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A CORRELATIVELY SPARSE LAGRANGE MULTIPLIER
EXPRESSION RELAXATION FOR POLYNOMIAL OPTIMIZATION

ZHENG QU* AND XINDONG TANGH

Abstract. In this paper, we consider polynomial optimization with correlative sparsity. We
construct correlatively sparse Lagrange multiplier expressions (CS-LMEs) and propose CS-LME re-
formulations for polynomial optimization problems using the Karush-Kuhn-Tucker optimality con-
ditions. Correlatively sparse sum-of-squares (CS-SOS) relaxations are applied to solve the CS-LME
reformulation. We show that the CS-LME reformulation inherits the original correlative sparsity
pattern, and the CS-SOS relaxation provides sharper lower bounds when applied to the CS-LME
reformulation, compared with when it is applied to the original problem. Moreover, the convergence
of our approach is guaranteed under mild conditions. In numerical experiments, our new approach
usually finds the global optimal value (up to a negligible error) with a low relaxation order, for
cases where directly solving the problem fails to get an accurate approximation. Also, by properly
exploiting the correlative sparsity, our CS-LME approach requires less computational time than the
original LME approach to reach the same accuracy level.

Key words. polynomial optimization, correlative sparsity, Lagrange multiplier expressions,
Moment-SOS relaxations

MSC codes. 90C23, 90C06, 90C22

1. Introduction. Let n be a positive integer, and let z := (x1,...,2,) be the
variable in the n-dimensional Euclidean space. Denote by R[z] be the ring of real
coefficient polynomials in n indeterminates. We consider the polynomial optimization
problem

min  f(x)

(1.1) zER™
s.t. g(z) >0, h(z)=0.

In the above, f € R[z] is a polynomial, and g € R[z]™ and h € R[z]* are tuples of
polynomial functions. In [10], Lasserre introduced a hierarchy of semidefinite pro-
gramming (SDP) relaxations to provide a sequence of lower bounds for (1.1), which
converges to the global optimal value of (1.1), under some compactness assumptions.
This approach is known as the Moment-SOS relazations and has been intensively
explored in the last two decades for global solutions of polynomial optimization prob-
lems. For (1.1), Nie introduced the Lagrange multiplier expressions (LMEs) [23],
whose existence is guaranteed when g(z) and h(x) are given by generic polynomial
functions. LMEs can be applied to construct the LME reformulation of (1.1) using
the Karush-Kuhn-Tucker (KKT) optimality conditions, which guarantees the moment
relaxation being exact when the relaxation order is big enough and the global mini-
mum for (1.1) is attainable. However, these approaches are usually computationally
expensive. Indeed, even for unconstrained polynomial optimization problems, i.e.,
m = { = 0, the moment relaxation for (1.1) is an SDP problem with matrices of size
up to (":d) X (":d), where d € N is the relaxation order such that 2d > deg(f).

Given the polynomial optimization problem (1.1), let (Z1,...,Zs) be subsets of
[n] == {1,...,n} such that |J;_, Z; = [n], and denote () := (z;);ez,. The equation
(1.1) is said to follow the correlative sparsity pattern (csp) (Zy,...,Zs) if
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(1) there exist fi, fa,..., fs such that every f; € Rlz()] and f(z) = fi(zV) +
ot L@l
(2) there exist partitions I = (Iy,...,1I;) of [m| and E = (Ey,..., E;) of [£], such
that for all i € [s], we have g;, € Rlz(V] and h;, € R[z)] for every j; € I;
and jo € E;.
For convenience, we let m; := |I;| and ¢; := |E;|, and denote

9V = (gj:jel), Y= (h:jekE).

Then, both ¢ and A" are subsets of R[x(i)], and the polynomial optimization (1.1)
with csp (Z1,...,Zs) can be written in the following way:

min f1(m(1)) + fQ(ZE(Q)) N f3($(s))

(1.2) st. gMEM)>0,...,9 ) >0,
D) =0, b (a) = 0,

In this paper, we are interested in problems with csp {Z1,...,Zs} that satisfies
the running intersection property (RIP), meaning that for each 1 <i<s—1,Z;11 N
(ZyU---UZ;) C I for some t € {1,...,i}; see Definition 2.2. The Moment-SOS
relaxation with correlative sparsity is studied in [34], and the convergence results
are proved in [5, 9, 11, 25] for the case when the RIP holds. Recently, Wang et al.
developed the software TSSOS [15] that implements correlative and term sparse SOS
relaxations for polynomial optimization (see also [16, 36, 37]), and it has been used
in many applications [17, 35].

Note that for any polynomial optimization problem, the trivial csp, i.e., s = 1
with Z; = [n], always exists. Our primary interests lie in the cases where n is much
bigger than max;c[ |Z;|. For polynomial optimization (1.1) with the given csp, we
aim to construct reformulations similar to Nie’s LME reformulation introduced in [23],
while maintaining the correlative sparsity of (1.1). Our main contributions are:

e For polynomial optimization with the given csp, we provide a systematic way to
construct correlatively sparse LMEs (CS-LMEs), which are polynomial functions
in x and some auxiliary variables.

e Based on CS-LMEs, we proposed correlatively sparse reformulations using the
KKT optimality conditions. We show that under some general conditions, the
reformulation inherits the csp and the running intersection property (RIP) from
the original polynomial optimization, and their optimal values are identical.

e We show that for a given relaxation order, correlatively sparse SOS (CS-SOS)
relaxations always provide tighter lower bounds for the optimal value of the
polynomial optimization problem when the CS-LME reformulation is applied.
The asymptotic convergence of our approach is proved under some standard
assumptions. Numerical experiments are given to show the superiority of our
CS-LME approach.

This paper is organized as follows. Some preliminaries for polynomial optimiza-
tion and Lagrange multiplier expressions are given in Section 2. In Section 3, CS-
LMEs are studied, and reformulations based on CS-LMEs are proposed. Section 4
studies the CS-SOS relaxations for solving CS-LME relaxations. Numerical experi-
ments are presented in Section 5, and we conclude our approach and discuss future
work in Section 6. In Appendix A, we briefly recall the general methodology for the
computation of LMEs and CS-LMEs.

2. Preliminaries.
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2.1. Notation and definitions. Let r be a positive integer. Denote [r] :=
{1,...,r} and let I, be the r-by-r identity matrix. When the dimension is clear,
we use 0 (resp., 1) to denote the all-zero (resp., all-one) vector. Given two vectors
v,w € R", we denote by v o w the entry-wise product of v and w, and v L w means
that vTw=0. Forve R and 1 <i < j <r, we denote by v;.; the subvector formed

by the elements of v indexed from i to j, i.e., v;;j = [v;, - - - ,vj]T
Let z = (z1,. .., 2z-) be a tuple of variables. Denote by R[z] the ring of polynomials
in variables z1,..., 2, with real coefficients, and let R[z]"** (resp., R[z]") be the set

of all 7 x k matrices (resp., r-dimensional vectors) whose entries are polynomials in
z. For a polynomial p € R[z], denote by deg(p) the degree of p. For an integer d € N,
let R[z]4 be the R-vector space of real polynomials in r variables of degrees at most d.
A polynomial p € R[z] is a sum-of-squares (SOS) if there exist o1, ...,0: € R[z] such
that p = (01)> 4 - -+ + (04)>. Denote by %[z] the set of SOS polynomials in z and let
Y[z]a := Z[z] NR[z]q. For p € R[z] and R,S C R[z], we define p- R := {p-q:q € R}
and R+S = {r+s:reR,seS}

Given a tuple g = (g1,...,9m) C R[z], the quadratic module of R|z] generated by
g is the set

(2.1) Qmod(g) := £[z] + g1 - B[z + - + gm - 2],
and the 2dth truncation of Qmod(g) is the set
(2.2) Qmod(g)2qd := X[z]2a + 91 - Elz]2d—deg(g1) +* + Im - Z[2]2d—deg(g,m)-
For a tuple h = (hy,..., he) C R[z], the ideal of R[z] generated by h is the set
Ideal(h) := hy - R[z] + -+ -+ he - R[2],

and the 2dth truncation of Ideal(h) is the set

Ideal(h)2q := h1 - R[z]2g—deg(hy) + - + e - R[2]2d—deg(he)-
For two polynomial tuples h and g, denote

(2.3) IQ(h,g) = Ideal(h) + Qmod(g), IQ(h,g)2q = Ideal(h)2qs + Qmod(g)2q.

Then, it is clear that every polynomial p € IQ(h, g) C R[z] is nonnegative over the set
K:={z€R":h(z) =0, g(z) > 0}. Conversely, when IQ(h, g) is archimedean, i.e.,
when there exists p € IQ(h, g) such that {z € R" : p(z) > 0} is compact (see [12]),
all positive polynomials over K are in IQ(h, g). This result is referred to as Putinar’s
Positivstellensatz [32]. Moreover, when h = 0 has finitely many real roots, or when
some general optimality conditions hold, a polynomial f € R[z] is nonnegative over
K if and only if f € IQ(h, g)aq for all d that is sufficiently large (see [19, 21]).

Throughout the paper, © = (21, ...,2,) is the tuple of n variables. Given the csp
(Zy,...,Iy), for each i € [s], we fix a certain ordering for elements in Z; and denote
by () the tuple of variables (zj : k € Z;). The jth variable of z(*), denoted by zgi),
corresponds to the variable xy, if j is the order of k in Z;. For example, if Z; is ordered
as (1,3,5,6), then I(Ql) = z3. For polynomial p € R[z], denote by Vp € R[z]|™ the
gradient of p and
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When the dimension of the ambient space is clear, we use e; to denote the i-th standard
basis vector whose ith entry is 1 while all other entries are zeros. For k € Z;, denote

(2.5) e,(ci) = e; € R™,

where j is the order of k in the tuple Z;. For instance, if Z; is ordered as (1, 3,5, 6),

then egl) =ey € RL

2.2. Moment-SOS relaxation. Denote by fui, the optimal value of the poly-
nomial optimization problem (1.1). Denote by K the feasible set of (1.1), i.e., K :=
{z € R" : h(xz) =0, g(x) > 0}. Then finding the global minimum of (1.1) is equivalent
to

max ~
(2:6) { s.t. [ =7 € Pqgy(K).

In the above, dj is the degree of f, and Py, (K) is the cone of nonnegative polynomials
over IC with degrees not greater than dy. A computationally tractable relaxation for
(2.6) is called the Moment-SOS relazation. Given the relaxation order d € N such that
2d > max{deg(f),deg(g),deg(h)}, the dth order SOS relaxation of (2.6) (and (1.1))
is

max ’Y
(2.7) { s.t. [ =7 €1Q(h,9)2a-

Its dual problem corresponds to the so-called dth order moment relaxation of (1.1),
and this primal-dual pair is referred to as the Moment-SOS relaxation. Both (2.7)
and its dual problems can be written as SDP problems. We refer to [6, 10, 12, 13, 14,
20, 22, 24] for more references about polynomial optimization and moment problems.

For a relaxation order d, denote by 6, the optimal value of (2.7). Clearly 6,4
provides a lower bound of fuin, i-e. 04 < fmin. Convergence of the Moment-SOS
relaxation relies on Putinar’s Positivestellenstaz [32].

