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Abstract
In this work, we develop a novel efficient quadrature and sparse grid based poly-
nomial interpolation method to price American options with multiple underlying
assets. The approach is based on first formulating the pricing of American options
using dynamic programming, and then employing static sparse grids to interpo-
late the continuation value function at each time step. To achieve high efficiency,
we first transform the domain from Rd to (−1, 1)d via a scaled tanh map, and
then remove the boundary singularity of the resulting multivariate function over
(−1, 1)d by a bubble function and simultaneously, to significantly reduce the
number of interpolation points. We rigorously establish that with a proper choice
of the bubble function, the resulting function has bounded mixed derivatives up
to a certain order, which provides theoretical underpinnings for the use of sparse
grids. Numerical experiments for American arithmetic and geometric basket put
options with the number of underlying assets up to 16 are presented to validate
the effectiveness of our approach.
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1 Introduction
This paper is concerned with American option pricing with payoffs affected by many
underlying instruments, which can be assets such as stocks, bonds, currencies, com-
modities, and indices (e.g., S&P 500, NASDAQ 100) [1, p. 365]. Classical examples
include pricing American max-call and basket options [2–8]. In practice, American
options can be exercised only at discrete dates. The options that can be exercised only
at finite discrete dates are called Bermudan options, named after the geographical
feature of Bermudan Islands (i.e., being located between America and Europe while
much closer to the American seashore) [9]. Merton [10] showed that pricing an Amer-
ican call option on a single asset with no dividend is equivalent to pricing a European
option, and obtained an explicit solution to pricing perpetual American put. However,
except these two cases no closed-form solution is known to price American options
even in the simplest Black Scholes model. Thus it is imperative to develop efficient
numerical methods for American option pricing.

Various numerical methods have been proposed for pricing and hedging in the past
five decades, using different formulations of American option pricing, e.g., an optimal
stopping problem, a variational inequality, or a free boundary problem [11–14]. A
finite difference method (FDM) was proposed to price American options based on
variational inequalities [15], with its convergence proved in [12] by showing that the
C1 regularity of the value function with respect to the underlying price. The binomial
options pricing model (BOPM) based upon optimal time stopping was developed in
[16], and its convergence was shown in [17]. When the number d of underlying assets
is smaller than four, one can extend one-dimensional pricing methods using tensor
product or additional treatment to price multi-asset options. For example, Cox-Ross-
Rubinstein (CRR) binomial tree model can be extended to the multinomial option
pricing model to price American options with two underlying assets [18]. However,
dynamic programming (cf. (3) below) or variational inequalities [19] are predominant
when d is greater than three. Many numerical schemes have been developed based
on the variational inequalities, e.g., FDMs [15, 20, 21] and finite element methods
(FEMs) [5]. However, only the first order convergence rate can be achieved, since the
value function has only C1 regularity with respect to the underlying price (i.e., smooth
pasting condition [22]).

There are mainly two lines of research on American option pricing based on
dynamic programming, i.e., simulation based methods [2, 23, 24] and quadrature and
interpolation (Q&I) based methods [25, 26]. Simulation based methods are fast and
easy to implement, but their accuracy is hard to justify. One representative method
is the least square Monte Carlo method [23], which employs least square regres-
sion and Monte Carlo method to approximate conditional expectations, cf. (3). Q&I
based methods employ quadrature to approximate conditional expectations and inter-
polation to construct function approximators. One can use Gaussian quadrature or
adaptive quadrature to approximate conditional expectations in (3) and Chebyshev
polynomial interpolation, spline interpolation or radial basis functions to reconstruct
the continuation value or the value function [25, 26]. In [27], a dynamic Chebyshev
method via polynomial interpolation of the value functions was developed, allow-
ing the generalized moments evaluation in the offline stage to reduce computational
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complexity. Although Q&I based methods are efficient in low-dimensional settings,
the extensions to high-dimensional cases are highly nontrivial, and there are several
outstanding challenges, e.g., curse of dimensionality, unboundedness of the domain
and the absence of natural boundary conditions. For example, if the domain is trun-
cated and artificial boundary conditions are imposed, then one is actually pricing an
American barrier option with rebate instead of the American option itself. Accurate
boundary conditions can be obtained by pricing a (d − 1)-dimensional problem [6],
which, however, is still computationally challenging.

The sparse grids technique has been widely used in option pricing with multiple
underlying assets, due to its capability to approximate high-dimensional functions
with bounded mixed derivatives, for which the computational complexity for a given
accuracy does not grow exponentially with respect to d [28]. It has been applied to
price multi-asset European and path-dependent Asian options, by formulating them
as a high-dimensional integration problem [29–31], and also combined with the FDMs
[7] and FEMs [32] to price options with d ≤ 5. In the context of Q&I methods,
adaptive sparse grids interpolation with local linear hierarchical basis have been used
to approximate value functions [8].

In this work, we propose a novel numerical approach to price American options
under multiple underlying assets, which is summarized in Algorithm 1. It crucially
draws on the C∞ regularity of the continuation value function, cf. (4), and uses sparse
grid Chebyshev polynomial interpolation to alleviate the curse of dimensionality. This
is achieved in several crucial steps. First, we transform the unbounded domain Rd into
a bounded one, which eliminates the need of imposing artificial boundary conditions.
Second, to further improve the computational efficiency, using a suitable bubble func-
tion, we obtain a function that can be continuously extended to the boundary with
vanishing boundary values and with bounded mixed derivatives up to certain orders,
which is rigorously justified in Theorem 1. This construction enables the use of the
standard sparse grid technique with much fewer sparse grids (without adaptivity),
and moreover, the interpolation functions fulfill the requisite regularity conditions,
thereby admitting theoretical convergence guarantees. The distinct features of the
proposed method include using static sparse grids at all time steps and allowing deriv-
ing the value function on the whole domain Rd, and thus can also be used to estimate
important parameters, e.g., hedge ratio.

Extensive numerical experiments demonstrate that Algorithm 1 can break the
curse of dimensionality in the sense that high accuracy is achieved with involved
computational complexity being almost independent of the dimension. We show both
numerically and theoretically the robustness of Algorithm 1, and numerically we
observe that this algorithm can be combined with any kind of quadrature schemes.
Up to our best knowledge, there is no accurate reference solutions for American arith-
metic basket put options beyond six underlying assets. Consequently, our numerical
results up to d = 12 in this case make more accurate reference solutions available
and thus can promote the research on higher dimensions substantially. To demon-
strate the accuracy of our algorithm, we calcuate the price of American geometric
basket put options up to d = 16. In both cases, we consistently observe high accuracy
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of Algorithm 1, with almost no influence from the dimension. To sum up, our pro-
posed algorithm significantly improves over the state-of-the-art pricing schemes for
American options with multiple underlying assets and in the meanwhile has rigorous
theoretical guarantee.

The remainder of our paper is structured as follows. In Section 2, we derive the
continuation value function fk(x) for an American basket put option with underly-
ing assets following the correlated geometric Brownian motion under the risk-neutral
probability. In Section 3, we develop the novel method. In Section 4, we establish
the smoothness of the interpolation function in the space of functions with bounded
mixed derivatives. In Section 5, we present extensive numerical tests for American
basket options with up to 16 underlying assets. Finally, we conclude with future work
in Section 6.

2 The mathematical model
Martinagle pricing theory gives the fair price of an American option as the
solution to the optimal stopping problem in the risk-neutral probability space
(Ω,F , (Ft)0≤t≤T ,Q):

V (t) = sup
τt∈[t,T ]

E[e−r(τt−t)g(S(τt))|Ft], (1)

where τt is a Ft-stopping time, T is the expiration date, (S(t))0≤t≤T , is a collection of
d-dimensional price processes, and g(·) is the payoff function depending on the type
of the option. The payoffs of put and call options take the following form g(S) =
max(κ − Ψ(S), 0) and g(S) = max(Ψ(S) − κ, 0), respectively, where Ψ : Rd

+ → R+,
and κ is the strike price.

