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Abstract

Computing the dispersion relation for two-dimensional photonic crystals is a notoriously chal-
lenging task: It involves solving parameterized Helmholtz eigenvalue problems with high-contrast
coefficients. To resolve the challenge, we propose a novel hp-adaptive sampling scheme that can de-
tect singular points via adaptive mesh refinement in the parameter domain, and meanwhile, allow for
adaptively enriching the local polynomial spaces on the elements that do not contain singular points.
In this way, we obtain an element-wise interpolation on an adaptive mesh. We derive an exponential
convergence rate when the number of singular points is finite, and a first-order convergence rate
otherwise. Numerical tests are provided to illustrate its performance.
Key words: photonic crystals, band function reconstruction, adaptive mesh, element-wise interpo-
lation
Mathematics Subject Classifications: 65N12, 65N50, 65N15, 65N30

1 Introduction

This work is concerned with propagation of electromagnetic waves within photonic crystals (PhCs).
PhCs are dielectric materials with a period size comparable to the wavelength [16]. The properties of
waves in PhCs depend heavily on their frequencies, and for certain frequencies, they may be unable to
propagate through PhCs, leading to the band gap phenomenon. This intriguing feature has led to the
development of important applications, e.g., optical transistors, photonic fibers, and low-loss optical
mirrors [36, 26, 33, 23]. We focus on two-dimensional (2D) PhCs, which are homogeneous along the z
axis and have high-contrast dielectric columns or holes in dielectric materials within the x-y plane.

The propagation of electromagnetic waves is governed by the Maxwell system. For 2D infinite
crystals with perfect periodicity, Bloch theorem states that the problem is reduced to 2D parameterized
Helmholtz eigenvalue problems defined over the unit cell with periodic boundary conditions. The
associated parameter is the so-called wave vector k, which varies in the irreducible Brillouin zone (IBZ)
[22]. The nth band function ωn (or the square root of the nth largest eigenvalue up to a constant)
is a function of the wave vector for all n ∈ N+. The band gap is the distance between two adjacent
band functions. Thus, computing the nth band function ωn(k) involves solving infinite many Helmholtz
eigenvalue problems defined on the unit cell. To obtain the band gap, it is necessary for the permittivity
to take different values in the inclusion and background of the unit cell, and moreover, the ratio between
these values, known as contrast, should be large. However, solving Helmholtz eigenvalue problems
with high-contrast and piecewise constant coefficients poses significant challenges. Numerically, one
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possible approach is to limit the parameter k to a coarse mesh of the IBZ or even its edges only.
However, it is inadequate for identifying small band gaps, e.g., avoided crossings, which are important
in certain application areas of photonic materials. For example, it is important to avoid the smallest
band gaps when manufacturing large-pitch photonic crystal fibers [9], whereas leakage channel fibers
exploit the smallest band gaps [7]. While directly solving the eigenvalue problem over a very fine
parametric discretization is failure-safe, it is highly inefficient. Band structure diagram paths based on
crystallography categorize wave vectors by their symmetry and provide preferred band paths for band
function reconstruction [14]. These important wave vectors are located at the face and edge centers,
and vertices of Brillouin zone. However, there is no guaranteed accuracy.

The main goal of this paper is to provide a numerical method with guaranteed fast convergence
rate. More specifically, let B be the parameter domain, i.e., IBZ. Let ω(k) ∈ C(B) be a band function
and Pn(B) the space of global polynomial functions of degree at most n. The best approximation to
ω(k) in Pn(B) with respect to the uniform norm ∥ · ∥∞,B on B can be measured by

En(ω) := inf
p∈Pn(B)

∥ω − p∥∞,B.

If ω /∈ C1(B), then En(ω) cannot decay faster than first order with respect to n, i.e., En(ω) = O(n−1)
[31, Chapter 7]. Furthermore, this decay rate may not be improved in a subdomain where the band
function is analytic [18]. The decay rate is only O(N−1/2) in terms of the number N of sampling points
N . In [34], we have developed a global polynomial interpolation method (GPI) to reconstruct the band
function, focusing on selecting sampling points to achieve this slow convergence rate. Thus, there is an
imperative need to develop more effective computational techniques for band structure reconstruction.

To improve the convergence of GPI, it is critical to exploit piecewise analyticity of band functions
and to utilize local polynomial interpolation. This work focuses on adaptively selecting the wave vectors.
Inspired by the h, p, and hp versions of FEM [2], one promising approach is to discretize the parameter
domain B with a triangular mesh and approximate the band functions locally on each element. In the h
version of local interpolation, the mesh sizes tend to zero uniformly and the degree of the polynomials
is fixed at a small number, and the convergence rate is still O(N−1/2). In the p version of local
interpolation, the mesh is fixed and the degree of polynomials tends to infinity, and it can also achieve
a convergence rate O(N−1/2). Our approach combines these two strategies and consists of two steps.
First, we generate an adaptive mesh of B by Algorithm 1 such that elements containing singular points
are refined at every iteration. Second, given a slope parameter µ, we assign an element-wise polynomial
degree according to the number of refinement of each element, and develop conforming element-wise
interpolation in Algorithm 2. To analyze the convergence of the method, we first provide in Theorem
5.4 the condition on the slope parameter µ such that the element-wise interpolation error in the element
with singular points dominates. Then we derive an exponential convergence rate in Theorem 5.5 when
the number of singular points is finite and a first-order convergence rate in Theorem 5.6 otherwise.

Overall, the proposed hp-adaptive sampling algorithm significantly improves the computational
efficiency and accuracy of band function approximation in PhCs. The adaptive refinement of the
parameter domain and element-wise interpolation can effectively capture singularities and improve
approximation accuracy, while the mechanism for selecting polynomial degrees can further enhance
the convergence rate. Additionally, the computation of band functions at each selected wave vector is
independent and embarrassingly parallel. This work provides a novel approach for photonic crystal band
function computation, which holds potential for designing and optimizing photonic crystal structures.

The rest of the paper is organized as follows. In Section 2, we recap the derivation of band func-
tions for 2D PhCs and regularity. We propose in Section 3 an hp-adaptive sampling algorithm, which
adaptively refines elements containing singular points and allocates proper polynomial degrees for local
Lagrange polynomial interpolation. We define the element-wise interpolation over the adaptive mesh
and with a given element-wise degree in Section 4. In Section 5, we present a convergence analysis of
the algorithm. We present extensive numerical experiments in Section 6 to complement the analysis.
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Finally, we give concluding remarks in Section 7. Throughout, the notation A ≲ B stands for that A/B
is bounded above by a constant independent of the number of sampling points N and the mesh size h.

2 Problem formulation

2.1 2D Band function computation

First we briefly derive the parameterized Helmholtz eigenvalue problem from the Maxwell equations,
which was formulated in [34] to estimate band functions. For further details, we refer readers to [3, 34].
In the SI convention, the time harmonic Maxwell equations for linear, non-dispersive, and nonmagnetic
media, with free charges and free currents, consist of a system of four equations [15],

∇×E(x)− iωµ0H(x) = 0, (2.1a)

∇×H(x) + iωϵ0ϵ(x)E(x) = 0, (2.1b)

∇ · (ϵ(x)E(x)) = 0, (2.1c)

∇ ·H(x) = 0. (2.1d)

Here x ∈ R3, E is the electric field, H the magnetic field and D the electric displacement field. The
scalar ω ≥ 0 is the frequency of the electromagnetic wave, µ0 the vacuum permeability, ϵ0 the vacuum
permittivity, and ϵ ∈ L∞(R3;R+) the relative permittivity.