THEOREM 2.1 ([10]). If IQ(g,h) is archimedean, then limg_s oo 84 = finin-

We would like to remark that under some conditions, the Moment-SOS relaxations
have finite convergence, i.e., 83 = fun for all d that is big enough. We refer to
[2, 3, 8, 19, 21] for more related work. The Moment-SOS relaxations have been
implemented in the software GloptiPoly 3 [7]. In this paper, we also call Moment-
SOS relaxations ”dense relaxations” or ”dense SOS relaxations” to distinguish them
from SOS relaxations exploiting the sparsity.

2.3. Correlatively sparse SOS relaxation. Let us consider the problem (1.2)
with csp (Zy,...,Zs). For polynomial tuples h(?, ¢) € R[z(*], we denote by

1Qz, (K™, )

the set given by (2.1-2.3) with z = (. To exploit the correlative sparsity of prob-
lem (1.2), we consider the following relaxation for problem (1.2):

max v
(2.8) s.t. f—v€lQg (h(l)’ g(1)>2d + - +1Qg, (h(s),g(s)>

We refer to (2.8) as the dth order CS-SOS relazation of (1.2) [11, 25, 16, 34], and
denote its optimal value by pg. To demonstrate the convergence results for CS-SOS
relaxations, we need the following property of csps.

4
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DEFINITION 2.2. We say that the csp (Zn,...,Zs) satisfies the running intersec-
tion property (RIP) if for every i € [s — 1], there exists t < i such that

(2.9) Zita ﬂ U 1; C L.
j=1

Convergence of the CS-SOS relaxation is derived from the following sparse version of
Putinar’s Positivestellenstaz.

THEOREM 2.3 ([5, 9, 11]). Suppose (Z1,...,Zs) satisfies the RIP property, and
1Qz, (9, hD) is archimedean for each i € [s]. If f(z) == fi(zM)+ -+ f(z*)) is
positive on the semi-algebraic set (;_{x € R™ : gV () > 0,h(V(z) = 0}, then

fe IQL (h(l),g(l)) R IQIS (h(5)7g(3)> )
Therefore, under the same conditions as that in Theorem 2.3, we have:

(210) lim Pd = fmin~

d——+o0o

Aside from the correlative sparsity, one can also exploit the term sparsity of
polynomial optimization problems, or combine both kinds of sparsity to obtain the
so-called correlative and term sparsity SOS relazations (CS-TSSOS) of (1.2), whose
convergence is guaranteed with the term sparsity being given by the mazimal chordal
extension when the CS-SOS relaxation is convergent [37]. Since this paper mainly
concerns correlative sparsity, we refer to [16, 36, 37] for more details on the exploitation
of term sparsity. The CS-TSSOS relaxations have been recently implemented in the
software TSSOS [15].

2.4. Optimality conditions and Lagrange multiplier expressions. For the
polynomial optimization problem (1.1), the Karush-Kuhn-Tucker (KKT) conditions
can be described by the following polynomial system in (z, \) € R*+m+¢;

m 4
(2.11) Vi) = ; Angj(x) + Z)\m+thj(m),

= j=1

The pair (z,\) satisfying (2.11) is called a KKT pair, and the first component z
of a KKT pair is called a KKT point of (1.1). Under some constraint qualification
conditions, every minimizer of (1.1), if it exists, must be a KKT point. In this
case, minimizing f over the KKT system (2.11) returns the same optimal value and
optimal solutions as the original problem (1.1). Moreover, conditions guaranteeing
the convergence of the dense SOS relaxations are milder for the minimization over the
KKT ideal than that for the original problem (1.1). In particular, convergence can
still occur even when the semi-algebraic set given by (2.11) is noncompact [4, 26].

A drawback, however, of working on the KKT system (2.11) rather than on the
original feasible region L C R" is the augmentation of the number of variables from n
to n+m+£, which causes a significant increase on the computational cost. To deal with
this undesired complexity growth, Nie [23] proposed polynomial Lagrange multipliers
expressions. For the polynomial optimization problem (1.1), let 7 := m + ¢, and let

5
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¢:=(c1,...,C5) be an enumeration for the constraining pair (g, h). We denote

Vei(x) Veo(z) -+ Veg(z)

c1(z) 0 0 Vfo(x)
(212)  G@=| 0 e 0 )=
0 0 Cm.(l") 0

Then, the following equation holds at every KKT pair (z, \):

(2.13) G(z) - X =f(x).

If there exists a matrix of polynomials L € R[z]™*™ and D € R[z]™*" such that
(2.14) [ L(z) D(x) | G(z) =Ly, Vo eR",

then the Lagrange multipliers A can be expressed as polynomials in x:

A1 p1(z)

(2.15) : = L(z)V f(x).
Aiin Prn()

The polynomial vector p(z) := (p1(z),...,pm(z)) is called the Lagrange multiplier
expression (LME). Denote

m 14
V@) = Y5V ) = 3 s (0 Vs ()

h(z)
Prm(T) 0 g(2)

Ceq(x) 1=

)

and

pl:m(z)
Cin(x) := .
(@) { g(x) ]
Then, 2 € R™ is a KKT point if and only if « satisfies ceq(x) = 0, ¢in(z) > 0. Based
on the LME (2.15), Nie [23] proposed the following reformulation of (1.1):

{ min flx)

(2.16) zERM
s.t. Ceq(xz) =0, cin(z) >0

It is clear that when the minimum of (1.1) is attained at some KKT points, the optimal
values of (1.1) and (2.16) are identical. In fact, the existence of LMEs guarantees
that every minimizer of (1.1), if it exists, must be a KKT point [23, Proposition 5.1],
thus solving (1.1) is equivalent to solving the reformulation (2.16). When Moment-
SOS relaxations are applied, finite convergence is guaranteed under some generic
conditions:

THEOREM 2.4. [23, Theorem 3.3] Suppose LMEs exist and (2.16) has a nonempty
feasible set. Denote by 04 the optimal value of the dth order SOS relazation (2.7) of
the polynomial optimization problem (2.16). Then, we have fmin = 04 holds for all d
big enough, if IQ(Ceq, Cin) is archimedean and the minimum value of (1.1) is attained
at a KKT point.
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Recently, LMEs have been widely used in various problems given by polynomial
functions, such as bilevel polynomial optimization, Nash equilibrium problems, tensor
computation, etc. We refer to [27, 28, 29, 30, 31] for applications of LMEs.

One wonders when LMEs exist, i.e., when there exist matrices L(z), D(z) such
that (2.14) holds. We say that the constraining tuple (g, k) is nonsingular if the matrix
G(z) given in (2.12) has a full column rank for all z € C". For (1.1), LMEs exist
if and only if its constraining tuple is nonsingular [23, Proposition 5.1]. We would
like to remark that when the polynomials ci, ..., cs are generic', the nonsingularity
condition holds. However, there are cases when LMEs do not exist; see Example 3.1
for a concrete example and also [23, 28] for more details. In the following example, we
give the matrices L(x) and D(x) for a special box-constrained problem. The general
methodology for formulating LMEs can be found in Appendix A.

Ezxample 2.5. Consider the polynomial optimization problem with box constraints

Hél%lgl f($1,1'27273,$4) = xéllx% + x%xégl + il?g
T
(2.17) —3x32323 + 23 + x3x] — 22374
s.t. .13120,1—33‘120, .13220,1—33‘220,
I3ZO717‘T3207‘I420717$420-

Note that in this problem, since all variables are nonnegative, by the inequality of
arithmetic and geometric means, we have

4.2 2,4 6 3/ 2,2 2
rixs + xias + af > 3¢/ ated - axg - 2§ = 3xizias,
3 2 / 2
T3 + 233y > 2 x% ~503:E421 = 2x574,

where the equailities hold when 21 = z9 = - -+ = x4. So the global minimum of (2.17)
is 0 with minimizers (¢,t,t,t) for all ¢t € [0, 1]. Let g(x) := (g1(z), ..., gs(z)) with

(2.18) gi(x) =x1, go(x) =1—21, g3(x) =22, ga(x)=1— 22,
g5(x) =23, ge(x) =1—a3, gr(z) =24, gs(z)=1—124.
The constraining tuple ¢ is nonsingular and (2.14) holds with
L(z) = diag(L1 (x), L2(z), Ls(z), La(z)), D(x) = diag(D1(z), D2(x), D3(x), Da(x))
being block-diagonal matrices. The matrices in the diagonal of L are given by L;(x) =

[ 1 _Axi and the matrices in the diagonal of D are given by D;(z) = { 1 1 ] for

each i € [4]. Accordingly, the LMEs are

(2.19) poi—1(z) = (1 —x;)- 683{1 (z), poulz)=—x;- gx{ (), (i=1,...,4).

In particular, ps(z), ps(z) can be explicitly written as

ps(x) = 6(zw3as — of — atwdes + 23)
(2.20) =323 + 4xdwy — w323 + 32% — dwzzy + 27,

pe(r) = 6232322 — 625 — 323 + 4adxy — 2323,

which involve all the four variables x1, 22, 23, T4.

1We say a property holds generically if it holds for all points of input data but a set of Lebesgue

measure zero.
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3. Correlatively sparse LMEs and reformulations. We consider polyno-
mial optimization problem (1.2) with the csp (Zi,...,Zs) satisfying the RIP. For
i € [s], we denote by G the polynomial matrix G given in (2.12) associated with
(g, hD). That is, if we let ¢V = (¢, ), and ri; := m; + £;, then

Vit (@) Viet) (@) o Vel (a)
cgl) (x(i)) 0 . 0
(3.1) GO (20 .= 0 cé’)(m(i)) 0

As mentioned in Section 2.4, one can reformulate polynomial optimization prob-
lems with LMEs, from which the Moment-SOS relaxation gives a tighter lower bound
for the polynomial optimization. To apply LMEs, the KKT system of (1.2) corre-
sponds to the following semialgebraic set on z € R”, X(1) e R \() ¢ R

Vi) +-+ Vi@ Z ZA“ Vo (@) + me VB (@) |
32 =1 j=1
( ) h(l)( )_0’ ZE[L

0< AV Lg®(@) >0, iels)

Hereinafter, we additionally assume that the nonsingularity condition holds for the
constraining pair (¢(?, h(9)) within every Z;. That is:

Assumption 1. For each i € [s], there exist polynomial matrices L(i)(x(i)) €
R[z®]mixni and DO (D) € R[] *™i such that

(3.3) [ LO(z®) DO (2®) ]G(i)(x(i)) =1L,

By [23, Proposition 5.2], (3.3) holds if and only if the matrix G (z()) have full column
rank for all (") € C™. For such cases, we say the pair (g (@), h(z)) is nonsingular. This
is satisfied if all polynomials in ¢( and k(Y are generic polynomials in z(*.

3.1. Limitation of the original LME for exploiting correlative sparsity.
For the polynomial optimization (1.2) with correlative sparsity, LMEs exist if and
only if the constraining tuple of all the constraints is nonsingular, by [23, Proposi-
tion 5.1]. In general, Assumption 1 is a necessary but not sufficient condition of the
nonsingularity for the constraining tuple (g, h) of all constraints in (1.2). This can be
seen in the following example.