Now we describe a detailed mathematical model for pricing an American put option
on d underlying assets with a strike price κ and a maturity date T , whose numeri-
cal approximation is the main objective of this work. One classical high-dimensional
example is pricing American basket options. Let g : Rd

+ → R+ be its payoff function,
and assume that the prices of the underlying assets S(t) = [S1(t), . . . , Sd(t)]⊤ follow
the correlated geometric Brownian motions

dSi(t) = (r − δi)S
i(t) dt+ σiS

i(t) dW̃ i(t) with Si(0) = Si
0, i = 1, 2, . . . , d, (2)

where W̃ i(t) are correlated Q-Brownian motions with E[dW̃ i(t)dW̃ j(t)] = ρij dt, ρii =
1 for i, j = 1, 2, . . . , d, and r, δi and σi are the riskless interest rate, dividend yields,
and volatility parameters, respectively. The payoffs of an arithmetic and a geometric
basket put are respectively given by

g(S) = max

(
κ− 1

d

d∑
i=1

Si, 0

)
and g(S) = max

κ−

(
d∏

i=1

Si

)1/d

, 0

 .
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In practice, the F0-stopping time τ0 is assumed to be taken in a set of discrete
time steps, T0,T := {tk = k∆t : k = 0, 1, . . . ,K}, with ∆t = T/K. This leads to the
pricing of a K-times exercisable Bermudan option that satisfies the following dynamic
programming problem

VK(s) = g(s),

Vk(s) = max
(
g(s),E[e−r∆tVk+1(Sk+1)|Sk = s]

)
for k ≤ K − 1,

(3)

where Vk is called the value function at time tk and Sk := S(tk) is the discretized
price processes. Throughout, for a stochastic process X(t), we write Xk := X(tk),
k = 0, 1, . . . ,K. Note that by the Markov property of Itô process, we can substitute
the conditional expectation conditioning on Ftk to Sk. The conditional expectation
as a function of prices is called the continuation value function, i.e.,

Ck(s) = E[e−r∆tVk+1(S(tk+1))|S(tk) = s] for k = 0, 1, . . . ,K − 1. (4)

Below we recast problem (3) in terms of the continuation value function

CK−1(s) = E
[
e−r∆tg(SK)|SK−1 = s

]
,

Ck(s) = E
[
e−r∆t max (g(Sk+1), Ck+1(Sk+1)) |Sk = s

]
for k ≤ K − 2.

(5)

Given an approximation to C0(s), the price of Bermudan option can be obtained by

V0(S0) = max(g(S0), C0(S0)). (6)

The reformulation in terms of Ck is crucial to the development of the numerical
scheme.

Next we introduce the rotated log-price, which has independent components with
Gaussian densities. We denote the correlation matrix as P = (ρij)d×d, the volatility
matrix Σ as a diagonal matrix with volatility σi on the diagonal, and write the dividend
yields as a vector δ = [δ1, . . . , δd]

⊤. Then the log-price X(t) with each component
defined by Xi(t) := ln(Si(t)/Si

0) follows a multivariate Gaussian distribution

X(t) ∼ N
((

r − δ − 1

2
Σ21

)
t,ΣPΣ⊤t

)
,

with 1 := [1, 1, . . . , 1]⊤ ∈ Rd. The covariance matrix ΣPΣ⊤ admits the spectral
decomposition ΣPΣ⊤ = Q⊤ΛQ. Then the rotated log-price X̃(t) := Q⊤X(t) follows
an independent Gaussian distribution

X̃(t) ∼ N
(
Q⊤

(
r − δ − 1

2
Σ21

)
t,Λt

)
.

Therefore, to eliminate the correlation, we introduce the transformation

X̃(t) := Q⊤ ln(S(t)./S0),
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and denote the inverse transformation by

ϕ(X̃(t)) := S(t) = S0. ∗ exp(QX̃(t)),

where ./ and .∗ represent component-wise division and multiplication.
Finally, by defining fk(x) := Ck(ϕ(x)) as the continuation value function with

respect to the rotated log-price for x ∈ Rd, we obtain the following dynamic
programming procedure

fK−1(x) = E
[
e−r∆tg(ϕ(X̃K))

∣∣∣X̃K−1 = x
]
,

fk(x) = E
[
e−r∆t max

(
g(ϕ(X̃k+1)), fk+1(X̃k+1)

) ∣∣∣X̃k = x
]

for k ≤ K − 2.
(7)

The main objective of this work is to develop an efficient numerical method for solving
problem (7) with a large number of dimension d. The detailed construction is given
in Section 3.

3 Methodologies
In this section, we systematically develop a novel algorithm, based on quadrature and
sparse grids polynomial interpolation (SGPI) [33] to solve problem (7) so that highly
accurate results can be obtained for moderately large dimensions. This is achieved as
follows. First, we propose a mapping ψ (8) that transforms the domain from Rd to
Ω := (−1, 1)d, and obtain problem (10) with the unknown function Fk defined over
the hypercube Ω in Section 3.1. The mapping ψ enables utilizing identical sparse grids
for all time stepping k = K−1 : −1 : 0, which greatly facilitates the computation, and
moreover, it avoids domain truncation and artificial boundary data when applying
SGPI, which eliminates extra approximation errors. However, the partial derivatives
of Fk may have boundary singularities, leading to low-efficiency of SGPI. To resolve
this issue, we multiply Fk with a bubble function (11), and derive problem (12) with
unknown functions uk defined over the hypercube Ω. Second, we present the SGPI
of the unknown uk in Section 3.2. Third and last, we provide several candidates
for quadrature rules and summarize the algorithm in Section 3.3, and analyze its
complexity.

3.1 Mapping for unbounded domains and bubble functions
A direct application of the SGPI to problem (7) is generally involved since the problem
is formulated on Rd. For d = 1, quadrature and interpolation-based schemes can be
applied to problem (7) with domain truncation and suitable boundary conditions, e.g.,
payoff function. However, for d ≥ 2, the exact boundary conditions of the truncated
domain requires solving (d − 1)-dimensional American option pricing problems [6].
Therefore, the unboundedness of the domain Rd and the absence of natural boundary
conditions pose great challenges to develop direct yet efficient interpolation for the
continuation value function fk, and there is an imperative need to develop a new
approach to overcome these challenges.
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Inspired by spectral methods on unbounded domains [34], we propose the use of
the logarithmic transformation ψ : Rd → Ω := (−1, 1)d, defined by{

Z = ψ(X̃) with each component Zi := tanh(LX̃i) ∈ (−1, 1),

X̃ = ψ−1(Z) with each component X̃i := L−1 arctanh(Zi) ∈ R,
(8)

where L > 0 is a scale parameter controlling the slope of the mapping. The logarithmic
mapping ψ is employed since the transformed points decay exponentially as they tend
to infinity. Asymptotically the exponential decay rate matches that of the Gaussian
distribution of the rotated log-price X̃(t). Then by Itô’s lemma, the new stochastic
process Z(t) = [Z1(t), . . . , Zd(t)]⊤ satisfies the stochastic differential equations

dZi(t) = L
(
1− (Zi(t))2

) (
(µi − λiLZ

i(t)) dt+
√
λi dW

i(t)
)

for i = 1, . . . , d, (9)

where µ = [µ1, . . . , µd]
⊤ = Q⊤ (r − δ − 1

2Σ
21
)
, λi are diagonal elements of Λ, and

W i(t) are independent standard Brownian motions. Note that the drift and diffusion
terms in (9) vanish on the boundary ∂Ω. Thus, (9) fulfills the reversion condition [35],
which implies Z(t) ∈ Ω for t > s provided Z(s) ∈ Ω.

