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Abstract. We discuss the critical points of modular forms, or more generally the zeros of quasi-

modular forms of depth 1 for PSL2(Z). In particular, we consider the derivatives of the unique

weight k modular forms fk with the maximal number of consecutive zero Fourier coefficients
following the constant 1. Our main results state that (1) every zero of a depth 1 quasimodular

form near the derivative of the Eisenstein series in the standard fundamental domain lies on the
geodesic segment {z ∈ H ∶ R(z) = 1/2}, and (2) more than half of zeros of fk in the standard

fundamental domain lie on the geodesic segment {z ∈ H ∶ R(z) = 1/2} for large enough k with

k ≡ 0 (mod 12).

1. Introduction

In this paper, it is assumed that the readers are familiar with the classical theory of holomorphic
modular forms, or refer to [DS05] or [Ser73]. Let H be the upper half-plane of complex numbers
and k and p be non-negative integers. A quasimodular form of weight k and depth p for the
full modular group Γ ∶= PSL2(Z) is a holomorphic function f ∶ H → C satisfying the following
conditions:

(i) There exist holomorphic functions Qi(f) on H for i = 0,1, . . . , p that satisfy

f ∣kγ =
p

∑
i=0

Qi(f)X(γ)i, with Qp(f) /≡ 0, for all γ = (a b
c d

) ∈ Γ,

where the operator ∣kγ is defined by

f ∣kγ(z) = (cz + d)−kf(γz) for z ∈ H,

and the function X(γ) is defined by

X(γ)(z) = z

cz + d for z ∈ H.

(ii) f is polynomially bounded, i.e., there exists a constant α > 0 such that

f(z) = O((1 + ∣z∣2)/y)α

as y →∞ and y → 0, where z = x + iy with x, y ∈ R.
Instead of the second condition, one may replace it with holomorphic at cusps for the functions
Qi(f), which is further discussed in [Roy12]. Throughout this paper, for the sake of brevity we
have omitted explicit mention, but it should be noted that all modular and quasimodular forms
discussed herein are defined for Γ. The space of quasimodular forms of weight k and depth ≤ p is

denoted by M̃k
(≤p)

, and Mk simply represents M̃k
(≤0)

, the space of modular forms of weight k.
The Eisenstein series E2 of weight 2 and the derivatives of modular forms are standard examples

of quasimodular forms. More precisely, if f is a quasimodular form of weight k and depth p, then
f ′ is a quasimodular form of weight k + 2 and depth p + 1. In particular, the derivative of a
holomorphic modular form is a depth 1 quasimodular form.

There have been various and extensive studies on the zeros of modular and quasimodular forms
in the standard fundamental domain F of Γ, where

F = {z ∈ H ∶ −1/2 <R(z) ≤ 1/2, ∣z∣ > 1 if R(z) < 0, ∣z∣ ≤ 1 if R(z) ≥ 0}.
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Rankin and Swinnerton-Dyer’s celebrated result [RS70] states that if k ≥ 4, every zero of the
Eisenstein series Ek lies on the unit circle. Getz [Get04] proved that the same property holds
for certain class of functions; modular forms f ‘near’ the Eisenstein series, those are, f = Ek +
∑aiEk−12i∆

i for ai ∈ R with small enough ∣ai∣.
Let us introduce the so-called ‘Gap function’ which can be viewed as a standard basis element

of the space of weakly holomorphic modular forms. These are of the form

fk,m(z) = q−m +O(qℓ+1)

for m ≥ −ℓ, where q ∶= e2πiz and ℓ is the dimension of the space of weight k holomorphic modular
forms, explicitly given by

k = 12ℓ + k′, for k′ ∈ {0,4,6,8,10,14}.

We simply write fk ∶= fk,0. Duke and Jenkins [DJ08] proved that any zero of fk,m lies on the
unit circle when m ≥ ∣ℓ∣ − ℓ. This result expands the understanding of the distribution of zeros of
modular forms in the vicinity of the unit circle.

On the other hand, there are some results on the zeros lying on another geodesic segment in
F . Ghosh and Sarnak [GS12] established estimates for the number of zeros of cuspidal Hecke
eigenforms on the union of segments δ1 ∪ δ2 ∪ δ3, where

δ1 ∶= {z ∈ F ∶R(z) = 0}, δ2 ∶= {z ∈ F ∶R(z) = 1/2}, δ3 ∶= {z ∈ F ∶ ∣z∣ = 1}.

They proved that the number of zeros of weight k cuspidal Hecke eigenform on the segment δ2 is
≫ log k, and on the union of the segments δ1∪δ2, it is≫ϵ k

1/4−1/80−ϵ as k goes to infinity. Matomäki
[Mat16] later improved by showing that each number is ≫ϵ k

1/8−ϵ and ≫ϵ k
1/4−ϵ, respectively.

In accordance with Ghosh and Sarnak’s terminology, we use the term real zeros to describe the
zeros lying on the aforementioned geodesic segments.

In a recent paper [GO22], Gun and Oesterlé proved that the behavior of the derivative of the
Eisenstein series Ek for k ≥ 4 with respect to the real zeros is interesting. They showed that all the
zeros of E′k in F lie on the line segment δ2. This finding prompts two natural questions, given the
fact that Getz’s result in [Get04] and Duke and Jenkins’ result in [DJ08] focus on the properties
of the zeros of the analogue of Ek:

Q1. Is every zero of depth 1 quasimodular forms in F ‘near’ E′k lying on δ2?
Q2. Is every zero of fk in F lying on δ2?

In this paper, we investigate the properties of the real zeros of depth 1 quasimodular forms,
and address two natural questions related to the behavior of derivatives of modular forms. Our
first main result provides an affirmative answer to Q1 when the field of coefficients of forms is
restricted to real numbers.

Theorem 1.1. Let E′k, g1, g2, . . . , gn be a basis of the space of weight k+2 depth ≤ 1 quasimodular
forms with real Fourier coefficients, and let f = E′k +∑

n
j=1 ajgj be a depth ≤ 1 quasimodular form

with aj ∈ R. If ∣aj ∣’s are small enough, then every zero of f in F lies on δ2.

On the other hand, the answer to Q2 is negative. If we consider a weight 98 depth 1 quasimodu-
lar form f ′96, then numerical computations found that it has 4 real zeros on δ2 and 2 non-real zeros
in F , whose real parts are approximately 0.44 and −0.44, respectively. Nonetheless, we provide
partial results on the proportion of real zeros for f ′k under certain conditions regarding the residue
of weight.

Let θj ∶= jπ
k+1

and tj ∶= 1
2
cot θj .

Theorem 1.2. Let k ≡ 0 (mod 12).
(a) For sufficiently large k, the function f ′k ( 12 + it) in variable t has ≫ k sign changes along the

interval (
√
3/2,∞). More precisely, if k ≥ 1116, then the sign of f ′k ( 12 + itj) is (−1)j for

19(k + 1)/50π ≤ j ≤ [k/6] − 1.
(b) For large k, approximately over 54.9% zeros of f ′k in F lie on δ2.
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Theorem 1.2(a) does not hold for other k′ = 4,6,8,10,14. For example, if k = 12ℓ + 14 is
large, our proof of Theorem 1.2 shows that the function Dfk,0(z) never vanishes for 0.38 ≤ θ ≤ θ0
for appropriate θ0 < π/6. Note that θj for j = 19(k + 1)/50 tends to 0.38 as k approaches ∞.
However, this does not mean that Theorem 1.2(b) does not hold for other k′. Again for k′ = 14 for
instance, we speculate that if j ≪ 19(k + 1)/50π, it plays a similar role as in Theorem 1.2(a), and
consequently more than half of zeros are real zeros as in the case of k′ = 0. For further details, see
Remark 5.5.