Ezample 3.1. Consider the following example with three variables = (z1, z2, x3)
and two constraints

rrgéé f1($1,$2)+f2(1‘27x3)
(3.4) st 1—af—23>0

1—23—-23>0
Let 7; = {1,2} and Z, = {2,3}. Then (3.4) has the csp (Z1,Z:) with

(3.5) gt = (1—2f—23), g = (1—23—23), At = p® =g
8
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The matrix G(x) associated to (3.4) is

725171 0
—21}2 —2.%2
G(x) = 0 —2.’11'3 5
1—a2? — a3 0
0 1—23—22

whose rank is 1 at « = (0,1,0). Thus the constraining tuple of (3.4) is not nonsingular,
and LMEs do not exist. On the other hand, we have

—2561 —21‘2
G(l)(3317932) = —2x2 , G® (zg,23) = —2x3
1—x%—x§ 1—x§—x§

One may check that Assumption 1 holds with

1 1

1 1
(3.6) LW (21, 29) = {—le B 2@] , L) (25, 23) = [_m B mg} ,

and D) = D®) =1,

Remark 3.2. See also Example 5.1(ii), Example 5.2, Example 5.5 and Example 5.7
in Section 5 for cases which satisfy Assumption 1 but do not admit LMEs.

Another concern related to the original LME approach is that the LME refor-
mulation (2.16), if exists, usually cannot inherit the csp of (1.2). Indeed, the LME
reformulation (2.16) may have constraints that involve all the variables, as demon-
strated by the following example.

Ezample 3.3. Consider the polynomial optimization problem (2.17) with box con-
straints. Let Z; = {1,2,3} and Zo = {3,4}. Then (2.17) has the csp (Z1,Z2) with
AV = h? =@ and
fi@M) =2t + 2223 + 2§ — 3222222, fo(2?) = 23 + x50 — 2222y,

(3.7)
gV (@W) = (21, 1 =21, 22, 1 —22), gD (@®) = (23, 1 — 23, 24, 1 — 24).

In view of (2.20), the LME reformulation (2.16) of (2.17) does not have correla-
tive sparsity, as the nonnegativity conditions for Lagrange multipliers ps(xz) > 0 and
pe(x) > 0 involve all variables.

In the next two subsections, we provide a systematic method to construct LMEs
for (1.2) which leverages the correlative sparsity pattern (Z1,...,Zs).

3.2. Correlatively sparse LMEs: two blocks. We begin with the case of
two blocks, i.e., s = 2. Before giving a formal presentation of our approach, we would
like to expose the underlying idea through the following example of three variables

min fi(wy, 22) + fa(w2, 23)
(3.8) s.t. g1(x1,22) >0,

g2(x2,23) > 0.

The problem (3.8) has the csp (Z1,Z2) with Z; = {1,2} and Zo = {2,3}. Recall that
for each i € [s], the partial gradient V; is defined as in (2.4). Under Assumption 1,

9
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there exist polynomial matrices L) € Rz, x2]2, DV € Rz, x2], L?) € Rlzy, 23)?
and D € Rz, 3] such that for each i = 1,2,

; ; Vigi(z1,72)
(7) (%) ) =
(3~9) [L (551,362) D ($17$2) ] [ gi(mlyl'Q) ] 1.
The KKT system of (3.8) is
0 0
TQ(%,@) = )\1~675;1(x1,w2),
0 0 0 0
£($1,$2)+£($2,$3) = )\1'872(961,352)+>\2'87i2($2,333)7
(3.10) 95 Do
(97563(%2’173) = >\2'87:CS(372’133)’
0 < gi(z1,2z2) L A1 > 0,
0 < ga(wa,23) L Ay > 0.

Clearly the csp structure is broken when fi, f2, g1, g2 are dense polynomials, due to
the second equation above. Introducing an auxiliary variable v, we rewrite (3.10) as

0
Vifi(zr, x2) + L} = A1 - Vigi(z1,22),

0< r1,T3) L A >0,
(3.11) < i@, o) !

Vafa(za, x3) — {g = A2 - Vaga(z2, x3),

0< ga(x2,23) L A2 >0,

Thus by (3.9), for any (z1, z2, A1, A2, v) satisfying (3.11), we must have

- A = L0 (1, 22) (vl fian,a2) + [2]) ,

Ay = L®) (29, 23) <v2f2(x2,x3) - [’6]) .

Under some constraint qualification conditions, we arrive at a reformulation for (3.8)
which possess the csp with two blocks of variables
(x1,22,v), (22,23,V)

by plugging (3.12) back into (3.11) to replace A\; and As.

Ezample 3.4. Consider the polynomial optimization problem (3.4) as a special
case of (3.8). Recall that Assumption 1 holds with L) and L(?) given in (3.6). In
view of (3.12), we have

r1 0 To O T
A Zp(l)($1,$27'/) = —*li(xl,xz) - ££($1a$2) - *21/,
2 61'1 2 &vg 2
(3.13)
Ao = pP (29,23, 1) = —E%(Q?g x3) — @%(1‘2 x3) + 2,
’ ’ 2 81‘2 ’ 2 6:63 ’ 2

Suppose the minimum value of (3.4) is attained at a KKT point z*. Then there exists
v* € R such that (3.11) holds at (z*,v*) with A1, Ay given by (3.13). Taking (3.11)

10
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as constraints with )\; being substituted by p(®) for every i = 1,2, we arrive at the
following optimization problem

fgigl fi(z1,22) + fa(x2,23)
s.t. Vlfl(xlng)'i_ |:O:| = —2p(1)($1,$2,y) : |:x1:| B
v Z2
(3.14) 0< (1—2?—23) LpW(z1,22,v) >0,
v2f2(x2a ‘T3) - |:V:| = 72])(2)(1'2, x3, V) : |::E2:| 5
0 T3
0< (1—23—23) Lp®(z,23,v)>0.

Then (z*,v*) is a global minimizer for (3.14). As we will formally introduce later,
polynomials p(!), p(®) representing A, Ay are called correlatively sparse LMEs (CS-
LMEs), and (3.14) is called the CS-LME reformulation for (3.4).

Recall from Example 3.1 that (3.4) does not admit LMEs, thus the LME reformu-
lation (2.16) is not available for (3.4). One may consider a reformulation of (3.4) using
the KKT system (3.10) by taking A1, A2 as new variables. Then the total number of
variables in this approach is 5 and there is no correlative sparsity anymore. Instead,
by appropriately adding extra variable v, we obtained the CS-LME reformulation
(3.14) which maintains to a degree the original csp structure: we have 3 variables in
each of the two blocks.

Now we present formally the CS-LME approach for the polynomial optimization
problem (1.2) with two block csp structure. Given the csp (Z,Z3), we introduce extra
variables v := (Vi)kez,nz,- Then, the gradient of the objective function V fi(x) +
V fo(x) can be split into two terms such that one only involves (1), ) and the other

one only has (z(®),v). Recall that for i € {1,2} and k € Z;, the vector eff) is defined
n (2.5). Let

FWO (@M v) = vy fi(2® N+ Y her,nz, Vkel(cl) R™,

(3.15)
FO@® ) = Vs fo(@®) = ¥y cq gz, il € R™.

Then, (2, A1), A(?)) is a KKT tuple of (1.2) if and only if there exists v = (V3 )rez, N7,
such that

PO = A ) AL )

_ 7,4 (2 @)
(3.16) F®(2®),v) —ijl Aj Vag +Z Nrs V2h? (2),
h(l)(x(l)) =0, h(Z)(x@)) =0,
0< AL, LgW@E@®) >0, 0<A), Lg®@®)>0

Under Assumption 1, if we let
p(l)(x(l)’y) — L(l)(x(l))p(l)(x(l)ﬂj), p(2)(x(2)’y) — L(2)(z(2))p(2)(x(2)’,/)’
then by (3.3), for any (z, \(), A, v) satisfying (3.16), we have

AL = (M ) AR = p@ (@ ).
11

This manuscript is for review purposes only.



w W

358

360
361

362

363

364

370

The polynomial vectors p(t), p(?) are called correlatively sparse Lagrange multiplier ex-
pression (CS-LME) for A1 and A respectively. Replacing AV, A) by the polyno-
mial vectors p() (z(1), v) and p® (2(?),v), we get the following reformulation of (1.2):

min  fi(zV) + fo(2?)
reR™ . ' '
s.t. F<i>(x<i>,y)zz @, )v gu)( (i)

+Z pm1+j )v h(z ( @ )7 (71 = 1,2)

RO (z) =0, 0< p§jm (2@ v) L g@(x®)>0. (i=1,2)

(3.17)

The reformulation (3.14) in Example 3.4 is a special case of (3.17). One may check
the polynomial optimization problem (3.17) has the csp with two blocks of variables:

Ezample 3.5. Consider the polynomial optimization problem with box constraints
(2.17) in Example 2.5. Its csp is given in Example 3.3, and we have Z; NZ, = {3}. So
we need to introduce a new variable v € R. The f1, f2, 9, ¢ are given as in (3.7),
and we let

FOEW 1) =V, fi(2W) +vel), FO @@, 1) = Vafo(s?) — vel.

Moreover, denoting by Fj(i) the jth entry of F® for j € {1,2}, we get CS-LMEs:
(3.18)
1 1 1 1
pha @V, v) = A=) FV@O,v), ) @D, v) = —,FD (D, v),
2 2 2 2
psy 1 (@@, v) = (1= 22))F}? (2@, v), pi (@2, v) = —a, 2 (@@, v).
Note that when CS-LMEs are given as above, the first equality constraints in (3.17) are

reduced to one single equation Fél)(z(l), v) =0, and the complementarity conditions
are reduced to

xj(l_x]')Fj(l)(x(l)’V) =0, x2+j(1_x2+j)Fj(2)(x(2)?V) =0, (j= 1’2)'

Consequently, the CS-LME reformulation to (2.17) is

(3.19)
Hel]iR{lL rird + 2225 + 2§ — 3222322 + 23 + 2303 — 22224
st aj(1— ) F (@M, 0) = 0, 2245(1 — 224) FP (2@ ,0) =0, (j=1,2)
(1= ) FY a0 1) >0, (1 20 FO),0) 0, (=1,2)
%ﬂWﬂ”>zame¢Wﬁ%mzm (j=1,2)

F@W 0) =0, 0< 2y, 24 < 1.

Later in Section 5, we will compare the numerical performance of solving the CS-LME
reformulation (3.19) of (2.17) with solving it directly and solving its LME reformula-
tion (2.16), all using CS-TSS0S [37].

To summarize, the LME approach proposed by Nie [23] allows for tightening the
classical Moment-SOS relaxation by incorporating necessary polynomial constraints,
provided that certain nonsingularity conditions hold. However, usually this approach

12
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cannot keep the csp from the original polynomial optimization problem. Moreover,
when the nonsingularity condition fails, LMEs do not exist. In contrast, one can try
to find CS-LME instead by adding some new variables. In the above, we demonstrate
how to find CS-LMEs for the two-block cases. In the next subsection, we provide a
systematic way to construct CS-LMEs for an arbitrary number of blocks.

3.3. Correlatively sparse LME: multi-blocks. We introduce how to con-
struct CS-LMEs for an arbitrary number of blocks in this subsection. Hereinafter, we
assume that the correlative sparsity pattern (Zi,...,Z;) satisfies the RIP. Without
loss of generality, we also assume the following conditions hold:

1. Z; is not included in Z; for any two distinct ¢, j € [s];

2. Tipa NUS_ T # 0 for any 4 € [s — 1].
We remark that under the RIP condition, the second condition always holds unless
there exists a proper subset S of [s] such that (UjcsZ;) N (U;gsZ;) = 0, for which we
can solve the polynomial optimization problems for variables within S and outside of
S separately.

