d)Ty—l— 0. 'd;<B, Vicn—m.
yeZt

Consequently, for each i € [n — m], the following system (on y € R"~™) is infeasible:
- T _
(6:.'0i+d) y>B—6"4q;
‘L'Ty >1
Fly<w
y=0

(52)

By Farkas lemma and %, # 0, for each i € [n —m], the infeasibility of (52) implies
the feasibility of the following system (on A} € R and A' € R™):
0,710 +d < AT +FA
B—67"di> -2+ (A7) w (53)
A5>0,4">0

Multiplying both sides of the inequalities by the positive number 6;, the system (53)
can be equivalently written as

Qi+ 6id < —AjT+FA
BOi —di > —2i+ (A1) "w (54)
A§=0,A">0
The fact that the system (54) is solvable for each i € [n —m] implies that the following
system on (Ag € R"™" A € R("=")*™m) is solvable:
1
Q< Mot —TA] +AFT+FAT -3 (deT + GdT)
d<BO+2A0—2Aw (55)
Ap>0,A>0
To see this, just let Ag = 5 (A] -+ lé"’")T and A =3 (A" l"’m)T and use the
fact that 0 = Q. O

Globally Solving Concave QP via DNN Relaxation 23

Remark 5 In general the inequality in (51) is strict since (55) cannot imply (54).

We next show that the lower bound of (55 o provided by Lemma 7 is also an upper
bound of ¢ ,. For this, consider the following extended LP program:

Prg:=min —op+a w+pf+v

st. Q< Aot —TA) +AFT +FAT + (Am+19T+9A,L1) 56
2d —2A0+2AwW+2Ap11 < —0pT+Fa+ 6
Ag>0,A>0,An11>0,00>0,06>0,5>0.

Proposition 4 For any positive vector 0 € R"™™, we have

Ofe > dro > 07 0. (57)

Proof Any feasible solution to the optimization problem in (51) can be extended to a
feasible solution of (56) by letting

=0, a=0, Apy1 = _d/2

(Recall that we have chosen a basis so that d < 0.) Then we apply Lemma 7 to obtain
the first inequality.
Let Ag, A, Apm+1, @, B be feasible to (56). Then for any y € Z; N A(0), we have

YOy < —2y"TA) y+ 2y TAF Ty +2y " Api10 'y
< —2A¢ y+2y T Aw+2y" Ay

Here, the first inequality follows from the first constraint of (56) and y > 0. The
second inequality follows from the nonnegativity of AJ y, ATy and A,—nr 11y and the
factthat @'y <1, 7'y >1and F 'y < w. Now we use the second constraint of (56)

to obtain

yoy<—2d'y—apt'y+a Fly+po'y
<-2d"y—op+a'wtB.

Hence
90 < —a+a'wHB+v, VyeZNA(H),

which implies ¢} , <@L .]

Based on Proposition 4, the vector 8 such that ‘ﬂ‘,e = vg — 0 leads to a cut deeper than
Konno’s cut. Unfortunately, the search of such 8 cannot be done by solving n —m LP
programs as for the search of 0 satisfying (50). Nevertheless, we can try to improve
Konno’s cut through the standard bisection trick. Specifically, let O be the vector
generating Konno’s cut and choose some 0 < 0. If (ﬁrLﬁ < vg — 0, then we get an
improved cut. Otherwise, we increase 6, for example to (6 +) /2, and repeat until
we get an improved cut.

24 Z.Qu, T. Zeng, Y. Lou

3.4 Deeper cut by doubly nonnegative relaxation

w
Let = (F 6 —t)andw= [1 | so that (43) can be written as
-1
7 g = max vy Oy+2d y+v
st. Fly<w (58)
y=>0.
Note that (58) takes the same form as (17). So all the results on the DNN relaxation

of (17) presented in Section 2 can be directly adapted to the DNN relaxation of (58).
Denote by (ﬁ?e the DNN relaxation value of (58), i.e.,

$Po:= max (Q,¥)+2d y+v
? Yeynﬂn
yER"im
S.t. 1:"Ty <w,y>0
FTYF—wyF—FTyw" +wn' >0
Y >0
wy —FTy >0

Yy
—
(yT 1) =0

Using directly Proposition 3 we get the following upper bound of 4359.

(59)

Corollary 1 Ifthere exists Ag,Apy1 €ERT™, A € R(ffm)xm and P €]R(fim)x(nim) N
S such that

—Q—P—Agt" —TA] +AFT +FAT + A 107 +0A,., = 0. (60)

Then
0Pg <v+2 max (d—Ag+Aw+Auir) Y.
Prp < ye.%rm(e)(0 mi1) ¥
Proof Obvious from Proposition 3 since Ay, A,+1, T, 0 are all nonnegative. a

Theorem 2 For any positive vector 0 € R/, we have
00> 0re > 00 > 076 ©61)

Proof The first inequality follows from Proposition 4. Let Ag, A, Ay+1, 00,0, 3 be
feasible to (56). Then (60) is satisfied by taking

P=-0-Aot —tA) +AF" +FA" +Apu10" +0A, ., >0.
Corollary 1 allows to deduce:

b, <v+2 max (d—Ag+Aw+Apuir) ' y.
Prg <V ye%mﬁw)(0 FAWFApyr) Y

Globally Solving Concave QP via DNN Relaxation 25

Now we use the second constraint of (56) to obtain
2 max (d—Ag+Aw+Apr)
VERNA(8) (d =4 mi1) Y

< —oyT+Fa+p6)"
—yeﬁ%ﬁ(e)(Qo pe) y

<—op+o w+B.

It follows that
Oro > 9ro-
O

Theorem 2 provides a foundation of the new cutting plane method that we are about
to propose. In order to search for a vector 6 such that (37) holds, we choose a pertur-
bation parameter 0 > 0 and start by computing a vector 6k such that

éfgl(= VR — 8
Then we choose a factor 7 € (0,1) and test whether 6 = 16k satisfies
Org <vg—8. (62)

If (62) holds, then 0 yields a valid cut, which is deeper than Konno’s cut. Otherwise
we further check if

¢Pg <vp—3. (63)

If (63) holds, then 0 yields a valid cut, which is deeper than Konno’s cut. The pseu-
docode of this process is given in Algorithm 6. One can also use the bisection trick
mentioned in the end of Section 3.3. In any case, the core theory behind is Theorem 2,
which guarantees that

D +L K
¢T,9[(S ¢T,9[(S ¢T,9[(=VR— 6 < VR,

and provides a way to improve Konno’s cut.

4 Algorithm

In this section we summarize our method in Algorithm 1 and Algorithm 2. For the
future reference, we shall name our algorithm as QuadProgCD, where the letter “C”
refers to the cutting plane method and the letter “D” refers to the doubly nonnegative
relaxation.

The algorithm has two variants: 1. QuadProgCD-R (Algorithm 1) is designed for
solving the reference value problem (36), where we use the suffix -R to refer to the
reference value problem; 2. QuadProgCD-G (Algorithm 2) is designed for solving the
global optimization problem (1), where the suffix -G refers to the global optimization
mode.

