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Abstract. In this paper, we consider polynomial optimization with correlative sparsity. We4
construct correlatively sparse Lagrange multiplier expressions (CS-LMEs) and propose CS-LME re-5
formulations for polynomial optimization problems using the Karush-Kuhn-Tucker optimality con-6
ditions. Correlatively sparse sum-of-squares (CS-SOS) relaxations are applied to solve the CS-LME7
reformulation. We show that the CS-LME reformulation inherits the original correlative sparsity8
pattern, and the CS-SOS relaxation provides sharper lower bounds when applied to the CS-LME9
reformulation, compared with when it is applied to the original problem. Moreover, the convergence10
of our approach is guaranteed under mild conditions. In numerical experiments, our new approach11
usually finds the global optimal value (up to a negligible error) with a low relaxation order, for12
cases where directly solving the problem fails to get an accurate approximation. Also, by properly13
exploiting the correlative sparsity, our CS-LME approach requires less computational time than the14
original LME approach to reach the same accuracy level.15
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1. Introduction. Let n be a positive integer, and let x := (x1, . . . , xn) be the19

variable in the n-dimensional Euclidean space. Denote by R[x] be the ring of real20

coefficient polynomials in n indeterminates. We consider the polynomial optimization21

problem22

(1.1)

{
min
x∈Rn

f(x)

s.t. g(x) ≥ 0, h(x) = 0.
23

In the above, f ∈ R[x] is a polynomial, and g ∈ R[x]m and h ∈ R[x]ℓ are tuples of24

polynomial functions. In [10], Lasserre introduced a hierarchy of semidefinite pro-25

gramming (SDP) relaxations to provide a sequence of lower bounds for (1.1), which26

converges to the global optimal value of (1.1), under some compactness assumptions.27

This approach is known as the Moment-SOS relaxations and has been intensively28

explored in the last two decades for global solutions of polynomial optimization prob-29

lems. For (1.1), Nie introduced the Lagrange multiplier expressions (LMEs) [23],30

whose existence is guaranteed when g(x) and h(x) are given by generic polynomial31

functions. LMEs can be applied to construct the LME reformulation of (1.1) using32

the Karush-Kuhn-Tucker (KKT) optimality conditions, which guarantees the moment33

relaxation being exact when the relaxation order is big enough and the global mini-34

mum for (1.1) is attainable. However, these approaches are usually computationally35

expensive. Indeed, even for unconstrained polynomial optimization problems, i.e.,36

m = ℓ = 0, the moment relaxation for (1.1) is an SDP problem with matrices of size37

up to
(
n+d
n

)
×
(
n+d
n

)
, where d ∈ N is the relaxation order such that 2d ≥ deg(f).38

Given the polynomial optimization problem (1.1), let (I1, . . . , Is) be subsets of39

[n] := {1, . . . , n} such that
⋃s

i=1 Ii = [n], and denote x(i) := (xj)j∈Ii
. The equation40

(1.1) is said to follow the correlative sparsity pattern (csp) (I1, . . . , Is) if41
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(1) there exist f1, f2, . . . , fs such that every fi ∈ R[x(i)] and f(x) = f1(x
(1)) +42

· · ·+ fs(x
(s));43

(2) there exist partitions I = (I1, . . . , Is) of [m] and E = (E1, . . . , Es) of [ℓ], such44

that for all i ∈ [s], we have gj1 ∈ R[x(i)] and hj2 ∈ R[x(i)] for every j1 ∈ Ii45

and j2 ∈ Ei.46

For convenience, we let mi := |Ii| and ℓi := |Ei|, and denote47

g(i) := (gj : j ∈ Ii) , h(i) := (hj : j ∈ Ei) .48

Then, both g(i) and h(i) are subsets of R[x(i)], and the polynomial optimization (1.1)49

with csp (I1, . . . , Is) can be written in the following way:50

(1.2)


min
x∈Rn

f1(x
(1)) + f2(x

(2)) + · · ·+ fs(x
(s))

s.t. g(1)(x(1)) ≥ 0, . . . , g(s)(x(s)) ≥ 0,
h(1)(x(1)) = 0, . . . , h(s)(x(s)) = 0.

51

In this paper, we are interested in problems with csp {I1, . . . , Is} that satisfies52

the running intersection property (RIP), meaning that for each 1 ≤ i ≤ s− 1, Ii+1 ∩53

(I1 ∪ · · · ∪ Ii) ⊂ It for some t ∈ {1, . . . , i}; see Definition 2.2. The Moment-SOS54

relaxation with correlative sparsity is studied in [34], and the convergence results55

are proved in [5, 9, 11, 25] for the case when the RIP holds. Recently, Wang et al.56

developed the software TSSOS [15] that implements correlative and term sparse SOS57

relaxations for polynomial optimization (see also [16, 36, 37]), and it has been used58

in many applications [17, 35].59

Note that for any polynomial optimization problem, the trivial csp, i.e., s = 160

with I1 = [n], always exists. Our primary interests lie in the cases where n is much61

bigger than maxi∈[s] |Ii|. For polynomial optimization (1.1) with the given csp, we62

aim to construct reformulations similar to Nie’s LME reformulation introduced in [23],63

while maintaining the correlative sparsity of (1.1). Our main contributions are:64

• For polynomial optimization with the given csp, we provide a systematic way to65

construct correlatively sparse LMEs (CS-LMEs), which are polynomial functions66

in x and some auxiliary variables.67

• Based on CS-LMEs, we proposed correlatively sparse reformulations using the68

KKT optimality conditions. We show that under some general conditions, the69

reformulation inherits the csp and the running intersection property (RIP) from70

the original polynomial optimization, and their optimal values are identical.71

• We show that for a given relaxation order, correlatively sparse SOS (CS-SOS)72

relaxations always provide tighter lower bounds for the optimal value of the73

polynomial optimization problem when the CS-LME reformulation is applied.74

The asymptotic convergence of our approach is proved under some standard75

assumptions. Numerical experiments are given to show the superiority of our76

CS-LME approach.77

This paper is organized as follows. Some preliminaries for polynomial optimiza-78

tion and Lagrange multiplier expressions are given in Section 2. In Section 3, CS-79

LMEs are studied, and reformulations based on CS-LMEs are proposed. Section 480

studies the CS-SOS relaxations for solving CS-LME relaxations. Numerical experi-81

ments are presented in Section 5, and we conclude our approach and discuss future82

work in Section 6. In Appendix A, we briefly recall the general methodology for the83

computation of LMEs and CS-LMEs.84

2. Preliminaries.85
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2.1. Notation and definitions. Let r be a positive integer. Denote [r] :=86

{1, . . . , r} and let Ir be the r-by-r identity matrix. When the dimension is clear,87

we use 0 (resp., 1) to denote the all-zero (resp., all-one) vector. Given two vectors88

v, w ∈ Rr, we denote by v ◦ w the entry-wise product of v and w, and v ⊥ w means89

that v⊤w = 0. For v ∈ Rr and 1 ≤ i ≤ j ≤ r, we denote by vi:j the subvector formed90

by the elements of v indexed from i to j, i.e., vi:j := [vi, · · · , vj ]⊤.91

Let z = (z1, . . . , zr) be a tuple of variables. Denote by R[z] the ring of polynomials92

in variables z1, . . . , zr with real coefficients, and let R[z]r×k (resp., R[z]r) be the set93

of all r × k matrices (resp., r-dimensional vectors) whose entries are polynomials in94

z. For a polynomial p ∈ R[z], denote by deg(p) the degree of p. For an integer d ∈ N,95

let R[z]d be the R-vector space of real polynomials in r variables of degrees at most d.96

A polynomial p ∈ R[z] is a sum-of-squares (SOS) if there exist σ1, . . . , σt ∈ R[z] such97

that p = (σ1)
2
+ · · ·+ (σt)

2
. Denote by Σ[z] the set of SOS polynomials in z and let98

Σ[z]d := Σ[z]∩R[z]d. For p ∈ R[z] and R,S ⊆ R[z], we define p · R := {p · q : q ∈ R}99

and R+ S := {r + s : r ∈ R, s ∈ S}.100

Given a tuple g = (g1, . . . , gm) ⊆ R[z], the quadratic module of R[z] generated by101

g is the set102

(2.1) Qmod(g) := Σ[z] + g1 · Σ[z] + · · ·+ gm · Σ[z],103

and the 2dth truncation of Qmod(g) is the set104

(2.2) Qmod(g)2d := Σ[z]2d + g1 · Σ[z]2d−deg(g1) + · · ·+ gm · Σ[z]2d−deg(gm).105

For a tuple h = (h1, . . . , hℓ) ⊂ R[z], the ideal of R[z] generated by h is the set106

Ideal(h) := h1 · R[z] + · · ·+ hℓ · R[z],107

and the 2dth truncation of Ideal(h) is the set108

Ideal(h)2d := h1 · R[z]2d−deg(h1) + · · ·+ hℓ · R[z]2d−deg(hℓ).109

For two polynomial tuples h and g, denote110

(2.3) IQ(h, g) := Ideal(h) + Qmod(g), IQ(h, g)2d := Ideal(h)2d +Qmod(g)2d.111

Then, it is clear that every polynomial p ∈ IQ(h, g) ⊆ R[z] is nonnegative over the set112

K := {z ∈ Rr : h(z) = 0, g(z) ≥ 0}. Conversely, when IQ(h, g) is archimedean, i.e.,113

when there exists p ∈ IQ(h, g) such that {z ∈ Rr : p(z) ≥ 0} is compact (see [12]),114

all positive polynomials over K are in IQ(h, g). This result is referred to as Putinar’s115

Positivstellensatz [32]. Moreover, when h = 0 has finitely many real roots, or when116

some general optimality conditions hold, a polynomial f ∈ R[z] is nonnegative over117

K if and only if f ∈ IQ(h, g)2d for all d that is sufficiently large (see [19, 21]).118

Throughout the paper, x = (x1, . . . , xn) is the tuple of n variables. Given the csp119

(I1, . . . , Is), for each i ∈ [s], we fix a certain ordering for elements in Ii and denote120

by x(i) the tuple of variables (xk : k ∈ Ii). The jth variable of x(i), denoted by x
(i)
j ,121

corresponds to the variable xk if j is the order of k in Ii. For example, if I1 is ordered122

as (1, 3, 5, 6), then x
(1)
2 = x3. For polynomial p ∈ R[x], denote by ∇p ∈ R[x]n the123

gradient of p and124

(2.4) ∇ip :=
[

∂p

∂x
(i)
1

· · · ∂p

∂x
(i)
ni

]⊤
∈ R[x]ni .125
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When the dimension of the ambient space is clear, we use ei to denote the i-th standard126

basis vector whose ith entry is 1 while all other entries are zeros. For k ∈ Ii, denote127

(2.5) e
(i)
k := ej ∈ Rni ,128

where j is the order of k in the tuple Ii. For instance, if I1 is ordered as (1, 3, 5, 6),129

then e
(1)
3 = e2 ∈ R4.130

2.2. Moment-SOS relaxation. Denote by fmin the optimal value of the poly-131

nomial optimization problem (1.1). Denote by K the feasible set of (1.1), i.e., K :=132

{x ∈ Rn : h(x) = 0, g(x) ≥ 0}. Then finding the global minimum of (1.1) is equivalent133

to134

(2.6)

{
max γ
s.t. f − γ ∈ Pd0(K).

135

In the above, d0 is the degree of f , and Pd0(K) is the cone of nonnegative polynomials136

over K with degrees not greater than d0. A computationally tractable relaxation for137

(2.6) is called the Moment-SOS relaxation. Given the relaxation order d ∈ N such that138

2d ≥ max{deg(f),deg(g),deg(h)}, the dth order SOS relaxation of (2.6) (and (1.1))139

is140

(2.7)

{
max γ
s.t. f − γ ∈ IQ(h, g)2d.

141

Its dual problem corresponds to the so-called dth order moment relaxation of (1.1),142

and this primal-dual pair is referred to as the Moment-SOS relaxation. Both (2.7)143

and its dual problems can be written as SDP problems. We refer to [6, 10, 12, 13, 14,144

20, 22, 24] for more references about polynomial optimization and moment problems.145

For a relaxation order d, denote by θd the optimal value of (2.7). Clearly θd146

provides a lower bound of fmin, i.e. θd ≤ fmin. Convergence of the Moment-SOS147

relaxation relies on Putinar’s Positivestellenstaz [32].148

Theorem 2.1 ([10]). If IQ(g, h) is archimedean, then limd→+∞ θd = fmin.149

We would like to remark that under some conditions, the Moment-SOS relaxations150

have finite convergence, i.e., θd = fmin for all d that is big enough. We refer to151

[2, 3, 8, 19, 21] for more related work. The Moment-SOS relaxations have been152

implemented in the software GloptiPoly 3 [7]. In this paper, we also call Moment-153

SOS relaxations ”dense relaxations” or ”dense SOS relaxations” to distinguish them154

from SOS relaxations exploiting the sparsity.155

2.3. Correlatively sparse SOS relaxation. Let us consider the problem (1.2)
with csp (I1, . . . , Is). For polynomial tuples h(i), g(i) ∈ R[x(i)], we denote by

IQIi
(h(i), g(i))

the set given by (2.1-2.3) with z = x(i). To exploit the correlative sparsity of prob-156

lem (1.2), we consider the following relaxation for problem (1.2):157

(2.8)

{
max γ

s.t. f − γ ∈ IQI1

(
h(1), g(1)

)
2d

+ · · ·+ IQIs

(
h(s), g(s)

)
2d
.