Applying the curl operator to (2.1a) and using (2.1b), we obtain

∇× (∇×E(x))− (ωc−1)2ϵ(x)E(x) = 0, (2.2)

with ϵ0µ0 = c−2, where c is the speed of light. Similarly, applying the curl operator to (2.1b) and using
(2.1a), we obtain

∇×
(
ϵ(x)−1∇×H(x)

)
−
(
ωc−1

)2
H(x) = 0. (2.3)

(a) PhCs with square lattice (b) PhCs with hexagonal lattice

Figure 1: A schematic illustration of 2D PhCs. The materials have dielectric columns homogeneous
along the z direction and periodic along x and y directions.

In this work, we focus on 2D PhCs. In Figure 1, we show 2D PhCs with a periodic arrangement
of dielectric columns within a dielectric material. In practice, both have finite extensions in the z
direction and finite periodicities in the x-y plane. Nevertheless, it is commonly assumed that the
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material extends infinitely in the plane perpendicular to the columns. Thus, in the setting of 2D PhCs
in Figure 1, the relative permittivity ϵ(x) is assumed to be independent of the z direction. Then we
can split the electromagnetic fields E = (E1, E2, E3) and H = (H1, H2, H3) in (2.2) and (2.3) into the
transverse electric (TE) mode with H1 = H2 = E3 = 0 and transverse magnetic (TM) mode with
E1 = E2 = H3 = 0. Each mode is a scalar eigenvalue problem,

−∇ · (ϵ(x)−1∇H(x))− (ωc−1)2H(x) = 0, x ∈ R2, (TE mode), (2.4)

−∆E(x)− (ωc−1)2ϵ(x)E(x) = 0, x ∈ R2, (TM mode). (2.5)

Figure 2: Square lattice: Ω (left) and the corresponding Brillouin zone (right). The IBZ B
is the shaded triangle with vertices Γ = (0, 0), X = 1

a(π, 0) and M = 1
a(π, π).

Figure 3: Hexagonal lattice: Ω (left) and the corresponding Brillouin zone (right). The IBZ B
is the shaded triangle with vertices Γ = (0, 0), K = 1

a(
4
3π, 0) and M = 1

a(π,
√
3
3 π).

2D PhCs possess a discrete translational symmetry in the x-y plane (cf. Figure 1) [16], i.e., the
relative permittivity ϵ(x) satisfies

ϵ(x+ c1a1 + c2a2) = ϵ(x), ∀x ∈ R2 and c1, c2 ∈ Z.

The primitive lattice vectors, denoted by a1 and a2, are the shortest possible vectors that fulfill this
condition and they span the fundamental periodicity domain Ω, also known as unit cell, cf. Figures
2 and 3. In Figure 2, primitive lattice vectors of the square lattice are ai = aei for i = 1, 2, and in
Figure 3, that of the hexagonal lattice a1 =

a
4 (e1 +

√
3e2) and a2 =

a
4 (e1 −

√
3e2). Here, (ei)i=1,2 is the

canonical basis in R2 and a ∈ R+ lattice constant. The reciprocal lattice vectors are defined by

bi · aj = 2πδij , for i, j = 1, 2, (2.6)

which generate the so-called reciprocal lattice. The elementary cell of the reciprocal lattice is the (first)
Brillouin zone BF , i.e., the region closer to a certain lattice point than to any other lattice points in the
reciprocal lattice.
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Bloch’s theorem [20] states that in periodic crystals, wave functions take the form of a plane wave
modulated by a periodic function. Thus they can be written as Ψ(x) = eik·xu(x), where Ψ is the
wave function, u(x) is periodic sharing the periodicity of the crystal lattice and k is the wave vector
varying in the Brillouin zone BF . The periodic condition of u(x) implies that each wave function can be
determined by its values within the unit cell Ω. Thus, the solutions to (2.4) and (2.5) can be expressed
as H(x) = eik·xu1(x) and E(x) = eik·xu2(x) for some periodic functions u1(x) and u2(x) in the unit
cell Ω, and the parameterized Helmholtz eigenvalue problems (2.4) and (2.5) reduce to

−(∇+ ik) ·
(
ϵ(x)−1(∇+ ik)u1(x)

)
−
(
ωc−1

)2
u1(x) = 0, x ∈ Ω (TE mode), (2.7a)

−(∇+ ik) · ((∇+ ik)u2(x))−
(
ωc−1

)2
ϵ(x)u2(x) = 0, x ∈ Ω (TM mode), (2.7b)

where x ∈ Ω ⊂ R2, k varies in the Brillouin zone (BZ), and ui(x) satisfies the periodic boundary
conditions ui(x) = ui(x+aj) with aj being the primitive lattice vector for i, j = 1, 2. If the materials in
the unit cell have additional symmetry, e.g. mirror symmetry, we can further restrict k to the triangular
irreducible Brillouin zone (IBZ), denoted by B. The BZs and IBZs of the square lattice and hexagonal
lattice are shown in Figures 2 and 3.

In sum, we can formulate both parameterized Helmholtz problems (2.7a) and (2.7b) by

− (∇+ ik) · α(x)(∇+ ik)u(x)− λβ(x)u(x) = 0, x ∈ Ω, (2.8)

with Ω ⊂ R2, k ∈ B, and λ = (ωc−1)2. In the TE mode, u describes the magnetic field H in z-direction
and the coefficients α(x) and β(x) are α(x) := ϵ(x)−1 and β(x) := 1. Similarly, in the TM mode, u
describes the electric field E in the z-direction and the coefficients α(x) and β(x) are α(x) := 1 and
β(x) := ϵ(x). The variational formulation of (2.8) reads: find a non-trivial eigenpair (λ, u) ∈ (R, H1

π(Ω))
for k ∈ B such that 

∫
Ω
α(∇+ ik)u · (∇− ik)v̄ − λβuv̄dx = 0, ∀v ∈ H1

π(Ω)

∥u∥L2
β(Ω) = 1.

(2.9)

Here, we define L2
β(Ω) as the space of weighted square integrable functions equipped with the norm

∥f∥L2
β(Ω) := (

∫
Ω β(x)|f(x)|2dx)

1
2 . Let H1(Ω) ⊂ L2

β(Ω) be with square integrable gradient, equipped

with the standard H1(Ω)-norm and H1
π(Ω) ⊂ H1(Ω) is composed of functions with periodic boundary

conditions. Using the sesquilinear forms

a(u, v) :=

∫
Ω
α(∇+ ik)u · (∇− ik)v̄ dx and b(u, v) :=

∫
Ω
βuv̄ dx,

problem (2.9) is equivalent to finding a non-trivial eigenpair (λ, u) ∈ (R, H1
π(Ω)) for k ∈ B such that{

a(u, v) = λb(u, v), for all v ∈ H1
π(Ω)

∥u∥L2
β(Ω) = 1.

(2.10)

2.2 Regularity of band functions in the parameter domain

The regularity of band functions plays a crucial role in the convergence analysis. We have the following
result taken from [34]. Here, Lip(B) denotes the space of Lipschitz continuous functions in the IBZ B
and Å(B) the space of piecewise analytic functions with singular point set of zero Lebesgue measure.

Theorem 2.1. For 2D periodic PhCs, ωn(k) ∈ Lip(B) ∩ Å(B) for all n ∈ N+: each band function
ωn(k) is analytic in B\S, where S ⊂ B consists of the origin and points of degeneracy (i.e., the set of
points at which certain band functions intersect, with zero Lebesgue measure).
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Remark 2.1. Note that the singularity at k = 0 differs from that of others. The latter are known as
branch points while the former arises from the composition g ◦λ with g(x) :=

√
x. The derivative of the

first band function ω1(k) = c ·
√

λ1(k), which takes the value 0 at the origin, fail to be defined at k = 0.
To remove the effect of this singularity, we approximate λj(k) for j = 1, · · · , L − 1 with 1 < L ∈ N,
instead.