Let us briefly outline the contents of this paper. In Section 2 and 3, we provide the necessary
preliminaries, and Section 4 presents the proof of Theorem 1.1 which affirms the answer to the first
question. In Section 5, we prove Theorem 1.2, which gives a partial result towards answering the
second question. Finally, Section 6 offers additional discussions on the real zeros of quasimodular
forms on the line {z ∈ H ∶R(z) = 1/2} including the existence of such zeros.

2. Valence formula

Hereafter we assume every Fourier coefficient of the quasimodular form discussed in this paper
is real. To prove our results, we first introduce the valence formula for depth 1 quasimodular
forms which is developed in [IR22] recently. The classical valence formula is the equation on the
multiplicities of zeros of a weight k modular form f as follows:

∑
z∈X

vz(f)
ez

= k

12
.

Here, X is the (compactified) modular curve X ∶= Γ/(H ∪ {∞}), ez is the ramification index of z

(which is 1 except for z = i, ρ = eiπ/3 and ei = 2, eρ = 3) and vz(f) is the multiplicity of f at z.

To state the valence formula, we let λ(γ) ∶= −d/c ∈ Q ∪ {∞} for γ = (a b
c d

) ∈ Γ.

Theorem 2.1. [IR22, Theorem 2] Let f = f0+f1E2 be a depth 1 quasimodular form, where f0 and
f1 have no common zeros, and let γ ∈ Γ. Then, there exist constants N1(f), N2(f), and N3(f)
that depend on f such that the following holds:

∑
z∈γF

vz(f)
ez

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N1(f) if ∣λ(γ)∣ ∈ (1,∞],
N2(f) if ∣λ(γ)∣ ∈ (1/2,1),
N3(f) if ∣λ(γ)∣ ∈ [0,1/2).

The exact formula of three constants N1(f),N2(f),N3(f) are given in [IR22]. It is enough
to describe the formula of N1(f) for our purpose. Let θ1, . . . , θn be real numbers such that
π/3 ≤ θ1 ≤ . . . ≤ θn ≤ π/2 and eiθj are zeros of f for all 1 ≤ j ≤ n, counted with multiplicity. Denote
by r(f1) the sign of the first nonzero coefficient of the Taylor expansion of f1 around ρ (see [IR22,
(11)] for precise definition), and define w(z) by 1 except for z = i, ρ, i∞, and 2 for those exceptional
points. Then

N1(f) =
1

2
[k
6
] − (−1)vρ(f1)r(f1)

n

∑
j=1

(−1)j
w(eiθj) sgn (e

1
2 ikθjf(eiθj)) .(1)

The following is the special case of Theorem 2.1.

Theorem 2.2. [IR22, Theorem 1] If f is a modular form of weight k, then

∑
z∈γF

vz(f ′)
ez

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C(f) + 1
3
δf(ρ)=0 if ∣λ(γ)∣ ∈ (1,∞],

−C(f) if ∣λ(γ)∣ ∈ (1/2,1),
−C(f) +L(f) if ∣λ(γ)∣ ∈ [0,1/2),

where C(f) is the number of distinct zeros z on the unit circle in F with R(z) ≥ 0, counted with
weight e−1z , and L(f) is the number of distinct zeros on δ2 ∪ {∞}.

Theorem 2.2 provides the number of zeros of f ′k,0 in F as shown in the following proposition:
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Proposition 2.3. The number of zeros z of f ′k in F , counted with multiplicities and with weight

e−1z is n(k) + 1
3
δk≡2 (mod 6), where n(k) ∶= [k−4

6
] − ℓ − 1.

Proof. Referring to [GO22, Theorem 2] and Theorem 2.2, we have

n(k) + 1

3
δk≡2 (mod 6) + ℓ + 1 =

k

12
+C(Ek) +

1

3
δEk(ρ)=0.

As Getz has pointed out in [Get04], this number is the same as

k

12
+C(fk) +

1

3
δfk(ρ)=0,

which is the number of zeros of f ′k in F ∪ {∞}. Since the multiplicity of f ′k at ∞ is ℓ + 1, this
completes the proof. □

3. Serre derivative

Let D ∶= 1
2πi

d
dz
= q d

dq
be the normalized derivation. We define the Serre derivative for arbitrary

depth p quasimodular forms by ϑ ∶=D − k−p
12

E2.

Lemma 3.1. Let f be a quasimodular form of weight k and depth p. Then ϑf is a quasimodular
form of weight k + 2 and depth p. Furthermore, f is cuspidal if and only if ϑf is cuspidal.

Proof. For p = 0, it is well-known that the lemma holds ([BVHZ08, p.48]). For p ≥ 1, write
f = f0Ep

2 + f1 for a modular form f0 of weight k − 2p and a quasimodular form f1 of weight k and
depth ≤ p − 1. Then

Df =D(f0Ep
2) +Df1

= (Df0)Ep
2 +

pf0
12

Ep−1
2 (E2

2 −E4) +Df1

= k − p
12

E2(f0Ep
2 + f1) + ((ϑf0)E

p
2 +Df1 −

k − p
12

E2f1 −
p

12
Ep−1

2 E4f0.)

= k − p
12

E2f + g.

One can verify that ϑf = g ∶= (ϑf0)Ep
2 +Df1 − k−p

12
E2f1 − p

12
Ep−1

2 E4f0 is a quasi-modular form of
depth p.

Recall that Df is always cuspidal by the definition of D. Hence

lim
z→i∞

ϑf(z) = lim
z→i∞

(Df(z) − k − p
12

E2(z)f(z)) = −
k − p
12

lim
z→i∞

f(z),

so f is cuspidal if and only if ϑf is cuspidal. □

Thus if we write DEk = f0 + f1E2 for modular forms f0 and f1, then f0 = ϑEk and f1 = k
12
Ek.

4. proof of Theorem 1.1

Consider the space M̃
(≤p)
k,R quasimodular forms of weight k and depth ≤ p with real Fourier

coefficients, and let C be a subset of M̃
(≤1)
k,R given by

C ∶= {f ∈ M̃ (≤1)
k,R ∶ if f(z) = 0 and z ∈ F , then R(z) = 1/2}.

We equip C with the subspace topology inherited from M̃
(≤1)
k,R . Since DEk ∈ C, it suffices to show

the following to prove Theorem 1.1.

Theorem 4.1. If k ≥ 4 is an even positive integer, then DEk belongs to the interior int(C) of C.