158

We refer to (2.8) as the dth order CS-SOS relaxation of (1.2) [11, 25, 16, 34], and159

denote its optimal value by ρd. To demonstrate the convergence results for CS-SOS160

relaxations, we need the following property of csps.161
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Definition 2.2. We say that the csp (I1, . . . , Is) satisfies the running intersec-162

tion property (RIP) if for every i ∈ [s− 1], there exists t ≤ i such that163

Ii+1

⋂ i⋃
j=1

Ij ⊆ It.(2.9)164

165

Convergence of the CS-SOS relaxation is derived from the following sparse version of166

Putinar’s Positivestellenstaz.167

Theorem 2.3 ([5, 9, 11]). Suppose (I1, . . . , Is) satisfies the RIP property, and
IQIi

(g(i), h(i)) is archimedean for each i ∈ [s]. If f(x) := f1(x
(1)) + · · ·+ fs(x

(s)) is

positive on the semi-algebraic set
⋂s

i=1{x ∈ Rn : g(i)(x) ≥ 0, h(i)(x) = 0}, then

f ∈ IQI1

(
h(1), g(1)

)
+ · · ·+ IQIs

(
h(s), g(s)

)
.

Therefore, under the same conditions as that in Theorem 2.3, we have:168

lim
d→+∞

ρd = fmin.(2.10)169
170

Aside from the correlative sparsity, one can also exploit the term sparsity of171

polynomial optimization problems, or combine both kinds of sparsity to obtain the172

so-called correlative and term sparsity SOS relaxations (CS-TSSOS) of (1.2), whose173

convergence is guaranteed with the term sparsity being given by the maximal chordal174

extension when the CS-SOS relaxation is convergent [37]. Since this paper mainly175

concerns correlative sparsity, we refer to [16, 36, 37] for more details on the exploitation176

of term sparsity. The CS-TSSOS relaxations have been recently implemented in the177

software TSSOS [15].178

2.4. Optimality conditions and Lagrange multiplier expressions. For the179

polynomial optimization problem (1.1), the Karush-Kuhn-Tucker (KKT) conditions180

can be described by the following polynomial system in (x, λ) ∈ Rn+m+ℓ:181  ∇f(x) =
m∑
j=1

λj∇gj(x) +
ℓ∑

j=1

λm+j∇hj(x),

h(x) = 0, 0 ≤ λ1:m ⊥ g(x) ≥ 0.

(2.11)182

183

The pair (x, λ) satisfying (2.11) is called a KKT pair, and the first component x184

of a KKT pair is called a KKT point of (1.1). Under some constraint qualification185

conditions, every minimizer of (1.1), if it exists, must be a KKT point. In this186

case, minimizing f over the KKT system (2.11) returns the same optimal value and187

optimal solutions as the original problem (1.1). Moreover, conditions guaranteeing188

the convergence of the dense SOS relaxations are milder for the minimization over the189

KKT ideal than that for the original problem (1.1). In particular, convergence can190

still occur even when the semi-algebraic set given by (2.11) is noncompact [4, 26].191

A drawback, however, of working on the KKT system (2.11) rather than on the192

original feasible region K ⊆ Rn is the augmentation of the number of variables from n193

to n+m+ℓ, which causes a significant increase on the computational cost. To deal with194

this undesired complexity growth, Nie [23] proposed polynomial Lagrange multipliers195

expressions. For the polynomial optimization problem (1.1), let m̂ := m+ ℓ, and let196
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c := (c1, . . . , cm̂) be an enumeration for the constraining pair (g, h). We denote197

(2.12) G(x) :=


∇c1(x) ∇c2(x) · · · ∇cm̂(x)
c1(x) 0 · · · 0
0 c2(x) · · · 0
...

...
. . .

...
0 · · · 0 cm̂(x)

 , f(x) :=


∇f(x)

0
...
0

 .198

Then, the following equation holds at every KKT pair (x, λ):199

G(x) · λ = f(x).(2.13)200201

If there exists a matrix of polynomials L ∈ R[x]m̂×n and D ∈ R[x]m̂×m̂ such that202 [
L(x) D(x)

]
G(x) = Im̂, ∀x ∈ Rn,(2.14)203204

then the Lagrange multipliers λ can be expressed as polynomials in x:205

(2.15)

 λ1
...
λm̂

 =

 p1(x)
...

pm̂(x)

 := L(x)∇f(x).206

The polynomial vector p(x) := (p1(x), . . . , pm̂(x)) is called the Lagrange multiplier207

expression (LME). Denote208

ceq(x) :=


∇f(x)−

m∑
j=1

pj(x)∇gj(x)−
ℓ∑

j=1

pm+j(x)∇hj(x)

h(x)
p1:m(x) ◦ g(x)

 ,209

and210

cin(x) :=

[
p1:m(x)
g(x)

]
.211

Then, x ∈ Rn is a KKT point if and only if x satisfies ceq(x) = 0, cin(x) ≥ 0. Based212

on the LME (2.15), Nie [23] proposed the following reformulation of (1.1):213

(2.16)

{
min
x∈Rn

f(x)

s.t. ceq(x) = 0, cin(x) ≥ 0
214

It is clear that when the minimum of (1.1) is attained at some KKT points, the optimal215

values of (1.1) and (2.16) are identical. In fact, the existence of LMEs guarantees216

that every minimizer of (1.1), if it exists, must be a KKT point [23, Proposition 5.1],217

thus solving (1.1) is equivalent to solving the reformulation (2.16). When Moment-218

SOS relaxations are applied, finite convergence is guaranteed under some generic219

conditions:220

Theorem 2.4. [23, Theorem 3.3] Suppose LMEs exist and (2.16) has a nonempty221

feasible set. Denote by θd the optimal value of the dth order SOS relaxation (2.7) of222

the polynomial optimization problem (2.16). Then, we have fmin = θd holds for all d223

big enough, if IQ(ceq, cin) is archimedean and the minimum value of (1.1) is attained224

at a KKT point.225
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Recently, LMEs have been widely used in various problems given by polynomial226

functions, such as bilevel polynomial optimization, Nash equilibrium problems, tensor227

computation, etc. We refer to [27, 28, 29, 30, 31] for applications of LMEs.228

One wonders when LMEs exist, i.e., when there exist matrices L(x), D(x) such229

that (2.14) holds. We say that the constraining tuple (g, h) is nonsingular if the matrix230

G(x) given in (2.12) has a full column rank for all x ∈ Cn. For (1.1), LMEs exist231

if and only if its constraining tuple is nonsingular [23, Proposition 5.1]. We would232

like to remark that when the polynomials c1, . . . , cm̂ are generic1, the nonsingularity233

condition holds. However, there are cases when LMEs do not exist; see Example 3.1234

for a concrete example and also [23, 28] for more details. In the following example, we235

give the matrices L(x) and D(x) for a special box-constrained problem. The general236

methodology for formulating LMEs can be found in Appendix A.237

Example 2.5. Consider the polynomial optimization problem with box constraints238

(2.17)


min
x∈R4

f(x1, x2, x3, x4) := x41x
2
2 + x21x

4
2 + x63

−3x21x22x23 + x33 + x3x
2
4 − 2x23x4

s.t. x1 ≥ 0, 1− x1 ≥ 0, x2 ≥ 0, 1− x2 ≥ 0,
x3 ≥ 0, 1− x3 ≥ 0, x4 ≥ 0, 1− x4 ≥ 0.

239

Note that in this problem, since all variables are nonnegative, by the inequality of240

arithmetic and geometric means, we have241

x41x
2
2 + x21x

4
2 + x63 ≥ 3 3

√
x41x

2
2 · x21x42 · x63 = 3x21x

2
2x

2
3,

x33 + x3x
2
4 ≥ 2

√
x33 · x3x24 = 2x23x4,

242

where the equailities hold when x1 = x2 = · · · = x4. So the global minimum of (2.17)243

is 0 with minimizers (t, t, t, t) for all t ∈ [0, 1]. Let g(x) := (g1(x), . . . , g8(x)) with244

(2.18)
g1(x) = x1, g2(x) = 1− x1, g3(x) = x2, g4(x) = 1− x2,
g5(x) = x3, g6(x) = 1− x3, g7(x) = x4, g8(x) = 1− x4.

245

The constraining tuple g is nonsingular and (2.14) holds with

L(x) = diag(L1(x), L2(x), L3(x), L4(x)), D(x) = diag(D1(x), D2(x), D3(x), D4(x))

being block-diagonal matrices. The matrices in the diagonal of L are given by Li(x) =246 [
1− xi
−xi

]
and the matrices in the diagonal of D are given by Di(x) =

[
1 1
1 1

]
for247

each i ∈ [4]. Accordingly, the LMEs are248

(2.19) p2i−1(x) = (1− xi) ·
∂f

∂xi
(x), p2i(x) = −xi ·

∂f

∂xi
(x), (i = 1, . . . , 4).249

In particular, p5(x), p6(x) can be explicitly written as250

(2.20)
p5(x) = 6(x21x

2
2x

2
3 − x63 − x21x22x3 + x53)

−3x33 + 4x23x4 − x3x24 + 3x23 − 4x3x4 + x24,
p6(x) = 6x21x

2
2x

2
3 − 6x63 − 3x33 + 4x23x4 − x3x24,

251

which involve all the four variables x1, x2, x3, x4.252

1We say a property holds generically if it holds for all points of input data but a set of Lebesgue
measure zero.

7

This manuscript is for review purposes only.



3. Correlatively sparse LMEs and reformulations. We consider polyno-253

mial optimization problem (1.2) with the csp (I1, . . . , Is) satisfying the RIP. For254

i ∈ [s], we denote by G(i) the polynomial matrix G given in (2.12) associated with255

(g(i), h(i)). That is, if we let c(i) = (g(i), h(i)), and m̂i := mi + ℓi, then256

(3.1) G(i)(x(i)) :=


∇ic

(i)
1 (x(i)) ∇ic

(i)
2 (x(i)) · · · ∇ic

(i)
m̂i

(x(i))

c
(i)
1 (x(i)) 0 · · · 0

0 c
(i)
2 (x(i)) · · · 0

...
...

. . .
...

0 · · · 0 c
(i)
m̂i

(x(i))

 .257

As mentioned in Section 2.4, one can reformulate polynomial optimization prob-258

lems with LMEs, from which the Moment-SOS relaxation gives a tighter lower bound259

for the polynomial optimization. To apply LMEs, the KKT system of (1.2) corre-260

sponds to the following semialgebraic set on x ∈ Rn, λ(1) ∈ Rm̂1 , . . . , λ(s) ∈ Rm̂s :261

(3.2)


∇f1(x) + · · ·+∇fs(x) =

s∑
i=1

mi∑
j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi∑
j=1

λ
(i)
mi+j∇h

(i)
j (x)

 ,

h(i)(x) = 0, i ∈ [s],

0 ≤ λ(i)1:mi
⊥ g(i)(x) ≥ 0, i ∈ [s].

262

Hereinafter, we additionally assume that the nonsingularity condition holds for the263

constraining pair (g(i), h(i)) within every Ii. That is:264

Assumption 1. For each i ∈ [s], there exist polynomial matrices L(i)(x(i)) ∈265

R[x(i)]m̂i×ni and D(i)(x(i)) ∈ R[x(i)]m̂i×m̂i such that266

(3.3)
[
L(i)(x(i)) D(i)(x(i))

]
G(i)(x(i)) = Im̂i

.267

By [23, Proposition 5.2], (3.3) holds if and only if the matrixG(i)(x(i)) have full column268

rank for all x(i) ∈ Cni . For such cases, we say the pair (g(i), h(i)) is nonsingular. This269

is satisfied if all polynomials in g(i) and h(i) are generic polynomials in x(i).270

3.1. Limitation of the original LME for exploiting correlative sparsity.271

For the polynomial optimization (1.2) with correlative sparsity, LMEs exist if and272

only if the constraining tuple of all the constraints is nonsingular, by [23, Proposi-273

tion 5.1]. In general, Assumption 1 is a necessary but not sufficient condition of the274

nonsingularity for the constraining tuple (g, h) of all constraints in (1.2). This can be275

seen in the following example.276

Example 3.1. Consider the following example with three variables x = (x1, x2, x3)277

and two constraints278

(3.4)


min
x∈R3

f1(x1, x2) + f2(x2, x3)

s.t. 1− x21 − x22 ≥ 0
1− x22 − x23 ≥ 0

279

Let I1 = {1, 2} and I2 = {2, 3}. Then (3.4) has the csp (I1, I2) with280

(3.5) g(1) =
(
1− x21 − x22

)
, g(2) =

(
1− x22 − x23

)
, h(1) = h(2) = ∅.281
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The matrix G(x) associated to (3.4) is

G(x) =


−2x1 0
−2x2 −2x2
0 −2x3

1− x21 − x22 0
0 1− x22 − x23

 ,
whose rank is 1 at x = (0, 1, 0). Thus the constraining tuple of (3.4) is not nonsingular,
and LMEs do not exist. On the other hand, we have