3 hp-adaptive sampling algorithm in the parameter domain

Due to the presence of singularities, the convergence of numerical methods based on global or fixed-order
local polynomial interpolation on uniform meshes may be slow. To optimally deal with singular points
of band functions in PhCs, we propose a novel efficient numerical algorithm using an hp-adaptive
interpolation method. It is inspired by the celebrated hp FEM [2, 1], and employs nonuniformly
distributed polynomial degrees over graded, nonuniform meshes to discretize the problem. We shall
design an hp interpolation strategy based on an element-wise quantity in order to approximate the first
L− 1 band functions for 1 < L ∈ N.

3.1 Adaptive mesh generation

We first recall the concept of a regular mesh without hanging nodes [27]. Let D ⊂ R2 be a polygon with
straight sides. A mesh T = {Ti}Mi=1 is a partition of D into open disjoint triangles Ti with D = ∪Mi=1Ti.
For each T ∈ T , we denote by hT its diameter and ρT the diameter of the largest inscribed ball.

Definition 3.1. A mesh T = {Ti}Mi=1 is said to be a regular mesh without hanging nodes if the following
conditions hold. (i) For i ̸= j, Ti ∩ Tj is either empty or it consists of a vertex or an entire edge of Ti

and (ii) There exists a constant C > 0 such that hT ≤ CρT .

We shall develop a strategy to generate a family of nested regular triangular meshes Tn, n = 1, 2, · · · ,
based on an element-wise quantity (3.1) and a criterion for refinement (3.2). We need several notations
for the mesh Tn. The mesh size of Tn is denoted by hn := maxT∈Tn hT . The collection of all faces and
vertices over Tn is denoted by Fn and Vn, respectively. For any T ∈ Tn, FT := ∂T ∩ Fn denotes its
faces, and F j

T for j = 1, 2, 3 the jth face, VT := ∂T ∩ Vn its vertices, and V j
T for j = 1, 2, 3 the jth

vertex. For any F ∈ Fn, TF := ∪{T ∈ Tn : F ∈ FT } denotes the collection of elements having F as an
edge. Finally, Pm(T ) is the space of polynomial functions of degrees at most m ∈ N+ on element T ,
and Pm(F ) the space of polynomial functions of degrees at most m ∈ N+ on each face F ∈ Fn.

Since each band function is a piecewise analytic function of the wave vector, with singular points
at branch points and the origin, the mesh design strategy should identify elements in which adjacent
bands are in close proximity, and then refine them suitably to minimize the impact of singularities on
the approximation. To this end, we employ an element-wise indicator that is based on the distance
between two adjacent band functions

η(T ) := min
1≤q≤L−1

∥ωq − ωq+1∥∞,VT
for T ∈ Tn. (3.1)

That is, it uses the adjacent values on the vertices of each triangle element to ascertain the regularity
of the band functions within each element. Furthermore, we introduce an element-wise tolerance

tol1(T ) = κhT max
1≤q≤L

∥∇ωq∥∞,T\S, (3.2)

where S is the set of singular points and κ ≥ 2
√
2 is a constant. The band function ωq(k) and the group

velocity ∇ωq(k) used in η(T ) and tol1(T ) are computed using the conforming Galerkin FEM, cf. (2.10)
and (3.9).
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Give a mesh Tn, the collection of marked elements is

Mn := ∪{T ∈ Tn : η(T ) ≤ tol1(T )} . (3.3)

We employ the iterated newest vertex bisection (NVB) [11] to refine the elements in Mn. It involves
repeatedly bisecting the longest edge of the marked element and inserting a new vertex at the midpoint
until the desired level of refinement is achieved. Then the resulting mesh is sufficiently refined in areas
where the singularities may impact the approximation accuracy.

Iterated NVB preserves the mesh regularity during refinement [32]. However, to achieve a set of
regular meshes without any hanging nodes, it is often necessary to refine certain elements beyond the
initial refinement. Thus, the number of elements to be refined, denoted as #Tn+1 −#Tn, is typically
larger than the number of marked elements #Mn. Nonetheless, the cumulative number of elements
added in this manner does not inflate the total number of marked elements [4, Theorem 2.4].

Theorem 3.1. Let T1 be a regular mesh in the sense of Definition 3.1. For n ≥ 1 let {Tn}n≥1 be any
sequence of the refinement of T1, where Tn+1 is a regular mesh generated from Tn by the iterated NVB
with a subset of the marked elementsMn ⊂ Tn. Then there exists a constant C solely depending on T1
such that

#Tn −#T1 ≤ C

n−1∑
i=1

#Mi, ∀n ≥ 1. (3.4)

We give the proposed mesh refinement procedure in Algorithm 1. The parameters tol2 and nmax

denote the smallest allowed element size and the maximum number of iterations, respectively.

Algorithm 1 Adaptive mesh refinement

Require: initial mesh T1, tolerance tol2, and maximum loop number nmax

Ensure: Tn
n← 1
while n ≤ nmax do

SetMn = ∅
for T ∈ Tn do

if η(T ) ≤ tol1(T ) and hT ≥ tol2 then
Mn =Mn ∪ {T}

end if
end for
Refine the collection of marked elementsMn by iterated NVB and adjust the mesh until there

are no hanging nodes.
n← n+ 1

end while

3.2 Reliability of Algorithm 1

For the mesh Tn at the nth iteration, let

T R
n := ∪{T ∈ Tn : T ∩ S = ∅} and T S

n := Tn\T R
n

be a partition of the mesh Tn based on the singular point set S. The next result guarantees that
Algorithm 1 refines all the elements in T S

n at the next iteration.

Theorem 3.2 (T S
n ⊂ Mn). Algorithm 1 with the element-wise quantity (3.1) and the tolerance (3.2)

guarantees that all elements containing branch points are marked for refinement.
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Proof. The proof relies on piecewise analyticity and Lipschitz continuity of band functions. Let Tn be
a regular mesh generated by Algorithm 1 for n = 1, · · · . For any band function ω(k) and any element
T ∈ T R

n , by the mean value theorem, we obtain

max
k∈T,k̂∈VT

|ω(k)− ω(k̂)| ≤
√
2hT · ∥∇ω∥∞,T . (3.5)

If T ∈ T S
n , then the first derivative of band functions may be discontinuous on singular points. The

singular points on the line segment connecting k and k̂ divide the segment into several small intervals.
By applying the mean value theorem on each subinterval, we obtain

max
k∈T,k̂∈VT

|ω(k)− ω(k̂)| ≤
√
2hT · ∥∇ω∥∞,T\S. (3.6)

Note that T /∈Mn implies any two adjacent band functions ωp(k) and ωp+1(k) for 1 ≤ p < L−1 satisfy

min
k̂∈VT

|ωp(k̂)− ωp+1(k̂)| > tol1(T ) = κhT · max
1≤q≤L

∥∇ωq∥∞,T\S.

By the triangle inequality, this further implies for any k̂ ∈ VT and k ∈ T ,

tol1(T ) < |ωp(k̂)− ωp+1(k̂)|

≤ |ωp(k̂)− ωp(k)|+ |ωp(k)− ωp+1(k)|+ |ωp+1(k)− ωp+1(k̂)|.

This, together with (3.5) and (3.6), leads to

min
k∈T
|ωp(k)− ωp+1(k)| > (κ− 2

√
2)hT · max

1≤q≤L
∥∇ωq∥∞,T\S ≥ 0. (3.7)

That is, there is no branch points in T and T /∈ T S
n . Hence, we have proved that T /∈ T S

n if T /∈ Mn,
or equivalently T S

n ⊂Mn.