Proof. Let f1, . . . , fd ∈ M̃ (≤1)
k,R form a basis for M̃

(≤1)
k . Define a linear map f ∶ Cd → M̃

(≤1)
k by

f(c1, . . . , cd) = c1f1 + ⋯ + cdfd that is an isomorphism of topological C-vector spaces, and also

define f̃ ∶ H ×Cd → C by f̃(z, c1, . . . , cd) = f(c1, . . . , cd)(z).
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Consider a zero (z0, c10, . . . , cd0) ∈ H ×Cd of f̃ , where z0 is a simple zero of f(c10, . . . , cd0). Then,

det(∂f̃
∂z
(z0, c10, . . . , cd0)) =

∂f̃

∂z
(z0, c10, . . . , cd0) = 0,

so by the analytic implicit function theorem, there exist open sets U ⊆ Cd and V ⊆ H, and an
analytic function ξ ∶ U → V , such that (c10, . . . , cd0) ∈ U , z0 ∈ V , and

f̃(z, c1, . . . , cd) = f̃(z0, c10, . . . , cd0) = 0 if and only if ξ(c1, . . . , cd) = z.

This means that ξ provides the local zero locus of f near z0. Identifying Rd with a subset of

(R + i ⋅ 0)d in Cd, we can restrict ξ to a real analytic function ξ ∶ U ∩Rd → V .
Take c10, . . . , c

d
0 ∈ R so that f(c10, . . . , cd0) = DEk. First, suppose k /≡ 2 (mod 6). There are

m ∶= [k−4
6
] distinct zeros z1, . . . , zm in F which all lie on {z ∈ F ∶ R(z) = 1/2}. These zeros are

all simple (see [GO22, Theorem 4]). As we have seen above, one can take open sets Ui ⊆ Cd,
Vi ⊆ H, and analytic functions ξi ∶ Ui → Vi for each zi. By shrinking Ui and Vi, we may assume
the following conditions;

(1) Vi’s are pairwise disjoint,
(2) all the zeros of f(c1, . . . , cd) have moduli ≠ 1 for any (c1, . . . , cd) ∈ ⋂m

i=1Ui, and
(3) if we write

f(c1, . . . , cd) = f0(c1, . . . , cd) + f1(c1, . . . , cd)E2 ∈Mk ⊕Mk−2E2,

then f1(c1, . . . , cd)(z) has the same number of zeros (counted with multiplicity) on {z ∈ H ∶
∣z∣ = 1 and 0 ≤R(z) ≤ 1/2}, say n, as of f1(c10, . . . , cd0) = k

12
Ek, and

r(f1(c1, . . . , cd)) = r(Ek),

sgn (e 1
2 ikθj(c

1,...,cd)f(c1, . . . , cd)(eiθj(c
1,...,cd))) = sgn (e 1

2 ikθj(c
1
0,...,c

d
0)Ek(eiθj(c

1
0,...,c

d
0)))

for any (c1, . . . , cd) ∈ ⋂m
i=1Ui ∩R, where θj(c1, . . . , cd) are real numbers for which eiθj(c

1,...,cd)

are the zeros of f(c1, . . . , cd) on {z ∈ H ∶ ∣z∣ = 1 and 0 ≤R(z) ≤ 1/2}.
The condition (3) is satisfied due to [Get04, Theorem 1]. Indeed, by the classical valence for-
mula, the possible minimum values of the order of weight k modular form at i and ρ are equal
to the order of Ek at i and ρ, respectively, so we can take a small enough open set around
(c10, . . . , cd0) in Rd such that the vanishing of f1(c1, . . . , cd) at ρ, r(f1(c1, . . . , cd)), and the sign of

e
1
2 ikθj(c

1,...,cd)f(c1, . . . , cd)(eiθj(c1,...,cd)) do not change as (c1, . . . , cd) varies in such an open set.
Since the set

{(c1, . . . , cd) ∈ Cd ∶ ∂f̃
∂z
(ξi(c1, . . . , cd), c1, . . . , cd) = 0}

is closed, we may further assume that ξi(c1, . . . , cd) is a simple zero of f(c1, . . . , cd) for all
(c1, . . . , cd) ∈ Ui. Let U ∶= ⋂m

i=1Ui and U0 be the connected component of U ∩ Rd containing
DEk, which is also open in Rd due to the local connectedness of Rd.

We claim that U0 ⊆ C so that DEk ∈ U0 ⊆ int(C), which completes the proof.
Suppose for contradiction that there exists a point (c11, . . . , cd1) ∈ U0 such that there is some

z0 ∈ F ∖ {z ∈ F ∶ R(z) = 1/2} satisfies f̃(z0, c11, . . . , cd1) = 0. Note that by the condition (3) and
Theorem 2.1, f(c1, . . . , cd) hasm zeros in F for every (c1, . . . , cd) ∈ U0. In other words, f(c1, . . . , cd)
has the same number of zeros as of f(c10, . . . , cd0) = DEk in F , so we have z0 = ξa(c11, . . . , cd1) for
some a ∈ {1, . . . ,m}. Note that 1 − z0 is also a zero of f(c11, . . . , cd1) so that 1 − z0 = ξb(c11, . . . , cd1)
for some b ∈ {1, . . . ,m} ∖ {a}.

Let p ∶ [0,1] → U0 ∩ IR be a path with p(0) = (c10, . . . , cd0) and p(1) = (c11, . . . , cd1). Define
t0 ∶= inf{t ∈ [0,1] ∶ ξa(p(t)) ∈ F ∖ δ2}. Since Vi’s are pairwise disjoint and p((t0,1]) is connected,
it follows that

1 − ξa(p(t)) = ξb(p(t))
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for all t ∈ (t0,1]. Thus, the continuity of ξi’s implies that ξa(p(t0)) = 1 − ξa(p(t0)) = ξb(p(t0)),
which contradicts the assumption that the sets Vi are pairwise disjoint.

Now suppose that k ≡ 2 (mod 6). In this case, there is an additional simple zero zm+1 of DEk

on δ2, namely zm+1 = ρ. We can use the argument as before to show that there is an analytic
function ξm+1 ∶ Um+1 → Vm+1 with ξm+1(c10, . . . , cd0) = ρ. Note that a quasimodular form of weight
k + 2 and depth 1 always vanishes at ρ by the classical valence formula. Since the only zero of
f(c1, . . . , cd) in Vm+1 is ξm+1(c1, . . . , cd), it means that ξm+1 is a constant function. Therefore, we
can use the same argument for the other zeros as before to show that U0 ⊆ C, which completes
the proof of the claim. □

We remark that the same argument as above proves the following.

Proposition 4.2. Let f = f0 + f1E2 be a quasimodular form of weight k, where f0 and f1 are
modular forms such that f1(z) ≠ 0 for all z ∈ F with ∣z∣ = 1. If f is on the topological boundary
of C, then there is a multiple zero of f in F .

Proof. Note that either f ∈ C or f ∈ M̃ (≤1)
k,R ∖ C. Assume that all the zeros of f in F are simple.

By the analytic implicit function theorem and the same argument as in the proof of Theorem 4.1,

if f ∈ C (resp. f ∈ M̃ (≤1)
k,R ∖ C) then f ∈ int (C) (resp. f ∈ cl (M̃ (≤1)

k,R ∖C)) which implies that

f /∈ cl (M̃ (≤1)
k,R ∖C) (resp. f /∈ cl (C)). □

5. Proof of Theorem 1.2

Our main goal of this section is to determine the value of Dfk,m(z) at z = 1
2
+ i

2
cot θ = ie−iθ ∣z∣

for θ ∈ [ (ℓ+1)π
k+1

, ([k/6]−1)π
k+1

]. The proof of Theorem 1.2 is based on an integral representation of

fk,m which is equivalent to the generating function formula for fk,m established in [DJ08]. Let us
define the function H(τ, z) as follows:

H(τ, z) ∶=ℓE2(z)
∆ℓ(z)
∆ℓ+1(τ)

Ek′(z)E14−k′(τ)
j(τ) − j(z) e−2πimτ

+ ∆ℓ(z)
∆ℓ+1(τ)

DEk′(z)E14−k′(τ)(j(τ) − j(z)) −Ek′(z)E14−k′(τ)D(j(τ) − j(z))
(j(τ) − j(z))2 e−2πimτ .