G(1)(x1, x2) =

 −2x1
−2x2

1− x21 − x22

 , G(2)(x2, x3) =

 −2x2
−2x3

1− x22 − x23

 .
One may check that Assumption 1 holds with282

(3.6) L(1)(x1, x2) =

[
−1

2
x1 − 1

2
x2

]
, L(2)(x2, x3) =

[
−1

2
x2 − 1

2
x3

]
,283

and D(1) = D(2) = 1.284

Remark 3.2. See also Example 5.1(ii), Example 5.2, Example 5.5 and Example 5.7285

in Section 5 for cases which satisfy Assumption 1 but do not admit LMEs.286

Another concern related to the original LME approach is that the LME refor-287

mulation (2.16), if exists, usually cannot inherit the csp of (1.2). Indeed, the LME288

reformulation (2.16) may have constraints that involve all the variables, as demon-289

strated by the following example.290

Example 3.3. Consider the polynomial optimization problem (2.17) with box con-291

straints. Let I1 = {1, 2, 3} and I2 = {3, 4}. Then (2.17) has the csp (I1, I2) with292

h(1) = h(2) = ∅ and293

(3.7)
f1(x

(1)) = x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3, f2(x

(2)) = x33 + x3x
2
4 − 2x23x4,

g(1)(x(1)) = (x1, 1− x1, x2, 1− x2), g(2)(x(2)) = (x3, 1− x3, x4, 1− x4).
294

In view of (2.20), the LME reformulation (2.16) of (2.17) does not have correla-295

tive sparsity, as the nonnegativity conditions for Lagrange multipliers p5(x) ≥ 0 and296

p6(x) ≥ 0 involve all variables.297

In the next two subsections, we provide a systematic method to construct LMEs298

for (1.2) which leverages the correlative sparsity pattern (I1, . . . , Is).299

3.2. Correlatively sparse LMEs: two blocks. We begin with the case of300

two blocks, i.e., s = 2. Before giving a formal presentation of our approach, we would301

like to expose the underlying idea through the following example of three variables302

(3.8)

 min f1(x1, x2) + f2(x2, x3)
s.t. g1(x1, x2) ≥ 0,

g2(x2, x3) ≥ 0.
303

The problem (3.8) has the csp (I1, I2) with I1 = {1, 2} and I2 = {2, 3}. Recall that304

for each i ∈ [s], the partial gradient ∇i is defined as in (2.4). Under Assumption 1,305
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there exist polynomial matrices L(1) ∈ R[x1, x2]2, D(1) ∈ R[x1, x2], L(2) ∈ R[x2, x3]2306

and D(2) ∈ R[x2, x3] such that for each i = 1, 2,307

(3.9)
[
L(i)(x1, x2) D(i)(x1, x2)

] [ ∇igi(x1, x2)
gi(x1, x2)

]
= 1.308

The KKT system of (3.8) is309

(3.10)



∂f1
∂x1

(x1, x2) = λ1 ·
∂g1
∂x1

(x1, x2),

∂f1
∂x2

(x1, x2) +
∂f2
∂x2

(x2, x3) = λ1 ·
∂g1
∂x2

(x1, x2) + λ2 ·
∂g2
∂x2

(x2, x3),

∂f2
∂x3

(x2, x3) = λ2 ·
∂g2
∂x3

(x2, x3),

0 ≤ g1(x1, x2) ⊥ λ1 ≥ 0,

0 ≤ g2(x2, x3) ⊥ λ2 ≥ 0.

310

Clearly the csp structure is broken when f1, f2, g1, g2 are dense polynomials, due to311

the second equation above. Introducing an auxiliary variable ν, we rewrite (3.10) as312

(3.11)



∇1f1(x1, x2) +

[
0
ν

]
= λ1 · ∇1g1(x1, x2),

0 ≤ g1(x1, x2) ⊥ λ1 ≥ 0,

∇2f2(x2, x3)−
[
ν
0

]
= λ2 · ∇2g2(x2, x3),

0 ≤ g2(x2, x3) ⊥ λ2 ≥ 0,

313

Thus by (3.9), for any (x1, x2, λ1, λ2, ν) satisfying (3.11), we must have314

(3.12)

λ1 = L(1)(x1, x2)

(
∇1f1(x1, x2) +

[
0
ν

])
,

λ2 = L(2)(x2, x3)

(
∇2f2(x2, x3)−

[
ν
0

])
.

315

Under some constraint qualification conditions, we arrive at a reformulation for (3.8)
which possess the csp with two blocks of variables

(x1, x2, ν), (x2, x3, ν)

by plugging (3.12) back into (3.11) to replace λ1 and λ2.316

Example 3.4. Consider the polynomial optimization problem (3.4) as a special317

case of (3.8). Recall that Assumption 1 holds with L(1) and L(2) given in (3.6). In318

view of (3.12), we have319

(3.13)

λ1 = p(1)(x1, x2, ν) := −
x1
2

∂f1
∂x1

(x1, x2)−
x2
2

∂f1
∂x2

(x1, x2)−
x2
2
ν,

λ2 = p(2)(x2, x3, ν) := −
x2
2

∂f2
∂x2

(x2, x3)−
x3
2

∂f2
∂x3

(x2, x3) +
x2
2
ν.

320

Suppose the minimum value of (3.4) is attained at a KKT point x∗. Then there exists321

ν∗ ∈ R such that (3.11) holds at (x∗, ν∗) with λ1, λ2 given by (3.13). Taking (3.11)322
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as constraints with λi being substituted by p(i) for every i = 1, 2, we arrive at the323

following optimization problem324

(3.14)



min
x,ν

f1(x1, x2) + f2(x2, x3)

s.t. ∇1f1(x1, x2) +

[
0
ν

]
= −2p(1)(x1, x2, ν) ·

[
x1
x2

]
,

0 ≤
(
1− x21 − x22

)
⊥ p(1)(x1, x2, ν) ≥ 0,

∇2f2(x2, x3)−
[
ν
0

]
= −2p(2)(x2, x3, ν) ·

[
x2
x3

]
,

0 ≤
(
1− x22 − x23

)
⊥ p(2)(x2, x3, ν) ≥ 0.

325

Then (x∗, ν∗) is a global minimizer for (3.14). As we will formally introduce later,326

polynomials p(1), p(2) representing λ1, λ2 are called correlatively sparse LMEs (CS-327

LMEs), and (3.14) is called the CS-LME reformulation for (3.4).328

Recall from Example 3.1 that (3.4) does not admit LMEs, thus the LME reformu-329

lation (2.16) is not available for (3.4). One may consider a reformulation of (3.4) using330

the KKT system (3.10) by taking λ1, λ2 as new variables. Then the total number of331

variables in this approach is 5 and there is no correlative sparsity anymore. Instead,332

by appropriately adding extra variable ν, we obtained the CS-LME reformulation333

(3.14) which maintains to a degree the original csp structure: we have 3 variables in334

each of the two blocks.335

Now we present formally the CS-LME approach for the polynomial optimization336

problem (1.2) with two block csp structure. Given the csp (I1, I2), we introduce extra337

variables ν := (νk)k∈I1∩I2 . Then, the gradient of the objective function ∇f1(x) +338

∇f2(x) can be split into two terms such that one only involves (x(1), ν) and the other339

one only has (x(2), ν). Recall that for i ∈ {1, 2} and k ∈ Ii, the vector e
(i)
k is defined340

in (2.5). Let341

(3.15)
F (1)(x(1), ν) := ∇1f1(x

(1)) +
∑

k∈I1∩I2
νke

(1)
k ∈ Rn1 ,

F (2)(x(2), ν) := ∇2f2(x
(2))−

∑
k∈I1∩I2

νke
(2)
k ∈ Rn2 .

342

Then, (x, λ(1), λ(2)) is a KKT tuple of (1.2) if and only if there exists ν = (νk)k∈I1∩I2
343

such that344

(3.16)



F (1)(x(1), ν) =
∑m1

j=1
λ
(1)
j ∇1g

(1)
j (x(1)) +

∑ℓ1

j=1
λ
(1)
m1+j∇1h

(1)
j (x(1)),

F (2)(x(2), ν) =
∑m2

j=1
λ
(2)
j ∇2g

(2)
j (x(2)) +

∑ℓ2

j=1
λ
(2)
m2+j∇2h

(2)
j (x(2)),

h(1)(x(1)) = 0, h(2)(x(2)) = 0,

0 ≤ λ(1)1:m1
⊥ g(1)(x(1)) ≥ 0, 0 ≤ λ(2)1:m2

⊥ g(2)(x(2)) ≥ 0.

345

Under Assumption 1, if we let346

p(1)(x(1), ν) := L(1)(x(1))F (1)(x(1), ν), p(2)(x(2), ν) := L(2)(x(2))F (2)(x(2), ν),347

then by (3.3), for any (x, λ(1), λ(2), ν) satisfying (3.16), we have348

λ(1) = p(1)(x(1), ν), λ(2) = p(2)(x(2), ν).349
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The polynomial vectors p(1), p(2) are called correlatively sparse Lagrange multiplier ex-350

pression (CS-LME) for λ(1) and λ(2) respectively. Replacing λ(1), λ(2) by the polyno-351

mial vectors p(1)(x(1), ν) and p(2)(x(2), ν), we get the following reformulation of (1.2):352

(3.17)



min
x∈Rn

f1(x
(1)) + f2(x

(2))

s.t. F (i)(x(i), ν) =
∑mi

j=1
p
(i)
j (x(i), ν)∇ig

(i)
j (x(i))

+
∑ℓi

j=1
p
(i)
mi+j(x

(i), ν)∇ih
(i)
j (x(i)), (i = 1, 2)

h(i)(x(i)) = 0, 0 ≤ p(i)1:mi
(x(i), ν) ⊥ g(i)(x(i)) ≥ 0. (i = 1, 2)

353

The reformulation (3.14) in Example 3.4 is a special case of (3.17). One may check354

the polynomial optimization problem (3.17) has the csp with two blocks of variables:355

(x(1), ν), (x(2), ν).356

357

Example 3.5. Consider the polynomial optimization problem with box constraints358

(2.17) in Example 2.5. Its csp is given in Example 3.3, and we have I1∩I2 = {3}. So359

we need to introduce a new variable ν ∈ R. The f1, f2, g(1), g(2) are given as in (3.7),360

and we let361

F (1)(x(1), ν) = ∇1f1(x
(1)) + νe

(1)
3 , F (2)(x(2), ν) = ∇2f2(x

(2))− νe(2)3 .362

Moreover, denoting by F
(i)
j the jth entry of F (i) for j ∈ {1, 2}, we get CS-LMEs:363

(3.18)

p
(1)
2j−1(x

(1), ν) = (1− xj)F (1)
j (x(1), ν), p

(1)
2j (x

(1), ν) = −xjF (1)
j (x(1), ν),

p
(2)
2j−1(x

(2), ν) = (1− x2+j)F
(2)
j (x(2), ν), p

(2)
2j (x

(2), ν) = −x2+jF
(2)
j (x(2), ν).

364

Note that when CS-LMEs are given as above, the first equality constraints in (3.17) are365

reduced to one single equation F
(1)
3 (x(1), ν) = 0, and the complementarity conditions366

are reduced to367

xj(1− xj)F (1)
j (x(1), ν) = 0, x2+j(1− x2+j)F

(2)
j (x(2), ν) = 0, (j = 1, 2).368

Consequently, the CS-LME reformulation to (2.17) is369

(3.19)

min
x∈Rn

x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3 + x33 + x3x

2
4 − 2x23x4

s.t. xj(1− xj)F (1)
j (x(1), ν) = 0, x2+j(1− x2+j)F

(2)
j (x(2), ν) = 0, (j = 1, 2)

(1− xj)F (1)
j (x(1), ν) ≥ 0, (1− x2+j)F

(2)
j (x(2), ν) ≥ 0, (j = 1, 2)

−xjF (1)
j (x(1), ν) ≥ 0, −x2+jF

(2)
j (x(2), ν) ≥ 0, (j = 1, 2)

F
(1)
3 (x(1), ν) = 0, 0 ≤ x1, . . . , x4 ≤ 1.

370

Later in Section 5, we will compare the numerical performance of solving the CS-LME371

reformulation (3.19) of (2.17) with solving it directly and solving its LME reformula-372

tion (2.16), all using CS-TSSOS [37].373

To summarize, the LME approach proposed by Nie [23] allows for tightening the374

classical Moment-SOS relaxation by incorporating necessary polynomial constraints,375

provided that certain nonsingularity conditions hold. However, usually this approach376
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cannot keep the csp from the original polynomial optimization problem. Moreover,377

when the nonsingularity condition fails, LMEs do not exist. In contrast, one can try378

to find CS-LME instead by adding some new variables. In the above, we demonstrate379

how to find CS-LMEs for the two-block cases. In the next subsection, we provide a380

systematic way to construct CS-LMEs for an arbitrary number of blocks.381

3.3. Correlatively sparse LME: multi-blocks. We introduce how to con-382

struct CS-LMEs for an arbitrary number of blocks in this subsection. Hereinafter, we383

assume that the correlative sparsity pattern (I1, . . . , Is) satisfies the RIP. Without384

loss of generality, we also assume the following conditions hold:385

1. Ii is not included in Ij for any two distinct i, j ∈ [s];386

2. Ii+1 ∩ ∪ij=1Ij ̸= ∅ for any i ∈ [s− 1].387

We remark that under the RIP condition, the second condition always holds unless388

there exists a proper subset S of [s] such that (∪i∈SIi) ∩ (∪i/∈SIi) = ∅, for which we389

can solve the polynomial optimization problems for variables within S and outside of390

S separately.391

To construct CS-LME coherent with the csp (I1, . . . , Is), we first build a directed392

tree with nodes corresponding to the elements in the collection {I1, . . . , Is}.393

Algorithm 3.1 Clique Tree Construction

Input: (I1, . . . , Is) satisfying the RIP.
1: V = {1, . . . , s} and A = ∅.
2: for i = 1, . . . , s− 1 do
3: if Ii+1

⋂⋃i
j=1 Ij ̸= ∅ then

4: Find the largest t ≤ i such that Ii+1

⋂⋃i
j=1 Ij ⊆ It.

5: A = A
⋃
{(i+ 1, t)}.