26 Z.Qu, T. Zeng, Y. Lou

4.1 Algorithm for the reference value problem

Algorithm 1 takes as input the feasible region .%#, the quadratic objective function @,
the reference value vg, an initial lower bound v of the optimal value @*(.%) of (1),
an initial upper bound v of ®* (%), a factor 1 € (0,1), and a perturbation parameter
0 > 0. The algorithm solves the reference value problem (36) by returning a lower
bound v of @*(.%#) and an upper bound v of &*(.%) such that vg ¢ (v, 7).

Algorithm 1 starts by searching a KKT point ¥ of (1) (line 3). There are many
ways to achieve a KKT point and we adopt the mountain climbing algorithm pro-
posed by Konno in [17]. The details are recalled in Appendix A.

If &(X) is larger than or equal to vg, then we obtain a lower bound v such that
vg < v < @*(F). Otherwise, we compute the DNN bound ®(.%). If the latter is
strictly smaller than vg, then we obtain an upper bound v such that vg > ¥ (note that if
F = @, we would also reach this case because @ (.F) = —c0). Otherwise, we proceed
to the cutting plane step (from line 13 to line 28).

In line 13 we choose suitable basic and nonbasic variables associated with X and
compute the parameters (Q,d, v, F,w,N) defining the minimal program (17). For de-
tails of this step please check Appendix B. In line 14 we compute the vector T which
defines Tuy’s cut. From line 15 to line 21 we check whether 651 < vg. If not, then we
obtain a lower bound v such that vg <y < @*(F), see the discussion around (48).
Otherwise, we proceed to generate a deeper cut (from line 22 to line 28).

We first reset § to ensure (49). Here, line 23 ensures (49) because of the fact that
(551 < (v+vgr)/2, which can be deduced from (44). We provide two options for the
generation of a cut deeper than Tuy’s cut. The first option is to use Konno’s cut as
recalled in Section 3.2. The second option is to generate an even deeper cut using the
theory that we developed in Section 3.4. The two algorithms for option I and II are
described in Appendix C and Appendix D.

In the while loop, the lower bound v is nondecreasing and the upper bound v
is nonincreasing. When we solve the reference value problem (36), the while loop
breaks when either vg < v or vg > ¥ so that the reference value problem is solved.

4.2 Algorithm for global solution of the concave QP problem

Now we present QuadProgCD-G as in Algorithm 2 for globally solving the concave
QP problem (1). QuadProgCD-G follows a similar structure as Algorithm 1, with
some differences that we detail below.

The input of Algorithm 2 includes a gap tolerance € > 0. The output is a lower
bound v and an upper bound v of ¢*(.%) such that

V—y
max{e, [} = o

Here, we take the maximum of € and |v| in the denominator to handle the pathological
case |v| =0.

There is no longer a prescribed reference value vg. Instead, Algorithm 2 uses a
dynamic reference value, which is set to be the lower bound v and updated throughout

Globally Solving Concave QP via DNN Relaxation 27

Algorithm 1 QuadProgCD-R

Input: Feasible region .7, quadratic objective function @, reference value vg, factor n € (0,1), perturba-
tion 6 > 0.

1: v —o0,V ¢ o0;
2: whilev <vg <vdo
3: X < Search_of KKT_Point(.%, P); > See Algorithm 3.
4: if d(x) > vg then
5: v < @(X) and break; > Terminate with v > vg.
6: end if
7: v < max (v, P(X)); > Keep the maximum lower bound value ever reached.
8: t+ O(F); > Compute the DNN bound.
9: if ¢t < v then
10: v < max(vg — 8,7) and break; > Terminate with 7 < vg.
11: end if
12: V< min (,7);
13: (Q,d,v,F,w,N) < Minimal Program(%, %, ®); > See Algorithm 4.
14: Compute 7 according to (41); > Tuy’s cut.
15: fori=1,....n—mdo
16: y argmax{(7,'Qi+d)Ty: Fly<wt'y>1,y>0};
17: v max (v,(y') T QY +2d Ty +v);
18: if v > vg then
19: break; > Terminate with v > vg.
20: end if
21: end for
22: if v < vg then
23: S+ min (5, (vg —v)/2); > Reset 0 to ensure (49).
24: 0k < Konno_Cut(Q,d,v,F,w,vg,T,0); > See Algorithm 5.
25: Option I: 6 < 6 ; > Use Konno’s cut.
26: Option II: 6 < DNN_Cut(Q,d,v,F,w,vg,T,0k,n,9); > See Algorithm 6.
27: F— Fn{xeR":0Txy>1}; > Add a valid cut.
28: end if

29: end while
Output: upper bound 7, lower bound v such that vg ¢ (v,7] .

the iterations (lines 4 and 14). The termination criteria are also modified to ensure
global convergence (lines 2 and 6).

Another difference with Algorithm 1 is that in Algorithm 2 the perturbation pa-
rameter § is set to be zero. This is because Algorithm 2 uses the dynamic reference
value vg = v. As a result, there is no harm to cut off any solution with objective value
equal to vg, since we must have recorded some points with the same objective value
v beforehand.

Finally, the lower bound v returned by Algorithm 2 corresponds to the objective
value of a certain feasible solution of (1). The corresponding solution can be added
to the output if needed.

4.3 Computation of the DNN bound

The DNN bound in line 8 of Algorithm 1 and in line 5 of Algorithm 2 can be replaced
by any valid upper bound of @*(.%). In fact, as discussed in Section 2.4, it is impos-
sible to compute the exact value of @(.%), which corresponds to the optimal value of

28 Z.Qu, T. Zeng, Y. Lou

Algorithm 2 QuadProgCD-G

Input: Feasible region .%, quadratic objective function @, relative gap tolerance € > 0, factor 1 € (0,1).
1: v¢ —o0;V ¢ oo;
2: while v —v > emax (|v|,€) do

3 X < Search_of KKT_Point(.%, ®); > See Algorithm 3.
4 v < max (v, P(X)); > Keep the maximum lower bound value ever reached.
5: t P(F); > Compute the DNN bound.
6: if 1 < v then
7: v <— v and break; > Terminate and conclude v being optimal.
8 end if
9: V < min (v,1); > Keep the minimum upper bound value ever reached.
10: (Q,d,v,F,w,B,N) + Minimal Program(%, .7, ®); > See Algorithm 4.
11: Compute 7 according to (41); > Tuy’s cut.
12: fori=1,....n—mdo
13: Vo argmax{(r,-’lQi +d)Ty Fly<wrtly>1,y> 0};
14: v+ max (v,(y') T QY +2d Ty +v);
15: end for
16: Ok < Konno_Cut(Q,d,v,F,w,v, 7,0); > See Algorithm 5.
17: Option I: 6 < 6 ; > Use Konno’s cut.
18: Option II: 6 < DNN_Cut(Q,d,v,F,w,v,T,0k,n,0); > See Algorithm 6.
190 F« Fn{xeR":0Txy>1}; > Add a valid cut.