To construct CS-LME coherent with the csp (Z, ..., Z;), we first build a directed
tree with nodes corresponding to the elements in the collection {Z1,...,Z}.

Algorithm 3.1 Clique Tree Construction
Input: (Zy,...,Z;) satisfying the RIP.

1. V={1,...,s} and A= 0.

2: fori=1,...,s—1do

3 if Ty MU, Z, # 0 then

4: Find the largest ¢ <4 such that Z;11 () U;’:l Z;, C1I,.
5: A=AU{GE+1,8)}.

6 end if

7: end for

Output: G(V, A)

The correlative sparsity pattern (csp) graph associated with (1.2) is the undirected
graph G®? = G(W, E), with nodes W = [n] and edges E satisfying {k1,k2} € F if
there exists i € [s] such that k1 € Z; and ko € Z;. Since (Zy,...,Z;) satisfies the RIP,
the corresponding csp graph G°? is chordal® and {Zi,...,Z,} is the list of maximal
cliques of G*P, because we assumed that Z; is not contained in Z; for any distinct
i,j € [s]. A clique tree of the graph G°*P is a tree on the set V = [s] such that
for every pair of distinct nodes ¢,j € [s], we have Z; N Z; C Z;, for any k € [s| on
the path connecting ¢ and j in the tree. Clique tree exists because G°°P is chordal;
see [1, Theorem 3.1]. The output G(V, A) of Algorithm 3.1 is a directed tree whose
underlying undirected graph is a clique tree of the graph G°P. This follows from [1,
Theorem 3.4]. The directions indicate the “parent-child” relation between cliques on
the tree. We refer to [1] for more details on chordal graphs and clique trees.

Given the clique tree G(V, A) produced by Algorithm 3.1, for each i € [s], we
denote the indices of children of the node i by

(3.20) D, = {t : (t,i) S A},
2A graph is chordal if all its cycles of length at least four have an edge that joins two noncon-

secutive nodes.

13
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and the index of the parent of node i by

(3.21) A; = {t: (i,t) € A}.

For each ¢ € {2,...,s}, D; can be empty sets and 4; contains exactly one element.
When (i,t) € A, we let

(3.22) Civ =T ﬂzt

be the indices of all variables shared by blocks i and ¢. Then, we introduce a group
of auxiliary variables:

(3.23) {View : (i,1) € Ak € Ciy}

In other words, for each arc (i,¢) € A, we need the same number of auxiliary variables
as the number of variables shared by the block i and block ¢t. For every i € [s], define

(3.24) Ji={0,t,k):te A, ke Ci iy U{(t,i,k):t €Dy, ket

and (recall that the vector e,(:) is defined in (2.5))

(3.25) v == 3TN vael? + 30> vie)) eR™
teA; K€Cit teD; keCy ;i

Clearly, the vector v(*) only depends on variables in the group (3.23) indexed by J; for
each i € [s]. We illustrate how to construct new variables in the following example.

Ezxample 3.6. Consider the following csp pattern:

Il = {1’27374}7 IQ = {1727576}7 I3 = {1727738}a
T, = {1,2,9,10}, T = {1,2,11,12}.

Then the set of edges A in the clique tree G(V, A) produced by Algorithm 3.1 is
A= {(27 1), (3,2), (4,3), (5, 4)}7
and D; ={i+ 1} foreach i =1,...,4, A; = {i — 1} for each i = 2,...,5. Thus

(3.26)

I :{(23171)7 (23132)}a

T2 ={(2,1,1), (2,1,2)} U{(3,2,1), (3,2,2)},
Js = {(3,2,1), (3,2 2)} U {(4,3, 1), (4,3,2)},
Jr={4,3,1), (4,3,2)} U{(5,4,1), (5,4,2)},

JI5 = {(5547 1)7 (5’432)}

An illustration of the directed tree obtained from Algorithm 3.1 and auxiliary variables
are given in Figure 1. For this clique tree, we have |J1| = |J5| = 2 and | 2| = | T3] =
|Ja| = 4.

With new variables v;; , and vectors v given by (3.25), we rewrite the KKT

system (3.2). For each i € [s], consider the following system on (), A\ () ¢
Rni+mi+£i+“7i‘:

£;

Vifi(z®@) + v = Z )\;i)Vigj(-i) (D) + Z )\x)ﬁjvih;i)(x(i)),
3.27 =1 N J=1
( ) @ (z(D) =0,

0< A, L@ (@) > 0.

14
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Fic. 1. Clique tree returned by Algorithm 3.1 and auxiliary variables for the csp pattern (3.26).

PROPOSITION 3.7. Let z := (x1,...,x,) € R” and X := (A, ... X)) € R+,
The pair (x,\) is a KKT pair of (1.2) if and only if there exists a group of auxiliary
variables {v; 41 : (i,t) € A,k € C; 4} such that (3.27) holds for all i € [s].

Proof. By lifting all the vectors into R™ (i.e., filling in 0 to the coordinates that
are not in Z;), we can rewrite the first equation in (3.27) as

(3.28) Vfi(z)+o® —ng“vgj +ZA§,}+J VA (),
j=1

where (Y € R™ is obtained by lifting v(*) into R":
== D Viawert D D Vhinek
teA; kECi,t teD; kECm

If there exists (x,A) and {v; . : (i,t) € A,k € C;4} such that (3.27) holds for all
i € [s], then

i=1 1
i=1 =1

= Z APIvg\ () + Z A VR (@)

j=1

<.
[

Therefore (z, ) is a KKT pair of (1.2). In the following, we show the other direction.
Let (z,A) be a KKT pair of (1.2). For each fixed k € [n], denote

Pr = {(i,t) cA: ke Ci,t}a Qk = {Z ke Iz}

In other words, Qy corresponds to the set of cliques that contain k and G(Q, Px)
is the subgraph of G(V, A) induced by the nodes Qk. Then by [1, Theorem 3.2], for
each k € [n], the underlying undirected graph of G(Qy, Pi) is a tree.

This allows us to deduce the solvability of the following system of linear equations
for each fixed k € [n]:

E Vitk — § Vtik

teEP(4) teP; (i)
(3.29) m; (i ) ¢ ©)
_ 8f1 (2) ag (i (()Vl] .
= 8xk E A 52% )+ . DS . (x) |, Vie Qy.

Jj=1
15
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In the above,

(3.30) Pr(i) == {t: (i,t) € Pr}, Ppli) = {t: (t,7) € P}
Indeed, the linear system (3.29) can be written as

(3.31) Bv =b,

where B € RICkIXIPxl is the incidence matrix of (Qg,Py) and b € RISk is a vector
satisfying 175 = 0. Since the underlying undirected graph of G(Qg, P}) is a tree, we
have rank(B) = |Px| = |Qk| — 1 and 17 B = 0. Therefore (3.31), and thus (3.29) for
each k € [n], are solvable. In other words, there exist {v; ¢ : (i,t) € A, k € C;+} such
that (3.29) holds for all k£ € [n]. So the following equations hold at (z, \):

E E Vit k€k — E E Vtik€k

kET; tePy (3) kETZ; tePy, ()

(3.32) ms [ (%)
N 9y

(4)
Ofi N~ 399 .
> B, ) §4 A g @) Mo ga (@) | exs Vi € [s]

keT; j=1 j=1

Note that for any k ¢ Z;, we have

i i i (7)
ofc _0g" _ _gw . _on” o oy
6‘zk (.’L‘ o al‘k (LL‘) B o 83% = 31‘k (.’L‘) o B axk (3;‘) o

Therefore, (3.32) yields that for each i € [s],

E E Vitk — E Vtik | €k
)

k€T, \tePi(i tePy (1)
a/; i 99; iy o
keln) k j=1 k J=1 k

Vi) = Y AV (@) - STAD vl (@),

In light of (3.20)-(3.21), for each fixed i € [s] we have
{t, k) ket ePe())} ={(t,k): t € A,k € Ci}.

We then obtain

g E Vitk — E Vtik | €k

k€Z; \tePr(i) tePy (i)
= D D veewer = D D ke
teA; keCit t€D; k€Cy,;
= -,
Therefore, (3.28) holds, and the first equation in (3.27) is satisfied. d
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Remark 3.8. In Algorithm 3.1, even if we replace line 4 by

(3.34) Find an arbitrary ¢ < ¢ such that Z;; 1 ﬂ U Z; C 1y,
j=1

the resulting tree is still a clique tree, and the induced subtree property still holds for
G(V, A). Hence, Proposition 3.7, as well as all the results that will follow, still hold if
line 4 of Algorithm 3.1 is replaced with (3.34). This is because the only key property
of G(V, A) needed in the proof of Proposition 3.7 is the induced subtree property (see
[1, Theorem 3.2]) satisfied by the clique tree. However, using an arbitrary ¢ as in
(3.34) may create a large number of children for some nodes (see Example 3.9 below),
which will increase the number of variables in () (hence the size of blocks and the
computational cost). In other words, one would prefer a tree with a large depth and
small breadth. That is why we propose to choose the largest ¢ in Algorithm 3.1.

Ezample 3.9. Consider the csp pattern (3.26) again. If we use (3.34) to replace
line 4 in Algorithm 3.1, then another possible directed clique tree and auxiliary vari-
ables is shown in Figure 2. For this clique tree, we have | J1| = 8, |J2| = | T3] = |J4| =
|T5| = 2.

FI1G. 2. Another possible clique tree and auziliary variables for the csp pattern (3.26).

Under Assumption 1, (3.27) implies that the ith group of Lagrange multipliers
can be expressed by a tuple of polynomials which only depends on variables indexed
by Z; and J;, say, () and v() (by abuse of notation, here v means the tuple of all
variables involved in the vector v(V). We let
(3.35) 20 = (@ D) FOGO) = v, fi(aD) + @,

THEOREM 3.10. Under Assumption 1, a vector x € R™ is a KKT point of (1.2)
if and only if the following system (3.36) holds for each i € [s]:

(3.36)
NG mi (i) (_(i 00 (i & (i i D (i
FOEO) = 7 pl) (200) Vg (00) + 50, ) (29) Vb (29),
0= pii, (:9) L gD (@®) 2 0, hD (D) > 0,
where
(3.37) pD (D) == LO (@Y. pO) (2D,
and 2 and FO are defined in (3.35).

Proof. Recall the matrix of polynomials G (2()) defined in (3.1). The sys-

tem (3.27) is equivalent to

538 GO (zM)NO) = [F(i)(z(i))T 0 --- 0] ,
(3.38) N N T C B O B B
1 55 Am; =2 U, G170 Gm; 2 U, N7, ¢, =Y

T

17
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By Assumption 1, the first equation in (3.38) holds if and only if
D Z [O(50) . ) (50,
Thus, it remains to replace A®) with p(¥(2()) in (3.27) and apply Proposition 3.7. O

Remark 3.11. For the polynomial optimization problem (1.2) with general csp
(Z1,...,Ty), we call the vector of polynomials p(*) (z2(*)) defined in (3.37) the CS-LMEs
of A®. By Proposition 3.7 and Theorem 3.10, CS-LMEs exist when Assumption 1 is
satisfied.