Then we apply the mapping ψ to the dynamic programming procedure (7). Let
Fk(z) := fk(ψ

−1(z)) = Ck

(
ϕ(ψ−1(z))

)
be the continuation value function of the

bounded variable z. Then problem (7) can be rewritten as, for any z ∈ Ω,

FK−1(z) = E
[
e−r∆tg

(
ϕ(ψ−1(ZK))

) ∣∣ZK−1 = z
]
,

Fk(z) = E
[
e−r∆t max

(
g
(
ϕ(ψ−1(Zk+1))

)
, Fk+1(Zk+1)

) ∣∣Zk = z
]
, k ≤ K − 2.

(10)

Below we denote by H(·) := g
(
ϕ(ψ−1(·))

)
the payoff function with respect to the

bounded variable z.
Note that problem (10) is posed on the bounded domain Ω := (−1, 1)d, d ≥ 1,

which however remains challenging to approximate. First, the function Fk : Ω → R
may have singularities on the boundary ∂Ω due to the use of the mapping ψ. Second,
the Dirichlet boundary condition of Fk is not identically zero, which is undesirable
for controlling the computational complexity of the algorithm, especially in high
dimensions. Thus, we employ a bubble function of the form

b(z) =

d∏
i=1

(1− z2i )
β , z ∈ Ω := [−1, 1]d, (11)

where the parameter β > 0 controls the shape of b(z). Note that b(z) > 0 for z ∈ Ω
and b(z) = 0 on ∂Ω. Let

uk(z) := Fk(z)b(z), k = 0, . . . ,K − 1.
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Then the dynamic programming problem (10) is equivalent to

uK−1(z) = E
[
e−r∆tH(ZK)|ZK−1 = z

]
b(z),

uk(z) = E
[
e−r∆t max

(
H(Zk+1),

uk+1(Zk+1)

b(Zk+1)

) ∣∣∣∣Zk = z

]
b(z), k ≤ K − 2.

(12)

Remark 1 The term uk+1(Zk+1)
b(Zk+1)

appearing in (12) is well-defined for Zk+1 ∈ Ω. Neverthe-
less, since the bubble function b(z) approaches zero as z → ∂Ω, in the numerical experiments,
one should guarantee that b(·) evaluated on the computational grid will be greater than the
machine epsilon, e.g., ε = 2.2204×10−16 in MATLAB. This will be established in Proposition
1.

3.2 Approximation by sparse grids polynomial interpolation
(SGPI)

Next, we apply SGPI [33] to approximate the zero extension uk : Ω → R of uk
iteratively backward in time. By choosing suitable bubble functions b(z), we shall
prove in Theorem 1 below the smoothness property of uk up to order r. Thus SGPI
achieves a geometrical convergence rate with respect to the number of interpola-
tion points Ñ , which depends only on the dimension d in a logarithm term, i.e.
O(Ñ−r(log Ñ)(r+1)(d−1)) as stated in Proposition 2. Moreover, since uk vanishes over
the boundary, then the required number of interpolation data is greatly reduced.

SGPI [33] (also called Smolyak approximation) is a powerful tool for constructing
function approximations over a high-dimensional hypercube. Consider a function f :
Ω → R. For d = 1, we denote by Xℓ = {xℓ1, . . . , xℓNℓ

} the set of nested Chebyshev-
Gauss-Lobatto (CGL) points, with the nodes xℓj given by

xℓj =

{
0 for j = 1 if ℓ = 1,

cos( (j−1)π
Nℓ−1 ) for j = 1, . . . , Nℓ if ℓ ≥ 2.

The cardinality of the set Xℓ is

Nℓ =

{
1 if ℓ = 1,

2ℓ−1 + 1 if ℓ ≥ 2.

The polynomial interpolation U ℓf of f over the set Xℓ is defined as follows. For ℓ = 1,
consider the midpoint rule, i.e., (U1f)(x) = f(0). For ℓ ≥ 2, U ℓf is given by

(U ℓf)(x) =

Nℓ∑
j=1

f(xℓj)L
ℓ
j(x), with Lℓ

j(x) =

Nℓ∏
k=1,k ̸=j

x− xk
xj − xk

,
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where Lℓ
j are Lagrange basis polynomials. Then we define the difference operator

∆ℓf = (U ℓ − U ℓ−1)f with U0f = 0.

For d > 1, Smolyak’s formula approximates a function f : Ω → R by the
interpolation operator

A(q, d) =
∑

ℓ∈I(q,d)

∆ℓ1 ⊗ · · · ⊗∆ℓd ,

with the index set I(q, d) := {ℓ ∈ Nd : |ℓ| ≤ q} and |ℓ| = ℓ1+· · ·+ℓd [33]. Equivalently,
the linear operator A(q, d) can be represented as [36, Lemma 1]

A(q, d) =
∑

ℓ∈P (q,d)

(−1)q−|ℓ|
(
d− 1

q − |ℓ|

)
U ℓ1 ⊗ · · · ⊗ U ℓd , (13)

with the index set P (q, d) := {ℓ ∈ Nd : q− d+1 ≤ |ℓ| ≤ q}, where the tensor product
of the univariate interpolation operators is defined by

(U ℓ1 ⊗ · · · ⊗ U ℓd)(f) =

Nℓ1∑
j1=1

· · ·
Nℓd∑
jd=1

f(xℓ1j1 , . . . , x
ℓd
jd
)(Lℓ1

j1
⊗ · · · ⊗ Lℓd

jd
),

i.e., multivariate Lagrange interpolation. With the set Xℓi (i.e., one-dimensional
nested CGL points), the formula (13) indicates that computing A(q, d)(f) only
requires function evaluations on the sparse grids

H(q, d) =
⋃

ℓ∈P (q,d)

Xℓ1 × · · · ×Xℓd .

We denote the cardinality of H(q, d) by ÑCGL(q, d). Usually, the interpolation level
LI ∈ N0 is defined by

LI := q − d.

Then for fixed LI and d→ ∞, the following asymptotic estimate of ÑCGL(LI + d, d)
holds [37]

ÑCGL(LI + d, d) ≈ 2LI

LI !
dLI . (14)

The sparse grid has much fewer grid points than the full grid generated by the
tensor product. Furthermore, in high-dimensional hypercube, a significant amount of
sparse grids lie on the boundary. We will compare the number of CGL sparse grids
ÑCGL(LI + d, d) and the number of inner sparse grids N in Section 3.3. Note that
for all inner sparse grids {zn}Nn=1 of the interpolation level LI , each coordinate znj
satisfies

− cos
( π

2ℓj−1

)
≤ znj ≤ cos

( π

2ℓj−1

)
, (15)

where ℓ1 + · · ·+ ℓd ≤ LI + d.
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3.3 Numerical algorithm
We interpolate the function uk : Ω → R on CGL sparse grids in the dynamic pro-
gramming (12), where the interpolation data can be formulated as high-dimensional
integrals. Since uk(z) = 0 for z ∈ ∂Ω, only function evaluations on the inner sparse
grids are required. This greatly reduces the computational complexity, especially for
large d. Indeed, since X̃k+1 = X̃k +Y with Y ∼ N (Q⊤(r − δ − 1

2Σ
21)∆t,Λ∆t),

Zk+1 = ψ(ψ−1(Zk) +Y). (16)

For a fixed interpolation knot z ∈ Ω, we denote

vzk+1(Y) = max
(
H
(
ψ(ψ−1(z) +Y)

)
,
uk+1

b

(
ψ(ψ−1(z) +Y)

))
, (17)

and the probability density of Y as ρ(y) =
∏d

i=1 ρi(yi). Following (12), the
interpolation data uk(z) is given by

uk(z) = e−r∆tE[vzk+1(Y)]b(z) = e−r∆tb(z)

∫
Rd

vzk+1(y)ρ(y) dy,

where the last integral can be computed by any high-dimensional quadrature methods,
e.g., Monte Carlo (MC), quasi-Monte Carlo (QMC) method, or sparse grid quadrature.