20: end while
Output: Upper bound ¥, lower bound y such that 0 < v —y < emax (|y], €).

the SDP problem (19). For high-dimensional problems, even an approximation with
high accuracy of @(.%) is not accessible due to memory issue or time limit. We rely
on Proposition 2 for obtaining a valid upper bound of &*(.%#) from any approximate
SDP solution. Similarly, when we compute the DNN cut in line 26 of Algorithm 1
and in line 18 of Algorithm 2, it suffices to find a valid upper bound of the optimal
value of the SDP problem (59) and we again rely on Proposition 2. In this way, Al-
gorithm 1 and Algorithm 2 are open to a wide range of SDP solvers, including in
particular those that are able to provide medium accuracy solutions for high dimen-
sional problems. This flexibility is crucial to make QuadProgCD competitive when
the problem size increases. The price to pay is the degradation of the quality of the
upper bound. Nevertheless, as we will show in the next section through extensive
numerical tests, the gain appears to outweigh the loss and QuadProgCD shows supe-
rior performance compared with existing solvers especially for problems with large
size. Finally let us mention that the convergence properties of Algorithm 1 and Algo-
rithm 2, even assuming the exact knowledge of &(.%), appears to be a challenging
problem and is left for future research.

5 Numerical Experiments

In this section, we evaluate the numerical performance of the proposed algorithms
QuadProgCD-R (Algorithm 1) and QuadProgCD-G (Algorithm 2), one for solving
the reference value problem (36) and the other for solving globally (1). For the sake
of simplicity, when the problem type is clear, we use QuadProgCD to refer to both
of the two variants. We compare QuadProgCD with two commercial solvers CPLEX

Globally Solving Concave QP via DNN Relaxation 29

(version 22.1.0) 3 and Gurobi (version 9.5.0) 4, and also with an open-source solver
quadprogIP’ which is a nonconvex QP solver proposed very recently in [34].

Our algorithm QuadProgCD is implemented and run with MATLAB R2021a (ver-
sion 9.10.0.1851785). In numerical experiments, the interfaces of CPLEX and Gurobi
are called through a Python script. Unless otherwise specified, all the tests are per-
formed on a Windows laptop with Intel(R) Core(TM) i7-8750H CPU 2.20 GHz,
6 cores and 16GB memory. The code of QuadProgCD is available at https://
github.com/tianyouzeng/QuadProgCD.

5.1 Problem instances

We use both real and synthetic data for experiments. All the instances used for the
comparison are uploaded at the above address. We describe them in detail below.

5.1.1 Real data

This set of data has a real application background in computational biology. In [36],
the authors proposed an approach to detect new genome or protein sequence based on
some known sequence data. A key step in their approach is to solve a set of reference
value problems which can be described by (36). Due to this very special application
background, the matrices and vectors H, p, A, b for describing the concave QP prob-
lem (1) are dense. Moreover, all the entries in p, A, b are nonnegative and H is a
completely positive matrix.

The data is divided into two groups: one group of dimension n = 100 and the
other group of dimension n = 841. For both groups, the number of rows of A is
m = 22. The reference value is fixed to be n(n+ 1)(2n+ 1) /6 for all the instances.
For convenience, we call the two groups BioDatal00 and BioData841 respectively.
For BioDatal00, there are 317,458 instances, while for BioData841 we have only 3
instances.

5.1.2 Synthetic data

For ki,k, € Nand a,b € R, we denote by % (k;,k»,a,b) arandom matrix with k; rows
and k, columns such that each entry is a uniform random variable in [a, b] and entries
are mutually independent. The synthetic data is generated randomly as follows. We
first fix the data dimension n, then we generate the feasible region .% := {x : Ax =
b,x > 0} by the following steps:

1. Choose m uniformly randomly from the integers in [0.17,0.5n];
2. Generate A ~ % (n,m,—20,20);
3. Generate xo ~ % (n,1,0,1);

3 https://www.ibm.com/hk-en/analytics/cplex-optimizer
4 https://www.gurobi.com
3 https://github.com/xiawei9 18/quadprogIP

https://github.com/tianyouzeng/QuadProgCD
https://github.com/tianyouzeng/QuadProgCD

30 Z.Qu, T. Zeng, Y. Lou

4. Letb = Axp/|xo0||. If F is bounded, remove redundant rows of A if necessary and
terminate. Otherwise go to step 1.

Such a procedure guarantees that .% is feasible and bounded so that Assumption 1 is
satisfied. The objective function @ is generated as follows:

5. Generate U ~ % (n,n,—1,1), p ~ % (n,1,—10,10);
6. Generate h ~ % (n,1,0,1). Let Dy = diag(h) and Hy = UDoU " ;
7. Generate a ~ % (1,1,10,11). Set H = naHy/||Ho|| and D = noDy /|| Ho||.

Note that the matrices and vectors generated in this way are dense.

The synthetic data is divided into seven groups: CQMAX20, CQMAXS50, CQ-
MAX100, PCQMAX20, PCQMAXS50, PCQMAX100 and PCQMAXS500. The inte-
ger number in the suffix refers to the dimension n of the instance. Instances with
prefix CQMAX are generated following the above procedure. Instances with prefix
PCQMAX are generated with a small difference in step 2 and 5: A ~ % (n,m,0,20),
U~ %(n,n,0,1)and p ~ % (n,1,0,10).

For problems of dimension n < 100, we solve the concave QP problem (1) by
CPLEX or Gurobi to get the value @*(#) and generate vg in a neighborhood of
@* (.7). For problem of dimension 500, as we have no access to ¢*(.%) using CPLEX
or Gurobi, we set vg to be a random number larger than some known lower bound

of @*(F).

5.2 Numerical results

This subsection is divided into three parts. In the first part (Section 5.2.1 and Sec-
tion 5.2.2), we present numerical results for solving the reference problem with Al-
gorithm 1. In the second part (Section 5.2.3), we show the numerical results for the
global solution of (1) with Algorithm 2. In the third part (Section 5.2.4), we demon-
strate the difference between option I (Konno’s cut) and option II (DNN cut) in Al-
gorithm 2.

Unless specified otherwise, we use 7 = 1/2 and § = 107°. The displayed com-
putational time are all measured in seconds. The SDP problems are solved with either
MOSEK or SDPNAL+. A valid upper bound based on the solution returned by the SDP
solver is then computed using the formula established in Proposition 2.

5.2.1 Reference value problem with real data

In this section, we report the computational results of QuadProgCD-R (Algorithm 1)
for solving the reference value problem arising from the new genome/protein detec-
tion problem. Recall that we have two groups of instances: BioDatal100 with 317,458
instances and BioData841 with 3 instances.

For BioData841, the test result is summarized in Table 1. CPLEX and Gurobi
both failed to solve these three instances within 1000 seconds, while our algorithm
QuadProgCD managed to solve them in less than 40 seconds each. Due to the large
dimension n = 841, MOSEK fails to terminate in reasonable time limit for the inner
SDP problems and we had to adaopt SDPNAL+ for solving the inner SDP problems.