Computing the element-wise tolerance tol1(T ) (3.2) is impractical since it involves estimating ∥∇ω(k)∥∞
for all k ∈ T\S. However, numerical experiments have shown that the slope of the first several band
functions (a.k.a. group velocity) does not exhibit high oscillations. Hermann et al [13] showed that in
the first three bands, higher bands have low values of the group velocity and all of them are curves
without significant fluctuations. Therefore, as a substitute for tol1(T ), we use a feasible tolerance

t̂ol1(T ) := κhT max
1≤q≤L

∥∇ωq∥∞,VT \S. (3.8)

Computing t̂ol1(T ) only requires the band function and its partial derivative over the vertices. Moreover,
the group velocity can be derived directly from the following expression [34]

∂ω

∂ki
=

2kimα(u, u) +mαi(u, u)

2ω
, (3.9)

where the bilinear forms mαi(·, ·) and mα(·, ·) are defined as

mαi(u, v) =

∫
Ω
iα

(
u
∂v̄

∂xi
− v̄

∂u

∂xi

)
dx, i = 1, 2 and mα(u, v) =

∫
Ω
αuv̄ dx.
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3.3 Conforming finite element space

Let {Tn}∞n=1 be a sequence of nested regular triangular meshes generated by Algorithm 1. We shall
construct an element-wise polynomial space for the mesh Tn. We first define the layer of an element
T ∈ Tn given by Algorithm 1.

Definition 3.2. The layer ℓT of an element T ∈ Tn is ℓT := n− r, where 0 ≤ r ≤ n− 1 is the number
of refinements that have been performed on this element in Algorithm 1.

Note that the layer ℓT of an element T ∈ Tn implies the local regularity of the eigenfunction λj(k)
for j = 1, · · · , L−1. Since the singular points fall into the marked elementMn, we employ polynomials
of lower degrees for the local interpolation in Mn. Note also that the first band function vanishes at
the origin, and is non-negative, sharing the symmetry of the lattice. This leads to the expression of
(ω1(k))

2 similar to an elliptic cone. More precisely, since (ω1(k))
2 is analytic at k = 0 if ω1(0) ̸= ω2(0),

its Taylor expansion at the origin is

(ω1(k))
2 = (ω1(k1, k2))

2 =
∞∑
i=1

i∑
j=0

aij (k1)
2j (k2)

2i−2j ,

with some aij ∈ R for i ∈ N and j = 0, · · · , i. Hence λ1(k) = (ω1(k)c
−1)2 is quadratic near the origin,

and we use polynomials of minimal degree 2 to interpolate eigenvalues over the marked elementsMn.
These observations motivate the following definition of the element-wise space of polynomials. The
notation ⌈·⌉ denotes the ceiling function.

Definition 3.3. For any element T ∈ Tn, we take PnT (T ) as the local interpolation space, with nT :=
max {2, ⌈µℓT ⌉} if T /∈ Mn, and nT := 2 otherwise, where the parameter µ > 0 is determined in (5.9)
in Section 5 andMn is the collection of marked elements (3.3).

In this way, each element T is assigned a total degree nT . However, neighboring elements may have
different degrees on the common face. Suitable constraints are required to ensure the inter-element
continuity, for which it is essential to associate with each face in the mesh a face degree.

Definition 3.4 (Facewise space of polynomial functions). Let PmF (F ) be the local interpolation space
over F for F ∈ Fn with mF := minT∈TF {nT }. This implies maxF∈FT

{mF } ≤ nT , for all T ∈ Tn.

Finally, on a given mesh Tn with element-wise and facewise degrees {nT }T∈Tn and {mF }F∈Fn , we
define the conforming FEM space

Vn := {v ∈ C(B) : v|T ∈ PnT (T ) and v|F ∈ PmF (F ), ∀T ∈ Tn and F ∈ Fn} , (3.10)

which is a space of continuous piecewise polynomial functions on B. Let N be its dimension. We aim at
approximating the eigenvalues λ, for j = 1, · · · , L− 1, over Vn by element-wise Lagrange interpolation.

4 Element-wise interpolation over the adaptive mesh

We develop Lagrange interpolation over each element T ∈ Tn. For each element, we first map its closure
T into the reference equilateral triangle T̂ = {z := (x, y) : 0 ≤ y ≤ (1 + x)

√
3,−1 ≤ x ≤ 0 or 0 ≤ y ≤

(1−x)
√
3, 0 ≤ x ≤ 1} and then derive Lagrange interpolation on T̂ . The vertices of T̂ are ẑ1 = (−1, 0),

ẑ2 = (1, 0) and ẑ3 = (0,
√
3), with the face opposite to ẑi denoted by F̂ i. For any {m,m1,m2,m3} ∈ N4

+

with m ≥ mi for i = 1, 2, 3, (3.10) implies that the local space of polynomial functions over T̂ is

P̂ := {v ∈ Pm(T̂ ) : v|F̂ i ∈ Pmi(F̂
i)}. (4.1)

Note that P̂ ⊂ Pm(T̂ ) and P̂ ⊊ Pm(T̂ ) if mi < m for some i = 1, 2, 3. Note also that the dimension
of Pm(T̂ ) is dim(Pm(T̂ )) = (m + 1)(m + 2)/2, and the dimension of P̂ is dim(P̂ ) = dim(Pm(T̂ )) −∑3

i=1(m−mi) = 3 +
(
(m1 − 1) + (m2 − 1) + (m3 − 1)

)
+ (m− 2)(m− 1)/2.
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4.1 Basis functions in the local polynomial space P̂

We construct a set of basis functions for the local polynomial space P̂ , following [27]. We divide the basis
functions into external and internal shape functions according to whether they vanish over the boundary
∂T̂ , and then divide the external shape functions further into nodal and side ones. The definition of
nodal, side and internal shape functions is standard in the community of p-version and hp-adaptive
FEMs, and it enables defining conforming FEM spaces with nonuniform degrees of polynomials over
the mesh. We focus on developing an element-wise interpolation, and these shape functions play a role
when formulating a special local polynomial space P̂ , which facilitates the definition of the element-wise
interpolation in Section 4.2.

First, there are three nodal shape functions on T̂ :

N1
1 = (1− x− y/

√
3)/2, N1

2 = (1 + x− y/
√
3)/2 and N1

3 = y/
√
3. (4.2)

Note that for i = 1, 2, 3, we have N1
i (ẑi) = 1 and N1

i (z) = 0 for z ∈ F̂ i. Second, there are mi − 1 side
shape functions over F̂ i, i = 1, 2, 3, defined by

Nmi,j
i = N1

i+1N
1
i+2Φj−2(N

1
i+2 −N1

i+1), (4.3)

with Φj−2(x) being a polynomial of degree j− 2 for j = 2, · · · ,mi, with the convention N1
j+3 = N1

j and

ẑj+3 = ẑj for j = 1, 2, 3. Note that supp(Nmi,j
i ) is the interior of F̂ i and T̂ . Then the set of external

shape functions is given by

E(m1,m2,m3)
m (T̂ ) :=

{
N1

j , N
mj ,i
j : 1 ≤ j ≤ 3 and 2 ≤ i ≤ mj

}
.

By construction, the number of external basis functions is 3 +
(
(m1 − 1) + (m2 − 1) + (m3 − 1)

)
.

Next, we construct a set of internal basis functions that vanish over ∂T̂ . Let bT̂ := N1
1N

1
2N

1
3 be the

basic bubble function on the reference element T̂ that vanishes over the edge ∂T̂ . Then the internal
polynomial space Im(T̂ ) is defined by

Im(T̂ ) := span{bT̂ v|v ∈ Pm−3(T̂ )} for m ≥ 3. (4.4)

The dimension of Im(T̂ ) is m̂ := (m− 1)(m− 2)/2. Let one set of basis functions be denoted as

{N̊i : i = 1, · · · , m̂}. (4.5)

4.2 Local interpolation based on Lagrange polynomials

Now following [24], we construct a suitable interpolation operator Π : C(T̂ )→ P̂ , such that{
Πf
∣∣
F̂ i ∈ Pmi(F̂

i) for i = 1, 2, 3,

Πf ∈ P̂ ,
∀f ∈ C(T̂ ).