1. The Monte Carlo method approximates the integral by averaging random
samples of the integrand

∫
Rd

vzk+1(y)ρ(y) dy ≈ 1

M

M∑
m=1

vzk+1(y
m), (18)

where {ym}Mm=1 are independent and identically distributed (i.i.d.) random samples
drawn from the distribution ρ(y).

2. The Quasi-Monte Carlo method takes the same form as (18), but {ym}Mm=1

are the transformation of QMC points. By changing variables x = Φ(y) with Φ
being the cumulative density function (CDF) of Y, we have∫

Rd

vzk+1(y)ρ(y) dy =

∫
[0,1]d

vzk+1

(
Φ−1(x)

)
dx

≈ 1

M

M∑
m=1

vzk+1

(
Φ−1(xm)

)
=

1

M

M∑
m=1

vzk+1(y
m), (19)

where {xm}Mm=1 are QMC points taken from a low-discrepancy sequence, e.g.,
Sobol sequence and sequences generated by the lattice rule. Note that other
transformations Φ are also available for designing QMC approximation [38].

3. The Sparse grid quadrature approximates the integral based on a combination
of tensor products of univariate quadrature rule. For the integration with Gaussian
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measure, several types of sparse grids are available, including Gauss-Hermite, Genz-
Keister, and weighted Leja points [39]. Let (ωm,y

m)Mm=1 be quadrature weights
and points associated with an anisotropic Gaussian distribution of Y. Then the
integral is computed by

∫
Rd

vzk+1(y)ρ(y) dy ≈
M∑

m=1

ωmv
z
k+1(y

m). (20)

By employing the transformation between the asset price S and the bounded
variable z, the sparse grid interpolation points and the quadrature points are shown
in Fig. 1.

-1 -0.5 0 0.5 1
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-0.5

0

0.5

1
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0 50 100 150 200 250

0

50

100

150

200

250

(b)
Fig. 1 A schematic illustration of interpolation and quadrature points in d = 2; (a) in the domain
of the mapped bounded variable z; (b) in the domain of the price of underlying assets S.

Now we can describe the procedure of iteratively interpolating the function uk in
Algorithm 1.

Followed by the Remark 1, the next result gives a sufficient condition on the
well-definedness of the algorithm.

Proposition 1 Let ε be the machine epsilon. Assume that each coordinate ymj of the sampling
or quadrature points {ym}Mm=1 of the random variable Y ∼ N (Q⊤(r − δ − 1

2Σ
21)∆t,Λ∆t)

satisfies
max

m=1,2,...,M
|ymj | ≤ C

√
λj∆t, (21)

where λj is the j-th diagonal element of Λ, and C is a constant. If β = 1 and LI , L and ∆t
are chosen such that

4LI+d

π2d
exp

(
2CL

√
∆t

d∑
j=1

√
λj

)
≤ 1

ε
,
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Algorithm 1 Pricing American option with d assets
Input: Market parameters: S0, r, δi, σi, P

Option parameters: κ, T , option type
Transform and discretization parameters: L,K,LI

Output: Option price V0
1: Generate CGL sparse grids in Ω
2: Find grids in Ω, which are denoted by {zn}Nn=1

3: Generate quadrature points {ym}Mm=1 and weights {wm}Mm=1 with Gaussian
density N (Q⊤(r − δ − 1

2Σ
21)∆t,Λ∆t)

Dynamic programming:
4: Compute the payoff Hn,m = H(ψ(ψ−1(zn) + ym))
5: Set the terminal value as Vn,m = Hn,m

6: for k = K − 1 : −1 : 0 do
7: u(zn) = α

∑M
m=1 wmVn,mb(z

n) where α = e−r∆t is the discount factor
8: if k == 0 then
9: u0 = A(LI + d, d)(u)(0), break

10: end if
11: un,m = A(LI + d, d)(u)

(
ψ(ψ−1(zn) + ym)

)
▷ Compute in parallel

12: Update Vn,m = max
(
Hn,m, un,m/b(ψ(ψ

−1(zn) + ym))
)

13: end for
14: V0 = max

(
H(0), u0

b(0)

)

then for all sampling or quadrature points Zn,m
k+1 of Zk+1, n = 1, 2, . . . , N,m = 1, 2, . . . ,M ,

we have
b(Zn,m

k+1) > ε.

Proof Using (16), we have Zn,m
k+1 = ψ(ψ−1(zn) + ym), where {zn}Nn=1 are inner sparse grid

interpolation points and {ym}Mm=1 are sampling or quadrature points of Y. Thus the j-th
coordinate of Zn,m

k+1 is given by

Zn,m,j
k+1 = 1− 2

1 + ηn,mj

, with ηn,mj :=
1 + znj
1− znj

exp(2Lymj ).

For β = 1, to ensure b(z) =
∏d

j=1(1 − z2j ) > ε, it suffices to prove
∏d

j=1(1 − |zj |) > ε.
Without loss of generality, consider the case Zn,m,j

k+1 → 1, i.e., ηn,mj → +∞. Clearly, we have

d∏
j=1

(1− Zn,m,j
k+1 ) =

d∏
j=1

2

1 + ηn,mj

> ε ⇔
d∏

j=1

(
1 + ηn,mj

)
<

2d

ε
.

Noting that ηn,mj → +∞, the binomial expansion implies that it suffices to have
∏d

j=1 η
n,m
j <

ε−1. Using the relationship
1 + cos x

1− cosx
=

1

tan2 x
2

≤ 4

x2
as x→ 0+,

12



d Ñfull ÑCGL N

2 961 145 81
3 29791 441 151
4 923521 1105 241
5 2.8629e+7 2433 351
6 8.8750e+8 4865 481
7 2.7513e+10 9017 631
8 8.5289e+11 15713 801
9 2.6440e+13 26017 991
10 8.1963e+14 41265 1201

2 4 6 8 10
10

0

10
5

10
10

10
15

Fig. 2 The number of tensor-product full grids Ñfull, the number of Chebyshev-Gauss-Lobatto
sparse grids ÑCGL, and the number of inner sparse grids N in the d-dimensional hypercube with
level LI = 5.

the inequality (15), and the assumption (21), we obtain

d∏
j=1

(
1 + znj
1− znj

exp(2Lymj )

)
≤

d∏
j=1

1 + cos
(

π

2ℓj−1

)
1− cos

(
π

2ℓj−1

) exp(2CL
√
λj∆t)

≤
(

4

π2

)d

4
∑d

j=1 ℓj−d exp

2CL
√
∆t

d∑
j=1

√
λj

 .

Since
∑d

j=1 ℓi ≤ LI + d, this proves the desired assertion. □

Last, we discuss the computational complexity of Algorithm 1. By introducing the
bubble function, the interpolation functions uk vanish over the boundary. Thus, at
each time step, we require N evaluations of uk only on the inner sparse grids, where
each evaluation is approximated by (18), (19) or (20) with M sampling or quadrature
points. The numbers of inner sparse grids N of level LI = 5 in dimension d are listed
in Table 2. In comparison, the numbers for tensor-product full grids Ñfull and CGL
sparse grids with boundary points ÑCGL are also provided. Unlike full grids, the
number of sparse grids does not increase exponentially as the dimension increases.
Remarkably, the inner sparse grids account for below 3% of the CGL sparse grids in
d = 10. This represents a dramatic reduction of the evaluation points.

4 Smoothness analysis
In this section, we analyze the smoothness of the function uk, in order to justify
the use of SGPI, thereby providing solid theoretical underpinnings of its excellent
performance.