Globally Solving Concave QP via DNN Relaxation 31

Table 1 Comparison of three algorithms on the dataset BioData841. Note that the instance with time equal
to 1000 means that the corresponding solver failed to solve it within 1000 seconds.

Instance QuadProgCD Time CPLEX Time Gurobi Time

1 36.87 1000 1000
2 0.32 1000 1000
3 36.8 1000 1000

For BioDatal00, we randomly selected 100 instances out of the 317,458 instances
and tested the three algorithms for the reference value problem. The results are dis-
played in Figure 1. Here we follow the format used in [6] to display the comparison.
Each square represents one instance, and its xy-coordinates represent the wall-clock
times of the two methods. The diagonal y = x line is plotted in dashed line for refer-
ence. If a square is located above the diagonal, QuadProgCD solves the instance faster.
The far the square from the diagonal, the larger the ratio between the two wall-clock
times. We set the maximum time limit to be 1000 seconds and the dotted horizontal
line represents this time limit. If a square sits on the dotted horizontal line in the left
(resp. right) plot, it means that CPLEX (resp. Gurobi) is not able to determine whether
vg > D*(F) or vg < @*(F) within 1000 seconds.

From Figure 1, we observe that CPLEX failed to solve most of the instances
within 1000 seconds. Gurobi seems to perform better than CPLEX but it also failed
to solve about half of the instances within the time limit. In contrast, our algorithm
QuadProgCD is able to solve all the 100 instances with an average wall-clock time
around 10 seconds.

10°

oo
O

CRE
o

CPLEX

10° 10 10% 10° 10’ 102
QuadProgCD QuadProgCD

(a) QuadProgCD vs CPLEX on BioDatal00. (b) QuadProgCD vs Gurobi on BioDatal00.

Fig. 1 Wall-clock time comparison for solving the reference value problem on 100 instances randomly
selected from BioDatal00, plotted in log-log scale.

We also run our algorithm QuadProgCD to solve the reference value problem for
all the 317,458 instances of dimension 100 on the HKU High Performance Comput-
ing cluster® using 32 processors at the same time. The algorithm successfully solved
all the instances within 3 days (about 5% of them are infeasible instances). However,
with CPLEX and Gurobi, the computational time for one single instance may take up

6 https://hpc.hku.hk/hpc/hpc2021/

32

Z.Qu, T. Zeng, Y. Lou

to several hours and it is estimated to take years of computational time for solving all
the 317,458 instances with these two solvers in the same computational environment.

5.2.2 Reference value problem with synthetic data

In this section we compare the performance of QuadProgCD-R (Algorithm 1), CPLEX
and Gurobi for the reference problem on synthetic data PCQMAX. Each group PC-
QMAX20, PCQMAXS50, PCQMAX100 has 100 instances. The group PCQMAXS500

has 10 instances.

CPLEX

QuadProgCD

(a) QuadProgCD vs CPLEX on PCQMAX20.

3
o
[m]
oog T Y

Qi

102
10?2 10" 10° 10!
QuadProgCD

(c¢) QuadProgCD vs CPLEX on PCQMAXS50.

QuadProgCD

(e) QuadProgCD vs CPLEX on PCQMAX100.

CPLEX

QuadProgCD

(b) QuadProgCD vs Gurobi on PCQMAX?20.

10° 10'
QuadProgCD

(d) QuadProgCD vs Gurobi on PCQMAXS0.

QuadProgCD

(f) QuadProgCD vs Gurobi on PCQMAX100.

Fig. 2 Wall-clock time comparison for solving the reference value problem on PCQMAX, plotted in log-

log scale, where the SDP problem in QuadProgCD is solved by MOSEK.

Globally Solving Concave QP via DNN Relaxation 33

For instances of relatively low dimension from the dataset PCQMAX20, PCQ-
MAXS0 and PCQMAX100, it is possible to solve the doubly nonnegative relaxation
using an interior point method. The results with MOSEK as the SDP solver are sum-
marized in Figure 2. The red squares stand for instances for which vg < @*(F),
while the blue squares stand for instances for which vg > @*(.%). It can be observed
that QuadProgCD outperforms significantly CPLEX and Gurobi in most of the cases.
Moreover, the superior performance of QuadProgCD is more and more remarkable
when the dimension increases.

For instances of relatively large dimension from the dataset PCQMAX100 and
PCQMAXS500, we adopt SDPNAL+ as the SDP solver. The results are displayed in Fig-
ure 3. By comparing Figure 2e and Figure 2f with Figure 3a and Figure 3b, we con-
clude that QuadProgCD with medium-accuracy SDP solver SDPNAL+ can be faster
than QuadProgCD with high-accuracy SDP solver Mosek on the dataset PCQMAX100.
For the dataset PCQMAXS500, we set the maximum time limit to be 3600 seconds. It
can be seen from Figure 3c and Figure 3d that CPLEX and Gurobi failed on all the 10
instances within the time limit 3600 seconds. In contrast, QuadProgCD solved all the
10 instances of dimension 500 all within 1000 seconds.

10 #ﬂ-ﬂ
E &
m =
o o o = Oo 4
od =) , o
2 g 1o o
o 0w o) .
o] o 3 o
z 20, 0/b0 g
o o % o [m]
Py 10! goo
v

10° 107! 10° 10 102 10°

107" 100 10! 10°
QuadProgCD

QuadProgCD

(a) QuadProgCD vs CPLEX on PCQMAX100. (b) QuadProgCD vs Gurobi on PCQMAX100.

10*

CPLEX
2
Gurobi
2

102
10 10% 10° 10' 10° 10°

QuadProgCD QuadProgCD

(c¢) QuadProgCD vs CPLEX on PCQMAXS500. (d) QuadProgCD vs Gurobi on PCQMAXS500.

Fig. 3 Wall-clock time comparison for solving the reference value problem on PCQMAX, plotted in log-
log scale, where the SDP problem in QuadProgCD is solved inexactly by SDPNAL+.

34 Z.Qu, T. Zeng, Y. Lou

5.2.3 Global solution

In this section, we compare QuadProgCD-G (Algorithm 2) with three other global
solvers CPLEX, Gurobi and quadprogIP for globally solving (1). The relative gap
tolerance € in the termination criteria (64) is set to be € = 107°. The test is performed
on samples from the real dataset BioDatal00 and from the synthetic dataset PCQ-
MAX20, PCQMAXS50, PCQMAX100, CQMAX20, CQMAXS50 and CQMAX100.
Let us examine the performance of the four algorithms on real dataset displayed
in Table 2. We randomly selected 20 instances from the 317,458 instances of the
dataset BioData100. QuadProgCD reached the gap tolerance £ = 10~° in hundreds
of seconds for 19 instances. CPLEX reached the gap tolerance € = 107° for only 4
instances within the time limit which is set to be 3600 seconds. Gurobi reached
the gap tolerance £ = 10° for only 6 instances within the time limit. quadprogIP
reached the gap tolerance € = 1076 for only 6 instances within the time limit.