6: end if
7: end for

Output: G(V,A)

The correlative sparsity pattern (csp) graph associated with (1.2) is the undirected394

graph Gcsp = G(W,E), with nodes W = [n] and edges E satisfying {k1, k2} ∈ E if395

there exists i ∈ [s] such that k1 ∈ Ii and k2 ∈ Ii. Since (I1, . . . , Is) satisfies the RIP,396

the corresponding csp graph Gcsp is chordal2 and {I1, . . . , Is} is the list of maximal397

cliques of Gcsp, because we assumed that Ii is not contained in Ij for any distinct398

i, j ∈ [s]. A clique tree of the graph Gcsp is a tree on the set V = [s] such that399

for every pair of distinct nodes i, j ∈ [s], we have Ii ∩ Ij ⊆ Ik for any k ∈ [s] on400

the path connecting i and j in the tree. Clique tree exists because Gcsp is chordal;401

see [1, Theorem 3.1]. The output G(V,A) of Algorithm 3.1 is a directed tree whose402

underlying undirected graph is a clique tree of the graph Gcsp. This follows from [1,403

Theorem 3.4]. The directions indicate the “parent-child” relation between cliques on404

the tree. We refer to [1] for more details on chordal graphs and clique trees.405

Given the clique tree G(V,A) produced by Algorithm 3.1, for each i ∈ [s], we406

denote the indices of children of the node i by407

(3.20) Di := {t : (t, i) ∈ A},408

2A graph is chordal if all its cycles of length at least four have an edge that joins two noncon-
secutive nodes.
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and the index of the parent of node i by409

(3.21) Ai := {t : (i, t) ∈ A}.410

For each i ∈ {2, . . . , s}, Di can be empty sets and Ai contains exactly one element.411

When (i, t) ∈ A, we let412

(3.22) Ci,t := Ii
⋂
It413

be the indices of all variables shared by blocks i and t. Then, we introduce a group414

of auxiliary variables:415

(3.23) {νi,t,k : (i, t) ∈ A, k ∈ Ci,t}.416

In other words, for each arc (i, t) ∈ A, we need the same number of auxiliary variables417

as the number of variables shared by the block i and block t. For every i ∈ [s], define418

(3.24) Ji := {(i, t, k) : t ∈ Ai, k ∈ Ci,t} ∪ {(t, i, k) : t ∈ Di, k ∈ Ct,i} ,419

and (recall that the vector e
(i)
k is defined in (2.5))420

(3.25) ν(i) := −
∑
t∈Ai

∑
k∈Ci,t

νi,t,ke
(i)
k +

∑
t∈Di

∑
k∈Ct,i

νt,i,ke
(i)
k ∈ Rni .421

Clearly, the vector ν(i) only depends on variables in the group (3.23) indexed by Ji for422

each i ∈ [s]. We illustrate how to construct new variables in the following example.423

Example 3.6. Consider the following csp pattern:424

(3.26)
I1 = {1, 2, 3, 4}, I2 = {1, 2, 5, 6}, I3 = {1, 2, 7, 8},

I4 = {1, 2, 9, 10}, I5 = {1, 2, 11, 12}.425

Then the set of edges A in the clique tree G(V,A) produced by Algorithm 3.1 is426

A = {(2, 1), (3, 2), (4, 3), (5, 4)},427

and Di = {i+ 1} for each i = 1, . . . , 4, Ai = {i− 1} for each i = 2, . . . , 5. Thus428

J1 = {(2, 1, 1), (2, 1, 2)},
J2 = {(2, 1, 1), (2, 1, 2)} ∪ {(3, 2, 1), (3, 2, 2)},
J3 = {(3, 2, 1), (3, 2, 2)} ∪ {(4, 3, 1), (4, 3, 2)},
J4 = {(4, 3, 1), (4, 3, 2)} ∪ {(5, 4, 1), (5, 4, 2)},
J5 = {(5, 4, 1), (5, 4, 2)}.

429

An illustration of the directed tree obtained from Algorithm 3.1 and auxiliary variables430

are given in Figure 1. For this clique tree, we have |J1| = |J5| = 2 and |J2| = |J3| =431

|J4| = 4.432

With new variables νi,t,k and vectors ν(i) given by (3.25), we rewrite the KKT433

system (3.2). For each i ∈ [s], consider the following system on (x(i), λ(i), ν(i)) ∈434

Rni+mi+ℓi+|Ji|:435

(3.27)


∇ifi(x

(i)) + ν(i) =

mi∑
j=1

λ
(i)
j ∇ig

(i)
j (x(i)) +

ℓi∑
j=1

λ
(i)
mi+j∇ih

(i)
j (x(i)),

h(i)(x(i)) = 0,

0 ≤ λ(i)1:mi
⊥ g(i)(x(i)) ≥ 0.

436

437
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I1 I2 I3 I4 I5
ν2,1,1 ν3,2,1 ν4,3,1 ν5,4,1

ν5,4,2ν2,1,2 ν3,2,2 ν4,3,2

Fig. 1. Clique tree returned by Algorithm 3.1 and auxiliary variables for the csp pattern (3.26).

Proposition 3.7. Let x := (x1, . . . , xn) ∈ Rn and λ := (λ(1), . . . , λ(s)) ∈ Rm+ℓ.438

The pair (x, λ) is a KKT pair of (1.2) if and only if there exists a group of auxiliary439

variables {νi,t,k : (i, t) ∈ A, k ∈ Ci,t} such that (3.27) holds for all i ∈ [s].440

Proof. By lifting all the vectors into Rn (i.e., filling in 0 to the coordinates that441

are not in Ii), we can rewrite the first equation in (3.27) as442

(3.28) ∇fi(x)+ν̂(i) =
mi∑
j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi∑
j=1

λ
(i)
mi+j∇h

(i)
j (x),443

where ν̂(i) ∈ Rn is obtained by lifting ν(i) into Rn:444

ν̂(i) := −
∑
t∈Ai

∑
k∈Ci,t

νi,t,kek +
∑
t∈Di

∑
k∈Ct,i

νt,i,kek.445

If there exists (x, λ) and {νi,t,k : (i, t) ∈ A, k ∈ Ci,t} such that (3.27) holds for all446

i ∈ [s], then447

∇f(x) =

s∑
i=1

∇fi(x)448

(3.28)
=

s∑
i=1

mi∑
j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi∑
j=1

λ
(i)
mi+j∇h

(i)
j (x)− ν̂(i)

449

=

s∑
i=1

mi∑
j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi∑
j=1

λ
(i)
mi+j∇h

(i)
j (x)

− s∑
i=1

ν̂(i)450

=

s∑
i=1

mi∑
j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi∑
j=1

λ
(i)
mi+j∇h

(i)
j (x)

 .451

452

Therefore (x, λ) is a KKT pair of (1.2). In the following, we show the other direction.453

Let (x, λ) be a KKT pair of (1.2). For each fixed k ∈ [n], denote454

Pk := {(i, t) ∈ A : k ∈ Ci,t}, Qk := {i : k ∈ Ii}.455

In other words, Qk corresponds to the set of cliques that contain k and G(Qk,Pk)456

is the subgraph of G(V,A) induced by the nodes Qk. Then by [1, Theorem 3.2], for457

each k ∈ [n], the underlying undirected graph of G(Qk,Pk) is a tree.458

This allows us to deduce the solvability of the following system of linear equations459

for each fixed k ∈ [n]:460

(3.29)

∑
t∈Pk(i)

νi,t,k −
∑

t∈P′
k(i)

νt,i,k

=
∂fi
∂xk

(x)−

mi∑
j=1

λ
(i)
j

∂g
(i)
j

∂xk
(x) +

ℓi∑
j=1

λ
(i)
mi+j

∂h
(i)
j

∂xk
(x)

 , ∀i ∈ Qk.

461
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In the above,462

(3.30) Pk(i) := {t : (i, t) ∈ Pk}, P ′
k(i) := {t : (t, i) ∈ Pk}.463

Indeed, the linear system (3.29) can be written as464

Bv = b,(3.31)465466

where B ∈ R|Qk|×|Pk| is the incidence matrix of (Qk,Pk) and b ∈ R|Qk| is a vector467

satisfying 1⊤b = 0. Since the underlying undirected graph of G(Qk,Pk) is a tree, we468

have rank(B) = |Pk| = |Qk| − 1 and 1⊤B = 0. Therefore (3.31), and thus (3.29) for469

each k ∈ [n], are solvable. In other words, there exist {νi,t,k : (i, t) ∈ A, k ∈ Ci,t} such470

that (3.29) holds for all k ∈ [n]. So the following equations hold at (x, λ):471

(3.32)

∑
k∈Ii

∑
t∈Pk(i)

νi,t,kek −
∑
k∈Ii

∑
t∈P′

k(i)

νt,i,kek

=
∑
k∈Ii

 ∂fi
∂xk

(x)−
mi∑
j=1

λ
(i)
j

∂g
(i)
j

∂xk
(x)−

ℓi∑
j=1

λ
(i)
mi+j

∂h
(i)
j

∂xk
(x)

 ek, ∀i ∈ [s].

472

Note that for any k /∈ Ii, we have

∂fi
∂xk

(x) ≡ ∂g
(i)
1

∂xk
(x) ≡ · · · ≡ ∂g

(i)
mi

∂xk
(x) ≡ ∂h

(i)
1

∂xk
(x) ≡ · · · ≡

∂h
(i)
ℓi

∂xk
(x) ≡ 0.

Therefore, (3.32) yields that for each i ∈ [s],473

(3.33)

∑
k∈Ii

 ∑
t∈Pk(i)

νi,t,k −
∑

t∈P′
k(i)

νt,i,k

 ek

=
∑
k∈[n]

 ∂fi
∂xk

(x)−
mi∑
j=1

λ
(i)
j

∂g
(i)
j

∂xk
(x)−

ℓi∑
j=1

λ
(i)
mi+j

∂h
(i)
j

∂xk
(x)

 ek

= ∇fi(x)−
mi∑
j=1

λ
(i)
j ∇g

(i)
j (x)−

ℓi∑
j=1

λ
(i)
mi+j∇h

(i)
j (x).

474

In light of (3.20)-(3.21), for each fixed i ∈ [s] we have

{(t, k) : k ∈ Ii, t ∈ Pk(i)} = {(t, k) : t ∈ Ai, k ∈ Ci,t}.

We then obtain475

∑
k∈Ii

 ∑
t∈Pk(i)

νi,t,k −
∑

t∈P′
k(i)

νt,i,k

 ek476

=
∑
t∈Ai

∑
k∈Ci,t

νi,t,kek −
∑
t∈Di

∑
k∈Ct,i

νt,i,kek477

= − ν̂(i).478479

Therefore, (3.28) holds, and the first equation in (3.27) is satisfied.480
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Remark 3.8. In Algorithm 3.1, even if we replace line 4 by481

(3.34) Find an arbitrary t ≤ i such that Ii+1

⋂ i⋃
j=1

Ij ⊆ It,482

the resulting tree is still a clique tree, and the induced subtree property still holds for483

G(V,A). Hence, Proposition 3.7, as well as all the results that will follow, still hold if484

line 4 of Algorithm 3.1 is replaced with (3.34). This is because the only key property485

of G(V,A) needed in the proof of Proposition 3.7 is the induced subtree property (see486

[1, Theorem 3.2]) satisfied by the clique tree. However, using an arbitrary t as in487

(3.34) may create a large number of children for some nodes (see Example 3.9 below),488

which will increase the number of variables in ν(i) (hence the size of blocks and the489

computational cost). In other words, one would prefer a tree with a large depth and490

small breadth. That is why we propose to choose the largest t in Algorithm 3.1.491

Example 3.9. Consider the csp pattern (3.26) again. If we use (3.34) to replace492

line 4 in Algorithm 3.1, then another possible directed clique tree and auxiliary vari-493

ables is shown in Figure 2. For this clique tree, we have |J1| = 8, |J2| = |J3| = |J4| =494

|J5| = 2.495

I2 I1 I3

I4 I5

ν2,1,1 ν3,1,1

ν4,1,1
ν5,1,1

ν5,1,2

ν2,1,2 ν3,1,2

ν4,1,2

Fig. 2. Another possible clique tree and auxiliary variables for the csp pattern (3.26).

Under Assumption 1, (3.27) implies that the ith group of Lagrange multipliers496

can be expressed by a tuple of polynomials which only depends on variables indexed497

by Ii and Ji, say, x(i) and ν(i) (by abuse of notation, here ν(i) means the tuple of all498

variables involved in the vector ν(i)). We let499

(3.35) z(i) := (x(i), ν(i)), F (i)(z(i)) := ∇ifi(x
(i)) + ν(i).500

Theorem 3.10. Under Assumption 1, a vector x ∈ Rn is a KKT point of (1.2)501

if and only if the following system (3.36) holds for each i ∈ [s]:502

(3.36){
F (i)(z(i)) =

∑mi

j=1 p
(i)
j

(
z(i)

)
∇ig

(i)
j (x(i)) +

∑ℓi
j=1 p

(i)
mi+j

(
z(i)

)
∇ih

(i)
j (x(i)),

0 ≤ p(i)1:mi
(z(i)) ⊥ g(i)(x(i)) ≥ 0, h(i)(x(i)) ≥ 0,

503

where504

(3.37) p(i)(z(i)) := L(i)(x(i)) · F (i)(z(i)),505

and z(i) and F (i) are defined in (3.35).506

Proof. Recall the matrix of polynomials G(i)(x(i)) defined in (3.1). The sys-507

tem (3.27) is equivalent to508 {
G(i)(x(i))λ(i) =

[
F (i)(z(i))⊤ 0 · · · 0

]⊤
,

λ
(i)
1 , . . . , λ

(i)
mi ≥ 0, g

(i)
1 , . . . , g

(i)
mi ≥ 0, h

(i)
1 , . . . , h

(i)
ℓi
≥ 0,

(3.38)509

510
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By Assumption 1, the first equation in (3.38) holds if and only if511

λ(i) = L(i)(x(i)) · F (i)(z(i)).512

Thus, it remains to replace λ(i) with p(i)(z(i)) in (3.27) and apply Proposition 3.7.513

Remark 3.11. For the polynomial optimization problem (1.2) with general csp514

(I1, . . . , Is), we call the vector of polynomials p(i)(z(i)) defined in (3.37) the CS-LMEs515

of λ(i). By Proposition 3.7 and Theorem 3.10, CS-LMEs exist when Assumption 1 is516

satisfied.517

3.4. A CS-LME reformulation. In the rest of the paper, we give a CS-LME
reformulation for the polynomial optimization problem (1.2) under Assumption 1. For
each i ∈ [s], denote

ϕ(i)(z(i)) :=


F (i)(z(i))−

mi∑
j=1

p
(i)
j (z(i))∇ig

(i)
j (x(i))−

ℓi∑
j=1

p
(i)
mi+j(z

(i))∇ih
(i)
j (x(i))

h(i)(x(i))

p
(i)
1:m(z(i)) ◦ g(i)(x(i))

 ,
and

ψ(i)(z(i)) :=

[
p
(i)
1:m(z(i))
g(i)(x(i))

]
.