It consists of the external interpolation E and internal interpolation I.
The external interpolation E is an interpolation operator over Fekete points along each face. Since

the boundary points of Fekete points are the one-dimensional Gauss-Lobatto points [10], we get the
Gauss-Lobatto interpolation along each face F̂ i for i = 1, 2, 3. Next, we extend the polynomial Ef to
the domain Ω, and denote the extension by E(Ef). With the shape functions in Section 4.1, we can
combine two procedures to obtain E(Ef). Specifically, we use the nodal and side shape functions to
perform external interpolation along each face on Fekete points. For example, for F̂ i with i = 1, 2, 3, the
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nodal shape functions are N1
i+1 and N1

i+2, and we combine them with the (mi− 1) side shape functions

to obtain the interpolation on this face F̂ i:

Ef |F̂ i =

 mi∑
j=2

ci,jN
mi,j
i + f(ẑi+1)N

1
i+1 + f(ẑi+2)N

1
i+2

∣∣∣∣∣
F̂ i

, (4.6)

where the coefficients {ci,j}mi
j=2 are to be determined such that Ef |F̂ i interpolates the mith order Fekete

points on the face F̂ i.
The extension E(Ef) of Ef is then given by

E(Ef) =
3∑

i=1

mi∑
j=2

ci,jN
mi,j
i +

3∑
i=1

f(ẑi)N
1
i . (4.7)

One can easily verify that E(Ef)
∣∣
F̂ i = Ef

∣∣
F̂ i for i = 1, 2, 3.

Third, we define the internal interpolation operator I : C(T̂ )→ Im(T̂ ) that interpolates the Fekete
points {z∗j}m̂j=1, using the set of internal basis functions {N̊i : i = 1, · · · , m̂} (4.5):

{z∗j}m̂j=1 := arg max
{z1,z2,··· ,zm̂}⊂T̂

det(V (z1, z2, · · · , zm̂)). (4.8)

Here, V (z1, z2, · · · , zm̂) ∈ Rm̂×m̂ has entries Vij = N̊j(zi) for i, j = 1, · · · , m̂. Since N̊i vanishes on ∂T̂
for i = 1, · · · , m̂, {z∗j}m̂j=1 ⊂ T̂\∂T̂ . For any f ∈ C(T̂ ), the internal interpolation If is then given by

If =
m̂∑
i=1

aiN̊i s.t. If(z
∗
j ) = f(z∗j ) for all j = 1, · · · , m̂. (4.9)

Since the internal shape functions vanish along all three faces, If |∂T̂ = 0 for all f ∈ C(T̂ ).

Finally, we can define local interpolation operator for any function f ∈ C(T̂ ) by,

Πf := E(Ef) + I(f −E(Ef)). (4.10)

By construction, we can derive the following properties of Π.

Proposition 4.1. The element-wise interpolation Π : C(T̂ )→ P̂ satisfies the following properties. (i)
Πp = p, for all p ∈ P̂ ; (ii) Πf

∣∣
F̂ i = Ef ∈ Pmi(F̂

i) is the Lagrange interpolation on Fekete points along

the face F̂ i, for i = 1, 2, 3.

4.3 Element-wise interpolation

For a given mesh Tn, we define the operator ΠTn : C(B)→ Vn by applying Π to each element T ∈ Tn:

ΠTnf
∣∣
T
:= (Π(f ◦MT )) ◦M−1

T , ∀T ∈ Tn, (4.11)

where the affine transformation MT := AT z+b (AT ∈ R2×2 is invertible and b ∈ R2) maps the reference
triangle T̂ to the ”physical” element T̄ .

Now we can give the following algorithm for approximating band functions. By sequentially gener-
ating the adaptive mesh and the polynomial degree required for each element and each face, we can then
use the interpolation formula (4.11) to adaptively interpolate λj and then generate the corresponding
band function ωj for j = 1, 2, · · · , L− 1.
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Algorithm 2 hp-adaptive sampling algorithm

Require: Tn: an adaptive mesh from Algorithm 1;
{ℓT }T∈Tn : layer of each element defined in Definition 3.2;
µ: a positive parameter defined in Definition 3.3 satisfying condition (5.9) to be introduced;

Ensure: ωj , j = 1, 2, · · · , L− 1
Choose the element-wise degree {nT }T∈Tn by Definition 3.3;
Choose the facewise degree {mF }F∈Fn by Definition 3.4;
Compute the local interpolation Πλj by (4.10);
Compute the global interpolation ΠTnλj by (4.11);
ωj = c ·

√
λj , j = 1, 2, · · · , L− 1.

Now we compare the computational complexity of Algorithm 2 with the global polynomial interpo-
lation method [34] (ignoring their accuracy and computational cost of the adaptive mesh refinement in
Algorithm 1). Let Tn and Vn be the adaptive mesh generated by Algorithm 1 and conforming FEM
space (3.10), and let N be the dimension of Vn, i.e., the number of sampling points. Suppose we use
the same number N of sampling points for both methods, and the computational complexity in solving
the Helmholtz eigenvalue problem is the same. The main difference in the complexity arises from the
Lagrange interpolation. To compute N Lagrange polynomial functions using the classical Gauss elimi-
nation method involves O(N3) flops. In contrast, Algorithm 2 is based on element-wise interpolation,
which has much lower computational complexity. Let the number of sampling points of each element
T ∈ Tn be NT . Then the local Lagrange interpolation involves O(N3

T ) flops. Since there is no com-
munication among each element, local Lagrange interpolation over each element can be performed in
parallel. Hence, the total computational complexity is maxT∈Tn O(N3

T ) flops.

5 Convergence analysis

We establish in this section exponential and algebraic convergence of Algorithm 2 in Theorems 5.5 and
5.6 when the number of iterations n → ∞ in Algorithm 1, resting upon whether the number of cross-
ings is finite or not. This indicates that Algorithm 2 outperforms the global polynomial interpolation
methods [34] with a convergence rate that is at least twice as fast. To establish Theorems 5.5 and 5.6,
we first derive the approximation property of the local polynomial interpolation operator Π in Theorem
5.3. Then we formulate the element-wise approximation property of ΠTn in Theorem 5.4 and propose
a proper assumption on the slope parameter µ (5.9) such that the approximation error in the marked
element patchMn dominates.

5.1 Local approximation property

Now we establish the approximation property of the local interpolation operator Π. Recall that for any
{m,m1,m2,m3} ∈ N4

+ with m ≥ mi for i = 1, 2, 3, the local space P̂ is defined by (4.1). First, we give
the stability of the external interpolation and internal interpolation.

Theorem 5.1. Let E and I be the external interpolation and the internal interpolation defined by (4.6)
and (4.9), respectively. Then the following stability estimates hold

∥Ef∥∞,F̂ i ≲ logmi∥f∥∞,F̂ i , ∀f ∈ C(F̂ i), (5.1)

∥If∥∞,T̂ ≤ m̂∥f∥∞,T̂ , ∀f ∈ C(T̂ ). (5.2)

Proof. Note that the Lebesgue constant of Gauss-Lobatto points in an interval (cf. [29]) is O(logmi)
and that of Fekete points in a triangle (cf. [30]) has an upper bound m̂. Then the desired result
follows.
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Next, we derive the stability of the extension E. To this end, we first introduce an inverse inequality
for algebraic polynomials,

Lemma 5.1 (Inverse estimate of Markov type [35]). For all m ∈ N and p ∈ Pm(T̂ ), there holds

∥∇p∥∞,T̂ ≤ 2m2∥p∥∞,T̂ .

Theorem 5.2. For each p ∈ C(∂T̂ ) with p|F̂ i ∈ Pmi(F̂
i) for all i = 1, 2, 3, the extension E defined in

(4.7) satisfies
∥E(p)∥∞,T̂ +m−2∥∇E(p)∥∞,T̂ ≲ ∥p∥∞,∂T̂ . (5.3)

Moreover, the extension map E : p 7→ E(p) is a bounded linear operator.