First we list several useful notations. Let α = (α1, . . . , αd) ∈ Nd
0 be the standard

multi-index with |α| = α1 + · · · + αd. Then α + γ := (α1 + γ1, . . . , αd + γd), α! :=∏d
j=1 αj !, and γ ⪯ α denotes that each component of the multi-index γ = (γ1, . . . , γd)

13



satisfies γj ≤ αj . We define the differential operator Dα by Dαf := ∂|α|f∏d
j=1 ∂x

αj
j

. For

an open set D ⊂ Rd and r ∈ N, the space Cr(D) denotes the space of functions with
their derivatives of orders up to r being continuous on the closure D of D, i.e.,

Cr(D) = {f : D → R | Dαf continuous if |α| ≤ r}.

Specially, Cr(Rd) consists of functions f ∈ Cr(Rd) such that Dαf is bounded and uni-
formly continuous on Rd for all |α| ≤ r [40]. We also define C∞(Rd) as the intersection
of all Cr(Rd) for r ∈ N, i.e., C∞(Rd) :=

⋂∞
r=1 Cr(Rd).

The analysis of SGPI employs the space of functions on Ω := [−1, 1]d with bounded
mixed derivatives [28]. Let F r

d (Ω) be the set of all functions f : Ω → R such that Dαf
is continuous for all α ∈ Nd

0 with αi ≤ r for all i, i.e.,

F r
d (Ω) := {f : Ω → R | Dαf continuous if αi ≤ r for all i}. (22)

We equip the space F r
d (Ω) with the norm ∥f∥F r

d (Ω) := max{∥Dαf∥L∞(Ω) | α ∈
Nd

0, αi ≤ r}.
For the sake of completeness, we present in Proposition 2 the interpolation error

using SGPI described in Section 3.2.

Proposition 2 ([33, Theorem 8, Remark 9]) For f ∈ F r
d (Ω), there exists a constant cd,r

depending only on d and r such that

∥A(q, d)(f)− f∥L∞(Ω) ≤ cd,r · Ñ−r · (log Ñ)(r+1)(d−1)∥f∥F r
d (Ω),

where Ñ = ÑCGL(q, d) is the number of CGL sparse grids.

To provide theoretical guarantees of applying SGPI, we next prove uk ∈ F r
d (Ω) in

Theorem 1. This result follows by Lemma 1 1 and Lemma 2.

Lemma 1 (fK−1 ∈ C∞(Rd)) Let g be the payoff of a put option. Then the continuation value
function fK−1 defined in (7) is infinitely differentiable, bounded and uniformly continuous
with all its derivatives up to order r for any r ∈ N, i.e., fK−1 ∈ C∞(Rd).

Proof Consider the conditional expectation without the discount factor e−r∆t,

f(x) = E[G(X̃K)|X̃K−1 = x] =

∫
Rd
G(y)p(x,y) dy, (23)

1Intuitively, C∞(Rd) smoothness of fK−1 follows directly by the fact that convolution smooths out the
payoff function due to (23). However, the payoff function G of the rotated log-price is not in L1(Rd), neither
is the density function compactly supported. Therefore, we supplement its proof in Lemma 1 mainly by
means of the dominated convergence theorem.

14



where G(·) = g(ϕ(·)) is the payoff with respect to the rotated log-price, and p(x,y) is the
density of the Gaussian distribution N (x+Q⊤(r − δ − 1

2Σ
21)∆t,Λ∆t), that is,

p(x,y) =
1

(2π)d/2
√

det(Λ)∆t
exp

(
− 1

2∆t
(y − x− µ)⊤Λ−1(y − x− µ)

)
(24)

with µ = Q⊤(r−δ− 1
2Σ

21)∆t. Since g is the payoff of a put option, G is bounded in Rd. Let

P (x) :=
1

(2π)d/2
√

det(Λ)∆t
exp

(
− 1

2∆t
(x+ µ)⊤Λ−1(x+ µ)

)
.

Then P ∈ L1(Rd) with ∥P∥1 =
∫
Rd P (x) dx = 1. The representation (23) is equivalent to

f(x) = G ∗ P (x),

where ∗ denotes the convolution operator. Then an application of [41, Proposition 8.8] implies
that f is bounded and uniformly continuous in Rd, and

∥f∥L∞(Rd) ≤ ∥G∥L∞(Rd)∥P∥L1(Rd) = ∥G∥L∞(Rd). (25)
Next, we show that f has bounded first order partial derivatives for all i ∈ {1, 2, . . . , d}, and

∂f

∂xi
(x) = G ∗ ∂P

∂xi
(x). (26)

For any fixed x0 ∈ Rd, i ∈ {1, 2, . . . , d},
∂p

∂xi
(x0,y) = lim

xn→x0

qi,n(y), with qi,n(y) =
p(xn,y)− p(x0,y)

xi,n − xi,0
.

Note that the Gaussian density p(x,y) has bounded partial derivatives ∂p
∂xi

(x,y) for all x,y
and i ∈ {1, 2, . . . , d}, we derive

∂f

∂xi
(x0) = lim

xn→x0

f(xn)− f(x0)

xi,n − xi,0

= lim
xn→x0

∫
Rd
G(y)

p(xn,y)− p(x0,y)

xi,n − xi,0
dy

= lim
xn→x0

∫
Rd
G(y)qi,n(y) dy.

(27)

Since G is bounded and p(x,y) decays as O(e−∥y∥2
2) at infinity for fixed x, this indicates

that the integrand G(y)qi,n(y) is bounded by some Lebesgue integrable function for all n.
Consequently, the dominated convergence theorem implies that one can interchange the limit
and integral in the last equality of (27), which leads to

∂f

∂xi
(x0) =

∫
Rd

G(y)
∂p

∂xi
(x0,y) dy = G ∗ ∂P

∂xi
(x0).

Then [41, Proposition 8.8] implies that ∂f
∂xi

is bounded and uniformly continuous in Rd, and
moreover, there holds ∥∥∥∥ ∂f∂xi

∥∥∥∥
L∞(Rd)

≤ ∥G∥L∞(Rd)

∥∥∥∥ ∂P∂xi
∥∥∥∥
L1(Rd)

.

This, together with the dominated convergence theorem, leads to the formula for the second
order partial derivatives,

∂2f

∂xj∂xi
(x) = G ∗ ∂2P

∂xj∂xi
(x).
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Note that for fixed x, the function
∂p

∂xi
(x,y) = − (xi − yi + µi)

λi∆t
p(x,y)

decays as O(ye−∥y∥2
2) at infinity. Combining with [41, Proposition 8.8], we obtain ∂2f

∂xj∂xi
is

bounded and uniformly continuous on Rd, and∥∥∥∥ ∂2f

∂xj∂xi

∥∥∥∥
L∞(Rd)

≤ ∥G∥L∞(Rd)

∥∥∥∥ ∂2P

∂xj∂xi

∥∥∥∥
L1(Rd)

.

Repeating the argument yields the boundedness and uniform continuity of the partial
derivatives of f up to the order r for any r ∈ N. Therefore, fK−1 ∈ C∞(Rd). □

Lemma 2 (fk ∈ C∞(Rd) for k = 0, 1, . . . ,K − 1) Let g be the payoff of a put option. Then
the continuation value functions {fk}K−1

k=0 defined in (7) are infinitely differentiable, bounded
and uniformly continuous with all its derivatives up to the order r for any r ∈ N, i.e.,
fk ∈ C∞(Rd) for k = 0, 1, . . . ,K − 1.