Here, the polynomial p
(i)
j ∈ R[z(i)] is the jth entry of the CS-LME p(i) defined518

in (3.37). Based on Theorem 3.10, we propose the following CS-LME typed refor-519

mulation of (1.2):520

(3.39)


fc := min

z(1),...,z(s)
f1(x

(1)) + · · ·+ fs(x
(s))

s.t. ψ(i)(z(i)) ≥ 0, i ∈ [s]
ϕ(i)(z(i)) = 0, i ∈ [s]

521

The previous reformulation (3.17) for the case s = 2 is a special case of (3.39). If we522

let523

(3.40) Îi := Ii
⋃
Ji,524

then (3.39) has the csp (Î1, . . . , Îs). Suppose the global minimum fmin of (1.2) is525

attained at some KKT point, then at least one minimizer of (1.2) is feasible for526

(3.39), thus fmin ≥ fc. Since the feasible set of (3.39) is contained in the feasible set527

of (1.2), we have fmin ≤ fc. So, we conclude the following from the statement above:528

Theorem 3.12. If the minimum fmin of (1.2) is attained at a KKT point, then529

the minimal value (1.2) and (3.39) are identical, i.e., fmin = fc.530

Remark 3.13. Suppose the minimum value fmin is attainable. If the nonsingu-531

larity condition holds for (1.2), then fmin is attained at KKT points, since the non-532

singlarity implies the linear independence constraint qualification conditions (LICQ)533

hold on Cn. However, this is not necessarily true if we replace the nonsingularity534

condition of (g, h) by that of every (g(i), h(i)), i.e., Assumption 1, since Assumption 1535

does not guarantee the LICQ to hold at every feasible point. For such cases, fc may536

or may not equal fmin. Nevertheless, it does not mean the KKT conditions must fail537

at minimizers of (1.2) if the nonsingularity condition does not hold. Indeed, it may538

happen that the constraining tuple is singular, but the LICQ condition holds at a539

minimizer, thus fc = fmin; see Example 5.1(ii), Example 5.5 and Example 5.7.540
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4. Correlatively sparse LME based SOS relaxation. This section studies541

the correlatively sparse SOS relaxations for solving the CS-LME reformulation (3.39).542

4.1. RIP of the CS-LME reformulation. First, we establish the RIP for543

(3.39). Recall that for each i ∈ [s], the set of indices of variables Îi is given in (3.40).544

Lemma 4.1. The csp (Î1, . . . , Îs) satisfies the RIP in Definition 2.2.545

Proof. Note that

Ji+1

⋂ i⋃
j=1

Jj

=
(
{(i+ 1, t, k) : t ∈ Ai+1, k ∈ Ci+1,t}

⋃
{(t, i+ 1, k) : t ∈ Di+1, k ∈ Ct,i+1}

)
⋂ i⋃

j=1

(
{(j, t, k) : t ∈ Aj , k ∈ Cj,t}

⋃
{(t, j, k) : t ∈ Dj , k ∈ Ct,j}

)
.

Since t ∈ Di+1 implies t > i+ 1, and t ∈ Aj implies t < j, we have

Ji+1

⋂ i⋃
j=1

Jj = {(i+ 1, t, k) : t ∈ Ai+1, k ∈ Ci+1,t}
⋂

i⋃
j=1

(
{(j, t, k) : t ∈ Aj , k ∈ Cj,t}

⋃
{(t, j, k) : t ∈ Dj , k ∈ Ct,j}

)
⊆ {(i+ 1, t, k) : t ∈ Ai+1, k ∈ Ci+1,t}.

Let Ai+1 = {t} for some t ∈ [s]. Then i+ 1 ∈ Dt and so546

Jt = {(t, i, k) : i ∈ At, k ∈ Ct,i} ∪ {(i, t, k) : i ∈ Dt, k ∈ Ci,t}
⊇ {(i+ 1, t, k) : k ∈ Ci+1,t} .

547

Note that Ii is the set of indices of variables x(i) and Ji is the set of indices of the548

auxiliary variables ν(i). Hence Ii ∩ Jj = ∅ for each pair of i, j ∈ [s]. In particular,549

Îi+1

⋂ i⋃
j=1

Îj550

=
{
Ii+1

⋃
Ji+1

}⋂
i⋃

j=1

(
Ij

⋃
Jj

)551

=

Ii+1

⋂
i⋃

j=1

(
Ij

⋃
Jj

)
⋃Ji+1

⋂
i⋃

j=1

(
Ij

⋃
Jj

)
552

=

Ii+1

⋂ i⋃
j=1

Ij

⋃Ji+1

⋂ i⋃
j=1

Jj

 .553

554

Therefore, we have555

Îi+1

⋂ i⋃
j=1

Îj =

Ii+1

⋂ i⋃
j=1

Ij

⋃Ji+1

⋂ i⋃
j=1

Jj

 ⊆ It ∪ Jt = Ît.556

557
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4.2. Convergence of the CS-LME based SOS relaxation. For the polyno-558

mial optimization problem (3.39) with the csp (Î1, . . . , Îs), the dth order correlatively559

sparse SOS relaxation is560

(4.1)


ϑd := max γ

s.t.

s∑
i=1

fi − γ ∈
s∑

i=1

IQÎi

(
ϕ(i), ψ(i)

)
2d
.

561

Note that for each i ∈ [s], h(i) is contained in ϕ(i), g(i) is contained in ψ(i), and
Ii ⊆ Îi. It follows that

s∑
i=1

IQÎi

(
h(i), g(i)

)
2d
⊆

s∑
i=1

IQÎi

(
ϕ(i), ψ(i)

)
2d
.

Therefore, (4.1) is a tighter relaxation than (2.8). In particular, we have562

ϑd ≥ ρd, ∀d ≥ d0.(4.2)563564

565

Theorem 4.2. Assume that:566

1. at least one minimizer of (1.2) is a KKT point, and567

2. for each i ∈ [s], IQIi

(
h(i), g(i)

)
is archimedean.568

Then569

(4.3) lim
d→+∞

ϑd = fmin.570

Proof. By the definition of CS-SOS relaxation, we have

ϑd ≤ fc, ∀d ∈ N.

The first condition, together with Theorem 3.10, implies that fc = fmin. Then we571

have ϑd ≤ fmin, and the convergence follows directly by (2.10) and (4.2).572

Remark 4.3. In Theorem 4.2, if we substitute the condition that IQIi

(
h(i), g(i)

)
573

is archimedean by the archimedeanness of IQÎi

(
ϕ(i), ψ(i)

)
, then the conclusion still574

holds. However, IQÎi

(
ϕ(i), ψ(i)

)
is not archimedean in general, even if IQIi

(
h(i), g(i)

)
575

is archimedean. To see this, consider the CS-LME reformulation (3.14) for the op-576

timization problem in Example 2.5. In (3.14), tuples h(1), g(1), h(2), g(2) are given577

by (3.5), and it is clear that both IQI1

(
h(1), g(1)

)
and IQI2

(
h(2), g(2)

)
are archi-578

medean. Moreover, (ϕ(1), ψ(1)) corresponds to the first two constraints in (3.14), and579

(ϕ(2), ψ(2)) is given by the last two constraints in (3.14). For any fixed ν ∈ R, consider580

the following polynomial optimization problem in variables (x1, x2):581

(4.4)

{
min f1(x1, x2) + νx2
s.t. 1− x21 − x22 ≥ 0.

582

Then one may check that (x1, x2, ν) ∈
{
z(1) ∈ R3 : ϕ(1)(z(1)) = 0, ψ(1)(z(1)) ≥ 0

}
if

and only if (x1, x2) is a KKT point for (4.4). Since (4.4) has a compact feasible set,
and the constraint qualification condition holds at all feasible points, (4.4) has a
KKT point for any ν ∈ R. This implies that the semi-algebraic set{

z(1) ∈ R3 : ϕ(1)(z(1)) = 0, ψ(1)(z(1)) ≥ 0
}
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is unbounded, and thus IQÎ1

(
ϕ(1), ψ(1)

)
is not archimedean. Similarly, one can also583

show that IQÎ2

(
ϕ(2), ψ(2)

)
is not archimedean neither.584

Remark 4.4. The archimedean condition of IQIi

(
h(i), g(i)

)
for each i ∈ [s] is also585

required in Theorem 2.3 to ensure the convergence of the CS-SOS relaxation. We586

wish to point out that this archimedean condition is not required for obtaining the587

CS-LMEs (3.37) and the CS-LME reformulation (3.39). There may exist polynomial588

optimization problems with compact feasible sets, for which, however, IQIi

(
h(i), g(i)

)
589

is not archimedean for some i ∈ [s] (e.g., Example 2.5 and Example 5.3). For such590

cases, one may add redundant constraints to g(i) to obtain the archimedeanness. Such591

a redundant constraint can either be a replication of existing constraints, or be the592

ball constraint asM−∥x(i)∥2 ≥ 0 if an a priori boundM is known.3 However, adding593

redundant constraints is inconvenient and usually unnecessary in practice. Indeed,594

even if the archimedean conditions fail to hold (or further, if the feasible set of (1.2)595

is unbounded), we can still formulate and solve the CS-LME reformulations with CS-596

SOS relaxations. In practical computation, finite convergence is observed numerically597

with a low relaxation order for solving CS-LME reformulations, regardless of whether598

the archimedean condition for IQIi

(
h(i), g(i)

)
holds or not. We refer to Section 5 for599

examples where the archimedean condition is not satisfied, while our approach can600

still find global minimum successfully.601

4.3. Comparison of the SDP problem scale. In this section, we compare602

the scale of the corresponding SDP problems in different relaxation approaches. We603

assume that the functions f1 ∈ R[x(1)], . . . , fs ∈ R[xs] are all dense polynomials604

and both LMEs and CS-LMEs exist for (1.2). For the convenience of reference, we605

nominate the four approaches for solving (1.2) as follows:606

(SOS): Applying the dense SOS relaxation to (1.2);
(CS-SOS): Applying the CS-SOS relaxation to (1.2);
(LME): Applying the CS-SOS relaxation to the LME reformulation (2.16);
(CS-LME): Applying the CS-SOS relaxation to the CS-LME reformula-

tion (3.39).

607

We first consider the two-block case. Denote by k := |C1,2| the number of overlap-608

ping elements in I1 and I2. Then |I1∪I2| = n1+n2−k is the total number of variables.609

The CS-LME reformulation (3.17) has the csp (Î1, Î2) such that |Î1| = n1 + k and610

|Î2| = n2 + k. In Table 1, we compare the maximal size of the positive semidefinite611

(PSD) matrices appearing in the SDP formulation of the four relaxation methods.612

In Table 2, we display the values of the binomial numbers in Table 1 for some exam-613

ples of n1, n2, k, d.614

From Table 1 and Table 2, we conclude that for the same order of relaxation, the615

smallest scale SDP problem is given by CS-SOS. On the other hand, CS-SOS may need616

higher relaxation order d to converge than the other three methods. For the case when617

s = 2, the complexity growth of the LME approach is the same as that of the SOS618

approach. Thus, despite its potentially faster convergence speed, the LME approach619

3It is important to note that there are two ways to replicate existing constraints. For the con-
straint gj ∈ R[x(i)] that is not assigned to g(i), we may add its replication to g(i) and obtain a new

constraining tuple ĝ(i), then consider the KKT system and construct CS-LMEs for ĝ(i), as long as
the new constraining tuple ĝ(i) is also nonsingular. On the other hand, one may add gj to ψ(i) in
the CS-LME reformulation. These two ways produce different CS-LME reformulations with identical
optimal values, since the former may get different CS-LMEs from the original problem. However, if
we add a redundant ball constraint M −∥x(i)∥2 ≥ 0 which can never be active (e.g., let M := ni · M̂
with M̂ > ∥x(i)∥∞, thus its Lagrange multiplier must be 0), then these two ways are equivalent.
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Table 1
The maximal PSD matrix size in the dth order relaxation of the four methods when s = 2.

Relaxation approach Maximal PSD matrix size in dth order relaxation

SOS
(
n1+n2−k+d

d

)
×

(
n1+n2−k+d

d

)
CS-SOS

(
max{n1,n2}+d

d

)
×
(
max{n1,n2}+d

d

)
LME

(
n1+n2−k+d

d

)
×

(
n1+n2−k+d

d

)
CS-LME

(
max{n1,n2}+k+d

d

)
×

(
max{n1,n2}+k+d

d

)
Table 2

For each n1, n2, k and d, we display sequentially the four binomial values appearing in Table 1:(n1+n2−k+d
d

)
for SOS,

(max{n1,n2}+d
d

)
for CS-SOS,

(n1+n2−k+d
d

)
for LME, and

(max{n1,n2}+k+d
d

)
for CS-LME.