3.4. A CS-LME reformulation. In the rest of the paper, we give a CS-LME
reformulation for the polynomial optimization problem (1.2) under Assumption 1. For
each i € [s], denote

m;

F(t) Z(Z) Z (1 VWi g a? Zp h(Z ( )

@ (@) .— j=1
B9 () ; N ,

pﬁ)m(z(i)) 0 g (z)
and

PO (20 = { <z)(;<(z)))) ] '

Here, the polynomial py) € R[z)] is the jth entry of the CS-LME p® defined
n (3.37). Based on Theorem 3.10, we propose the following CS-LME typed refor-
mulation of (1.2):

for= omn, f1<x“’>+ + )
(3.39) ‘ot () (20 > € [s]
¢“( W) =0, i€l

The previous reformulation (3.17) for the case s = 2 is a special case of (3.39). If we
let

(3.40) I =1\ 7.

then (3.39) has the csp (i’l, e ,i’s). Suppose the global minimum fy,;, of (1.2) is
attained at some KKT point, then at least one minimizer of (1.2) is feasible for
(3.39), thus fmin > fe. Since the feasible set of (3.39) is contained in the feasible set
of (1.2), we have fuin < fe. So, we conclude the following from the statement above:

THEOREM 3.12. If the minimum fmin of (1.2) is attained at a KKT point, then
the minimal value (1.2) and (3.39) are identical, i.e., fmin = fe-

Remark 3.13. Suppose the minimum value fi,;, is attainable. If the nonsingu-
larity condition holds for (1.2), then fumi, is attained at KKT points, since the non-
singlarity implies the linear independence constraint qualification conditions (LICQ)
hold on C". However, this is not necessarily true if we replace the nonsingularity
condition of (g, ) by that of every (¢, h(¥)), i.e., Assumption 1, since Assumption 1
does not guarantee the LICQ to hold at every feasible point. For such cases, f. may
or may not equal fin. Nevertheless, it does not mean the KKT conditions must fail
at minimizers of (1.2) if the nonsingularity condition does not hold. Indeed, it may
happen that the constraining tuple is singular, but the LICQ condition holds at a
minimizer, thus f. = fiin; see Example 5.1(ii), Example 5.5 and Example 5.7.
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4. Correlatively sparse LME based SOS relaxation. This section studies
the correlatively sparse SOS relaxations for solving the CS-LME reformulation (3.39).

4.1. RIP of the CS-LME reformulation. First, we establish the RIP for
(3.39). Recall that for each i € [s], the set of indices of variables Z; is given in (3.40).

LEMMA 4.1. The csp (fl, ... ,fs) satisfies the RIP in Definition 2.2.
Proof. Note that

Z‘Hﬂ U Jj
j=1
= ({(Z + 1., k) it e A7;+1,k € Ci+1,t} U {(tJ' + Lk) it e ’Di+17k S Ct,iJrl})

mU( (4, t, k) : teAJ,kECJt}LJ{t]7 tEDj,kGCt,j})-

Since ¢t € D4 implies ¢ > i+ 1, and ¢ € A; implies ¢ < j, we have

Ji+1 ﬂ U Ji={G+1tk):te Ay, ke Ci+1,t}ﬂ
j=1

U ({68 st e Ay ke Gt Ltk t € Dy k€ o))
j=1
g {(Z + 1,t,k’) 1t e Ai+1, ke Ci+17t}-

Let A;+1 = {t} for some ¢t € [s]. Then i+ 1 € D, and so
Je={(ti,k) i€ Ay, k€ Cri} U{(i,t,k) i€ D,k €Ciy}
2 {(Z + 1,t, k’) ke Ci+1,t} .

Note that Z; is the set of indices of variables z(*) and J; is the set of indices of the
auxiliary variables v(9). Hence Z; N J; = ) for each pair of 4, j € [s]. In particular,

zaNUL
j=1

{L‘HUZ‘H}H L:J (I UJJ)

Iz‘+1ﬂ Q(I UJJ) U \7i+1n !(Z UJJ)

(UL UsFnNU T
j=1 j=1

Therefore, we have

La(UL=¢zaNUL  U{FnNU T cZun=2. O
j=1 j=1

j=1
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4.2. Convergence of the CS-LME based SOS relaxation. For the polyno-

mial optimization problem (3.39) with the csp (i’l, ..., ZLs), the dth order correlatively
sparse SOS relaxation is

¥4 := max Y
(4.1) 5.t ;fiwe;l% (¢(i)’w(i)>2d'

Note that for each i € [s], h() is contained in ¢*, ¢ is contained in ¥®, and
T; C I;. It follows that

104 (h(“, (z‘)) c N 10 ( @ <z')) _
;QL g 2d_;QL¢ v,
Therefore, (4.1) is a tighter relaxation than (2.8). In particular, we have

(42) ﬁd 2 Pd> Vd Z do.

THEOREM 4.2. Assume that:
1. at least one minimizer of (1.2) is a KKT point, and
2. for each i € [s], 1Qz, (h(i),g(i)) is archimedean.
Then
(43) lim di = fmin~

d—+oo

Proof. By the definition of CS-SOS relaxation, we have
¥qg < feo, Vd e N.

The first condition, together with Theorem 3.10, implies that f. = fmin. Then we
have ¥4 < fmin, and the convergence follows directly by (2.10) and (4.2). |

Remark 4.3. In Theorem 4.2, if we substitute the condition that 1Qz, (h(*), g¥)
is archimedean by the archimedeanness of IQz_ (qb(i),w(i))7 then the conclusion still
holds. However, IQ;. (¢, 4®) is not archimedean in general, even if IQz, (¥, g*)
is archimedean. To see this, consider the CS-LME reformulation (3.14) for the op-
timization problem in Example 2.5. In (3.14), tuples Y, g h2 g2 are given
by (3.5), and it is clear that both IQz, (h(l),g(l)) and 1Qz, (h(2)7g(2)) are archi-
medean. Moreover, (¢(1), (1)) corresponds to the first two constraints in (3.14), and
(¢®,4(?) is given by the last two constraints in (3.14). For any fixed v € R, consider
the following polynomial optimization problem in variables (x1,z2):

min f1 (331, xg) + vy
(4.4) { s.t. 1—a2?—23>0.

Then one may check that (21,22,v) € {21 € R®: ¢ (2M)) = 0,9M(21)) > 0} if
and only if (z1,22) is a KKT point for (4.4). Since (4.4) has a compact feasible set,
and the constraint qualification condition holds at all feasible points, (4.4) has a
KKT point for any v € R. This implies that the semi-algebraic set

{Zu) e R?: oM (M) = 0,9V ;1) > 0}
20
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is unbounded, and thus 1Q, (¢, 1p(M) is not archimedean. Similarly, one can also
show that 1Qz, (¢(2), ’(/J(Q)) is not archimedean neither.

Remark 4.4. The archimedean condition of 1Qz, (h(i),g(i)) for each i € [¢] is also
required in Theorem 2.3 to ensure the convergence of the CS-SOS relaxation. We
wish to point out that this archimedean condition is not required for obtaining the
CS-LMEs (3.37) and the CS-LME reformulation (3.39). There may exist polynomial
optimization problems with compact feasible sets, for which, however, IQz, (¥, g*)
is not archimedean for some i € [s] (e.g., Example 2.5 and Example 5.3). For such
cases, one may add redundant constraints to g to obtain the archimedeanness. Such
a redundant constraint can either be a replication of existing constraints, or be the
ball constraint as M — ||z(?||? > 0 if an a priori bound M is known.® However, adding
redundant constraints is inconvenient and usually unnecessary in practice. Indeed,
even if the archimedean conditions fail to hold (or further, if the feasible set of (1.2)
is unbounded), we can still formulate and solve the CS-LME reformulations with CS-
SOS relaxations. In practical computation, finite convergence is observed numerically
with a low relaxation order for solving CS-LME reformulations, regardless of whether
the archimedean condition for 1Qz, (h(i), g(i)) holds or not. We refer to Section 5 for
examples where the archimedean condition is not satisfied, while our approach can
still find global minimum successfully.

4.3. Comparison of the SDP problem scale. In this section, we compare
the scale of the corresponding SDP problems in different relaxation approaches. We
assume that the functions f; € R[z(M)],..., f, € R[z®] are all dense polynomials
and both LMEs and CS-LMEs exist for (1.2). For the convenience of reference, we
nominate the four approaches for solving (1.2) as follows:

(SOS): Applying the dense SOS relaxation to (1.2);
(CS-SOS):  Applying the CS-SOS relaxation to (1.2);
(LME): Applying the CS-SOS relaxation to the LME reformulation (2.16);
(CS-LME):  Applying the CS-SOS relaxation to the CS-LME reformula-
tion (3.39).
We first consider the two-block case. Denote by k := |Cy 2| the number of overlap-

ping elements in 73 and Zo. Then |Z1UZy| = ni+no—k is the total number of variables.
The CS-LME reformulation (3.17) has the csp (il,fg) such that |fl| =n; +k and
|i2\ = ng + k. In Table 1, we compare the maximal size of the positive semidefinite
(PSD) matrices appearing in the SDP formulation of the four relaxation methods.
In Table 2, we display the values of the binomial numbers in Table 1 for some exam-
ples of ny,no, k, d.

From Table 1 and Table 2, we conclude that for the same order of relaxation, the
smallest scale SDP problem is given by CS-SOS. On the other hand, CS-SOS may need
higher relaxation order d to converge than the other three methods. For the case when
s = 2, the complexity growth of the LME approach is the same as that of the SOS
approach. Thus, despite its potentially faster convergence speed, the LME approach

3It is important to note that there are two ways to replicate existing constraints. For the con-
straint g; € R[xm] that is not assigned to g(i), we may add its replication to ¢(¥) and obtain a new
constraining tuple §(*), then consider the KKT system and construct CS-LMEs for §(9), as long as
the new constraining tuple g(i> is also nonsingular. On the other hand, one may add g; to w(i) in
the CS-LME reformulation. These two ways produce different CS-LME reformulations with identical
optimal values, since the former may get different CS-LMESs from the original problem. However, if
we add a redundant ball constraint M — ||2(*)||2 > 0 which can never be active (e.g., let M :=n; - M
with M > ||2()||s0, thus its Lagrange multiplier must be 0), then these two ways are equivalent.
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TABLE 1
The maximal PSD matrixz size in the dth order relaxation of the four methods when s = 2.

Relaxation approach | Maximal PSD matrix size in dth order relaxation
SOS (n1+n2d—k+d) > (n1+nz—k+d
CS-S0S (e rdy S max{n ma
LME (”1+"2d—k+d « n1+nz—k+d
CS-LME (max{mwgz}Jrker) X (max{nl,gz}Jrker)
TABLE 2

For each n1,n2, k and d, we display sequentially the four binomial values appearing in Table 1:
(M2 Ry for 508, (maxtryn2dtdy for 05.50S, ("2 TF) for LME, and (Mex{nion2tthtd)
for CS-LME.