Proof Let the value at tk+1 be
Vk+1(y) = max (G(y), fk+1(y)) , for k = 0, 1, . . . ,K − 2,

where G(·) = g(ϕ(·)) is bounded for a put option. By (25), fK−1 is bounded. Hence, VK−1

is bounded in Rd. Using the argument of Lemma 1, we obtain
fK−2(x) = e−r∆tE[VK−1(X̃K−1)|X̃K−2 = x] = e−r∆tVK−1 ∗ P (x)

is infinitely differentiable, bounded and uniformly continuous with all its derivatives up to
the order r for any r ∈ N. Since ∥fK−2∥L∞(Rd) ≤ e−r∆t∥VK−1∥L∞(Rd)∥P∥L1(Rd), the value
VK−2 is bounded in Rd. Similarly, we can obtain fk ∈ C∞(Rd) for all k = 0, 1, . . . ,K−1. □

Using the smoothness of the continuation value functions in Rd, now we can estab-
lish the smoothness of the extended interpolation function uk in the bounded domain
Ω = [−1, 1]d.

Theorem 1 (uk ∈ F r
d (Ω) for k = 0, 1, . . . ,K − 1) Let g be the payoff of a put option. Let

uk : Ω → R be the function defined in (12) with uk(z) = fk(ψ
−1(z))b(z). Let b(·) be the bubble

function of the form (11) and ψ−1 be the mapping between unbounded and bounded domains
defined in (8). If β ≥ r with r ∈ N, then uk can be extended to uk : Ω → R such that uk has
bounded mixed derivatives up to order r, i.e.,

uk ∈ F r
d (Ω), for k = 0, 1, . . . ,K − 1.

Furthermore, for α ∈ Nd
0 with αj ≤ r, there holds

Dαuk(z) =
∑

γ+ζ=α
γ⪯α,ζ⪯α

α!

γ!ζ!
Dγfk

∏
j=1:d,γj=0

(
(1− z2j )

β−ζjQζj (zj)
)

×
∏

j=1:d,γj≥1

(
1

L
(1− z2j )

β−ζj−γjQζj (zj)Pγj (zj)

)
,

(28)

where Qζj and Pγj are univariate polynomials of degrees ζj and γj − 1 defined on [−1, 1].
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Proof First, for the multi-index α with |α| = 0,

Dαuk(z) = uk(z) = Fk(z)b(z) = fk(ψ
−1(z))b(z)

is continuous and bounded in Ω due to the continuity and boundedness of fk in Lemma 2.
Since uk approaches zero as z → ∂Ω, we can define uk|∂Ω = 0, and uk|Ω = uk for each
k = 0, 1, . . . ,K − 1. Then uk is continuous in the closure Ω. The following argument holds
for all k = 0, 1, . . . ,K − 1. Thus, we drop the subscript k and denote u := uk, F := Fk and
f := fk. For any multi-index α ∈ Nd

0, Leibniz’s rule implies

Dαu =
∑

γ+ζ=α
γ⪯α,ζ⪯α

α!

γ!ζ!
DγF ·Dζb. (29)

For any fixed r ∈ N, pick β ≥ r. Consider a multi-index α with αi ≤ r, i = 1, . . . , d. Let
b(z) =

∏d
j=1 bj(zj) with bj(zj) = (1− z2j )

β . Then direct computation yields

Dζb =

d∏
j=1

dζj bj

dz
ζj
j

with
dibj

dzij
:= (1− z2j )

β−iQi(zj), (30)

where Qi(zj) is a univariate polynomial of degree i for all i = 0, 1, . . . , r. Note that F (z) =

f(ψ−1(z)) depends only on zj through xj with x = ψ−1(z). Then we have

DγF = Dγ
(
f(ψ−1(z))

)
=

∂|γ|f∏d
j=1 ∂x

γj

j

∏
j=1:d,γj≥1

dγjxj

dz
γj

j

with

dℓxj

dzℓj
:=

1

L
(1− z2j )

−ℓPℓ(zj),

(31)

where Pℓ(zj) is a univariate polynomial of degree ℓ− 1 for all ℓ = 1, 2, . . . , r. Combining the
last three identities yields the assertion (28). Since β − ζj − γj = β − αj ≥ 0, by Lemma 2,
we deduce that Dαuk is bounded. By defining the continuous extension of Dαuk using (28),
we obtain that uk ∈ F r

d (Ω) for k = 0, 1, . . . ,K − 1. □

To bound uk in the F r
d (Ω) norm, we need suitable estimates of polynomials Qi

and Pℓ in (28).

Lemma 3 For fixed β ≥ r with r ∈ N, i = 1, 2, . . . , r and ℓ = 1, 2, . . . , r, the polynomials Qi

defined in (30) and Pℓ defined in (31) satisfy the following estimates

∥Qi∥L∞([−1,1]) ≤
i−1∏
n=0

(
n2 + 2(β − n)

)
and ∥Pℓ∥L∞([−1,1]) ≤

ℓ−1∏
n=0

(n2 + 1). (32)

Proof By (30), ∥Q0∥L∞([−1,1]) = 1. Using the identity d
dzj

(
di−1bj
dzi−1

j

)
=

dibj
dzi

j

, for i > 1, and

the defining identity in (30), we obtain
d

dzj

(
(1− z2j )

β−i+1Qi−1(zj)
)
= (1− z2j )

β−iQi(zj).

Dividing both sides by (1− z2j )
β−i after taking derivative over the left hand side, we obtain

(β − i+ 1)(−2zj)Qi−1(zj) + (1− z2j )Q
′
i−1(zj) = Qi(zj).
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By the triangular inequality, we derive

∥Qi∥L∞([−1,1]) ≤ 2(β − i+ 1)∥Qi−1∥L∞([−1,1]) + ∥Q′
i−1∥L∞([−1,1]). (33)

Since Qi−1 is a polynomial of degree i − 1 defined on [−1, 1], a direct application of the
Markov brothers’ inequality [42, p. 300] yields

∥Q′
i−1∥L∞([−1,1]) ≤ (i− 1)2∥Qi−1∥L∞([−1,1]).

Plugging this estimate into (33) leads to the recurrence relation

∥Qi∥L∞([−1,1]) ≤
(
(i− 1)2 + 2(β − (i− 1))

)
∥Qi−1∥L∞([−1,1]). (34)

Upon noting ∥Q0∥L∞([−1,1]) = 1, we derive the desired estimate on Qi. The estimate on Pi

follows similarly. For ℓ = 1, ∥P1∥L∞([−1,1]) = 1. For ℓ > 1, using (31), we obtain

d

dzj

(
dℓ−1xj

dzℓ−1
j

)
=

d

dzj

(
1

L
(1− z2j )

−ℓ+1Pℓ−1(zj)

)
=

1

L
(1− z2j )

−ℓPℓ(zj) =
dℓxj

dzℓj
.

This implies
2(ℓ− 1)zjPℓ−1(zj) + (1− z2j )P

′
ℓ−1(zj) = Pℓ(zj).

Since Pℓ−1 is a polynomial of degree ℓ − 2, by the triangular inequality and the Markov
brothers’ inequality, we obtain the recurrence relation

∥Pℓ∥L∞([−1,1]) ≤
(
(ℓ− 1)2 + 1

)
∥Pℓ−1∥L∞([−1,1]). (35)

Together with the identity ∥P1∥L∞([−1,1]) = 1, we prove the desired assertion on Pℓ. □

We now estimate the norms ∥Dαuk∥L∞(Ω) in terms of suitable mixed norms of f .
Here,

∥f∥mix,r := max


∥∥∥∥∥ ∂|α|f∏d

j=1 ∂x
αj

j

∥∥∥∥∥
L∞(Rd)

: x ∈ Rd,α ∈ Nd
0 with αj ≤ r

 .

Theorem 2 (Upper bounds on ∥uk∥F 1
d (Ω) and ∥uk∥F 2

d (Ω) for k = 0, 1, . . . ,K − 1) Let g
be the payoff of a put option, and uk : Ω → R the function defined in (12) with uk(z) =
fk(ψ

−1(z))b(z). Let b(·) be the bubble function of the form (11) and ψ−1 the mapping between
unbounded and bounded domains defined in (8). Then for k ∈ {0, 1, . . . ,K − 1}, if β = 1 in
(11), there holds

∥uk∥F 1
d (Ω) ≤

(
2 +

1

L

)d

∥fk∥mix,1.