Proof. Since Lemma 5.1 implies m−2∥∇E(p)∥∞,T̂ ≤ 2∥E(p)∥∞,T̂ , it suffices to prove ∥E(p)∥∞,T̂ ≲

∥p∥∞,∂T̂ . We may assume p vanishes at all vertices and all sides but one, e.g., the third face F̂ 3 =

{(x, 0) : −1 ≤ x ≤ 1}. Then E(p) can be written in the form E(p) =
∑m3

i=2 c3,iN
m3,i
3 , where the

unknown coefficients {c3,i}m3
i=2 are to be determined such that

E(p) = p on F̂ 3. (5.4)

Since N1
2 −N1

1 = x, after plugging into (4.3), we obtain

E(p) =

m3∑
i=2

c3,iN
1
1N

1
2x

i−2 = N1
1N

1
2

m3∑
i=2

c3,ix
i−2.

Together with (4.2) and (5.4), this leads to

max
(x,y)∈T̂

|E(p)| = max
(x,y)∈T̂

∣∣∣∣∣N1
1N

1
2

m3∑
i=2

c3,ix
i−2

∣∣∣∣∣
= max

0≤x≤1,0≤y≤
√
3(1−x)

−1≤x≤0,0≤y≤
√
3(1+x)

1

4

(
1− x− y/

√
3
)(

1 + x− y/
√
3
) ∣∣∣∣∣

m3∑
i=2

c3,ix
i−2

∣∣∣∣∣
≤ max

−1≤x≤1

1

4
(1− x2)

∣∣∣∣∣
m3∑
i=2

c3,ix
i−2

∣∣∣∣∣ = max
(x,y)∈F̂ 3

|p|.

This proves the desired result.

Finally, we can state the following quasi-optimal approximation property of Π.

Theorem 5.3. For every m ∈ N+, the interpolation operator Π : C(T̂ )→ P̂ satisfies

∥f −Πf∥∞,T̂ ≲ Cstab(m) inf
p∈P̂
∥f − p∥∞,T̂ with Cstab(m) := m logm.

Proof. The stability of E and E in (5.1) and (5.3) gives the stability of EE : C(∂T̂ )→ C(T̂ ):

∥E(Ef)∥∞,T̂ ≲ ∥Ef∥∞,∂T̂ ≲ logm∥f∥∞,∂T̂ . (5.5)

Together with the stability estimate of I (5.2), it leads to

∥Πf∥∞,T̂ ≤ ∥E(Ef)∥∞,T̂ + ∥I(f −E(Ef))∥∞,T̂

≲ logm∥f∥∞,∂T̂ +m∥f −E(Ef)∥∞,T̂

≤ logm∥f∥∞,∂T̂ +m(∥f∥∞,T̂ + ∥E(Ef)∥∞,T̂ ).
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In view of (5.3) and (5.5), we obtain

∥Πf∥∞,T̂ ≲ logm∥f∥∞,∂T̂ +m∥f∥∞,T̂ +m logm∥f∥∞,∂T̂ ≲ m logm∥f∥∞,T̂ .

Note that Πp = p for all p ∈ P̂ , consequently, we arrive at

∥f −Πf∥∞,T̂ = ∥(f − p)−Π(f − p)∥∞,T̂ ≲ m logm∥f − p∥∞,T̂ .

Taking the infimum over all p ∈ P̂ leads to the desired assertion.

Furthermore, we can derive the best approximation in P̂ in uniform norm.

Lemma 5.2 (Best approximation in P̂ ). For all integer 0 ≤ j ≤ min(m1,m2,m3) and all f ∈
W j+1,∞(T̂ ), there exists a bounded constant Cbpa independent of j and hT̂ such that

inf
p∈P̂
∥f − p∥∞,T̂ ≤ Cbpa

(
hT̂

j + 1

)j+1

|f |W j+1,∞(T̂ ), (5.6)

where | · |Wk,∞(D) is the W k,∞(D) semi-norm.

Proof. Recall the following well-known result [5, Equation (5.4.16)]: for all k ≥ 0, there holds

inf
p∈Pk(T̂ )

∥f − p∥∞,T̂ ≤ Cbpa

(
hT̂

k + 1

)k+1

|f |Wk+1,∞(T̂ ), ∀f ∈W k+1,∞(T̂ ).

By choosing k := min(m1,m2,m3) and noting Pk(T̂ ) ⊂ P̂ , we establish the lemma.

Remark 5.1 (Boundedness of the constant Cbpa). Note that the best approximation error infp∈Pk(T̂ ) ∥f−
p∥∞,T̂ can be bounded by the product of the so-called Whitney constant and the modulus of smoothness

of order k+1 of a function f ∈ C(T̂ ), and note also that the upper bound of the modulus of smoothness

is given by
(

hT̂
k+1

)k+1
|f |Wk+1,∞(T̂ ) for f ∈W k+1,∞(T̂ ) [17, Equation (2.4)]. Furthermore, the Whitney

constant is proved to be bounded [21, 28, 8, 12, 19]. Consequently, the constant Cbpa is bounded.

5.2 Global approximation error

Now we analyze the convergence of Algorithm 2. The following two lemmas are standard.

Lemma 5.3 ([6, Theorem 3.1.2]). Suppose f ∈ W k,∞(T ) for k ∈ N and some element T ∈ Tn. Then
f̂ := f ◦MT belongs to W k,∞(T̂ ), and there exists a constant C(k) depending on k such that

|f̂ |Wk,∞(T̂ ) ≤ C(k)∥AT ∥k|f |Wk,∞(T ),

|f |Wk,∞(T ) ≤ C(k)∥A−1
T ∥

k|f̂ |Wk,∞(T̂ ),

where AT is the matrix in the mapping MT .

The next result gives bounds on ∥AT ∥ and ∥A−1
T ∥.

Lemma 5.4 ([6, Theorem 3.1.3]). There holds ∥AT ∥ ≤ hTρ
−1

T̂
and ∥A−1

T ∥ ≤ hT̂ρ
−1
T .

Next, we establish the element-wise approximation property of the global projection ΠTn .
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Theorem 5.4 (Element-wise approximation property of ΠTn). Let n ∈ N be sufficiently large. Let Tn
with element-wise and facewise degrees {nT }T∈Tn and {mF }F∈Fn be generated by Algorithm 1, Defini-
tions 3.3 and 3.4 and let the hp approximation space be given by (3.10). Then for j = 1, · · · , L − 1,
there holds

∥λj −ΠTnλj∥∞,T ≲ CbpahT |λj |W 1,∞(T ), for T ∈Mn (5.7)

∥λj −ΠTnλj∥∞,T ≲ Cstab(nT )CbpaC(ñ)

(√
3hT
ñ

)ñ

|λj |W ñ,∞(T ), for T ∈ Tn\Mn, (5.8)

where Cstab(nT ) := nT log nT , C(ñ) is the constant in Lemma 5.3 and ñ = min(mF 1
T
,mF 2

T
,mF 3

T
) + 1.

Furthermore, if the slope parameter µ satisfies the following condition

ln
(
Cstab(µℓT )C(nT + 1)C

⌈µℓT+1⌉
λj ,T

)
+ ⌈µℓT + 1⌉

(
ln
√
3 + F (ℓT )− ln ⌈µℓT + 1⌉

)
≲ ln (Cmax) + F (1)

(5.9)
for all T ∈ Tn\Mn, then

max
T∈Tn\Mn

∥λj −ΠTnλj∥∞,T ≲ min
T∈Mn

∥λj −ΠTnλj∥∞,T .

Here, Cmax := maxT∈Mn |λj |W 1,∞(T ), C
ñ
λj ,T

:= |λj |W ñ,∞(T ), and F (ℓ) := lnh1 − n−ℓ
2 ln 2 with h1 being

the initial mesh size.

Proof. By the definition of the element-wise interpolation (4.11), we obtain

∥λj −ΠTnλj∥∞,T =
∥∥(λj ◦MT −Π(λj ◦MT )) ◦M−1

T

∥∥
∞,T

, ∀T ∈ Tn.