(n1,n2, k) d=2 d=3 d=4
(4,3,1) (28,15,28,21) (84, 35, 84, 56) (210, 70, 210, 126)
(5,5,2) (45, 21, 45, 36) (165, 56, 165, 120) (495, 126, 495, 330)
(10,10,2) (190, 66, 190, 91) (1330, 286, 1330, 455) (7315, 1001, 7315, 1820)
(15,15,3) | (406, 136, 406, 190) | (4060, 816, 4060, 1330) | (31465, 3876, 31465, T315)
(20,20,5) | (666, 231, 666, 351) | (8436, 1771, 8436, 3276) | (82251, 10626, 82251, 23751)

suffers from the same rapid complexity growth just as the dense SOS approach. In
contrast, our CS-LME approach leads to SDP problems of a scale comparable with
that of CS-SOS, and thus enjoys a less aggressive complexity growth. Meanwhile, it is
expected to converge faster than CS-SOS as it incorporates the first-order optimality
condition in the relaxation just as the LME approach, as shown in Section 5.

In the above, we compared the maximal PSD matrix size in the SDP problems
arising from different relaxation approaches when s = 2. To examine the number and
size of all the PSD matrices in the SDP problems, one needs, in addition, the structure
information of the functions (f, g, h). The next example compares the SDP problem
scale in detail for a box-constrained problem with a quadratic objective function.

Example 4.5. Let N and k be positive integers and
7, ={1,...,N}, Zy={N+1-k,...,2N —k}.

Note that this is a special two-block case with n; = ng = N. Consider problem (1.2)
with this csp (Z1,Z2) and box constraints

(45) g(l):(xh 1—{E1,...,£CN,]€, ]-_:Eka)v
9% = (@ni1 b 1 = TNk TaN—ky 1 — Zan ).

The LMEs and CS-LMEs can be similarly given as in (2.19) and (3.18) respectively,
and we omit explicit expressions of them for the cleanness of this paper. Let f; and
f2 be quadratic functions. We present in Table 3 the number and size of all the PSD
matrices in the four different approaches. Table 4 is an instantiation of the numbers
in Table 3 for the special case when N = 10 and k& = 2.

Now we consider the general multi-block case. If there exists a common variable
in all the blocks, i.e., if there is some j € [n] such that j € Z; for all i € [s] (e.g., s =2
or Example 5.2), then the LME reformulation does not have correlative sparsity. In
this case, the SDP problem scale of the LME approach grows similarly to that of the
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TABLE 3
Size and number of PSD matrices in the dth order relaxation of the four methods for the box
constrained problem (4.5) with quadratic objective functions.

Relaxation | Size and number of PSD matrices size
approach in the dth order relaxation
S0% one PSD matrix of size (QN_dk'*'d X 2N_dk+d ,
AN — 2k PSD matrices of size (*Vh971) x (2N F1d7),
S-S0 two PSD matrices of size (N;d) X §N+d ,
4N — 2k PSD matrices of size (N;_l_l) X (N;_dl_l).
LME one PSD matrix of size (2N_k+d X 2N_dk+d)7
8N — 4k PSD matrices of size (2N71i+d71) X 2N7k+d).
CS-LME two PSD matrices of size (N+k+d X SNJFL;”d ,
8N — 4k PSD matrices of size (N"ffl _1) X (Nt’;jld_l).

TABLE 4

Instantiation of Table 3 when N = 10 and k = 2. For example, the bottom-right block reads as
follows: the 4th order relaxation of the CS-LME approach corresponds to an SDP problem with two
1820-by-1820 PSD matrices and seventy-two 455-by-455 PSD matrices.

Relaxation

d=2 d=3 d=4
approach
SOS (1,190), (36,19) | (1,1330), (36,190) | (1,7315), (36,1330)
CS-S0OS (2,66), (36,11) (2,286), (36,66) (2,1001), (36,286)
LME (1,190), (72,19) | (1,1330), (72,190) | (1,7315), (72,1330)
CS-LME (2,91), (72,13) (2,455), (72,91) (2,1820), (72,455)

644 dense SOS relaxations. However, in general, though the LME reformulation usually
645 breaks the csp of the original problem, it may have a weaker correlative sparsity. The

646 following example is such an exposition.
647 Example 4.6. Let N > k be two positive integers. Consider the following csp
648 (4.6) L={(N-K)@-1)+1,....,(N=k)(i —1)+ N}, Vi=1,...,s

When N = 3 and k = 2, it corresponds to the csp of the Broyden tridiagonal func-
tion [11, Example 3.4]. The directed clique tree (V, A) associated to the sparsity
pattern (4.6) is given by

A={(,i—1):i=2,...,s}
For each arc (i, — 1) € A, the set of joint indices is:

K)(i—1)+1,...,

Note that |Z;| = N and |C; ;—1| = k for each i € [s]. The auxiliary variables are:

Ci,i—l =I,NL,_1 = {(N — (N — ]{i)(?, - 2) + N}

649

s k

U U {Vi,ifl,(ka)(ifl)Jrj}'

i=2j=1

(4.7)

For the sparsity pattern (4.6), the maximal clique size in the csp graph of the
CS-LME reformulation (3.39) is
N + 2k.
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TABLE 5

The mazimal PSD matrixz size in dth order relaxation of the four methods when the csp is given
by (4.6).

Relaxation Maximal PSD matrix size in dth order relaxation
approach
N—F s +N+d N—k)(s—1)+N+d
SOS (( )(s—1) ) % (( )( p ) )
CS-SOS (N+d) (N+d)

In contrast, the maximal clique size in the original LME reformulation (2.16) is

(N — k) m_ﬂ +N.

We give in Table 5 the maximal PSD matrix size of the four methods for solving (1.2)
with csp given by (4.6). Table 5 shows that the SDP problem scale of CS-LME is
significantly smaller than SOS and LME when N > k. Recall that IV is the size of the
blocks while k is the number of overlapping variables between two successive blocks.
Thus N/k can be seen as a measure of the partial separability of the problem. We
speculate that the larger N/k is, the more efficient the CS-LME approach is compared
with the other three approaches®. See Example 5.6 for a numerical evidence with
N =15, k=2 and s = 10.

Remark 4.7. To end this section, we would like to point out that for small-scale
problems, the LME approach has outstanding performance, especially when the SOS
approach cannot find the global minimum with a low relaxation order, see [23]. For
small-scale problems with csp, the LME approach may still be faster than the CS-
LME approach because the latter needs to add auxiliary variables to maintain the
csp. See Example 5.1 for a numerical example of a small-scale problem.

In general, we expect CS-LME to perform better than the other three approaches
when the cliques in the csp graph of the CS-LME reformulation are not much larger
than the cliques in the csp graph of the LME reformulation. Since |Z;| = |Z;| + | 7],
this occurs when

1. The number of overlapping variables between any two blocks Z; and Z; is
small;
2. Each node in the directed clique tree G(V, A) returned by Algorithm 3.1 has
a small number of children.
These two conditions ensure that only a small number of auxiliary variables |7;| must
be added to each block.

5. Numerical experiments. In this section, we present numerical experiments
that apply CS-LMEs to solve polynomial optimization problems with a given csp.
We directly call the software TSSOS ° [36, 37] to solve the CS-TSSOS relaxation of
the CS-LME reformulation (3.39). Note that CS-TSSOS relaxation exploits both
correlative and term sparsity in the polynomial optimization problem. As recalled in
Section 2.3, the convergence of CS-TSSOS is guaranteed when the CS-SOS relaxation

4The overall performance depends on both the SDP problem scale and the convergence rate with
respect to the relaxation order d.
Shttps://github.com/wangjie212/TSSOS
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is convergent (with option TS="block"). The software Mosek is applied to solve the
SDPs with default settings. The computation is implemented in a Lenovo x1 Yoga
laptop, with an Intel® Core(TM) i7-1185G7 CPU at 3.00GHzx4 cores and 16GB of
RAM, in the Windows 11 operating system.

For all polynomial optimization problems in this section, we compare the per-
formance of several approaches. First, we solve the problem directly by CS-TSS0S
with options TS="block" and TS="MD" respectively (see [36] for more details). Then,
we solve the LME reformulation (2.16) introduced in [23] when it exists. Note that
when original LMEs are applied, correlative sparsity for the reformulation is usually
corrupted. Last, we solve the CS-LME reformulation (3.39). For both LME refor-
mulation (2.16) and CS-LME reformulation (3.39), the CS-TSS0S is called with the
option TS="MD". Besides that, we use the MATLAB software Gloptipoly 3 [7] to
implement dense relaxations with Mosek being applied to solve the SDPs. We say a
relaxation ‘fail to solve’ when we cannot get a sensible optimal value for it. This is
the case when we suspect SDP is unbounded as Mosek reaches a negative objective
value with a huge absolute value (< —10°).

Ezample 5.1. (i) Consider the polynomial optimization problem (2.17) in Exam-
ple 2.5. As mentioned in Example 2.5, its global minimum equals 0. The CS-LMEs
for this problem are given by (3.18), and the CS-LME reformulation is (3.19). One
may check that the archimedean condition is not satisfied by 1Qz, (h(l), g(l)). Besides
that, the LME is given by (2.19). Numerical results for solving this problem are
presented in Table 6. In the table, ‘d’ means the relaxation order, ‘I’ represents the
term sparsity level. The columns ‘no LME+block’ and ‘no LME+MD’ are numerical
results of applying CS-TSSOS directly to the polynomial optimization problem with
TS="block" and TS="MD" respectively, the column ‘LME’ corresponds to solving the
LME reformulation, and the column ‘CS-LME’ represents the relaxation results of the
CS-LME reformulation. The ‘error’ is the absolute value of the difference of optimal
value for this polynomial optimization problem and the approximation computed by
the semidefinite relaxation, and ‘time’ is the time consumption in seconds for comput-
ing this approximation. When a superscript * is marked, it means this lower bound
was computed with the highest level of term sparsity within the current relaxation
order.

From the table, one can see that when there were no LMEs exploited, CS-TSS0S
could not get an approximation for the global minimum of this problem with high
accuracy (say, the error is less than 107°). Particularly, when d = 3, the computed
optimal values for both ‘no LME+block’ and 'no LME+MD’ are less than —10'2, and
we marked ‘fail to solve’ in the table. Besides that, when d = 3, Gloptipoly 3 failed
to solve the problem (unboundedness suspected), and obtained an approximated value
with error equaling 3-107? in 0.50 second when d = 4. In contrast, the LME approach
took around 0.23 second to get the approximated global minimum, and the CS-LME
approach obtained the approximated minimum in 0.53 second.

(ii) For the polynomial optimization problem in Example 3.3, if we keep the
objective function and the csp, but change the constraints to

gD (W) = (1 — 2T M), ng) . @ (2@) = (1 — @@ ), x@) ,
then the CS-LME becomes
B I I S CRNP YOI S OO
AP = —§x<2>TF<2>, AP = F® 420N\ \B = ) 49,
25
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However, one may check this problem does not have LMEs.