(n1, n2, k) d = 2 d = 3 d = 4
(4, 3, 1) (28, 15, 28, 21) (84, 35, 84, 56) (210, 70, 210, 126)

(5, 5, 2) (45, 21, 45, 36) (165, 56, 165, 120) (495, 126, 495, 330)

(10, 10, 2) (190, 66, 190, 91) (1330, 286, 1330, 455) (7315, 1001, 7315, 1820)

(15, 15, 3) (406, 136, 406, 190) (4060, 816, 4060, 1330) (31465, 3876, 31465, 7315)

(20, 20, 5) (666, 231, 666, 351) (8436, 1771, 8436, 3276) (82251, 10626, 82251, 23751)

suffers from the same rapid complexity growth just as the dense SOS approach. In620

contrast, our CS-LME approach leads to SDP problems of a scale comparable with621

that of CS-SOS, and thus enjoys a less aggressive complexity growth. Meanwhile, it is622

expected to converge faster than CS-SOS as it incorporates the first-order optimality623

condition in the relaxation just as the LME approach, as shown in Section 5.624

In the above, we compared the maximal PSD matrix size in the SDP problems625

arising from different relaxation approaches when s = 2. To examine the number and626

size of all the PSD matrices in the SDP problems, one needs, in addition, the structure627

information of the functions (f, g, h). The next example compares the SDP problem628

scale in detail for a box-constrained problem with a quadratic objective function.629

Example 4.5. Let N and k be positive integers and630

I1 = {1, . . . , N} , I2 = {N + 1− k, . . . , 2N − k} .631

Note that this is a special two-block case with n1 = n2 = N . Consider problem (1.2)632

with this csp (I1, I2) and box constraints633

(4.5)
g(1) = (x1, 1− x1, . . . , xN−k, 1− xN−k),

g(2) = (xN+1−k, 1− xN+1−k, . . . , x2N−k, 1− x2N−k).
634

The LMEs and CS-LMEs can be similarly given as in (2.19) and (3.18) respectively,635

and we omit explicit expressions of them for the cleanness of this paper. Let f1 and636

f2 be quadratic functions. We present in Table 3 the number and size of all the PSD637

matrices in the four different approaches. Table 4 is an instantiation of the numbers638

in Table 3 for the special case when N = 10 and k = 2.639

Now we consider the general multi-block case. If there exists a common variable640

in all the blocks, i.e., if there is some j ∈ [n] such that j ∈ Ii for all i ∈ [s] (e.g., s = 2641

or Example 5.2), then the LME reformulation does not have correlative sparsity. In642

this case, the SDP problem scale of the LME approach grows similarly to that of the643
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Table 3
Size and number of PSD matrices in the dth order relaxation of the four methods for the box

constrained problem (4.5) with quadratic objective functions.

Relaxation Size and number of PSD matrices size
approach in the dth order relaxation

SOS
one PSD matrix of size

(
2N−k+d

d

)
×
(
2N−k+d

d

)
,

4N − 2k PSD matrices of size
(
2N−k+d−1

d−1

)
×

(
2N−k+d−1

d−1

)
.

CS-SOS
two PSD matrices of size

(
N+d
d

)
×

(
N+d
d

)
,

4N − 2k PSD matrices of size
(
N+d−1
d−1

)
×
(
N+d−1
d−1

)
.

LME
one PSD matrix of size

(
2N−k+d

d

)
×
(
2N−k+d

d

)
,

8N − 4k PSD matrices of size
(
2N−k+d−1

d−1

)
×

(
2N−k+d

d

)
.

CS-LME
two PSD matrices of size

(
N+k+d

d

)
×
(
N+k+d

d

)
,

8N − 4k PSD matrices of size
(
N+k+d−1

d−1

)
×

(
N+k+d−1

d−1

)
.

Table 4
Instantiation of Table 3 when N = 10 and k = 2. For example, the bottom-right block reads as

follows: the 4th order relaxation of the CS-LME approach corresponds to an SDP problem with two
1820-by-1820 PSD matrices and seventy-two 455-by-455 PSD matrices.

Relaxation
d = 2 d = 3 d = 4

approach
SOS (1, 190), (36, 19) (1, 1330), (36, 190) (1, 7315), (36, 1330)

CS-SOS (2, 66), (36, 11) (2, 286), (36, 66) (2, 1001), (36, 286)
LME (1, 190), (72, 19) (1, 1330), (72, 190) (1, 7315), (72, 1330)

CS-LME (2, 91), (72, 13) (2, 455), (72, 91) (2, 1820), (72, 455)

dense SOS relaxations. However, in general, though the LME reformulation usually644

breaks the csp of the original problem, it may have a weaker correlative sparsity. The645

following example is such an exposition.646

Example 4.6. Let N > k be two positive integers. Consider the following csp647

(4.6) Ii = {(N − k)(i− 1) + 1, . . . , (N − k)(i− 1) +N} , ∀i = 1, . . . , s.648

When N = 3 and k = 2, it corresponds to the csp of the Broyden tridiagonal func-
tion [11, Example 3.4]. The directed clique tree (V,A) associated to the sparsity
pattern (4.6) is given by

A = {(i, i− 1) : i = 2, . . . , s}.

For each arc (i, i− 1) ∈ A, the set of joint indices is:

Ci,i−1 = Ii ∩ Ii−1 = {(N − k)(i− 1) + 1, . . . , (N − k)(i− 2) +N}.

Note that |Ii| = N and |Ci,i−1| = k for each i ∈ [s]. The auxiliary variables are:649

(4.7)

s⋃
i=2

k⋃
j=1

{
νi,i−1,(N−k)(i−1)+j

}
.650

For the sparsity pattern (4.6), the maximal clique size in the csp graph of the
CS-LME reformulation (3.39) is

N + 2k.
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Table 5
The maximal PSD matrix size in dth order relaxation of the four methods when the csp is given

by (4.6).

Relaxation
Maximal PSD matrix size in dth order relaxation

approach

SOS
(
(N−k)(s−1)+N+d

d

)
×
(
(N−k)(s−1)+N+d

d

)
CS-SOS

(
N+d
d

)
×
(
N+d
d

)
LME

((N−k)⌊N−1
N−k⌋+N+d

d

)
×

((N−k)⌊N−1
N−k⌋+N+d

d

)
CS-LME

(
2k+N+d

d

)
×
(
2k+N+d

d

)
In contrast, the maximal clique size in the original LME reformulation (2.16) is

(N − k)
⌊
N − 1

N − k

⌋
+N.

We give in Table 5 the maximal PSD matrix size of the four methods for solving (1.2)651

with csp given by (4.6). Table 5 shows that the SDP problem scale of CS-LME is652

significantly smaller than SOS and LME when N ≫ k. Recall that N is the size of the653

blocks while k is the number of overlapping variables between two successive blocks.654

Thus N/k can be seen as a measure of the partial separability of the problem. We655

speculate that the larger N/k is, the more efficient the CS-LME approach is compared656

with the other three approaches4. See Example 5.6 for a numerical evidence with657

N = 15, k = 2 and s = 10.658

Remark 4.7. To end this section, we would like to point out that for small-scale659

problems, the LME approach has outstanding performance, especially when the SOS660

approach cannot find the global minimum with a low relaxation order, see [23]. For661

small-scale problems with csp, the LME approach may still be faster than the CS-662

LME approach because the latter needs to add auxiliary variables to maintain the663

csp. See Example 5.1 for a numerical example of a small-scale problem.664

In general, we expect CS-LME to perform better than the other three approaches665

when the cliques in the csp graph of the CS-LME reformulation are not much larger666

than the cliques in the csp graph of the LME reformulation. Since |Îi| = |Ii| + |Ji|,667

this occurs when668

1. The number of overlapping variables between any two blocks Ii and Ij is669

small;670

2. Each node in the directed clique tree G(V,A) returned by Algorithm 3.1 has671

a small number of children.672

These two conditions ensure that only a small number of auxiliary variables |Ji| must673

be added to each block.674

5. Numerical experiments. In this section, we present numerical experiments675

that apply CS-LMEs to solve polynomial optimization problems with a given csp.676

We directly call the software TSSOS 5 [36, 37] to solve the CS-TSSOS relaxation of677

the CS-LME reformulation (3.39). Note that CS-TSSOS relaxation exploits both678

correlative and term sparsity in the polynomial optimization problem. As recalled in679

Section 2.3, the convergence of CS-TSSOS is guaranteed when the CS-SOS relaxation680

4The overall performance depends on both the SDP problem scale and the convergence rate with
respect to the relaxation order d.

5https://github.com/wangjie212/TSSOS
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is convergent (with option TS="block"). The software Mosek is applied to solve the681

SDPs with default settings. The computation is implemented in a Lenovo x1 Yoga682

laptop, with an Intel® Core(TM) i7-1185G7 CPU at 3.00GHz×4 cores and 16GB of683

RAM, in the Windows 11 operating system.684

For all polynomial optimization problems in this section, we compare the per-685

formance of several approaches. First, we solve the problem directly by CS-TSSOS686

with options TS="block" and TS="MD" respectively (see [36] for more details). Then,687

we solve the LME reformulation (2.16) introduced in [23] when it exists. Note that688

when original LMEs are applied, correlative sparsity for the reformulation is usually689

corrupted. Last, we solve the CS-LME reformulation (3.39). For both LME refor-690

mulation (2.16) and CS-LME reformulation (3.39), the CS-TSSOS is called with the691

option TS="MD". Besides that, we use the MATLAB software Gloptipoly 3 [7] to692

implement dense relaxations with Mosek being applied to solve the SDPs. We say a693

relaxation ‘fail to solve’ when we cannot get a sensible optimal value for it. This is694

the case when we suspect SDP is unbounded as Mosek reaches a negative objective695

value with a huge absolute value (< −106).696

Example 5.1. (i) Consider the polynomial optimization problem (2.17) in Exam-697

ple 2.5. As mentioned in Example 2.5, its global minimum equals 0. The CS-LMEs698

for this problem are given by (3.18), and the CS-LME reformulation is (3.19). One699

may check that the archimedean condition is not satisfied by IQI1
(h(1), g(1)). Besides700

that, the LME is given by (2.19). Numerical results for solving this problem are701

presented in Table 6. In the table, ‘d’ means the relaxation order, ‘l’ represents the702

term sparsity level. The columns ‘no LME+block’ and ‘no LME+MD’ are numerical703

results of applying CS-TSSOS directly to the polynomial optimization problem with704

TS="block" and TS="MD" respectively, the column ‘LME’ corresponds to solving the705

LME reformulation, and the column ‘CS-LME’ represents the relaxation results of the706

CS-LME reformulation. The ‘error’ is the absolute value of the difference of optimal707

value for this polynomial optimization problem and the approximation computed by708

the semidefinite relaxation, and ‘time’ is the time consumption in seconds for comput-709

ing this approximation. When a superscript ∗ is marked, it means this lower bound710

was computed with the highest level of term sparsity within the current relaxation711

order.712

From the table, one can see that when there were no LMEs exploited, CS-TSSOS713

could not get an approximation for the global minimum of this problem with high714

accuracy (say, the error is less than 10−6). Particularly, when d = 3, the computed715

optimal values for both ‘no LME+block’ and ’no LME+MD’ are less than −1013, and716

we marked ‘fail to solve’ in the table. Besides that, when d = 3, Gloptipoly 3 failed717

to solve the problem (unboundedness suspected), and obtained an approximated value718

with error equaling 3·10−9 in 0.50 second when d = 4. In contrast, the LME approach719

took around 0.23 second to get the approximated global minimum, and the CS-LME720

approach obtained the approximated minimum in 0.53 second.721

(ii) For the polynomial optimization problem in Example 3.3, if we keep the722

objective function and the csp, but change the constraints to723

g(1)(x(1)) =
(
1− x(1)Tx(1), x(1)1 , x

(1)
2

)
, g(2)(x(2)) =

(
1− x(2)Tx(2), x(2)1 , x

(2)
2

)
,724

then the CS-LME becomes725

λ
(1)
1 = −1

2
x(1)

⊤
F (1), λ

(1)
2 = F

(1)
1 + 2x

(1)
1 λ

(1)
1 , λ

(1)
3 = F

(1)
2 + 2x

(1)
2 λ

(1)
1 ,

λ
(2)
1 = −1

2
x(2)

⊤
F (2), λ

(2)
2 = F

(2)
1 + 2x

(2)
1 λ

(2)
1 , λ

(2)
3 = F

(2)
2 + 2x

(2)
2 λ

(2)
1 .

726
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However, one may check this problem does not have LMEs.

Table 6
Numerical results for Example 5.1(i)

d l
no LME+block no LME+MD LME CS-LME
error time error time error time error time

3 1 fail to solve fail to solve not defined not defined
3 2 ∗fail to solve fail to solve
3 3 fail to solve
3 4 ∗fail to solve

4 1 0.0134 0.06s 0.0437 0.03s 2 · 10−8 0.23s 0.0014 0.36s
4 2 ∗0.0134 0.07s 0.0437 0.03s 1 · 10−7 0.53s
4 3 0.0140 0.13s
...

...
...

...
...