Table 2 Comparison of four algorithms on 20 instances from the real dataset BioDatal00 for reaching
the relative gap tolerance &€ = 107°. The shortest wall-clock time in each row is in bold font. A hyphen
(-) indicates that a gap less than 10~° is reached, and N/A represents that the algorithm fails to obtain an
upper or lower bound before the time limit. If a gap less than 1076 is not reached before the time limit,
then the achieved gap is displayed in the column RelGap.

QuadProgCD CPLEX Gurobi quadprogIP
Instance RelGap Time RelGap Time RelGap Time RelGap Time
257424 - 258.88 - 2269.93 - 2233.72 N/A 3600
84896 - 130.18 - 705.71 - 3045.90 N/A 3600
141783 - 203.66 6.94x 1072 3600 1.93 x 107 3600 N/A 3600
123044 - 124.27 1x107! 3600 231x 107! 3600 N/A 3600
303256 - 47.86 2.46x1072 3600 1.86x 1073 3600 - 151.68
312988 5.85x 107 3600 - 1486.21 9.54x 107 3600 N/A 3600
229644 - 57.92 8.78 x 1072 3600 2.55%x 107! 3600 N/A 3600
259490 - 47.21 1.25x 107! 3600 8.64x 1074 3600 N/A 3600
143339 - 12483 8.62x 1072 3600 - 1759.16 N/A 3600
95618 - 334.64 2.58x1072 3600 1.71 x 107 3600 N/A 3600
23659 - 4733 145x 107! 3600 2.97x 107! 3600 - 901.61
284341 - 43411 9.83x1072 3600 6.51%x 1073 3600 N/A 3600
79834 - 113.41 1.39x 107! 3600 1.06 x 1073 3600 - 36.23
88552 - 55.56 3.13x 1072 3600 1.69 x 107! 3600 - 143.80
305293 - 77230 2.82x1073 3600 8.69 x 1074 3600 - 124.47
149864 - 5402 3.55x1072 3600 6.69x 1072 3600 N/A 3600
81426 - 673 5.47x 1072 3600 7.20x 107 3600 N/A 3600
274863 - 125.34 - 1093.11 - 3220.62 N/A 3600
82857 - 12421 3.83x1072 3600 - 2335.98 - 1056.03
211213 - 204.01 2.65x 1072 3600 - 2076.43 N/A 3600

If we examine the performance of the four algorithms on the synthetic dataset
in Table 3, we observe that QuadProgCD has comparable short running time with
CPLEX for low dimensional instances with n = 20. However, when the dimension
increases to n = 100, QuadProgCD outperforms the other three algorithms by a sig-
nificant margin in most of the cases.

Finally we demonstrate the long time behavior of QuadProgCD, CPLEX and Gurobi
on six selected instances from the real dataset BioDatal00. The plot of time versus

Globally Solving Concave QP via DNN Relaxation 35

Table 3 Comparison of four algorithms on synthetic data PCQMAX and CQMAX for reaching the relative
gap tolerance £ = 1079, The shortest wall-clock time in each row is in bold font. A hyphen (-) indicates
that a gap less than 1079 is reached, and N/A represents that the algorithm fails to obtain an upper or lower
bound before the time limit. If a gap less than 107 is not reached before the time limit, then the achieved
gap is displayed in the column RelGap.

QuadProgCD CPLEX Gurobi quadprogIP

Instance RelGap Time RelGap Time RelGap Time RelGap Time
peqmax20-1 - 0.08 - 0.08 - 0.20 - 0.98
pcqmax20-2 - 0.10 - 0.05 - 0.07 - 0.13
pcqmax20-3 - 0.17 - 0.07 - 0.10 - 0.98
pcqmax20-4 - 0.15 - 0.06 - 0.11 - 1.07
pceqmax20-5 - 0.03 - 0.03 - 0.06 - 0.13
pcqmax20-6 - 0.07 - 0.03 - 0.09 - 0.42
peqmax20-7 - 0.31 - 0.05 - 0.07 - 0.13
pcqmax20-8 - 0.09 - 0.08 - 0.12 - 0.44
pcqmax20-9 - 0.10 - 0.05 - 0.08 - 1.19
peqmax20-10 - 0.08 - 0.06 - 0.08 - 1.08
pcgmax50-1 - 1.38 - 4.27 - 41.47 N/A 3600
pegmax50-2 - 1.06 - 13.11 - 34.78 N/A 3600
pcgmax50-3 - 2.62 - 9.63 - 42.38 N/A 3600
peqmax50-4 - 2.53 - 11.77 - 35.97 N/A 3600
pcgmax50-5 - 2.45 - 4.79 - 40.08 N/A 3600
pcqmax50-6 - 2.57 - 6.05 - 60.76 N/A 3600
pcgmax50-7 - 0.50 - 0.55 - 0.80 - 31.83
pcgmax50-8 - 0.94 - 4.40 - 52.33 N/A 3600
pcqmax50-9 - 0.63 - 1.15 - 1.85 - 73.36
pegmax50-10 - 2.26 - 1.53 - 7.84 N/A 3600
peqmax100-1 - 53.79 - 76.38 - 337.77 N/A 3600
peqmax100-2 - 96.99 - 3380.71 - 3427.90 N/A 3600
peqmax 100-3 - 122.83 - 94.42 - 550.03 N/A 3600
peqmax100-4 - 48.37 - 45.88 - 298.55 N/A 3600
pcqmax100-5 - 65.96 - 100.63 - 358.33 N/A 3600
peqmax100-6 - 17847 187 x 1072 3600 - 2576.43 N/A 3600
pegmax100-7 - 148.27 - 856.33 - 802.37 N/A 3600
peqmax100-8 - 77.36 - 86.75 - 479.76 N/A 3600
pegmax100-9 - 106.64 - 2738.93 - 2261.27 N/A 3600
pcqmax100-10 - 92.37 - 48.94 - 367.20 N/A 3600
Instance RelGap Time RelGap Time RelGap Time RelGap Time
cqmax20-1 - 0.09 - 0.07 - 134.77 - 1.52
cqmax20-2 - 0.08 - 0.03 - 445.84 - 0.38
cqmax20-3 - 0.08 - 0.07 - 73.46 - 0.94
cqmax20-4 - 0.11 - 0.04 - 10.38 - 0.53
cqmax20-5 - 0.07 - 0.03 - 231.45 - 1.33
cqmax20-6 - 0.08 - 0.06 - 11.38 - 0.68
cqmax20-7 - 0.16 - 0.08 - 90.88 - 1.20
cqmax20-8 - 0.07 - 0.04 - 1932.81 - 0.57
cqmax20-9 - 0.08 - 0.05 - 10.62 - 1.38
cqmax20-10 - 0.07 - 0.06 - 26.91 - 1.45
cqmax50-1 - 1.14 - 1.28 N/A 3600 N/A 3600
cqmax50-2 - 2.40 - 1.29 N/A 3600 N/A 3600
cqmax50-3 - 2.60 - 1.86 N/A 3600 N/A 3600
cqmax50-4 - 1.27 - 1.61 N/A 3600 N/A 3600
cqmax50-5 - 3.02 - 3.44 N/A 3600 N/A 3600
cqmax50-6 - 2.80 - 5.58 N/A 3600 N/A 3600
cqmax50-7 - 2.38 - 3.16 N/A 3600 N/A 3600
cqmax50-8 - 3.29 - 5.99 N/A 3600 N/A 3600
cqmax50-9 - 1 - 1.97 N/A 3600 N/A 3600
cqmax50-10 - 0.84 - 224 N/A 3600 N/A 3600
cqmax100-1 - 109.85 - 322.51 N/A 3600 N/A 3600
cqmax100-2 - 39.83 - 108.96 N/A 3600 N/A 3600
cqmax100-3 - 107.91 - 253.22 N/A 3600 N/A 3600
cqmax100-4 - 116.20 - 514.25 N/A 3600 N/A 3600
cqmax100-5 - 30.90 - 328.38 N/A 3600 N/A 3600
cqmax100-6 - 187.58 - 922.90 N/A 3600 N/A 3600
cqmax100-7 - 101.41 - 540.52 N/A 3600 N/A 3600
cqmax100-8 - 309.48 7.18x 107 3600 N/A 3600 N/A 3600
cqmax100-9 - 196.82 2.38x 1073 3600 N/A 3600 N/A 3600