TABLE 6

Numerical results for Example 5.1 (i)

d ; |no LME+block no LME+MD LME CS-LME
error time error time error time error time

3 1 fail to solve fail to solve not defined not defined

3 2 *fail to solve fail to solve

3 3 fail to solve

3 4 *fail to solve

4 1] 0.0134 0.06s | 0.0437 0.03s | 2-10"°% 0.23s 0.0014 0.36s

4 2] 70.0134 0.07s | 0.0437 0.03s 1-1077 0.53s

4 3 0.0140 0.13s

10 1| 0.0038 25.76s | 0.0337  8.26s

10 2| 0.0038 74.82s | 0.0152 11.18s

With the new constraints, one can similarly check that the global minimum is still
0. Numerical results for solving this problem are presented in Table 7, where symbols
and notation are similarly defined as in Table 6. From the table, one can see that
without CS-LMEs, CS-TSS0S cannot find the global minimum with satisfying error
in 61 seconds for the option TS="block", and in 78 seconds for the option TS="MD".
Besides that, Gloptipoly got the lower bound —2-1075 in 0.30 second for d = 3, and
got —5-107? in 0.52 second for d = 4. For the CS-LME approach, we obtained an

approximation —9 - 1077 for the global minimum in 1.69 seconds.

For all remaining examples in this section, symbols and notation in tables are
similarly defined as in Table 6, and we shall not repeat explaining them, for the

TABLE 7

Numerical results for Example 5.1(i1)

4 1 |Lho LME+block no LME+MD CS-LME
error time error time error time

3 1| 0.0146 0.02s 0.0531 0.01s not defined

3 2] 70.0140 0.02s 0.0480 0.01s

4 1| 0.0074 0.04s 0.0495 0.04s 0.0018 0.41s

4 2| *0.0070  0.06s 0.0450 0.04s 0.0016 0.42s

5 1| 0.0045 0.15s 0.0492 0.14s 2-107° 0.98s

5 2] 70.0044 0.28s 0.0448 0.16s | 9-1077 1.69s

10 1 | 0.0049 6.45s 0.0437  13.82s

10 2| *0.0034 61.41s | 0.0245 12.99s

10 3 0.0035  59.52s

10 8 *0.0034 78.16s

neatness of this paper.

Example 5.2. Consider the csp given in Example 3.6. For each i = 1,...,5, we

let fi(z)) be the Choi-Lam’s form

26

fi(x(z)) _ (x(lz)zgz))Z + (xgz)xéz))2 + (x(;)xéz))Q + xz(lL) . 4x§z)x§z)x§z)xy)7
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and let
gD = (1— 20 @) RO =y,

Again, by the inequality of arithmetic and geometric means, all f; are nonnegative,
and fi(z() = 0 when xgi) =...= xy). Thus we know the optimal value for mini-
mizing fi(z™M) 4 - + f5(2®) over the set given by ¢ (M) >0 foralli=1,...,5
is 0. For this problem, the CS-LMEs can be given as

NOMNAO!

() — _
A 2

However, there do not exist LMEs, which can be similarly shown as in Example 3.1.
Numerical results of solving this problem using CS-TSSOS directly, the LME ap-
proach, and the CS-LME approach are presented in Table 8.

From the table, one can see that without CS-LMEs, CS-TSS0S cannot find the
global minimum with the option TS="MD" (interestingly, it returned the same lower
bound —0.1709 for all d = 2,...,15), and cannot get an approximation for the global
minimum with an error less than 0.0001 in 6807 seconds with TS="block". Moreover,
Gloptipoly 3 obtained the lower bound —0.1709 when d = 2 using 0.99 second, and
obtained the lower bound —0.0135 in 346.42 seconds when d = 3. In contrast, the
CS-LME approach took 11.35 seconds to obtain an approximated minimum with an
error equal to 6-107%, and took 107.62 seconds to obtain an approximated minimum
with an error equal to 3 - 1078.

TABLE 8
Numerical results for Example 5.2

! no LME+block no LME+MD CS-LME
error time error time error time
*0.0531 0.01s *0.1709 0.01s not defined

*0.0480 0.01s *0.1709  0.02s 0.0080 5.82s
*0.0495 0.04s *0.1709  0.05s | 1-107° 6.55s
6-10° 11.35s
*0.0450 0.04s *0.1709  0.16s | 3-10"% 107.62s

Y W N
=N = ==

15 1 | *0.0001 6807.45s | *0.1709 554.09s

Ezxample 5.3. Consider the box-constrained problem in Example 4.5. Let n; =
no =10, k=2, and let (i = 1,2)

) 10 ) 2 9 L , ,
fi(a®) = (Zj_l 20 1> 4 <Zj_1 202 4o 4 xgg) .

The LMEs and CS-LMEs can be similarly given by (2.19) and (3.18), respectively.
One may check that the archimedean condition is not satisfied by 1Qz, (b1, gV)).
Furthermore, for d = 2, ..., 3, the structure of SDPs obtained by the dense relaxation,
CS-SOS relaxations, the LME approach, and the CS-LME approach are given in
Table 4.

The minimum for this problem is achieved at the KKT point (1,0,...,0, 1), which
equals 0 (see also [23]). This can also be numerically certified by Gloptipoly 3 via
the flat truncation [18]. Indeed, Gloptipoly 3 got an approximation to the global

27

This manuscript is for review purposes only.



UL W N

~J

-~ ~ ~1 -~ =~ =
~N N 4 N

oo

779

780

781

782

783

784
785
786
787
788
789

790

791

792

minimum —3- 1078 in 26.25 seconds. Numerical results of solving this problem using
CS-TSSOS directly, the LME approach and the CS-LME approach are presented in
Table 9. From the table, one can see that without LMEs, CS-TSS0S could not find an
approximation for the global minimum with a desired accuracy when TS = “MD” within
11.51 seconds, and took 36.67 seconds to get the minimum when TS = “block”. The
LME approach took 15.79 seconds to get the approximation with the desired accuracy.
In contrast, the CS-LME approach only took 2.46 seconds to get an approximated
global minimum with the error equal to 4 - 1077,

TABLE 9
Numerical results for Example 5.3

no LME+block no LME+MD LME CS-LME
error time error time error time error time
*0.0067 1.08s | 0.0739 0.10s | *1-1077 15.79s | *4-10"7 2.46s
91077 36.67s | *0.0558  0.78s
*0.0105 11.51s

=W N ISH
= =] =

Ezxample 5.4. Let s =2 and
7, ={1,2,3,7}, Zo=1{4,5,6,7}.
Consider the polynomial optimization problem (1.2) with csp {Z1,Z>}, where

fiaW) = atad + 2323 + 23a] — 3(212223)% + 23 + 23 (2] + 23 + 23),
f2(2?) = 242510 — 26) + 22 (24 + 225 + 326);
g§1)(x(1)) =21 — ToTs, gél)(x(l)) = —z9+ x%)
g @®) =124 — a5 — w6, g7 (@) =24, g7 @®) =25, ¢ (@®) = xe.

Since xiz3 + 2323 + x42? > 3(x12273)? by the inequality of arithmetic and geometric
means, we have fl(x(l)) > 0 with the equality holds when z; = 29 = z3 = 27 = 0.
On the other hand, f5 is nonnegative on the feasible set given by g(2)(m(2)) >0, and
f2(z®) = 0 when z425 = 0 and 27 = 0. So, the global minimum for this problem is
0, which is attain at (0,0,0,¢,0,0,0) and (0,0,0,0,¢,0,0) for all ¢ € [0,1]. Also, one
may check that this problem has an unbounded feasible set. For this problem, let

FO =V fi + 1764, FP =Vafs+ a1 7ey,
then the CS-LMEs are

A =FY AW = [—2y,-1,0,0] - FO),
A = 2 FE), AP =FP 420, AP =FP 2P, AP =P 4P,

The numerical results for solving this problem are presented in Table 10. From the
table, one can see that when there were no LMEs exploited, CS-TSS0S could not get an
approximation for the global minimum of this problem with an error less than 0.0001
within 271.95 seconds, while the original LME approach took around 84.13 seconds
to get the approximated value with an error equaling 2-10~7. Moreover, when d = 3
and 4, Gloptipoly 3 failed to solve the problem (unboundedness suspected), and it
took 2264 seconds to get the lower bound —120.82 when d = 5. In contrast, the
CS-LME approach obtained an approximated minimum whose error was 9 - 1072 in
18.54 seconds.
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TABLE 10
Numerical results for Example 5.4

d 1 no LME+block no LME-+MD LME CS-LME
error time error time error time error time

3 1 fail to solve fail to solve not defined not defined

3 2] *>108 0.18s fail to solve not defined not defined

3 5 *fail to solve not defined not defined

4 1 > 107 0.47s fail to solve 1519.49 4.95s 645.71 0.77s

4 2| *>10° 0.59 > 10° 0.45s 35.36 5.28s 23.62 0.94s
5 2 *26:5.61 2.(;03 > :105 1.443 2. £0—7 84.:133 0.0:324 5.425
6 1 18f19 6.:28 102:.78 5.5:>9s 9. 1:0*8 18.:545
8 2 *0.0:001 224:.77s 0.0:079 75.:64s

8 5 *0.0002 322.68s

802 Ezxample 5.5. Let s =5 and

T) = {1,2,3,4,17,18,19}, T, = {5,6,7,8, 18,19, 20},
T3 = {9,10,18,19,20}, T, = {11,12,17, 18}, Ts = {13,14,15,16,17}.

804  Consider the polynomial optimization problem (1.2) with csp (Z1,Zs,...,Zs), where
W) = (21— 217)? + (22 — 218)* + (23 — 710) + 21217,
F2(x®) = afs + afy + 23y — w5(26 + 27 + w8),
f3(2®) = 29210(20 — 215 — 219 — T20),
f1(@W) = (211 — 217)? + (212 + 715 — 1),
f5(93(5)) = (217 — 213 + 214)® + T15216,
805 gV (D) = (17 — 2@, M4 17) ’

3 2 7 2 2 2 2
$P) = (3230 ol =Y AP ald o el

5 3 3 3
(1 - ijl x§ ), xg ), xg )) ,

gD (@) =120 @ (B — 46,

g3 (z3)

806 It is clear that except f(), all other f(V) are nonnegative over the set given by
507 (gWM,g@ ..., ¢g®). For f?) its minimum —% is attained at the KKT point 2 =
808 (%, 0,0, %, 0,0, O). Indeed, one may check that the global minimum for this problem
809 is —% For this problem, the set of edges is

810 A= {(271)7 (332)7 (471)7 (534)}
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The auxiliary variables are

If we let (") be given as in (3.35), then CS-LMEs are

AR = _p® T 0,

3 3 3
Ao = A+ D

)

V21,18, V2,1,19, V3,2,18, V3,219, V3,220, V41,17, V4,1,18, V5,4,17-

1 1 1 1 1 1 1
_§ ’ F1(4) o (1 + $114)’ )\é’; = _‘FS(:'?)7 )‘é:]).l = F1(4) + Agé)b

A = PT, A8 =+ RE A =D + R
A@ = 1 FOT L@

AG) — p05).

We would like to remark that the tuple (¢, ¢, ..., ¢®) is singular, so original

LMEs do not exist.

The numerical results for solving this problem are presented

in Table 11. From the table, one can see that when there were no LMEs exploited,
CS-TSS0S could not get an approximation for the global minimum with an error less
than 0.001 in 7697.33 seconds. Moreover, Gloptipoly 3 suspected unboundedness
when d = 3, and the 4th order dense relaxation cannot be solved due to the memory
limit. In contrast, the CS-LME approach obtained an approximated minimum whose
error was 1-1077 in 53.73 seconds.