...
10 1 0.0038 25.76s 0.0337 8.26s
10 2 0.0038 74.82s 0.0152 11.18s

727

With the new constraints, one can similarly check that the global minimum is still728

0. Numerical results for solving this problem are presented in Table 7, where symbols729

and notation are similarly defined as in Table 6. From the table, one can see that730

without CS-LMEs, CS-TSSOS cannot find the global minimum with satisfying error731

in 61 seconds for the option TS="block", and in 78 seconds for the option TS="MD".732

Besides that, Gloptipoly got the lower bound −2 ·10−5 in 0.30 second for d = 3, and733

got −5 · 10−9 in 0.52 second for d = 4. For the CS-LME approach, we obtained an734

approximation −9 · 10−7 for the global minimum in 1.69 seconds.

Table 7
Numerical results for Example 5.1(ii)

d l
no LME+block no LME+MD CS-LME
error time error time error time

3 1 0.0146 0.02s 0.0531 0.01s not defined
3 2 ∗0.0140 0.02s 0.0480 0.01s

4 1 0.0074 0.04s 0.0495 0.04s 0.0018 0.41s
4 2 ∗0.0070 0.06s 0.0450 0.04s 0.0016 0.42s

5 1 0.0045 0.15s 0.0492 0.14s 2 · 10−5 0.98s
5 2 ∗0.0044 0.28s 0.0448 0.16s 9 · 10−7 1.69s

10 1 0.0049 6.45s 0.0437 13.82s
10 2 ∗0.0034 61.41s 0.0245 12.99s
10 3 0.0035 59.52s
...

...
...

...
10 8 ∗0.0034 78.16s

735

For all remaining examples in this section, symbols and notation in tables are736

similarly defined as in Table 6, and we shall not repeat explaining them, for the737

neatness of this paper.738

Example 5.2. Consider the csp given in Example 3.6. For each i = 1, . . . , 5, we739

let fi(x
(i)) be the Choi-Lam’s form740

fi(x
(i)) = (x

(i)
1 x

(i)
2 )2 + (x

(i)
1 x

(i)
3 )2 + (x

(i)
2 x

(i)
3 )2 + x

(i)
4

4
− 4x

(i)
1 x

(i)
2 x

(i)
3 x

(i)
4 ,741
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and let742

g(i) = (1− x(i)
⊤
x(i)), h(i) = ∅.743

Again, by the inequality of arithmetic and geometric means, all fi are nonnegative,744

and fi(x
(i)) = 0 when x

(i)
1 = · · · = x

(i)
4 . Thus we know the optimal value for mini-745

mizing f1(x
(1)) + · · ·+ f5(x

(5)) over the set given by g(i)(x(i)) ≥ 0 for all i = 1, . . . , 5746

is 0. For this problem, the CS-LMEs can be given as747

λ(i) = −x
(i)⊤F (i)

2
.748

However, there do not exist LMEs, which can be similarly shown as in Example 3.1.749

Numerical results of solving this problem using CS-TSSOS directly, the LME ap-750

proach, and the CS-LME approach are presented in Table 8.751

From the table, one can see that without CS-LMEs, CS-TSSOS cannot find the752

global minimum with the option TS="MD" (interestingly, it returned the same lower753

bound −0.1709 for all d = 2, . . . , 15), and cannot get an approximation for the global754

minimum with an error less than 0.0001 in 6807 seconds with TS="block". Moreover,755

Gloptipoly 3 obtained the lower bound −0.1709 when d = 2 using 0.99 second, and756

obtained the lower bound −0.0135 in 346.42 seconds when d = 3. In contrast, the757

CS-LME approach took 11.35 seconds to obtain an approximated minimum with an758

error equal to 6 · 10−6, and took 107.62 seconds to obtain an approximated minimum759

with an error equal to 3 · 10−8.760

Table 8
Numerical results for Example 5.2

d l
no LME+block no LME+MD CS-LME
error time error time error time

2 1 ∗0.0531 0.01s ∗0.1709 0.01s not defined

3 1 ∗0.0480 0.01s ∗0.1709 0.02s 0.0080 5.82s

4 1 ∗0.0495 0.04s ∗0.1709 0.05s 1 · 10−5 6.55s
4 2 6 · 10−6 11.35s

5 1 ∗0.0450 0.04s ∗0.1709 0.16s 3 · 10−8 107.62s
...

...
...

...
...

...
15 1 ∗0.0001 6807.45s ∗0.1709 554.09s

Example 5.3. Consider the box-constrained problem in Example 4.5. Let n1 =761

n2 = 10, k = 2, and let (i = 1, 2)762

fi(x
(i)) =

(∑10

j=1
x
(i)
j + 1

)2

− 4

(∑9

j=1
x
(i)
j x

(i)
j+1 + x

(i)
1 + x

(i)
10

)
.763

The LMEs and CS-LMEs can be similarly given by (2.19) and (3.18), respectively.764

One may check that the archimedean condition is not satisfied by IQI1
(h(1), g(1)).765

Furthermore, for d = 2, . . . , 3, the structure of SDPs obtained by the dense relaxation,766

CS-SOS relaxations, the LME approach, and the CS-LME approach are given in767

Table 4.768

The minimum for this problem is achieved at the KKT point (1, 0, . . . , 0, 1), which769

equals 0 (see also [23]). This can also be numerically certified by Gloptipoly 3 via770

the flat truncation [18]. Indeed, Gloptipoly 3 got an approximation to the global771

27

This manuscript is for review purposes only.



minimum −3 · 10−8 in 26.25 seconds. Numerical results of solving this problem using772

CS-TSSOS directly, the LME approach and the CS-LME approach are presented in773

Table 9. From the table, one can see that without LMEs, CS-TSSOS could not find an774

approximation for the global minimum with a desired accuracy when TS = “MD” within775

11.51 seconds, and took 36.67 seconds to get the minimum when TS = “block”. The776

LME approach took 15.79 seconds to get the approximation with the desired accuracy.777

In contrast, the CS-LME approach only took 2.46 seconds to get an approximated778

global minimum with the error equal to 4 · 10−7.

Table 9
Numerical results for Example 5.3

d l
no LME+block no LME+MD LME CS-LME
error time error time error time error time

2 1 ∗0.0067 1.08s 0.0739 0.10s ∗1 · 10−7 15.79s ∗4 · 10−7 2.46s

3 1 9 · 10−9 36.67s ∗0.0558 0.78s

4 1 ∗0.0105 11.51s

779

Example 5.4. Let s = 2 and780

I1 = {1, 2, 3, 7}, I2 = {4, 5, 6, 7}.781

Consider the polynomial optimization problem (1.2) with csp {I1, I2}, where782

f1(x
(1)) = x41x

2
2 + x42x

2
3 + x43x

2
1 − 3(x1x2x3)

2 + x22 + x27(x
2
1 + x22 + x23),

f2(x
(2)) = x4x5(10− x6) + x27(x4 + 2x5 + 3x6);

g
(1)
1 (x(1)) = x1 − x2x3, g(1)2 (x(1)) = −x2 + x23,

g
(2)
1 (x(2)) = 1− x4 − x5 − x6, g(2)2 (x(2)) = x4, g

(2)
3 (x(2)) = x5, g

(2)
4 (x(2)) = x6.

783

Since x41x
2
2+x42x

2
3+x43x

2
1 ≥ 3(x1x2x3)

2 by the inequality of arithmetic and geometric784

means, we have f1(x
(1)) ≥ 0 with the equality holds when x1 = x2 = x3 = x7 = 0.785

On the other hand, f2 is nonnegative on the feasible set given by g(2)(x(2)) ≥ 0, and786

f2(x
(2)) = 0 when x4x5 = 0 and x7 = 0. So, the global minimum for this problem is787

0, which is attain at (0, 0, 0, t, 0, 0, 0) and (0, 0, 0, 0, t, 0, 0) for all t ∈ [0, 1]. Also, one788

may check that this problem has an unbounded feasible set. For this problem, let789

F (1) = ∇1f1 + ν2,1,7e4, F (2) = ∇2f2 + ν2,1,7e4,790

then the CS-LMEs are791

λ
(1)
1 = F

(1)
1 , λ

(1)
2 = [−x3,−1, 0, 0] · F (1),

λ
(2)
1 = −x⊤4:6F

(2)
1:3 , λ

(2)
2 = F

(2)
1 + λ

(2)
1 , λ

(2)
3 = F

(2)
2 + λ

(2)
1 , λ

(2)
4 = F

(2)
3 + λ

(2)
1 .

792

The numerical results for solving this problem are presented in Table 10. From the793

table, one can see that when there were no LMEs exploited, CS-TSSOS could not get an794

approximation for the global minimum of this problem with an error less than 0.0001795

within 271.95 seconds, while the original LME approach took around 84.13 seconds796

to get the approximated value with an error equaling 2 · 10−7. Moreover, when d = 3797

and 4, Gloptipoly 3 failed to solve the problem (unboundedness suspected), and it798

took 2264 seconds to get the lower bound −120.82 when d = 5. In contrast, the799

CS-LME approach obtained an approximated minimum whose error was 9 · 10−8 in800

18.54 seconds.801

28

This manuscript is for review purposes only.



Table 10
Numerical results for Example 5.4

d l
no LME+block no LME+MD LME CS-LME
error time error time error time error time

3 1 fail to solve fail to solve not defined not defined
3 2 ∗ > 108 0.18s fail to solve not defined not defined
...

...
...

...
...

...
...

...
3 5 ∗fail to solve not defined not defined

4 1 > 107 0.47s fail to solve 1519.49 4.95s 645.71 0.77s
4 2 ∗ > 105 0.59s > 106 0.45s 35.36 5.28s 23.62 0.94s
...

...
...

...
...

...
...

...
...

...
5 2 ∗265.61 2.60s > 105 1.44s 2 · 10−7 84.13s 0.0324 5.42s
...

...
...

...
...

...
...

...
6 1 18.19 6.28 102.78 5.59s 9 · 10−8 18.54s
...

...
...

...
...

...
8 2 ∗0.0001 224.77s 0.0079 75.64s
...

...
...

...
8 5 ∗0.0002 322.68s

Example 5.5. Let s = 5 and802

I1 = {1, 2, 3, 4, 17, 18, 19}, I2 = {5, 6, 7, 8, 18, 19, 20},
I3 = {9, 10, 18, 19, 20}, I4 = {11, 12, 17, 18}, I5 = {13, 14, 15, 16, 17}.803

Consider the polynomial optimization problem (1.2) with csp (I1, I2, . . . , I5), where804

f1(x
(1)) = (x1 − x17)2 + (x2 − x18)2 + (x3 − x19)2 + x24x17,

f2(x
(2)) = x218 + x219 + x220 − x5(x6 + x7 + x8),

f3(x
(3)) = x9x10(20− x18 − x19 − x20),

f4(x
(4)) = (x11 − x17)2 + (x12 + x18 − 1)2,

f5(x
(5)) = (x17 − x13 + x14)

2 + x15x16,

g(1)(x(1)) =
(
17 − x(1), x(1)1:4 + 17

)
,

g(2)(x(2)) =

(
3− 2

∑3

j=1
x
(2)
j −

∑7

j=5
x
(2)
j − x

(2)
4 , x

(2)
1 , . . . , x

(2)
7

)
,

g(3)(x(3)) =

(
1−

∑5

j=1
x
(3)
j , x

(3)
1 , x

(3)
2

)
,

g(4)(x(4)) = 1− x(4)
⊤
x(4), g(5)(x(5)) = x(5).

805

It is clear that except f (2), all other f (i) are nonnegative over the set given by806

(g(1), g(2), . . . , g(5)). For f (2), its minimum − 9
8 is attained at the KKT point x(2) =807 (

3
4 , 0, 0,

3
2 , 0, 0, 0

)
. Indeed, one may check that the global minimum for this problem808

is − 9
8 . For this problem, the set of edges is809

A = {(2, 1), (3, 2), (4, 1), (5, 4)}.810
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The auxiliary variables are811

ν2,1,18, ν2,1,19, ν3,2,18, ν3,2,19, ν3,2,20, ν4,1,17, ν4,1,18, ν5,4,17.812

If we let F (i) be given as in (3.35), then CS-LMEs are813

λ
(1)
1:4 = −1

2
· F (1)

1:4 ◦ (1+ x1:4), λ
(1)
5:7 = −F (1)

5:7 , λ
(1)
8:11 = F

(1)
1:4 + λ

(1)
1:4;

λ
(2)
1 = − 1

3F
(2)⊤x(2), λ

(2)
2:4 = 2λ

(2)
1 + F

(2)
1:3 , λ

(2)
5:8 = 2λ

(2)
1 + F

(2)
4:7 ;

λ
(3)
1 = −F (3)⊤x(3), λ

(3)
2:3 = λ

(3)
1 + F

(3)
1:2 ; λ(4) = − 1

2F
(4)⊤x(4); λ(5) = F (5).

814

We would like to remark that the tuple (g(1), g(2), . . . , g(5)) is singular, so original815

LMEs do not exist. The numerical results for solving this problem are presented816

in Table 11. From the table, one can see that when there were no LMEs exploited,817

CS-TSSOS could not get an approximation for the global minimum with an error less818

than 0.001 in 7697.33 seconds. Moreover, Gloptipoly 3 suspected unboundedness819

when d = 3, and the 4th order dense relaxation cannot be solved due to the memory820

limit. In contrast, the CS-LME approach obtained an approximated minimum whose821

error was 1 · 10−7 in 53.73 seconds.

Table 11
Numerical results for Example 5.5

d l
no LME+block no LME+MD CS-LME
error time error time error time

2 1 fail to solve ∗ > 106 0.28s 9.5731 1.32s
2 2 ∗ > 106 0.37 0.3085 1.50s
...

...
...

...
2 5 ∗0.1417 10.05s

3 1 1.6047 3.59s 1295.25 0.71s 4 · 10−7 60.41s
3 2 ∗fail to solve 1276.92 0.76s 1 · 10−7 53.73s
...