cqmax100-10 - 115.48 - 696.97 N/A 3600 N/A 3600

36

Z.Qu, T. Zeng, Y. Lou

relative gap is shown in Figure 4. It is easy to conclude that QuadProgCD outperforms
notably CPLEX and Gurobi both in terms of the convergence speed and in terms of

the accuracy that can ever be reached.

100 T T T T T T T
—I— QuadProgCD

CPLEX

107 Gurobi

Relative Gap
3
o

0 500 1000 1500 2000 2500 3000 3500 4000
Time

(a) BioData instance 257424.

QuadProgCD

100 F

Relative Gap

0 500 1000 1500 2000 2500 3000 3500 4000
Time

(c) BioData instance 141783.

10°
E QuadProgCD
CPLEX
Gurobi
‘OU b
o
8
o]
2102
k]
°
['s
10 —_—

0 500 1000 1500 2000 2500 3000 3500 4000
Time

(e) BioData instance 312988.

Relative Gap
3

S

10°

1()u T T T T T T T
QuadProgCD
CPLEX

107t Gurobi

10°
0

500 1000 1500 2000 2500 3000 3500 4000
Time

(b) BioData instance 305293.

Relative Gap

il

)

QuadProgCD

0 500 1000 1500 2000 2500 3000 3500 4000

Time

(d) BioData instance 303256.

Relative Gap
3

QuadProgCD
CPLEX
Gurobi

1 —

0 500 1000 1500 2000 2500 3000 3500 4000

Time

(f) BioData instance 84896.

Fig. 4 Convergence behaviour of three algorithms, with relative gap (v —v)/|v| plotted in log scale.

Globally Solving Concave QP via DNN Relaxation 37

5.2.4 Comparison between Konno’s cut and DNN cut

Recall that Theorem 2 states:
i > 0ro > 0ro > 97g, V6 >0. (65)

We calculate the relative improvement of the LP relaxation bound and the DNN re-
laxation bound, which are defined by

P K AL H K s D
(PT,GK - (PT,GK _ ¢T,9[(- ¢T,0[(

RIL(QK) = X s RI(QK) = X
7,0k ¢776K
Note that (65) implies that
0 <RI.(6x) <RI(6k) < 1. (66)

Let us verify (66) with numerical experiments. We randomly selected 20 instances
from the real dataset BioDatal00 and run one iteration of QuadProgCD. We display
the values of (RI.(6x),RI(6k)) in Table 4 for those instances with nonempty feasible
region after adding Konno’s cut.

Table 4 Comparison of different relaxation bounds.

Instance Index RI.(6k) RI(6k)

465 0.0207 0.0208
1582 0.0143 0.0152
4455 0.0163 0.0164
4571 0.0163 0.0169
6664 0.0096 0.0156
8946 0.0172 0.0172
9217 0.0112 0.0142
10824 0.0182 0.0198
11114 0.0127 0.0142
11669 0.0142 0.0153

To demonstrate the impact on generation of deeper cuts, we show in Table 5 the ac-
ceptance/rejection rate of the deepened cut & = 6k /2 under the criteria (}35 o SVR—0
and @ge < vg — 6 over the dataset PCQMAX and CQMAX. The second column dis-
plays the number of instances with nonempty feasible region after adding Konno’s cut
in the first iteration of QuadProgCD. The third column displays the percentage of the
instances which satisfy qﬂ‘ o < vg — 0 and the fourth column displays the percentage
of the instances which satisfy QSTD,G <wvg—9.

Finally, we compare the performance of Option I (Konno’s cut) with Option II
(DNN cut). We randomly selected 20 instances from the real dataset Biodatal00 and
set 7 = 1/10 in this experiment. The termination criterion is the reach of a relative
gap € = 107, The time limit is set to be 1000 seconds. The result is summarized

38 Z.Qu, T. Zeng, Y. Lou

Table 5 Acceptance/rejection rates of deepened cut 0 := 0k /2 using different criteria. Here, a valid in-
stance refers to an instance which is feasible after adding a Konno’s cut.

Dataset Valid instances ~ Valid LR Cut ~ Valid DNNR Cut
PCQMAX20 11 100.00% 100.00%
PCQMAXS50 62 98.39% 100.00%
PCQMAX100 97 89.69% 85.57%

CQMAX20 19 89.47% 100.00%
CQMAXS50 57 82.46% 91.23%
CQMAX100 75 64.00% 82.67%

in Table 6. It can be seen that Option II is superior than Option I in most of the cases,
which confirms the effectiveness of the proposed strategy of deepening Konno’s cut
through the LP and DNN relaxation.

Table 6 Comparison of Option I and with Option II in QuadProgCD-R. The time limit is set to 1000
seconds. The shortest wall-clock time in each row is in bold font.