If β = 2 in (11), then

∥uk∥F 2
d (Ω) ≤

(
24 +

12

L

)d

∥fk∥mix,2.

Proof Combining (28) with (32) leads to

∥Dαuk∥L∞(Ω) ≤
∑

γ+ζ=α
γ⪯α,ζ⪯α

α!

γ!ζ!
∥Dγfk∥L∞(Rd)

∏
j=1:d,γj=0

∥Qζj∥L∞([−1,1]) (36)
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×
∏

j=1:d,γj≥1

(
1

L
∥Qζj∥L∞([−1,1])∥Pγj∥L∞([−1,1])

)
.

It follows from Lemma 3 that
∥Q0∥L∞([−1,1]) = 1, ∥Q1∥L∞([−1,1]) ≤ 2β, ∥Q2∥L∞([−1,1]) ≤ (2β − 1)2β,

∥P1∥L∞([−1,1]) = 1, ∥P2∥L∞([−1,1]) ≤ 2.

Next, we deduce the following estimates from (36). If β = 1, consider the multi-index α with
αj ∈ {0, 1} for j = 1, 2, . . . , d, then

∥Dαuk∥L∞(Ω) ≤
∑

γ+ζ=α
γ⪯α,ζ⪯α

α!

γ!ζ!
∥fk∥mix,1

∏
j=1:d,γj=0

2β
∏

j=1:d,γj≥1

1

L

=
∑

γ+ζ=α
γ⪯α,ζ⪯α

2|ζ|
(
1

L

)|γ|
∥fk∥mix,1 =

(
2 +

1

L

)|α|
∥fk∥mix,1

≤
(
2 +

1

L

)d

∥fk∥mix,1.

If β = 2, consider the multi-index α with αj ∈ {0, 1, 2} for j = 1, 2, . . . , d, an application of
the trinomial expansion implies

∥Dαuk∥L∞(Ω)

≤ ∥fk∥mix,2

∑
γ+ζ=α

γ⪯α,ζ⪯α

α!

γ!ζ!

∏
j=1:d,γj=0

(2β − 1)2β
∏

j=1:d,γj=1

1

L
(2β)

∏
j=1:d,γj=2

1

L
· 2

≤ 2d
(
2β(2β − 1) +

2β

L
+

2

L

)d

∥fk∥mix,2 =

(
24 +

12

L

)d

∥fk∥mix,2.

This completes the proof of the theorem. □

In Theorem 2, we only consider the cases β = 1 and β = 2, and both can overcome
the curse of dimensionality by means of SGPI while maintaining a relatively small
upper bound of the functional norm. Clearly, higher order mixed derivatives of the
interpolation function uk have larger upper bounds.

5 Numerical experiments
In this section, we illustrate the efficiency and robustness of the proposed quadrature
and sparse grid interpolation scheme, i.e., Algorithm 1, for pricing high-dimensional
American options. We present pricing results up to dimension 16. The accuracy of the
option price V̂ obtained by Algorithm 1 is measured in the relative error defined by

e = |V̂ − V †|/V †,

where V † is the reference price, either taken from literature or computed to meet
a certain tolerance. The results show that the relative errors decay geometrically as
the number of interpolation points increase, and the convergence rate is almost inde-
pendent of the dimension d. The comparison of various quadrature methods is also
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included. The implementation of sparse grids is based on the Sparse Grids MAT-
LAB Kit, a MATLAB toolbox for high-dimensional quadrature and interpolation [39].
The computations were performed by MATLAB R2022b with 32 CPU cores (with
4GB memory per core) using research computing facilities offered by Information
Technology Services, The University of Hong Kong. The codes for the numerical exper-
iments can be founded in https://github.com/jiefeiy/multi-asset-American-option/
tree/main.

5.1 American basket option pricing up to dimension 16
The examples are taken from [5], where pricing American options up to 6 assets by the
FEM was investigated. For each d-dimensional problem, the setting of these examples
are Si

0 = κ = 100, T = 0.25, r = 0.03, δi = 0, σi = 0.2, P = (ρij)d×d with ρij = 0.5
for i ̸= j. The prices of arithmetic basket options with d = 2, 3, . . . , 12 underlying
assets are listed in Table 1, where the last column gives the reference price V †

Amer of
American options reported in [5], where the relative error is 0.758% for pricing a 6-d
American geometric put option.

To further illustrate the efficiency of the algorithm in high dimensions, we con-
sider pricing the geometric basket put options as benchmarks, which can be reduced
to a one-dimensional problem. Thus, highly accurate prices are available using
one-dimensional quadrature and interpolation scheme. Indeed, the price of the d-
dimensional problem equals that of the one-dimensional American put option with
initial price, volatility, and dividend yield given by

Ŝ0 =
( d∏
i=1

Si
0

)1/d
, σ̂ =

1

d

√∑
i,j

σiσjρij , δ̂ =
1

d

d∑
i=1

(
δi +

σ2
i

2

)
− σ̂2

2
,

respectively. The prices of geometric basket options with d = 2, 3, . . . , 16 underlying
assets are listed in Table 2, where the reference Bermudan prices V †

Ber with 50 times
steps with accuracy up to 10−6 are calculated using one-dimensional quadrature and
interpolation scheme. The last column of Table 2 are the reference prices V †

Amer of
American options reported in [5] priced by the reduced one-dimensional problem.

5.2 Convergence of interpolation for Bermudan options
To verify the convergence rate of the SGPI, we consider 50-times exercisable Bermudan
basket put option on the geometric average of d assets. To avoid the influence of
quadrature errors, sparse grid quadrature with level 4 Genz-Keister knots is applied
to ensure the small approximation errors. Fig. 3 shows the convergence for different
dimension d. These plots show that for a fixed number of inner sparse grids N , the
relative error do increase with the dimension d, but the convergence rate is nearly
independent of the dimension, confirming the theoretical prediction in Section 4.
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Table 1 The prices for the arithmetic basket put option on d assets with
β = 1, L = 2, and K = 50, using sparse grid quadrature with level 4
Genz-Keister knots. The relative errors in the brackets are compared with
the American price V †

Amer.

Sparse grid interpolation level LI

d 3 4 5 6 7 V †
Amer

1

2 2.9193 3.1397 3.1330 3.1269 3.1388 3.13955
(7.02e-2) (3.52e-5) (2.07e-3) (4.03e-3) (2.30e-4)

3 2.8649 2.9533 2.9300 2.9304 2.9463 2.94454
(2.71e-2) (2.96e-3) (4.95e-3) (4.81e-3) (5.83e-4)

4 2.8429 2.8547 2.8232 2.8311 2.84019
(9.42e-4) (5.11e-3) (5.98e-3) (3.22e-3)

5 2.8271 2.7906 2.7601 2.7710 2.77193
(1.99e-2) (6.74e-3) (4.25e-3) (3.26e-4)

6 2.8129 2.7455 2.7191 2.7319 2.71838
(3.48e-2) (9.96e-3) (2.60e-4) (4.97e-3)

7 2.7988 2.7140 2.6913 2.7052
8 2.7841 2.6908 2.6718
9 2.7720 2.6690 2.6553
10 2.7599 2.6498 2.6428
11 2.7472 2.6331 2.6334
12 2.7345 2.6210 2.6256

1Reference values are reported in [5].
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Fig. 3 The relative error w.r.t the number of inner sparse grid interpolation points N in dimension
d with β = 1, L = 2, and K = 50.