...
...

...
...

...
5 2 ∗0.0069 16663.91s 9.3531 252.95s
5 3 0.0862 7697.33s

822

For the following two examples, we do not run Gloptipoly 3 for solving them,823

since the problem scales are too large for dense SOS relaxations.824

Example 5.6. Consider the correlative sparsity pattern given in Example 4.6. Let825

s = 10, N = 15, and k = 2. For each i ∈ [10], let826

fi(x) =
(
x(i)

T
x(i)

)2

− 4
(
(x

(i)
1 x

(i)
2 )2 + · · ·+ (x

(i)
4 x

(i)
5 )2 + (x

(i)
5 x

(i)
1 )2

)
+
(
x
(i)
1 + · · ·+ x

(i)
5 − (x

(i)
6:10)

⊤x
(i)
11:15

)2

.
827

Consider the unconstrained polynomial optimization problem828

(5.1) min
x

f1(x
(1)) + · · ·+ f10(x

(10)).829

For each i ∈ [10], the
(
x(i)

T
x(i)

)2

− 4
(
(x

(i)
1 x

(i)
2 )2 + · · ·+ (x

(i)
4 x

(i)
5 )2 + (x

(i)
5 x

(i)
1 )2

)
is830

the Horn’s form [33], which is a nonnegative homogeneous polynomial. Thus the831
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global minimum of (5.1) is 0. For unconstrained problems, the system832

ϕ(i)(x(i), ν(i)) = 0, ψ(i)(x(i), ν(i)) ≥ 0, ∀i ∈ [10]833

reduces to834

F (1)(x(1), ν(1)) = F (2)(x(2), ν(2)) = · · · = F (10)(x(10), ν(10)) = 0,835

where every F (i) is given in (3.35) with auxiliary variables given in (4.7). Thus, the836

CS-LME typed reformulation (3.39) becomes837

(5.2)
min f1(x

(1)) + · · ·+ f10(x
(10))

s.t. F (1)(x(1), ν(1)) = F (2)(x(2), ν(2)) = · · · = F (10)(x(10), ν(10)) = 0
838

Similarly, the original LME reformulation (3.39) for (5.7) becomes839

(5.3)
min f1(x

(1)) + · · ·+ f10(x
(10))

s.t. ∇(f1 + f2 + · · ·+ f10)(x) = 0
840

The numerical results for solving this problem are presented in Table 12. From841

the table, one can see that when there were no LMEs exploited, CS-TSSOS could842

not get a sensible approximation for the global minimum of this problem within843

487.31 seconds, while the original LME approach took around 270.40 seconds to get844

an approximated global minimum. In contrast, the CS-LME approach obtained an845

approximated minimum whose error was 7 · 10−10 in 20.48 seconds.

Table 12
Numerical results for Example 5.6

d l
no LME+block no LME+MD LME CS-LME
error time error time error time error time

2 1 ∗fail to solve ∗fail to solve fail to solve fail to solve
2 2 ∗fail to solve ∗fail to solve

3 1 ∗ > 108 78.43s ∗ > 108 7.26s 6 · 10−11 270.40s 7 · 10−10 20.48s
4 1 ∗out of memory ∗ > 106 487.31s
5 1 ∗out of memory

846

Example 5.7. In this example, we present numerical results by varying the number847

of blocks s. For each i ∈ [s], let Ii := {9i−8, 9i−7, . . . , 9i+1}. Consider the following848

optimization problem849

(5.4)

{
min
x

f1(x
(1)) + f2(x

(2)) + · · ·+ fs(x
(s))

s.t . x
(1)
1 ≥ 0, x

(i)
1 + x

(i)
2 + · · ·+ x

(i)
10 ≤ 1, x

(i)
2:10 ≥ 0, i ∈ [s]

850

In the above,851

fi(x
(i)) =

∑3

j=1
x
(i)
2j x

(i)
2j+1 +

(∑9

j=7
(x

(i)
j )3 + x

(i)
7 x

(i)
8 x

(i)
9

)
x
(i)
10 , i ∈ [s].852

Since all variables are nonnegative, and each fi(x
(i)) reaches 0 at x(i) = 0, it is clear853

that (5.4) has the csp (I1, . . . , Is) and its minimum value equals 0. Moreover, because854

for all s ≥ 2, the matrix G(x) given as in (2.12) does not have full column rank at855
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e10. So (5.4) does not have LMEs. For each i ∈ [s− 1], we have the auxiliary variable856

νi+1,i,9i+1. Let F
(i) be given in (3.35), then CS-LMEs are857

λ
(1)
1 = −F (1)⊤x(1), λ

(1)
2:11 = F (1) + λ

(1)
1 ;

λ
(i)
1 = −F (i)⊤x(i), λ

(i)
2:10 = F

(i)
2:10 + λ

(i)
1 , (i = 2, . . . , s).

858

The numerical results for solving this problem with s = 2, . . . , 7 are presented859

in Table 13. In the table, ‘s’ represents the quantity s in (5.4), and all other symbols860

and notations are similarly defined as in Table 6 (see Example 5.1). When s = 2,861

one can see that when there were no CS-LMEs exploited, CS-TSSOS could not get an862

approximation for the global minimum of this problem with an error less than 0.01863

in 11366.94 seconds. In contrast, the CS-LME approach obtained an approximated864

minimum whose error was 5 · 10−9 in 1192.89 seconds. Moreover, when s = 3, . . . , 7,865

we do not present numerical results with relaxation order d = 3 since we cannot get866

lower bounds that are close to 0. Also, results of approaches without CS-LMEs are867

not presented for s ≥ 3 and d = 4, because close lower bounds cannot be computed868

by these approaches with reasonable time consumption.

Table 13
Numerical results for Example 5.7

s d l
no LME+block no LME+MD CS-LME
error time error time error time

2

3 1 0.0735 71.54s 5369.40 2.88s 3.6067 16.85s
3 2 ∗0.0230 196.25s 624.22 4.25s 0.0680 35.02s
3 3 0.0238 78.46s 0.0091 353.71s
3 4 ∗0.0230 216.41s 0.0071 834.23s
4 1 0.0205 11366.94s 23.77 682.21 5 · 10−9 1192.89s
4 2 0.0104 71235.47 -

3 4 1 7 · 10−8 1965.19s

4 4 1 2 · 10−7 2432.45s

5 4 1 3 · 10−7 2868.47s

6 4 1 3 · 10−7 4136.36s

7 4 1 3 · 10−7 4567.80s

869

6. Conclusions and discussions. We consider correlatively sparse polynomial870

optimization problems. We introduce CS-LMEs to construct CS-LME reformations871

for polynomial optimization problems. Under some general assumptions, we show that872

correlative SOS relaxations can get tighter lower bounds when solving the CS-LME873

reformulation instead of the original optimization problem. Moreover, asymptotic874

convergence is guaranteed if the sequel of CS-SOS relaxations for the original poly-875

nomial optimization is convergent. Numerical examples are presented to show the876

superiority of our new approach.877

For future work, one wonders if the CS-SOS relaxation has finite convergence878

for solving CS-LME reformulations. Indeed, finite convergence for the original LME879

reformulation in [23] is guaranteed under mild conditions. As demonstrated in Sec-880

tion 5, the CS-LME approach usually finds the global minimum (up to a negligible881

numerical error) for polynomial optimization problems with a low relaxation order.882

However, it is still open that if the finite convergence is guaranteed theoretically or883

not, even for generic cases. Moreover, when the correlatively sparse polynomial op-884

timization (1.2) is given by generic polynomials, its KKT ideal is zero-dimensional.885
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Thus the real variety given by equality constraints in (3.39) is a finite set. For the886

classical Moment-SOS relaxations, finite convergence is theoretically guaranteed when887

equality constraints of the polynomial optimization give a zero-dimensional real va-888

riety, as shown in [19]. So, it is interesting to ask whether the analogous is true889

for CS-SOS relaxations. Besides that, our numerical experiments indicate that the890

CS-LME approach can usually find the global minimum for polynomial optimization891

problems even if some IQI(i)(h(i), g(i)) is not archimedean. Therefore, an interest-892

ing question is whether the CS-LME approach has guaranteed asymptote or finite893

convergence without the archimedean condition for every IQI(i)(h(i), g(i)).894

At last, we would like to remark that LMEs have broad applications in many895

polynomial defined problems. Therefore, a natural question is how to apply CS-896

LMEs to these applications. For example, when a saddle point problem is given by897

polynomials with correlative sparsity, can we apply CS-LMEs to construct polynomial898

optimization reformulation similar to the one in [31] for finding saddle points?899

Appendix A. Computing LMEs and CS-LMEs. We introduce how to find900

LMEs and CS-LMEs for practical implementation. As mentioned in Subsection 2.4901

and Section 3, finding LMEs (resp., CS-LMEs) is equivalent to finding matrices of902

polynomials L(x), D(x) (resp., L(i)(x), D(i)(x)) such that (2.14) (resp. (3.3)) holds.903

Note that the matrices G(x) and G(i)(x) only depend on constraints, and LMEs can904

be viewed as special cases of CS-LMEs that there only exists one block, i.e., s = 1.905

Here we only introduce how to get CS-LMEs, and the methodology for finding LMEs906

is similar.907

Suppose the matrix of polynomial G(i)(x(i)) has full column rank over Cni . In908

general, (3.3) gives a linear equation system. Denote m̂i := mi + ℓi, and909

L(i)(x(i)) :=

 L1,1(x
(i)) L1,2(x

(i)) . . . L1,ni
(x(i))

...
...

...
...

Lm̂i,1(x
(i)) Lm̂i,2(x

(i)) . . . Lm̂i,ni
(x(i))

 ,910

911

D(i)(x(i)) :=

 D1,1(x
(i)) D1,2(x

(i)) . . . D1,m̂i(x
(i))

...
...

...
...

Dm̂i,1(x
(i)) Dm̂i,2(x

(i)) . . . Dm̂i,m̂i(x
(i))

 .912

Suppose all entries in L(i)(x(i)) and D(i)(x(i)) are polynomials whose degrees are not913

greater than d. For each j, k, let (here for the α = (α1, . . . , αni
) ∈ Nni

d , we denote914

x(i)
α
:= x

(i)
1

α1

x
(i)
2

α2

. . . x
(i)
ni

αni
)915

(A.1) Lj,k(x
(i)) =

∑
α∈Nni

d

Lj,k,α · x(i)
α
, Dj,k(x

(i)) =
∑

α∈Nni
d

Dj,k,α · x(i)
α
.916

Then (3.3) can be written as the following linear equation system in variables Lj,k,α917

and Dj,k,α:918

(A.2)

ni∑
l=1

 ∑
α∈Nni

d

Lj,l,α · x(i)
α

 · ∂c(i)k

∂x
(i)
l

(x(i)) +

 ∑
α∈Nni

d

Dj,k,α · x(i)
α

 c
(i)
k (x(i))

=

{
1 if j = k,
0 if j ̸= k,

(j ∈ [m̂i], k ∈ [m̂i]).

919
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We remark that in (A.2), the equality means that the polynomials on both sides are920

identically equaled. By [23, Proposition 5.2], since G(i)(x) has full column rank over921

Cni , the system (A.2) must have solutions when d is large enough. Therefore, for922

each i ∈ [s], we solve the linear system (A.2) for solutions with a given degree d. If we923

get a solution to (A.2), then we recover polynomial matrices L(i)(x(i)) and D(i)(x(i))924

(hence CS-LMEs) using this solutions; otherwise, we let d ← d + 1 and solve (A.2)925

with the updated degree d, until a solution is obtained.926

Sometimes, one may get CS-LMEs without actually computing polynomial ma-927

trices L(i)(x(i)) and D(i)(x(i)). Instead, CS-LMEs can be directly obtained using the928

‘multiplication-cancellation’ trick 6. This is shown in the following example.929

Example A.1. Consider the case that930

g(i)(x(i)) =
(
1− x(i)

⊤
x(i), x

(i)
1 , . . . , x(i)ni

)
.931

Then the KKT-typed system (3.27) for the ith block implies that932

F (i)(z(i)) = −2λ(i)1 · x(i) +
∑ni

j=1
λ
(i)
j+1 · ej ,(A.3)933

λ
(i)
1 ⊥ 1− x(i)

⊤
x(i), λ

(i)
j+1 ⊥ x

(i)
j (j ∈ [ni]).(A.4)934

935

By multiplying x(i)
⊤

on both sides of (A.3), we get936

x(i)
⊤
F (i)(z(i)) = −2λ(i)1 · x(i)

⊤
x(i) +

∑ni

j=1
λ
(i)
j+1 · x

(i)
j .937

Note that (A.4) implies that λ
(i)
1 · x(i)

⊤
x(i) = λ

(i)
1 and λ

(i)
j+1 · x

(i)
j = 0. So we further938

have939

x(i)
⊤
F (i)(z(i)) = −2λ(i)1 .940

Therefore, again by (A.3), we get CS-LMEs that941

λ
(i)
1 = −x(i)

⊤
F (i)(z(i))/2, λ

(i)
j+1 = F

(i)
j (z(i)) + 2λ

(i)
1 · x

(i)
j (j ∈ [ni]).942

We remark that though we do not get explicit expressions for L(i)(x(i)) and D(i)(x(i)),943

essentially, this trick is equivalent to finding solutions for (3.3). For instance, the step944

of multiplying x(i)
⊤

on both sides of (A.3) means that the first row of L(i)(x(i)) is945

x(i)
⊤
. Besides that, for some commonly used constraints (e.g., box, ball, simplex,946

etc.), LMEs are explicitly given in [23], and they can be similarly applied to the947

construction of CS-LMEs.948
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