Instance OptionI ~ Option II

252565 32.99 18.54
280796 103.45 38.21
283147 474.75 40.65
196032 288.48 189.81

30238 35.75 21.87
86335 37.40 17.80
169534 107.67 21.17
299116 53.08 18.46
48861 1000.00 1000.00
150467 40.62 25.72
248087 87.00 26.14

43985 105.71 24.30
130746 1000.00 296.92
283879 1000.00 347.46
245585 465.54 25.97

203280 241.20 67.04
11071 58.82 21.99
263231 1000.00 1000.00
289538 39.22 24.45
210408 34.07 54.26

6 Conclusion

In this paper, we develop an efficient global solver for the concave QP problem (1),
which is known to be an NP-hard problem. The concave QP problem finds a recent
application in computational biology, where the associated reference value problem
needs to be solved for a huge number (317,584) of instances of dimension 100. The
existing QP solvers such as CPLEX or Gurobi seem to require years of computa-
tional time for this particular task. By revisiting the classical cutting plane method
proposed by Tuy and Konno, we propose to construct deeper cuts through the DNN
relaxation. We prove that the DNN relaxation is equivalent to the Shor relaxation of

Globally Solving Concave QP via DNN Relaxation 39

an equivalent QCQP problem. This allows to write down an SDP formulation of the
DNN relaxation which satisfies Slater’s condition, which is crucial for the robustness
of applying the existing SDP solvers to compute the DNN bound. We also provide
the explicit formula for obtaining a valid upper bound from any approximate primal
and dual solution. The proposed algorithm is tested on a variety of real and synthetic
instances and outperforms CPLEX, Gurobi and quadprogIP in most of the cases. In
particular, our method successfully solved all the 317,584 instances within 3 days on
the HKU HPC cluster using 32 processors. Moreover, our algorithm demonstrates
superior performance on large-scale instances of dimension up to 841.

Acknowledgements The authors would like to thank Prof. Stephen S.-T. Yau for introducing the applica-
tion of concave QP in computational biology and providing the dataset. We thank Xinyuan Zhang for the
proofreading work. Parts of computations were performed using research computing facilities offered by
Information Technology Services, the University of Hong Kong.

Statements and Declarations The work of the authors was supported by NSFC Young Scientist Fund
grant 12001458 and Hong Kong Research Grants Council grant 17317122. The authors have no relevant
financial or non-financial interests to disclose.

All authors contributed to the study conception and design. Implementation, data generation and nu-
merical experiments were performed by Tianyou Zeng and Yuchen Lou. The first draft of the manuscript
was written by Zheng Qu and all authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

The datasets generated during and/or analysed during the current study are available in the repository
https://github.com/tianyouzeng/QuadProgCD.

References

1. Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking
state-of-the-art classification algorithms for credit scoring. Journal of the operational research society
54(6), 627-635 (2003)

2. Burer, S.: Copositive Programming, pp. 201-218. Springer US, Boston, MA (2012). DOI 10.1007/
978-1-4614-0769-0_8. URL https://doi.org/10.1007/978-1-4614-0769-0_8

3. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic program-
ming via semidefinite relaxations. Mathematical Programming 113(2), 259-282 (2008)

4. Burkard, R.E., Cela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Hand-
book of combinatorial optimization, pp. 1713-1809. Springer (1998)

5. Cabot, A.V., Francis, R.L.: Solving certain nonconvex quadratic minimization problems by ranking
the extreme points. Operations Research 18(1), 82-86 (1970)

6. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely
positive programming. Mathematical Programming Computation 4(1), 33-52 (2012)

7. Fung, G.: The disputed federalist papers: Svm feature selection via concave minimization. In: Pro-
ceedings of the 2003 Conference on Diversity in Computing, pp. 4246 (2003)

8. Gondzio, J., Yildinim, E.A.: Global solutions of nonconvex standard quadratic programs via mixed
integer linear programming reformulations. Journal of Global Optimization 81(2), 293-321 (2021)

9. Guisewite, G.M., Pardalos, P.M.: Minimum concave-cost network flow problems: Applications, com-
plexity, and algorithms. Annals of Operations Research 25(1), 75-99 (1990)

10. Hladik, M., Hartman, D.: Maximization of a convex quadratic form on a polytope: Factorization and
the chebyshev norm bounds. In: H.A. Le Thi, H.M. Le, T. Pham Dinh (eds.) Optimization of Com-
plex Systems: Theory, Models, Algorithms and Applications, pp. 119-127. Springer International
Publishing, Cham (2020)

11. Hladik, M., Hartman, D., Zamani, M.: Maximization of a psd quadratic form and factorization. Opti-
mization Letters 15(7), 2515-2528 (2021)

12. Horst, R., Pardalos, P.M.: Handbook of global optimization, vol. 2. Springer Science & Business
Media (2013)

https://github.com/tianyouzeng/QuadProgCD
https://doi.org/10.1007/978-1-4614-0769-0_8

40

Z.Qu, T. Zeng, Y. Lou

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

. Horst, R., Tuy, H.: Global optimization: Deterministic approaches. Springer Science & Business

Media (2013)

Jiao, X., Pei, S., Sun, Z., Kang, J., Yau, S.S.T.: Determination of the nucleotide or amino acid com-
position of genome or protein sequences by using natural vector method and convex hull principle.
Fundamental Research 1(5), 559-564 (2021). DOI https://doi.org/10.1016/j.fmre.2021.08.010. URL
https://www.sciencedirect.com/science/article/pii/S2667325821001564

Kim, S., Kojima, M., Toh, K.C.: A lagrangian—dnn relaxation: a fast method for computing
tight lower bounds for a class of quadratic optimization problems. Mathematical Programming
156(1), 161-187 (2016). DOI 10.1007/s10107-015-0874-5. URL https://doi.org/10.1007/
s10107-015-0874-5

Konno, H.: A cutting plane algorithm for solving bilinear programs. Mathematical Programming
11(1), 14-27 (1976)

Konno, H.: Maximization of a convex quadratic function under linear constraints. Mathematical
programming 11(1), 117-127 (1976)

Liuzzi, G., Locatelli, M., Piccialli, V.: A computational study on qp problems with general linear
constraints. Optimization Letters 16(6), 1633—-1647 (2022)

. Luo,Z.Q.,Ma, WK., So, AM.C, Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization

problems. IEEE Signal Processing Magazine 27(3), 20-34 (2010)

Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and prognosis via linear
programming. Operations Research 43(4), 570-577 (1995)

McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part
i—convex underestimating problems. Mathematical programming 10(1), 147-175 (1976)

Momoh, J., Dias, L., Guo, S., Adapa, R.: Economic operation and planning of multi-area intercon-
nected power systems. IEEE transactions on power systems 10(2), 1044-1053 (1995)

Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optimization methods
and software 9(1-3), 141-160 (1998)

Nohra, C.J., Raghunathan, A.U., Sahinidis, N.: Spectral relaxations and branching strategies for global
optimization of mixed-integer quadratic programs. SIAM Journal on Optimization 31(1), 142-171
(2021)

Pardalos, PM., Rosen, J.B.: Methods for global concave minimization: A bibliographic survey. Siam
Review 28(3), 367-379 (1986)

Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is np-hard. Jour-
nal of Global optimization 1(1), 15-22 (1991)

Pataki, G.: Characterizing bad semidefinite programs: Normal forms and short proofs. SIAM Re-
view 61(4), 839-859 (2019). DOI 10.1137/17M1140844. URL https://doi.org/10.1137/
17M1140844