TABLE 11
Numerical results for Example 5.5

no LME+block no LME-+MD CS-LME
error time error time error time
fail to solve *>10° 0.28s 9.5731 1.32s
* > 10° 0.37 0.3085 1.50s
*0.1417 10.05s
1.6047 3.59s 1295.25 0.71s 4.1077 60.41s
*fail to solve 1276.92 0.76s 1-1077 53.73s
*0.0069 16663.91s | 9.3531 252.95s
0.0862  7697.33s

For the following two examples, we do not run Gloptipoly 3 for solving them,
since the problem scales are too large for dense SOS relaxations.

Ezxample 5.6. Consider the correlative sparsity pattern given in Example 4.6. Let
s =10, N =15, and k = 2. For each ¢ € [10], let

filx) = (:v(i)ch(i))Q —4 ((mgi)xg))Q 4o

(i

.- (xéz;)lo)—rxgil):lf))

2

Consider the unconstrained polynomial optimization problem

(5.1)

min @) 4+ fro(z19).

N2 -
For each i € [10], the (m(l)Tx(l)) —4 ((xgl)xél))Q +o 4 (

the Horn’s form [33], which is a nonnegative homogeneous polynomial. Thus the
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global minimum of (5.1) is 0. For unconstrained problems, the system

¢D (2D D)y =0, @D D) >0, Viell0]

reduces to

FO M M) = FO (22 @)y — ... = p(10)(500) ,00) _ ¢

where every F*) is given in (3.35) with auxiliary variables given in (4.7). Thus, the
CS-LME typed reformulation (3.39) becomes

min fi (33(1)) et f10($(10))

(5.2) st. FO (M 0y = PO ) @) =

.= FA0)(z(10) 1,(10)) — ¢
Similarly, the original LME reformulation (3.39) for (5.7) becomes

min fl(x(l)) +
s.t. V(fi+ fo+---

-+ fro(z1)
+ fio)(x) =0

The numerical results for solving this problem are presented in Table 12. From
the table, one can see that when there were no LMEs exploited, CS-TSS0S could
not get a sensible approximation for the global minimum of this problem within
487.31 seconds, while the original LME approach took around 270.40 seconds to get
an approximated global minimum. In contrast, the CS-LME approach obtained an
approximated minimum whose error was 7 - 10719 in 20.48 seconds.

(5.3)

TABLE 12
Numerical results for Example 5.6

no LME+block

no LME+MD

LME

CS-LME

error time

error time

error time

error time

d

2 1 *fail to solve *fail to solve fail to solve fail to solve

2 2 *fail to solve *fail to solve

3 1| *>10° 7843s | *>10° 726s | 6-10 T 270.40s | 7-10 % 20.48s
4 1| *out of memory | * > 10° 487.31s

5 1

*out of memory

Ezample 5.7. In this example, we present numerical results by varying the number
of blocks s. For each i € [s], let Z; := {9i—8,9i—7,...,9i+1}. Consider the following
optimization problem

54) min - fi(zW) + fo(2®) +--+ fo(@l)
. s.t. xgl) >0, xgi) —|—x(2i) —|—x(0) <1, xg )10 >0, i€[s]
In the above,
i 3 % ) 9 % 7 % i .
RO = 3 ol (S 0+ aa0al)) el

Since all variables are nonnegative, and each fi(a:(i)) reaches 0 at 2" = 0, it is clear
that (5.4) has the csp (Z4, . ..,Zs) and its minimum value equals 0. Moreover, because
for all s > 2, the matrix G(x) given as in (2.12) does not have full column rank at
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e10- So (5.4) does not have LMEs. For each i € [s — 1], we have the auxiliary variable
Vig14,9i+1. Let F® be given in (3.35), then CS-LMEs are

AL = —pO T 31— p a0,

A = PO a0 AP = B4, (i=2,...,).

The numerical results for solving this problem with s = 2,...,7 are presented
in Table 13. In the table, ‘s’ represents the quantity s in (5.4), and all other symbols
and notations are similarly defined as in Table 6 (see Example 5.1). When s = 2,
one can see that when there were no CS-LMEs exploited, CS-TSS0S could not get an
approximation for the global minimum of this problem with an error less than 0.01
in 11366.94 seconds. In contrast, the CS-LME approach obtained an approximated
minimum whose error was 5- 1079 in 1192.89 seconds. Moreover, when s = 3,...,7,
we do not present numerical results with relaxation order d = 3 since we cannot get
lower bounds that are close to 0. Also, results of approaches without CS-LMEs are
not presented for s > 3 and d = 4, because close lower bounds cannot be computed
by these approaches with reasonable time consumption.

TABLE 13
Numerical results for Example 5.7

sld 1 no LME-+block no LME-+MD CS-LME
error time error time error time

3 1] 0.0735 71.54s 5369.40 2.88s 3.6067 16.85s

3 2] *0.0230  196.25s 624.22 4.25s 0.0680 35.02s
NERE: 0.0238 78.465 0.0091 353.71s

3 4 *0.0230  216.41s 0.0071 834.23s

4 1] 0.0205 11366.94s | 23.77 68221 | 5-10° 1192.89s

4 2 0.0104  71235.47 -
314 1 7-10°% 1965.19s
414 1 2.10°7 2432.45s
514 1 3.-1077 2868.47s
64 1 3.10°7 4136.36s
714 1 3.1077 4567.80s

6. Conclusions and discussions. We consider correlatively sparse polynomial
optimization problems. We introduce CS-LMEs to construct CS-LME reformations
for polynomial optimization problems. Under some general assumptions, we show that
correlative SOS relaxations can get tighter lower bounds when solving the CS-LME
reformulation instead of the original optimization problem. Moreover, asymptotic
convergence is guaranteed if the sequel of CS-SOS relaxations for the original poly-
nomial optimization is convergent. Numerical examples are presented to show the
superiority of our new approach.

For future work, one wonders if the CS-SOS relaxation has finite convergence
for solving CS-LME reformulations. Indeed, finite convergence for the original LME
reformulation in [23] is guaranteed under mild conditions. As demonstrated in Sec-
tion 5, the CS-LME approach usually finds the global minimum (up to a negligible
numerical error) for polynomial optimization problems with a low relaxation order.
However, it is still open that if the finite convergence is guaranteed theoretically or
not, even for generic cases. Moreover, when the correlatively sparse polynomial op-
timization (1.2) is given by generic polynomials, its KKT ideal is zero-dimensional.
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Thus the real variety given by equality constraints in (3.39) is a finite set. For the
classical Moment-SOS relaxations, finite convergence is theoretically guaranteed when
equality constraints of the polynomial optimization give a zero-dimensional real va-
riety, as shown in [19]. So, it is interesting to ask whether the analogous is true
for CS-SOS relaxations. Besides that, our numerical experiments indicate that the
CS-LME approach can usually find the global minimum for polynomial optimization
problems even if some IQ;« (A", g() is not archimedean. Therefore, an interest-
ing question is whether the CS-LME approach has guaranteed asymptote or finite
convergence without the archimedean condition for every IQz) (h(i), g(i)).

At last, we would like to remark that LMEs have broad applications in many
polynomial defined problems. Therefore, a natural question is how to apply CS-
LMEs to these applications. For example, when a saddle point problem is given by
polynomials with correlative sparsity, can we apply CS-LMEs to construct polynomial
optimization reformulation similar to the one in [31] for finding saddle points?

Appendix A. Computing LMEs and CS-LMEs. We introduce how to find
LMEs and CS-LMEs for practical implementation. As mentioned in Subsection 2.4
and Section 3, finding LMEs (resp., CS-LMESs) is equivalent to finding matrices of
polynomials L(z), D(z) (resp., L) (z), D (z)) such that (2.14) (resp. (3.3)) holds.
Note that the matrices G(z) and G (x) only depend on constraints, and LMEs can
be viewed as special cases of CS-LMEs that there only exists one block, i.e., s = 1.
Here we only introduce how to get CS-LMEs, and the methodology for finding LMEs
is similar.

Suppose the matrix of polynomial G(i)(x(i)) has full column rank over C™. In
general, (3.3) gives a linear equation system. Denote m; := m; + £;, and

Llﬁl(.’ﬂ(i)) L1’2(.T(i)) N Ll,ni (SU(Z))
LOz®) .= : : : : ,
Dm(x(i)) Dl’Q(LC(i)) . D1,mi (SIJ(Z))
D@ (g™ .= : : : :

Suppose all entries in L) (2(*) and D@ (z()) are polynomials whose degrees are not
greater than d. For each j,k, let (here for the a = (ay,...,a,,) € NJ*, we denote
(1i)°‘1zgi)OK2 x(i)o‘”i)

aYe?
zO% =g B

(A1) Lin@™)= > Liga -2, Djpa®)= > Djpa-a®"
aeNy! €N}

Then (3.3) can be written as the following linear equation system in variables Lj x
and Dj i q:

- ) oc)) i ke i i
Z Z Lo 0 . 5 ]Ei) (x( )) + Z Dk 0 c,(;)(m( ))
(A.Q) I=1 \aeN}: )

1 i =k
0 if j£k,

",

a€eNy®
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We remark that in (A.2), the equality means that the polynomials on both sides are
identically equaled. By [23, Proposition 5.2], since G()(z) has full column rank over
C™, the system (A.2) must have solutions when d is large enough. Therefore, for
each i € [s], we solve the linear system (A.2) for solutions with a given degree d. If we
get a solution to (A.2), then we recover polynomial matrices L) (2(") and D® (2(?))
(hence CS-LMEs) using this solutions; otherwise, we let d <~ d + 1 and solve (A.2)
with the updated degree d, until a solution is obtained.

Sometimes, one may get CS-LMEs without actually computing polynomial ma-
trices L) (2() and D@ (2(*). Instead, CS-LMEs can be directly obtained using the
‘multiplication-cancellation’ trick °. This is shown in the following example.

Example A.1. Consider the case that

g () = (1 - x(i)Tx(i), x&i), e x(i)> .

Then the KKT-typed system (3.27) for the ith block implies that
(A.3) FOEO) = 227 -2 + 377 A, ey,
(A.4) A L1 -2@ 20 A 1P (e ).
By multiplying 2@ " on both sides of (A.3), we get

)T ) (i i NG i i i
2@ FO 0y = _ox) . 4O w()+2j:1)\;ll.m;),

Note that (A.4) implies that /\gi) 2@ ) = )\gi) and )\;21 xy) = 0. So we further
have
AT

@ FO0) = 72)\(1i).

Therefore, again by (A.3), we get CS-LMEs that
i D) T (i) (i i B, i Q) .
A = —2® FOED) 2, A = FPED) + 202 (€ [ni).

We remark that though we do not get explicit expressions for L (z()) and D® (z(®),
essentially, this trick is equivalent to finding solutions for (3.3). For instance, the step

of multiplying 2® " on both sides of (A.3) means that the first row of L) (z(®) is

x(i)—r. Besides that, for some commonly used constraints (e.g., box, ball, simplex,
etc.), LMEs are explicitly given in [23], and they can be similarly applied to the
construction of CS-LMEs.
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6This trick was introduced by Professor Jiawang Nie in his research group discussions. It is also
mentioned in Section 6.3 of his new book Moment and Polynomial Optimization [24].
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