Lemma 5.1. For any m ∈ Z and sufficiently large A > 0, we have

Dfk,m(z) = ∫
1
2+iA

− 1
2+iA

H(τ, z)dτ.

Proof. The proof can be obtained readily by taking the derivative of the equation in [DJ08, Lemma
2]. □

Lemma 5.2. If A′ ∈ [
√
3
2
, 1
2
cot θ) , then

∫
1
2+iA

′

− 1
2+iA

′
H(τ, z)dτ =Dfk,m(z) + gk′(z),

where

gk′(z) ∶=
e−2πimz

E14(z)Ek′(z)
[DE14(z)Ek′(z)3(Ek′(z) − 1) +DEk′(z)E14(z)(Ek′(z)2 − 1)

−E2(z)E14(z)Ek′(z)(Ek′(z)3 − (ℓ + 1)Ek′(z)2 + ℓ) +mE14(z)Ek′(z)3] .

In particular, if k′ = 0 we have

∫
1
2+iA

′

− 1
2+iA

′
H(τ, z)dτ =Dfk,m(z) +me−2πimz.
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Proof. Note that A and A′ are chosen such that the only poles of H(τ, z) in the rectangle {τ ∈
H ∶ ∣R(τ)∣ ≤ 1/2, A′ ≤ I(τ) ≤ A} are at τ = z and τ = z − 1. By vertically shifting the contour of
integration in Lemma 5.1 to a lower height A′, while ensuring the avoidance of the poles z and
z − 1 through the inclusion of a clockwise circular path encircling both points, we obtain

∫
1
2+iA

′

− 1
2+iA

′
H(τ, z)dτ =Dfk,m(z) + πiResτ=zH(τ, z) + πiResτ=z−1H(τ, z)

=Dfk,m(z) + 2πiResτ=zH(τ, z).
Note that H(τ, z) can be written as

H(τ, z) = − 1

2πi
ℓE2(z)

∆ℓ(z)
∆ℓ(τ)

Ek′(z)
Ek′(τ)

d
dτ
(j(τ) − j(z))
j(τ) − j(z) e−2πimτ

− 1

2πi

∆ℓ(z)
∆ℓ(τ)

DEk′(z)
Ek′(τ)

d
dτ
(j(τ) − j(z))
j(τ) − j(z) e−2πimτ + 1

4π2

∆ℓ(z)
∆ℓ(τ)

Ek′(z)
Ek′(τ)

j′(z)j′(τ)
(j(τ) − j(z))2 e

−2πimτ .

The proof is completed by invoking the relationDj(z) = −E14(z)/∆(z) and evaluating the residues
of H(τ, z) at τ = z. □

Lemma 5.3. For A′ ∈ [
√
3
2
, 1
2
cot θ) and A′′ ∈ ( 1

3
, sin 2θ), we have

∫
1
2+iA

′

− 1
2+iA

′
H(τ, z)dτ =∫

1
2+iA

′′

− 1
2+iA

′′
H(τ, z)dτ

− 2mi−k−2∣z∣−k−2e2πm sin 2θ cos ((k + 2)θ + 4πm sin2 θ)

+ k

π
i−k ∣z∣−k−1e2πm sin 2θ cos ((k + 1)θ + 4πm sin2 θ) .

In particular, if m = 0 we have

∫
1
2+iA

′

− 1
2+iA

′
H(τ, z)dτ =∫

1
2+iA

′′

− 1
2+iA

′′
H(τ, z)dτ + (−1)k/2 k

π
∣z∣−k−1 cos ((k + 1)θ) .

Proof. Note that if I(z) < 1
2
(3 + 2

√
2), it follows that I(Sz) > 1

3
. We observe that

supy≥
√
3/2I(S (

3

2
+ iy)) = 1

3
, and I (ST −1z) = I (Sz) = sin 2θ.

Thus in the region {τ ∈ H ∶ ∣R(τ)∣ ≤ 1/2, A′′ ≤ I(τ) ≤ A′}, the only poles of H(τ, z) are located at
τ = ST −1z = −1

z−1
and τ = Sz = −1

z
. By reducing the height of the integration to A′′, we obtain

∫
1
2+iA

′

− 1
2+iA

′
H(τ, z)dτ = ∫

1
2+iA

′′

− 1
2+iA

′′
H(τ, z)dτ − 2πi (Resτ= −1z−1

H(τ, z) +Resτ= −1z H(τ, z)) .

Note that for z = 1
2
+ i

2
cot θ we have

z = ie−iθ ∣z∣, z − 1 = ieiθ ∣z∣,
−(z − 1)−1 = 2i(sin θ)e−iθ, −z−1 = 2i(sin θ)eiθ,

and hence

Resτ= −1z−1
H1(τ, z) = −

1

2πi
ℓE2(z)i−k ∣z∣−ke−ikθ+4πm(sin θ)e−iθ − 1

2πi

DEk′(z)
Ek′(z)

i−k ∣z∣−ke−ikθ+4πm(sin θ)e−iθ ,

Resτ= −1z H1(τ, z) = −
1

2πi
ℓE2(z)i−k ∣z∣−keikθ+4πm(sin θ)eiθ − 1

2πi

DEk′(z)
Ek′(z)

i−k ∣z∣−keikθ+4πm(sin θ)eiθ .

Similarly, we have

Resτ= −1z H2(τ, z) = −
i

4π2
e2πim/zz−k−2 (2πm + 2πℓz2E2(z) − ikz + 2πz2

DEk′(z)
Ek′(z)

) ,

Resτ= −1z−1
H2(τ, z) = −

i

4π2
e2πim/(z−1)(z − 1)−k−2 (2πm + 2πℓ(z − 1)2E2(z) − ik(z − 1) + 2π(z − 1)2

DEk′(z)
Ek′(z)

) ,
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so that we deduce

(Resτ= −1z +Resτ= −1z−1
)(H1(τ, z) +

i

4
(2πℓE2(z) + 2π

DEk′(z)
Ek′(z)

) (e2πim/zz−k + e2πim/(z−1)(z − 1)−k)) = 0.

Calculating the remaining terms of residues leads to the desired result. □

We establish the following proposition using Lemmas 5.1, 5.2 and 5.3, which leads to a direct
deduction of Theorem 1.2(a), and when combined with Proposition 2.3, also yields Theorem 1.2(b).

Proposition 5.4. Let k′ =m = 0 and let A′′ = 0.49. If k ≥ 1116 and 0.38 ≤ θ < π/6, then we have

∣∫
1
2+iA

′′

− 1
2+iA

′′
H(τ, z)dτ ∣ < k

π
∣z∣−k−1.

Consequently, if k is large enough, the sign of Dfk,0 ( 12 + itj) is (−1)j for 19(k + 1)/50π ≤ j ≤
[k/6] − 1.