Let λ̂j := λj ◦MT . Then we derive

∥λj −ΠTnλj∥∞,T =
∥∥∥λ̂j −Πλ̂j

∥∥∥
∞,T̂

.

Together with Theorem 5.3, we derive

∥λj −ΠTnλj∥∞,T ≲ Cstab(nT ) inf
p∈P̂
∥λ̂j − p∥∞,T̂ . (5.10)

Now the proof of the theorem consists of three steps. First, if T ∈ Mn, then λj ∈ W 1,∞(T ) and

λ̂j ∈ W 1,∞(T̂ ). Moreover, by Definition (3.3), we have nT = 2. Thus, Cstab(nT ) ≤ 3. By Lemma 5.2,
we derive

inf
p∈P̂
∥λ̂j − p∥∞,T̂ ≤ CbpahT̂ |λ̂j |W 1,∞(T̂ ).

Then combining with Lemmas 5.3 and 5.4, this further leads to

∥λj −ΠTnλj∥∞,T ≲ CbpahT̂ |λ̂j |W 1,∞(T̂ ) ≲ CbpahT |λj |W 1,∞(T ).

This proves the assertion (5.7). Second, if T ∈ Tn\Mn, then λ̂j := λj ◦MT ∈W ñ,∞(T ), and (5.10) and
Lemma 5.2 yield

inf
p∈P̂
∥λ̂j − p∥∞,T̂ ≤ Cbpa(hT̂ /ñ)

ñ|λ̂j |W ñ,∞(T̂ ).

Together with Lemmas 5.3 and 5.4 and noting
hT̂
ρT̂

=
√
3, we obtain

∥λj −ΠTnλj∥∞,T ≲ Cstab(nT )Cbpa(hT̂ /ñ)
ñ|λ̂j |W ñ,∞(T̂ )

≤ Cstab(nT )CbpaC(ñ)(hT̂ /ñ)
ñ(hTρ

−1

T̂
)ñ|λj |W ñ,∞(T )

= Cstab(nT )CbpaC(ñ)(
√
3hT /ñ)

ñ|λj |W ñ,∞(T ).
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This proves the assertion (5.8). Finally, we prove the last statement that if the slope parameter µ
satisfies (5.9), then for all elements T ∈ T R

n with nT = ⌈µℓT ⌉, the right-hand side of (5.8) is no greater
than the right-hand side of (5.7) for some element in Mn. Definition 3.4 implies nT ≥ mF i

T
, for

i = 1, 2, 3, for all T ∈ Tn\Mn. Moreover, if mF i
T
≤ nT , there exists T̃ ∈ FF such that mF i

T
= nT̃ . This

motivates setting ñ = nT + 1 in (5.8) when analyzing the choice of µ. Algorithm 1 and Definition 3.2
indicate the diameters of elements satisfy hT ∼ h12

−(n−ℓT )/2. Thus, ignoring all the absolute constants,
the right hand side of (5.8) becomes

Cstab(nT )CbpaC(nT + 1)(
√
3h12

−(n−ℓT )/2/(nT + 1))nT+1|λj |WnT+1,∞(T ), (5.11)

and the right-hand side of (5.7) is

Cbpah12
−(n−1)/2|λj |W 1,∞(T ). (5.12)

Then the condition (5.9) implies the maximum value of (5.12) for all T ∈Mn is bounded above by the
minimum value of (5.12) for all T ∈ Tn\Mn, and this completes the proof.

Remark 5.2. Note that the constant Cbpa is bounded, cf Remark 5.1. Assume that hT and hñT dominate
the right-hand sides of (5.7) and (5.8) respectively, with a small enough initial mesh size, µ = 1 or
µ = 0.5 is sufficient for (5.9). Then the point with the largest error lies in Mn, as is numerically
verified.

Next we discuss the approximation error under the assumption that the maximum error exists in
some element belonging toMn. Since the mesh Tn generated by the procedure is geometrically refined
towards branch points with n layers, we derive a convergence rate according to the classification of
branch points.

First, if the band functions we consider have a finite number of branch points, then the number of
elements #Tn = O(n) when n is sufficiently large, leading to the number of sampling points N = O(n3).
See Figure 4 for an illustration, in which the left two figures are the mesh refinement in case of a finite
number of branch points in the IBZ of the square lattice. In this case, we derive an exponential
convergence rate,

Theorem 5.5 (Convergence rate for hp element-wise interpolation with finite branch points). Let
n ∈ N be sufficiently large. Let Tn with element-wise and facewise degrees {nT }T∈Tn and {mF }F∈Fn be
generated by Algorithm 1, Definitions 3.3 and 3.4, the hp approximation space be defined in (3.10), and
the slope parameter µ satisfy (5.9). If the band functions we consider have a finite number of branch
points, then there holds

∥λj −ΠTnλj∥∞,B ≲ exp(−bN
1
3 )|λj |W 1,∞(B) for j = 1, · · · , L− 1.

Here, the constant b > 0 is independent of the number of sampling points N .

Proof. Theorem 3.2 indicates that the set of singular points S as a subset of the branch points is marked
at the nth iteration, i.e., S ⊂ Mn. Algorithm 1 implies that the diameter of each element T ∈ Mn

satisfies hT ∼ 2−n/2 for all T ∈Mn. The choice of µ (i.e., the minimum value satisfying (5.9)) ensures
that the element-wise interpolation error measured in the uniform norm attains its maximum overMn.
This and Theorem 5.4 imply

∥λj −ΠTnλj∥∞,B ≲ 2−n/2|λj |W 1,∞(B) for j = 1, · · · , L− 1. (5.13)

Since the number of sampling points N = O(n3) for sufficiently large n, the desired assertion follows.
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Next we discuss the convergence rate when the number of branch points is infinite; see Figure 4 for
an illustration of the mesh refinement. Asymptotically, we have the number of elements #Tn = O(2

n
2 )

and the number of sampling points N ∼ 2
n
2 . Similarly, we derive the following convergence rate for hp

element-wise interpolation with infinite branch points.

Theorem 5.6. Under the conditions of Theorem 5.5, if the number of branch points is infinite, then

∥λj −ΠTnλj∥∞,B ≲ N−1|λj |W 1,∞(B) for j = 1, · · · , L− 1.

Remark 5.3. With n ∈ N sufficiently large, the approximation error of the band function is given by

∥ωj − c ·
√
ΠTnλj∥∞,B = c2 ·

∥∥∥∥∥ λj −ΠTnλj

ωj + c ·
√

ΠTnλj

∥∥∥∥∥
∞,B

≤ c·
∥λj −ΠTnλj∥∞,B

2
√
λj(k̃)−

√
err

,

where k̃ = argmaxk∈B |ωj(k)− c ·
√
ΠTnλj(k)| and err = ∥λj −ΠTnλj∥∞,B.

Thus, the decay rates of ∥ωj − c ·
√
ΠTnλj∥∞,B and ∥λj −ΠTnλj∥∞,B are roughly of the same order.

(a) One singular point
1
a
(π
3
, π
3
)

(b) Two singular points
1
a
(π
3
, π
3
) and 1

a
( 2π

3
, π
3
)

(c) One singular line k2 =
k1

(d) Two singular lines k2 =
k1 and k2 + k1 +

π
a
= 0 with

2
a
≤ k1 ≤ 3

a

Figure 4: Algorithm 1 with finite (the first two) and infinite (the last two) singularities.

Remark 5.4. Theorems 5.5 and 5.6 hold asymptotically when the number of iterations n is sufficiently
large. In practice, the largest allowed iteration nmax of Algorithm 1 is not large. Then the number N of
sampling points is N = O(2

n
θ ) with θ > 2, which leads to a faster convergence rate. Indeed, we observe

a second-order convergence rate in numerical experiments.