5.3 Comparison of quadrature
Now we showcase the performance of Algorithm 1 with different quadrature methods,
to demonstrate the flexibility of high-dimensional quadrature rules. Since the point-
wise evaluations on the inner sparse grids for interpolation are obtained via quadrature
methods, cf. Section 3.3, we present the error of the pricing with three kinds of sparse
grid quadrature, the random quasi-Monte Carlo (RQMC) method with scramble Sobol
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Table 2 The prices for the geometric basket put option on d assets with β = 1, L = 2,
and K = 50, using sparse grid quadrature with level 4 Genz-Keister knots. The relative
errors in the brackets are compared with 50-times exercisable Bermudan price V †

Ber.

Sparse grid interpolation level LI

d 3 4 5 6 7 V †
Ber V †

Amer
1

2 2.9489 3.1880 3.1880 3.1839 3.1831 3.18310 3.18469
(7.36e-2) (1.53e-3) (1.55e-3) (2.51e-4) (1.43e-5)

3 2.9130 3.0226 3.0060 3.0029 3.0030 3.00299 3.00448
(3.00e-2) (6.53e-3) (9.96e-4) (1.67e-5) (8.59e-6)

4 2.9028 2.9314 2.9103 2.9088 2.90836 2.90980
(1.91e-3) (7.94e-3) (6.75e-4) (1.42e-4)

5 2.8963 2.8716 2.8514 2.8505 2.84994 2.85135
(1.63e-2) (7.60e-3) (5.03e-4) (2.00e-4)

6 2.8889 2.8283 2.8110 2.8107 2.81026 2.81165
(2.80e-2) (6.40e-3) (2.74e-4) (1.65e-4)

7 2.8810 2.7955 2.7817 2.7817 2.78155
(3.57e-2) (5.03e-3) (4.95e-5) (6.93e-5)

8 2.8725 2.7718 2.7599 2.75980
(4.08e-2) (4.34e-3) (3.47e-5)

9 2.8631 2.7505 2.7428 2.74275
(4.39e-2) (2.84e-3) (3.37e-5)

10 2.8525 2.7320 2.7292 2.72904
(4.52e-2) (1.08e-3) (6.66e-5)

11 2.8412 2.7154 2.7180 2.71776
(4.54e-2) (8.79e-4) (8.83e-5)

12 2.8294 2.7000 2.7085 2.70832
(4.47e-2) (3.09e-3) (7.74e-5)

13 2.8175 2.6855 2.70031
(4.34e-2) (5.47e-3)

14 2.8043 2.6720 2.69342
(4.12e-2) (7.95e-3)

15 2.7910 2.6597 2.68743
(3.85e-2) (1.03e-2)

16 2.7784 2.6502 2.68218
(3.59e-2) (1.19e-2)

1Reference values are reported in [5].

sequence, and the state-of-art preintegration strategy for the integrand with ’kinks’
(discontinuity of gradient).
Sparse grid quadrature: We first show the relative errors of pricing using (20) in
Fig. 4b, for three types of sparse grids, i.e., Gauss-Hermite, Genz-Keister, and normal
Leja points for integration with respect to the Gaussian density. The theoretical con-
vergence of the sparse grid quadrature are limited to functions with bounded mixed
derivatives, which is not satisfied by vzk+1(·) defined in (17). Nonetheless, the success
of sparse grid quadrature for computing risk-neutral expectations has been observed
in the literatures [30, 31, 43]. Fig. 4a shows the L∞(Ω)-error of approximating FK−1

by sparse grid quadrature, where the exact values correspond to the price of Euro-
pean options with expiration time ∆t. We observe that the quadrature errors in Fig.
4a seems much larger than the relative errors shown in Fig. 4b, which seems impausi-
ble at the first glance since the latter is poluted by many errors including the former.
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We find that the quadrature errors are large only near the free interface, which is a
(d − 1)-dimensional manifold in the d-dimensional problem, and hence do not result
in a heavy impact on the relative errors depicted in Fig. 4b.
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Fig. 4 (a) The L∞(Ω)-error w.r.t. the number of quadrature points M for approximating FK−1 by
sparse grid quadrature rules in dimension 2. (b) The relative error for pricing the Bermudan geometric
basket put option in dimension 2 with β = 1, L = 2, and K = 50.
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Fig. 5 The RMSE w.r.t. the number of scrambled Sobol points M for pricing the 5-d Bermudan
geometric basket put option with LI = 6, β = 1, L = 2, and K = 50.

RQMC and RQMC with preintegration: To show the convergence with respect
to the number of quadrature points M , we use randomized quasi-Monte Carlo
(RQMC) with the scramble Sobol sequence for quadrature. QMC and RQMC have
been widely applied to option pricing problems for computing high-dimensional inte-
grals [44–46]. The max function in (17) introduces a ’kink’, which decreases the
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efficiency of sparse grid quadrature or QMC. For functions with ’kinks’, the preinte-
gration strategy or conditional sampling are developed [47, 48]. Fig. 5 shows the root
mean square error (RMSE) of Bermudan option pricing with respect to the number
of quadrature points M in a 5-d problem, where we use 20 independent replicates to
estimate RMSE by RMSE =

√
1
20

∑20
i=1(V̂

(i) − V †)2.

5.4 Robustness
To test the robustness of Algorithm 1, we repeat the experiments for various values
of the parameter β occurred in the definition of the bubble function (11), the scale
parameter L introduced in the scaled tanh map (8), and the number of time steps K.
The corresponding results are shown in Fig. 6a, Fig. 6b, and Fig. 6c. We test with the
example of pricing Bermudan or American geometric basket put options, where the
prices are listed in Table 2.

Fig. 6a shows the convergence of relative errors for β = 1, 2, 3, 4, 5. Theoretically
we have only provided the upper bounds of ∥uk∥F 1

d (Ω) and ∥uk∥F 2
d (Ω) in Theorem 2.

The relative errors with respect to the chosen scale parameter L are displayed in Fig.
6b. The smallest relative error is observed for L = 3.5. In practice, as mentioned in
Section 3.1, the parameter L > 0 is determined such that the transformed interpola-
tion points are distributed alike to the asset prices. Theorem 2 implies that the scale
parameter L should not be too small, and Proposition 1 implies that L should not
be too large. The time discretization always arises when using the price of K-times
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Fig. 6 (a) The relative errors decay for various β for pricing the Bermudan geometric basket put
option in dimension 2 with L = 2 and K = 50. (b) The relative errors w.r.t. the transformation
parameter L for pricing the Bermudan geometric basket put option in dimension 2 with LI = 7,
β = 2, and K = 50. (c) The convergence of Bermudan prices to American price w.r.t. the number
of time steps K for pricing the 2-d Bermudan geometric basket put option with LI = 8, β = 1, and
L = 2.

exercisable Bermudan option to approximate the American price. For the equidistant
time step ∆t = T/K, it is widely accepted that the Bermudan price approaches the
American price as ∆t → 0 with a convergence rate O(∆t). For one single underlying
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asset, this convergence rate was shown in [49] for the Black Scholes model. A simi-
lar convergence rate has been observed in [25] and [50] for Lévy models. In almost
all pricing schemes based upon the dynamic programming, a more accurate price can
be obtained with more exercise dates (but at a higher computational cost). One gen-
eral approach to alleviate the cost but still guarantee the accuracy is to apply the
Richardson extrapolation [51, 52]. Fig. 6c present the convergence of Bermudan price
to American price as K increases using Algorithm 1.

6 Conclusions
In this work, we have developed a novel quadrature and sparse grid interpolation
based algorithm for pricing American options with many underlying assets. Unlike
most existing methods, it does not involve introducing artificial boundary data by
avoiding truncating the computational domain, and that a significant reduction of
the number of grid points by introducing a bubble function. The resulting mul-
tivariate function has been shown to have bounded mixed derivatives. Numerical
experiments for American basket put options with the number of underlying assets up
to 16 demonstrate excellent accuracy of the approach. Future work includes pricing
max-call options for multiple underlying assets, which are benchmark test cases for
high-dimensional American options. Max-call options pose computational challenges
due to their unboundedness and thus require certain special treatment.
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