Proof. Since k′ =m = 0, we have the inequality

(2 sin θ)−k−1 ∣∫
1
2+iA

′′

− 1
2+iA

′′
H(τ, z)dτ ∣

≤ (2 sin θ)−k−1 max
∣x∣≤1/2

∣H1(x + iA′′, z)∣ + (2 sin θ)−k−1 max
∣x∣≤1/2

∣H2(x + iA′′, z)∣.

Note that

(2 sin θ)−k−1∣H1(τ, z)∣ + (2 sin θ)−k−1∣H2(τ, z)∣

= (2 sin θ)−1 ∣ ∆(z)
(2 sin θ)12∆(τ) ∣

ℓ

(∣ℓE2(z)
E14(τ)

∆(τ)(j(τ) − j(z)) ∣ + ∣
E14(τ)E14(z)

∆(τ)∆(z)(j(τ) − j(z))2 ∣) .

For z = ie−iθ/(2 sin θ) for 0.38 ≤ θ < [k/6]π
k+1

and τ = x + 0.49i, the following bounds can be obtained
through numerical computations:

∣E2(z)∣ < 1.15, ∣ E14(τ)E14(z)
∆(τ)∆(z)(j(τ) − j(z))2 ∣ < 0.6,

∣ E14(τ)
∆(τ)((j(τ) − j(z))) ∣ < 4.2, and ∣ ∆(z)

(2 sin θ)12∆(τ) ∣ < 0.99.

By combining these bounds, we complete the proof. □

Remark 5.5. Proposition 5.4 is specific to k′ = 0, as we have noted in the introduction. To see
this, consider the case where k′ = 14. Using the same argument as in the proof of Theorem 1.2 ,
we find that for 0.38 ≤ θ < π/6 and for all k = 12ℓ + 14,

∣z∣k+1Dfk,0(z) = −∣z∣k+1g14(z) +R(z), where ∣R(z)∣ < 2k

π
.

Recall that

g14(z) = E2(z)(E14(z)2 − 1)ℓ + g14,0(z).
Numerical computations show that for z = 1

2
+ i

2
cot θ = ie−iθ ∣z∣ with θ ∈ [ (ℓ+1)π

k+1
, ([k/6]−1)π

k+1
],

E2(z)(E14(z)2 − 1) is negative and bounded away from 0, and g14,0(z) is positive and bounded
away from 0 for 0.38 ≤ θ < π/6. As θ approaches π/6, both ∣E14(z)2 − 1∣ and g14,0(z) tend to ∞.
Note that for θ0 close enough to π/6 (e.g., θ0 = 0.511), if we take 0.38 ≤ θ ≤ θ0, then ∣z∣ > ϵ0 for
some uniform constant ϵ0 > 1. Therefore, for large k, the function ∣z∣k+1Dfk,0(z) never vanishes.

However, the situation changes if we don’t restrict the size of θ. It is possible for the real zeros
of Dfk,0 to occur at z with k′ ≠ 0 and π/12 < θ < 0.38. For example, if we take k = 86, then there
are 6 zeros of Dfk,0 in F . We can verify numerically that there are 4 real zeros and 2 non-real

zeros among them. Such real zeros have an imaginary part larger than 1
2
+ i

2
cot(0.38) ≈ 1.2518,

but smaller than 1
2
+ i

2
cot(π/12) ≈ 1.8660.
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6. other remarks on the zeros

In the previous sections, we have observed that certain types of quasimodular forms have zeros
solely on the line δ2, while other types have more than half of their zeros on this line, but not all
of them. In this section, we explore the existence of real zeros.

Note that the space of quasimodular forms of weight k can be written as

M̃k = M̃ (≤k/2)
k =

k
2 −2

⊕
j=0

DjMk−2j ⊕CD
k
2 −1E2.

In particular, we have

M̃k,R = M̃ (≤k/2)
k,R =

k
2 −2

⊕
j=0

DjMk−2j,R ⊕RD
k
2 −1E2.

Indeed, if we consider an involution ı ∶ f(τ) ↦ f(−τ) on M̃
(≤k/2)
k which is an anti-linear map, then

each direct summand DjMk−2j and CD k
2 −1E2 in the above are invariant under ı. On the other

hand, the subspace M̃ ı
k of M̃k consisting of the elements fixed by ı is exactly M̃k,R. Hence if we

write f = ∑
k
2 −2

j=0 Djfj + cD
k
2 −1E2 ∈ M̃k,R, then

f = ı(f) =
k
2 −2

∑
j=0

Djı(fj) + cD
k
2 −1E2,

so fj = ı(fj) and c = c. In particular, we have M̃
(≤1)
k,R =Mk,R ⊕DMk−2,R if k ≥ 4.

Theorem 6.1. Let Sk−2,R be the space of cusp forms of weight k−2 with real Fourier coefficients.
Let f ∈DSk−2,R be a quasimodular form of weight k and depth 1. Then f has at least two real zeros,
each of them lying on the central line {z ∈ H ∶R(z) = 0} and {z ∈ H ∶R(z) = 1/2}, respectively.

In other words, any cusp form has at least two critical points z with R(z) = 0 and R(z) = 1/2.
Let f be a cusp form such that f′ = f . Note that by the valence formula, if k ≡ 0 (mod 4) then

i must be a zero of f. Since f(i∞) = 0, we have

f(iy0) = −i
∂f

∂y
(iy0) = 0

for some y0 ∈ (1,∞). This argument can be applied to the line {z ∈ F ∶ R(z) = 1
2
}, since

f ( 1
2
+ i

2
) = (i − 1)kf(i). Thus it is enough to consider k ≡ 2 (mod 4).

For a quasimodular form f , let us denote by a∞(f) the first non-zero Fourier coefficient of f .
Also, if f is non-cuspidal, we define ϵ′f and ϵf as follows: Let ϵ′f be the sign of the product of the
first two non-zero Fourier coefficients of f , say a0 and an, and

ϵf ∶= (−1)nϵ′f .
To prove Theorem 6.1 for the remaining case, we’ll show slightly more generally stated as

follows.

Proposition 6.2. Let f be a modular form of weight k and assume that at least one of the
following conditions holds:

(i) f is cuspidal and k ≡ 0 (mod 4),
(ii) f is non-cuspidal with ϵf = −1 and k ≡ 0 (mod 4),
(iii) f is non-cuspidal with ϵf = 1 and k ≡ 2 (mod 4).
Then f has a critical point lying on the line {z ∈ H ∶R(z) = 1/2}. If we replace the conditions (ii)
and (iii), respectively by

(iv) f is non-cuspidal with ϵ′f = −1 and k ≡ 0 (mod 4),
(v) f is non-cuspidal with ϵ′f = 1 and k ≡ 2 (mod 4),

then f has a critical point lying on the line {z ∈ H ∶R(z) = 0}.
To prove this, we need the following lemmas.
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Lemma 6.3. Let f and g be quasimodular forms and let a ∶= v∞(f) and b ∶= v∞(g). If a − b > 0
then

lim
y→∞

y−ng(iy)
y−mf(iy) = sgn(a∞(f))sgn(a∞(g))∞,

lim
y→∞

y−ng( 1
2
+ iy)

y−mf( 1
2
+ iy)

= (−1)a−bsgn(a∞(f))sgn(a∞(g))∞,

and if a − b < 0 then

lim
y→∞

y−ng(iy)
y−mf(iy) = lim

y→∞

y−ng( 1
2
+ iy)

y−mf( 1
2
+ iy)

= 0.