Last, we discuss the tolerance tol2 and stopping criterion nmax in Algorithm 1. By (5.13), we have

∥λj −ΠTnλj∥∞,B ≲ 2−n/2|λj |W 1,∞(B) for j = 1, · · · , L− 1.

Thus, tol2 and nmax should satisfy 2−nmax/2 ≃ tol2 ≃ ϵ, i.e., comparable with the target precision ϵ.

6 Numerical experiments

To show the performance of Algorithm 2, we consider 2D PhCs with a square unit cell in Figure 2 and
a hexagonal unit cell in Figure 3 as in [34]. Given k ∈ B, we solve the Helmholtz eigenvalue problem
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(2.10) using the conforming Galerkin FEM. Due to the high contrast between the relative permittivity
of the circular medium and the external one, we employ a fitted mesh generated by distmesh2d [25];
see Figures 5(a) and 5(b) for the mesh Th with a mesh size h = 0.025a for square lattice and h = 0.05a
for hexagonal lattice. The associated conforming piecewise affine space is given by

Vh = {vh ∈ C(Ω) : vh|K ∈ P1(K) ∀K ∈ Th }.

Given k ∈ B, the Galerkin FEM approximation to problem (2.10) is to find non-trivial eigenpair
(λh, uh) ∈ (R, Vh) such that {

a(uh, vh) = λhb(uh, vh), ∀v ∈ Vh,

∥uh∥L2
β(Ω) = 1.

(6.1)

(a) Square lattice #DOFs=2107 (b) Hexagonal lattice #DOFs=1781

Figure 5: Discretization of the unit cell Ω by distmesh2d.

In both cases, IBZ is a triangle. To obtain the reference solution with sufficient accuracy, we
discretize B with 20503 evenly distributed points (denoted by B̂) to compute the interpolation error
and the accuracy of the proposed method. The pointwise relative error is then computed on B̂ by

ei(k) :=
|ωi(k)− ω̂i(k)|

ωi(k)
for k ∈ B̂ and i = 1, · · · , 5.

Here, ωi(k) is the ith reference band function obtained directly by the Galerkin FEM over B̂ using the
same mesh on the unit cell Ω, and ω̂i(k) is by the element-wise polynomial interpolation. Since the first
few low-frequency band functions are typically of practical interest [16], we show the performance of
the numerical scheme using only the first five band functions. We measure the accuracy of the methods
using maximum relative error

error∞ := max
i=1,··· ,5

max
k∈B̂
|ei(k)| .

Figure 6 shows the location of singularities in the band functions with the distance between adjacent
band functions. The areas where adjacent band functions are close or coincident are indicated in dark
blue. These regions are targeted by Algorithm 1, allowing to detect the locations of singularities.

6.1 Numerical tests with square lattice in Figure 2

We first test Algorithm 2 on the square lattice with the TE mode and compare the performance of GPI
with Fekete points and Chebyshev points of the second kind (Cheb2).

We present in Figure 7 the decay of error∞ against N on a log-log scale of Algorithm 2 with
κ ∈ {1, 2, 2

√
2, 3, 4} and µ ∈ {1, 0.5} as suggested in Remark 5.2. The performance of GPI with Fekete
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(a) Square lattice TE mode (b) Hexagonal lattice TE mode

Figure 6: Locations with distance between two adjacent band functions below 0.01 are marked blue.
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Figure 7: Maximum relative error with respect to the number of sampling points.

points and Cheb2 are also provided to facilitate comparison. Since Fekete points for polynomial spaces
with (total) degrees higher than 18 are still unknown [30], GPI with Fekete points is restricted to
N ≤ 190. We observe that Algorithm 2 outperforms GPI for all cases. Furthermore, an algebraic
convergence rate between first order and second order is observed for any parameters of κ and µ.

Figure 8 displays the adaptive meshes generated by Algorithm 1 with κ = 2
√
2 and κ = 2, respec-

tively. Comparing with Figure 6(a), one observes that Algorithm 1 adaptively refines the elements with
crossings. Note that larger κ indicates more elements being marked and refined in each loop. The initial
mesh has little effect on the resulting adaptive mesh since meshes overlap in the first several loops.

Figures 9 and 10 display the pointwise relative error ei(k) of approximating the first five band
functions under κ = 2

√
2 and κ = 2 and µ = 1 and µ = 0.5. Due to a lack of information about the

seventh band function, we are unable to determine the positions of all the singular points of the sixth
band function. Therefore, the error analysis only takes into account the first five band functions, even
though we interpolate the first six band functions. From Figures 9(a) and 10(a), one observes that
with µ = 1 (i.e., the total polynomial degree on each element is consistent with its layer), the pointwise
relative error ei(k) dominates in the singular element patch T S

n with n = 8. This confirms Theorem
3.2, and (5.9). However, for a smaller slope parameter µ = 0.5, the pointwise relative error ei(k) in
Figures 9(b) and 10(b) can take large values in the regular element patch T R

n with n = 8, indicating
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(a) loop 2 (b) loop 4 (c) loop 6 (d) loop 8

(e) loop 2 (f) loop 4 (g) loop 6 (h) loop 8

Figure 8: Algorithm 1 with κ = 2
√
2 (the top row) and κ = 2 (the bottom row).
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(a) loop 8
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(b) loop 8

Figure 9: κ = 2
√
2: pointwise relative error ei(k) under µ = 1 (left), µ = 0.5 (right).

that the condition (5.9) fails.
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(a) loop 8
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(b) loop 8

Figure 10: κ = 2: pointwise relative error ei(k) under µ = 1 (left), µ = 0.5 (right).
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6.2 Numerical tests with hexagonal lattice in Figure 3

Now we study 2D PhCs with infinite periodic hexagonal lattice, cf. Figure 3. The unit cell of the PhC
is composed of six cylinders of dielectric material with dielectric constant ϵ = 8.9 embedded in the air
and the lattice vectors a1 = a

4 (e1 +
√
3e2) and a2 = a

4 (e1 −
√
3e2) with lattice constant a = 3R, R is

the length of hexagon edges and r = 1
3R is the radius of cylinders. We observe similar results as before.

Figure 11 shows the log-log plot of error∞ against N . The adaptive mesh generated by Algorithm 1
and pointwise relative errors ei(k) with κ = 2, 2

√
2, µ = 0.5, 1 are displayed in Figures 12, 13, 14,

demonstrating the efficiency and reliability of Algorithm 2.
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Figure 11: Maximum relative error with respect to the number of sampling points.

(a) loop 2 (b) loop 4 (c) loop 6 (d) loop 8

(e) loop 2 (f) loop 4 (g) loop 6 (h) loop 8

Figure 12: Algorithm 1 with κ = 2
√
2 (the top row) and κ = 2 (the bottom row).

7 Conclusion

In this work, we have presented an hp-adaptive sampling algorithm that can accurately approximate the
band functions for two-dimensional photonic crystals. In the algorithm, we first generate an adaptive
mesh that can refine elements containing singular points, and then assign proper polynomial degrees
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(a) loop 8 (b) loop 8

Figure 13: κ = 2
√
2: pointwise relative error ei(k) under µ = 1 (left), µ = 0.5 (right).

(a) loop 8 (b) loop 8

Figure 14: κ = 2: pointwise relative error ei(k) under µ = 1 (left), µ = 0.5 (right).

to each element based on its level. Additionally, we assign proper polynomial degrees to each edge to
ensure a continuous global polynomial space. Finally, we develop an element-wise interpolation scheme
using the global polynomial space to approximate band functions. We proved a first-order convergence
rate in the worst-case scenario and presented several numerical tests to verify its performance. One
interesting future research question is about approximating three-dimensional band functions, which
is highly nontrivial due to a lack of provable local polynomial interpolation method on a tetrahedral
domain. We plan to research on designing an optimal 3D PhCs with a maximum band gap.
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