Sun, D., Toh, K.C., Yuan, Y., Zhao, X.Y.: Sdpnal+: A matlab software for semidefinite programming
with bound constraints (version 1.0). Optimization Methods and Software 35(1), 87-115 (2020)
Telli, M., Bentobache, M., Mokhtari, A.: A successive linear approximation algorithm for the global
minimization of a concave quadratic program. Computational and Applied Mathematics 39(4), 1-28
(2020)

Toh, K.C., Todd, M.J., Tiitiincii, R.H.: Sdpt3 — a matlab software package for semidefinite pro-
gramming, version 1.3. Optimization Methods and Software 11(1-4), 545-581 (1999). DOI
10.1080/10556789908805762. URL https://doi.org/10.1080/10556789908805762

Tuy, H.: Concave programming under linear constraints. Soviet Math. 5, 1437-1440 (1964)

Tuy, H.: Nonconvex quadratic programming. In: Convex Analysis and Global Optimization, pp. 337—
390. Springer (2016)

Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented lagrangian methods for semidefi-
nite programming. Mathematical Programming Computation 2(3), 203-230 (2010). DOI 10.1007/
§12532-010-0017-1. URL https://doi.org/10.1007/s12532-010-0017-1

Xia, W., Vera, J.C., Zuluaga, L.F.: Globally solving nonconvex quadratic programs via linear integer
programming techniques. INFORMS Journal on Computing 32(1), 40-56 (2020)

Zamani, M.: A new algorithm for concave quadratic programming. Journal of Global Optimization
75(3), 655-681 (2019)

Zhao, R., Pei, S., Yau, S.S.T.: New genome sequence detection via natural vector convex hull method.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (2020)

https://www.sciencedirect.com/science/article/pii/S2667325821001564
https://doi.org/10.1007/s10107-015-0874-5
https://doi.org/10.1007/s10107-015-0874-5
https://doi.org/10.1137/17M1140844
https://doi.org/10.1137/17M1140844
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1007/s12532-010-0017-1

Globally Solving Concave QP via DNN Relaxation 41

A Search of KKT Vertex

Consider problem (1). Define the bilinear function ¥ : R” x R" — R as follows:
Y(x,5):=x Hi+p x+p' % Vr,icR"

It can be checked that

Y(x,%) = D(x)+ %(Vcb(x),ifw =P(x)+ %(Vé(f),xfﬂ, Vx,x e R". (67)

It follows from (67) that

D)+ dF) 1
24

P (x)+ P(x)

Y(x,%X) = 2

(VP(x) = VP(F),x—X) < , Vx,xeR”, (68)

where the inequality follows from the convexity of the function &. Based on (68), we deduce immediately
the following result, see [17, Thm 2.2].

Theorem 3 ([17]) For any subset 2" C R", we have

maxP(x) = max ¥(x,X).
xe2 () xeZ ze2 (’)

Theorem 3 implies that (1) is equivalent to the following bilinear program.

max ¥ (x,%)

- (69)
s.t. xeF,xeF

In [16], Konno proposed a mountain climbing algorithm for (69), which corresponds to alternatively max-
imizing over x and £.

Algorithm 3 Mountain Climbing Algorithm [16] (Search_of _KKT_Point)

Input: x° € R”, feasible region .7
1: while true do
2: M ev(F)nargmax{¥(x* x) :x € .7}
30 AW () = W (K i) then
4 T xk
5: break;
6: end if
7 k< k+1
8: end while
Output: ¥ €V (F) such that

xeV(F)Nargmax{¥(%,x) :x € .F}. (70)

Since V (.%) is a finite set, Algorithm 3 terminates in finitely many iterations. The main computational
step in Algorithm 3 is at line 2, where one needs to solve an LP problem. Note also that the starting point
x¥ does not need to be a feasible solution. In view of (67), (70) is equivalent to

0 = max (VP(x),x—x)

71
s.t. xeZ. @

Therefore, the output X of Algorithm 3 is a KKT point of problem (1).
It is interesting to note that step 2 in Algorithm 3 can be written equivalently as:

e v(Z)Nnargmax{(VO (), x) : x € F}.

42 Z.Qu, T. Zeng, Y. Lou

B Minimal Program

Let
F ={xcR": Ax=b;x >0}, 72

and
®(x) =x Hx+2p x. (73)

Suppose that ¥ is an output of Algorithm 3. Let c = HX+ p. Then X is a basic feasible solution and also an
optimal solution of

max c ' x
st. Ax=b 74)
x>0.

Hence, there exists a basis matrix B associated with X such that
caBTIN=¢} >0,

where
cp = (HE+ p)p = HgpB™'b+ pg, ey = HgyB™'b+py.
In other words, there exists a basis matrix B associated with X such that

(B™'N)" (HppB™'b+ pp) —HgyB~'b—py > 0. (75)

Algorithm 4 Minimal _Program

Input: Feasible region ., objective function @, KKT point .
1: Write % and @ as in (72) and (73);
2: Choose basis matrix B and nonbasis matrix N associated with x such that (75) holds.
3: Compute (Q,d, F,w,v) according to (13).

Output: (Q,d,F,w,v,B,N).

C Konno’s Cut

Given Tuy’s cut T € R"™™, for each i € [n —m| and for any A we have

g(Ae))=max A(Q)Ty+d y+di+v

s.t. rTy >1
(76)
FTy <w
y>0.
Konno’s cut searches for the vector 6 = (64, ..., 60,_,) such that
g0 er) =+ =g(6, " en-m) =V — 5. an

By strong duality of LP, once the feasible region after adding Tuy’s cut is nonempty, we have
6;=min —d"z+(vg—8—v)z
st. —Fz+wz9>0
Tlz—2>0 (78)
Qi) z+dizg =1
220,20 20,

Globally Solving Concave QP via DNN Relaxation 43

for each i € [n —m]. Thus Konno’s cut can be computed by solving n — m linear programming problems.
We refer interested readers to [17,32] for more details.
Below in Algorithm 5 is the pseudo code for the generation of Konno’s cut.

Algorithm 5 Konno_Cut

Input: Q,d,v,F,w,vg,T,0.
1: fori=1,...,n—mdo
2: Compute 6; by solving the LP problem (78).
3: end for

Output: 6 such that (ﬁfe =vg—39.

D Generation of Deeper Cut

Recall in Section 3 it is mentioned that deeper cuts can be generated using bisection tricks. Below in
Algorithm 6 we attach the pseudo code for generation of those deeper cuts.

Algorithm 6 DNN_Cut

Input: Q.d,v,F,w,vg,T,60,1m,0.
1: 6« 6y;
2: Compute ¢FTL,n9o based on (56);

3: if ééneo < vg — & then

4: 6 <+ n6y;

5: else

6: Compute qﬁ?neo based on (59).
7: if (ﬁfneo < yg — 6 then

8: 6 < n6p;

9: end if

10: end if

Output: 6 <) such that ¢} o < vg— 9.

	Introduction
	Doubly Nonnegative Relaxation
	Generation of Valid Cuts
	Algorithm
	Numerical Experiments
	Conclusion
	Search of KKT Vertex
	Minimal Program
	Konno's Cut
	Generation of Deeper Cut