Lastly if a − b = 0, then

lim
y→∞

y−ng(iy)
y−mf(iy) = lim

y→∞

y−ng( 1
2
+ iy)

y−mf( 1
2
+ iy)

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n >m,
a∞(g)
a∞(f)

if n =m,

sgn(a∞(f))sgn(a∞(g))∞ if n ≤m.

Proof. Let x = 1/2 and f̂ ○ q = f , ĝ ○ q = g. Note that

lim
y→∞

y−ng(x + iy)
y−mf(x + iy) = lim

y→∞

y−n(−e2πy)−b(−e−2πy)−bg(x + iy)
y−m(−e2πy)−a(−e−2πy)−af(x + iy)

= (−1)a−b lim
y→∞

e−2πby

yn q(x + iy)−bĝ(q(x + iy))
e−2πay

ym q(x + iy)−af̂(q(x + iy))

= (−1)a−b a∞(g)
a∞(f)

lim
y→∞

e2πi(a−b)

yn−m
.

Similarly if x = 0, then

lim
y→∞

y−ng(x + iy)
y−mf(x + iy) =

a∞(g)
a∞(f)

lim
y→∞

e2πi(a−b)

yn−m
.

The assertion follows from the above equations immediately. □

Lemma 6.4. Let f be a modular form of weight k.

(a) If f is cuspidal, then for any positive integer j we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Djf (iy) = ( i
y
)
k+2j

Djf ( i
y
) × (1 + o(1)) ,

Djf ( 1
2
+ iy) = ( i

2y
)
k+2j

Djf ( 1
2
+ i

4y
) × (1 + o(1)) ,

as y approaches 0.
(b) If f is non-cuspidal, then

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Df(iy) = ( i
y
)
k+2

Df ( i
y
) × (1 − ϵ′fω(1)) ,

Df( 1
2
+ iy) = ( i

2y
)
k+2

Df ( 1
2
+ i

4y
) × (1 − ϵfω(1)) ,

as y approaches 0.
(c) If f is non-cuspidal, then for any positive integer j

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Djf(iy) = ( i
y
)
k+2j

Djf ( i
y
) × (1 + (−1)j−1ϵ′fω(1)) ,

Djf( 1
2
+ iy) = ( i

2y
)
k+2j

Djf ( 1
2
+ i

4y
) × (1 + (−1)j−1ϵfω(1)) ,

Here, little-o and little-ω are the asymptotic bounds.
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Proof. First, we prove (a) for j = 1 and then prove (b). Since Df is a quasimodular form of
weight k + 2 and depth 1, we have

Df(γz) = (cz + d)k+2Df(z) + ck

2πi
(cz + d)k+1f(z)

for any γ ∈ SL2(Z) and z ∈ H. If we put γ = (1 0
2 1
) and z = − 1

2
+ i

4y
, then

Df (1
2
+ iy) = ( i

2y
)
k+2

Df (−1
2
+ i

4y
) + ( i

2y
)
k+1

⋅ 2 ⋅ k

2πi
f (−1

2
+ i

4y
)

= ( i

2y
)
k+2

Df (1
2
+ i

4y
) ×
⎛
⎝
1 − k

2π

f( 1
2
+ i

4y
)

1
4y
Df( 1

2
+ i

4y
)
⎞
⎠
.

Recall that Df is always cuspidal, so v∞(Df) > 0. Let f be cuspidal. Since D = q d
dq
, it is clear

that v∞(f) = v∞(Df). By Lemma 6.3 we have

lim
y→0

f( 1
2
+ i

4y
)

1
4y
Df( 1

2
+ i

4y
)
= 0.

This proves the second equation of (a), and the first one of (a) is obtained by applying the same

argument for γ = (0 −1
1 0

), z = i
y
. Also we have

lim
y→0

f( 1
2
+ i

4y
)

1
4y
Df( 1

2
+ i

4y
)
= (−1)v∞(Df)sgn(a∞(f))sgn(a∞(Df))∞.

Note that if f is non-cuspidal and then a∞(f)a∞(Df) = na0an, where a0 and an are the first two
non-zero Fourier coefficients of f . Thus we have

lim
y→0

f( 1
2
+ i

4y
)

1
4y
Df( 1

2
+ i

4y
)
= ϵf∞,

which implies the second equation of (b), and similarly the first equation is derived as well.
Now suppose j > 1. For an arbitrary quasimodular form g of weight k and depth ℓ, there are

quasimodular forms g0, . . . , gℓ such that

g(γz) =
ℓ

∑
m=0

cj(cz + d)k−jgm(z)

for arbitrary γ ∈ SL2(Z) and z ∈ H. We denote these gm by Qm(g). Thus for any γ ∈ SL2(Z),

Djf(γz) =
j

∑
m=0

cm(cz + d)k+2j−mQm(Djf)(z),

and in particular

Djf (1
2
+ iy) =

j

∑
m=0

2m ( i

2y
)
k+2j−m

Qm(Djf) (1
2
+ i

4y
)

= ( i

2y
)
k+2j

Djf (1
2
+ i

4y
) ×
⎛
⎜
⎝
1 +

j

∑
m=1

2m ( i

2y
)
−m Qm(Djf) ( 1

2
+ i

4y
)

Djf ( 1
2
+ i

4y
)

⎞
⎟
⎠
.(2)

Referring to [Roy12, Theorem 3.5], it can be verified that Q0(Djf) =Djf , Qj(Djf) = j!
(2πi)j

(k
j
)f ,

and for 1 ≤ m ≤ j − 1, Qm(Djf) is the m!
(2πi)m

( k
m
) times Z-linear combinations of Dj−m−1f and

Dj−mf . Thus for m < j − 1, a function Qm(Djf) is cuspidal. Furthermore, Qj−1(Djf) can be

shown inductively to be equal to (j−1)!
(2πi)j−1 (

k
j−1
)(f + (j − 1)Df).
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Therefore, by applying Lemma 6.3, we conclude that the equation (2) can be expressed as

( i

2y
)
k+2j

Djf (1
2
+ i

4y
) ×
⎛
⎜
⎝
1 +

j

∑
m=j−1

2m ( i

2y
)
−m Qm(Djf) ( 1

2
+ i

4y
)

Djf ( 1
2
+ i

4y
)

+ o(1)
⎞
⎟
⎠

= ( i

2y
)
k+2j

Djf (1
2
+ i

4y
) ×
⎛
⎜⎜
⎝
1 + ( (j − 1)!

ij−1(2πi)j−1 (
k

j − 1) +
j!

ij(2πi)j (
k

j
) ⋅ 4y)

f ( 1
2
+ i

4y
)

( 1
4y
)
j−1

Djf ( 1
2
+ i

4y
)
+ o(1)

⎞
⎟⎟
⎠

= ( i

2y
)
k+2j

Djf (1
2
+ i

4y
) × (1 + (−1)j−1ϵfω(1))

as y ≫ 0. Similarly, we can prove the first equation of (c), and also (a) for j > 1. □

Proof of Proposition 6.2. As f has real Fourier coefficients, so does its derivative Df . If f is
cuspidal (resp. non-cuspidal), by Lemma 6.4, we have Df( 1

2
+ iy) = − 1

2y
Df( 1

2
+ i

4y
) × (1 + o(1))

(resp. ( i
2y
)
k+2

Df( 1
2
+ i

4y
) × (1 − ϵfω(1))), so Df( 1

2
+ iy) and Df( 1

2
+ i

4y
) are real numbers with

opposite signs for some y ≫ 0.
It immediately follows that there exists y0 ∈ ( 1

4y
, y) such that Df( 1

2
+ iy0) = 0. Similarly, one

can verify the assertion for δ1. □

Unless f belongs to DSk−2,R, the existence of a real zero holds under certain weight conditions.
Before presenting this, we introduce the following lemma.

Lemma 6.5. Let f be a cuspidal quasimodular form. As y ≫ 0, the sign of f ( 1
2
+ iy) is

(−1)v∞(f)sgn(a∞(f)), and the sign of f(iy) is sgn(a∞(f)).

Proof. It follows from f(z) = ∑∞n=v∞(f) anq
n = qv∞(f) (av∞(f) +O(q)) immediately. □

Proposition 6.6. Let f be a weight k quasimodular form.

(a) If k ≡ 2 (mod 4) and f is non-cuspidal, then f has at least two zeros on {z ∈ H ∶ R(z) =
0 or 1/2}, one of them lying on {z ∈ H ∶R(z) = 0} and one of them on {z ∈ H ∶R(z) = 1/2}.

(b) If k ≡ 2 (mod 4) and f = f0 +Df1 ∈ Sk,R ⊕DMk−2,R with v∞(f) ≤ v∞(f1), then f has a zero
on the line {z ∈ H ∶R(z) = 1/2}.

(c) If the depth of f is not larger than 1 and k ≡ 6,10 (mod 12), then f has a zero on the line
{z ∈ H ∶R(z) = 1/2}.

(d) If the depth of f is not larger than 2 and k ≡ 6 (mod 12), then f has a zero on the line
{z ∈ H ∶R(z) = 1/2}.

Proof. Let p be the depth of f . Recall that

f (1
2
+ iy) = ( i

2y
)
k

f (1
2
+ i

4y
) ×
⎛
⎜⎜
⎝
1 +

p

∑
j=1

1

ij
Qj(f)

( 1
4y
)
j
f
(1
2
+ i

4y
)
⎞
⎟⎟
⎠

and similarly

f (iy) = ( i
y
)
k

f ( i
y
) ×
⎛
⎜⎜
⎝
1 +

p

∑
j=1

1

ij
Qj(f)

( 1
y
)
j
f
( i
y
)
⎞
⎟⎟
⎠
.

Since f is non-cuspidal, we have 0 = v∞(f) ≤ v∞(Qj(f)) for any j ∈ {1,2, . . . , p} so that both of
Qj(f)

( 1
4y )

j
f
( 1
2
+ i

4y
) and Qj(f)

( 1
y )

j
f
( i
y
) are o(1) as y approaches 0 by Lemma 6.3. In particular, the signs

of f ( 1
2
+ i

4y
) and of f ( i

y
) are opposite to the sign of f(∞). This completes the proof of (a), and

the same arguments can be applied to prove (b).
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To prove (c), write f = f0 +Df1 for f0 ∈Mk,R, f1 ∈Mk−2,R. We have

f (1
2
+ iy) = ( i

2y
)
k

f (1
2
+ i

4y
) ×
⎛
⎝
1 − k

2π

f1
1
4y
f
(1
2
+ i

4y
)
⎞
⎠
.

Since k − 2 ≡ 4,8 (mod 12), we have f1 ( 12 + i
√
3
2
) = 0 by the valence formula. If we take y = i

2
√
3
,

then we get

f (1
2
+ i

2
√
3
) = −(5

2
)
k

f (1
2
+ i
√
3

2
) ,

hence the desired result follows. A similar argument also proves (d). □

It is natural to question whether there is a quasimodular form with no real zeros on lines δ1 or
δ2, particularly when the depth is greater than 0. In the case of depth 0, the modular discriminant
function ∆ is one of the standard examples of such (quasi)modular forms, but the answer is unclear
for higher depths.

For quasimodular forms of depth 1, it is clear that the derivative of the Eisenstein series does
not vanish on the line {z ∈ H ∶ R(z) = 0}. Similarly, there are some examples of quasimodular
forms of depth 1 that do not vanish on the line {z ∈ H ∶ R(z) = 1/2}. Remarkably, these forms
are the derivatives of modular forms, and the corresponding antiderivative functions also lack real
zeros on the line δ2.

Proposition 6.7. For k ≡ 0 (mod 12), let f be a non-cuspidal modular form of weight k given by

f(z) = b1∆
k
12 (z) + bk∆(z)E

k
4 −3

4 (z) +E
k
4

4 (z).

For sufficiently large k, there exists a constant B > 0 depending on bk such that if (−1) k
12 b1 > B then

f has no zero lying on the line {z ∈ H ∶ R(z) = 1/2} ∪ {∞}. Furthermore if we assume bk < −60k,
then we can take B for which f ( 1

2
+ iy) is a monotone decreasing function for y ∈ (0,∞).

To prove Proposition 6.7, we first investigate the sign changes of the Ramanujan tau func-
tion τ(n) and prove several useful lemmas. Define

τm(n) ∶= ∑
a1,a2,...,am≥1
a1+a2+⋯+am=n

τ(a1)τ(a2)⋯τ(am),

be the nth Fourier coefficient of ∆m. For a positive integer k ≡ 0 (mod 12), let Nk ∶= k
12
+[1 + 2

15
k].

We now introduce the D’Arcais polynomial Pn(x), which is defined recursively by

⎧⎪⎪⎨⎪⎪⎩

P0(x) = 1,
Pn(x) = x

n ∑
n
j=1 σ1(j)Pn−j(x), for n ≥ 1.

It is well-known that all real roots of Pn(x) are negative. Additionally, the special values of Pn(x)
correspond to the q-coefficients of the power of the Dedekind eta function, namely, if we write

∏
n≥1

(1 − qn)r =
∞

∑
n=0

ηn(r)qn,

for r ∈ C, then we have Pn(−r) = ηn(r) (see [D’Ar13], [New55]).
Furthermore, the sign of each ηn(r) is determined by the D’arcais polynomial in the following

manner.

Theorem 6.8. [HN20a, Theorem 2] Let rn be the number of real roots of Pn(x) which are less
than or equal to −r. Then we have (−1)n+rnηn(r) ≥ 0.

By virtue of Theorem 6.8, we may reach an immediate conclusion that for r = 2k, should any
real root of Pn(x) exceed −2k, then we have (−1)nτ k

12
(n + k

12
) < 0.

Recently, Heim and Neuhauser [HN20b] established the growth condition for Pn(x), which
constitutes an improvement of the results presented in [Kos04] and [Han10].

Theorem 6.9. [HN20b] If ∣x∣ > 15(n − 1), then Pn(x) ≠ 0.
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Combining Theorem 6.8 and 6.9, we get the following lemma.

Lemma 6.10. Let n be a positive integer. If k
12
≤ n ≤ Nk, then τ k

12
(n − 1)τ k

12
(n) < 0.

Proof. For n = Nk − k
12
, we have n < 1 + 2k

15
, which is equivalent to −2k < −15(n − 1). This implies

that there is no real root of Pn(x) less than or equal to −2k. Therefore, for 0 ≤ n ≤ Nk − k
12
, we

have (−1)nτ k
12
(n + k

12
) < 0. □

Proof of Proposition 6.7. Fix a sufficiently large k. We’ll specify later how large k should be. Take
into account the function f/b1 by splitting into three partial sums denoted by f1, f2, and f3 as
follows;

1

b1
f(τ) =

⎛
⎜
⎝

k
12−1

∑
n=0

+
Nk

∑
n= k

12

+
∞

∑
n=Nk+1

⎞
⎟
⎠
(an(f)

b1
qn) =∶ f1(z) + f2(z) + f3(z).

Observing that f1 is a finite sum, we have f1 = O(∣b1∣−1) for any complex number q with 0 < ∣q∣ < 1.
Furthermore, for any n ≥ k

12
, we can express an(f)

b1
as τ k

12
(n) + 1

b1
g(n), where g(n) is given by

g(n) = ∑
c1,...,c k

4
≥0

c1+⋯+c k
4
=n

240
k
4 σ3(c1)⋯σ3(c k

4
) + bk ∑

a>0,a1,...,a k
4
−3≥0

a+a1+⋯+a k
4
−3=n

240
k
4 −3τ(a)σ3(a1)⋯σ3(a k

4 −3
).

Here, we adopt the convention that σ3(0) ∶= 1
240

.

To estimate the functions τ k
12
(n) and g(n), we use the Ramanujan-Petersson bound ∣τ(n)∣ ≤ d(n)n 11

2 .

Specifically, we have

∣τ k
12
(n)∣ ≤ ∑

c1,...,c k
12
≥0

c1+⋯+c k
12
=n

∣τ(c1)⋯τ(c k
12
)∣

≤ ∑
c1,...,c k

12
≥0

c1+⋯+c k
12
=n

d(c1)⋯d(c k
12
)(c1⋯c k

12
) 11

2

≤ ∑
c1,...,c k

12
≥0

c1+⋯+c k
12
=n

(c1⋯c k
12
) k+1

2 ≤ p(n − k

12
)(12n

k
)

13k
24

,

where p(n) is the partition number of n. Similarly for g(n), we have

∣g(n)∣ ≤ ∑
c1,...,c k

12
≥0

c1+⋯+c k
4
=n

240
k
4 (c1⋯c k

4
)4 + ∣bk ∣ ∑

a>0,a1,...,a k
4
−3≥0

a+a1+⋯+a k
4
−3=n

240
k
4 −3d(a)a k−1

2 (a1⋯a k
4 −3
)4

≤ 240 k
4 p(n) (4n

k
)

k
4

(1 + 240−3∣bk ∣n
k−7
2 ) .

By applying the well-known estimate p(n) ∼ 1

4
√
3n3/2 e

π
√

2
3n as n → ∞ by Hardy and Ramanujan,

we choose a sufficiently large positive number B such that if ∣b1∣ > B, then

1

∣b1∣
∞

∑
n=Nk+1

240
k
4 p(n) (4n

k
)

k
4

∣1 + 240−3∣bk ∣n
k−7
2 ∣ < ϵ.
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Hence for z = 1
2
+ iy with y ≥ 1

2
, we have

∣f3(z)∣ ≤
∞

∑
n=Nk+1

∣τ k
12
(n)∣∣q∣n + ϵ

≤
∞

∑
n=Nk+1

p(n − k

12
)(12n

k
)

k(k+1)
24

∣q∣n + ϵ

≤
∞

∑
n=Nk+1

C

4 (n − k
12
)
√
3
eπ
√

2
3
(n− k

12
)−2πyn (12n

k
)

13k
24

+ ϵ

for some constant C > 0. Note that the last summation in the above inequality converges. We can
ensure by choosing a sufficiently large k that

∞

∑
n=Nk+1

C

4 (n − k
12
)
√
3
eπ
√

2
3
(n− k

12
)−πn (12n

k
)

13k
24

+ ϵ < 2ϵ.

Also, we have ∣f1(z)∣ < ϵ by taking large B.
We have found that the primary component in evaluating f(z) is f2(z). As ∣b1∣ becomes large,

the sign of an(f) for k
12
≤ n ≤ Nk is determined by the sign of τK

12
(n), more precisely,

sgn (an(f)) = sgn (τ k
12
(n)) .

Thus, according to Lemma 6.10, the sign of an(f) is (−1)n−
k
12 for k

12
≤ n ≤ Nk.

We choose a positive real number y0 such that if y > y0 then ∣f ( 1
2
+ iy) − 1∣ < ϵ. Then for

z = 1
2
+ iy with y > y0, we have

f2(z) =
Nk

∑
n= k

12

1

b1
an(f)(e−2πy)n >

Nk

∑
n= k

12

1

b1
(−1)nan(f)e2πy0n.

Since we have chosen b1 such that (−1) k
12 b1 > B > 0, each term 1

b1
(−1)nan(f)e2πy0n in the above

summation is positive. If we let M ∶= ∑Nk

n= k
12

1
b1
(−1)nan(f)e2πy0n, then

M =
Nk

∑
n= k

12

(−1)n (τ k
12
(n) + 1

b1
g(n)) e2πy0n > e2πy0 , as ∣b1∣ > B.

Therefore, we conclude that

⎧⎪⎪⎨⎪⎪⎩

b1f ( 12 + iy) >M − 3ϵ if 1
2
≤ y ≤ y0,

b1f ( 12 + iy) > 1 − ϵ if y > y0,

which implies that f ( 1
2
+ iy) is non-zero for any y ∈ (0,∞).

It only remains to prove that if bk < −60k, then f ( 1
2
+ iy) is a monotone decreasing function

for y ∈ (0,∞). Since f is holomorphic, it suffices to show that Df ( 1
2
+ iy) > 0 for all y ∈ (0,∞).

Note that bk < −60k implies that v∞(Df) = 1 and ϵf = 1. Therefore, there exists y0 > 1/2 such

that if y > y0, then Df ( 1
2
+ iy) > 0.

Recall Lemma 6.4(b), which implies the existence of y1 with 0 < y1 < 1/2 such that Df ( 1
2
+ iy) >

0 for 0 < y < y1 in this case. Thus, it suffices to show Df ( 1
2
+ iy) > 0 for y ∈ [y1, y0]. Since Df =

∑∞n=1 nan(f)qn, this follows by the same argument we used to prove the positivity of f ( 1
2
+ iy). □

Remark 6.11. The given weight k in Proposition 6.7 does not need to be very large. In fact, it is
enough to take k ≥ 24. One example of such a modular form f of weight 24 is

f(z) ∶= 2 ⋅ 1728 ⋅ 2880∆(z)2 − 2880∆(z)E4(z)3 +E4(z)6

= 9953280∆(z)2 − 3

225ζ(4)3 g2(z)
3 + 1

216000ζ(4)6 g2(z)
6.
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Remark 6.12. Proposition 6.7 provides that if k ≡ 0 (mod 12), there are infinitely many non-
cuspidal modular forms of weight k and quasimodular forms of weight k + 2 and depth 1 which do
not vanish on the line {z ∈ H ∶ R(z) = 1/2}. However, it is not possible to construct such forms
for depth ≥ 2 in the same way as in the case of f and Df . In fact, if j > 1, Djf always has a zero

on the line {z ∈ H ∶R(z) = 1/2}, since the signs of Djf ( 1
2
+ iy) and Djf ( 1

2
+ i

4y
) are opposite for

small y as shown in Lemma 6.4.
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