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Abstract. Let F be a non-Archimedean local �eld. A sequence of derivatives of gener-
alized Steinberg representations can be used to construct simple quotients of Bernstein-
Zelevinsky derivatives of irreducible representations of GLn(F ). In the �rst of a series
of two articles, we introduce a notion of a highest derivative multisegment, which in
turn gives a combinatorial approach to study problems about those simple quotients.
We also prove a double derivative result along the way.

1. Introduction

Let F be a non-Archimedean local �eld. The Bernstein-Zelevinsky derivative is a
twisted Jacquet functor, originally introduced in classifying the irreducible representations
of GLn(F ) in [BZ76, BZ77, Ze80]. This is the �rst one of a series of two articles in studying
the theory of Bernstein-Zelevinsky derivatives. The main result of this article provides
a combinatorial approach to the problems of socles and cosocles of Bernstein-Zelevinsky
derivatives of irreducible representations. In the second one [Ch22+d], we shall obtain
a canonical sequence from some minimality by using results of this one, and then estab-
lish properties for such sequence. Applications to branching laws will be considered in
[Ch22+b]. Indeed, we shall show in [Ch22+b] that any simple quotients of Bernstein-
Zelevinsky derivatives can be constructed from such sequences.

On the other hand, there is a notion of ρ-derivatives introduced and studied by C. Jantzen
[Ja07] and independently by Mínguez [Mi09], which will be important in our study. To be
more precise, the notion of derivatives in this article is the one using essentially square-
integrable representations to replace cuspidal representations ρ in [Ja07, Mi09], which we
shall simply call St-derivatives. Such derivative is also used in recent work of Atobe-Mínguez
[AM20], and Lapid-Mínguez [LM22] for other studies. A certain sequence of St-derivatives
can be used to construct some simple quotients of Bernstein-Zelevinsky (BZ) derivatives
(see Section 3). This is based on the observation that any standard module in GL case has
unique submodule and such submodule is generic [JS83] (also see [CaSh98, Ch21]).

We recall some classical known results on BZ derivatives. The highest derivative of
an arbitrary irreducible representation is determined by Zelevinsky [Ze80]. A complete de-
scription for all the derivatives has been previously established for Steinberg representations
and their Zelevinsky duals by Zelevinsky [Ze80], and for ladder representations (including
Speh representations) by Lapid-Mínguez [LM14] (also see [Ta87, CS19]). An asymmetry
property of simple quotients between left and right derivatives is shown in [Ch21]. It could
be hard to give a nice explicit description for the general case, and so it may be desirable
to study derivatives in terms of some properties and invariants.
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1.1. Two notions of derivatives. We introduce the two notions of derivatives and more
notations will be given in Sections 2 and 3. Let Gn = GLn(F ), the general linear group
over a non-Archimedean �eld F . For a, b ∈ Z with b−a ≥ 0 and a cuspidal representation ρ
of Gm, we shall call [a, b]ρ to be a segment and de�ne la([a, b]ρ) = (b− a+1)m. Zelevinsky
[Ze80] showed that essentially square-integrable representations of Gn can be parametrized
by those segments. For each segment ∆, we shall denote by St(∆) the corresponding
essentially square-integrable representation (see Section 2.6).

Let Irr(Gn) be the set of (isomorphism classes of) irreducible smooth complex repre-
sentations of Gn. Let Irr = ⊔nIrr(Gn). Let Ni ⊂ Gn (depending on n) be the unipotent

radical containing matrices of the form

(
In−i u

Ii

)
, where u is a (n− i)× i matrix. There

exists at most one irreducible module τ ∈ Irr(Gn−i) such that

τ ⊠ St(∆) ↪→ πNi ,

where πNi
is de�ned as the (normalized) Jacquet module of π. If such τ exists, we denote

such τ by D∆(π). Otherwise, we set D∆(π) = 0. We shall refer D∆ to be a St-derivative.
Let

Ri =

{(
g m

u

)
: g ∈ Gn−i,m ∈Mat(n−i)×i, u ∈ Ui

}
.

The right i-th Bernstein-Zelevinsky derivative π(i) of π is de�ned as

δ
−1/2
Ri

· π

⟨x.v − ψ(x)v : x ∈ Ri, v ∈ π⟩
,(1.1)

where δRi
is the modular character of Rn−i, and ψ is a non-degenerate character on Ui

extended trivially to Ri. Regarding Gn−i as a subgroup Gn via g 7→
(
g

Ii

)
, we obtain

a natural Gn−i-module structure on π(i). Here Ui is viewed as a subgroup of Ri via the
embedding

u 7→
(
In−i 0

u

)
.

The level of π is the largest integer i∗ such that π(i∗) ̸= 0 and, for any i > i∗, π(i) = 0.
For the level i∗ of π, let π− = π(i∗), which is known to be irreducible [Ze80]. We shall call
π− the highest derivative of π.

1.2. Motivations from branching laws. Our goal is applications towards branching
laws for general linear groups or even other classical groups, in view of the recent derivative
approach in studying branching laws e.g. [MW12, Ve13, SV17, Pr18, CS21, Gu22, Ch21,
GGP20, Ch22, Ch23]. Those applications will appear in elsewhere, see e.g. [Ch22+b],
[Ch22+c].

Let ν : Gn → C× be the character ν(g) = |det(g)|F , where |.|F is the norm for F .
The close relation of derivatives and branching laws underlies in the Bernstein-Zelevinsky
theory (see e.g. [Ch21]):

Lemma 1.1. Let π ∈ Irr(Gn+1). Let τ be a simple quotient of ν1/2 · π(i). Then, for some
cuspidal representation σ ∈ Irr(Gn−i),

HomGn
(π, τ × σ) ̸= 0.

One interesting consequence of the above lemma is that the multiplicity at-most-one
phenomenon [AGRS10, Ch23] implies the multiplicity-freeness on socles and cosocles of the
Bernstein-Zelevinsky derivatives of an irreducible representation (see Sections 3.6 and 3.8).
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Instead of asking simple quotients, one may also ask for simple submodules of the
Bernstein-Zelevinsky derivative of an irreducible representation. Such two problems are
indeed equivalent by the dual structure of the Bernstein-Zelevinsky derivative (see Lemma
3.13, [CS21, Lemma 2.4]).

1.3. Main results. Fix a cuspidal representation ρ ∈ Irr. Let Irrρ be the subset of Irr of
all irreducible representations which are an irreducible quotient of νa1ρ × . . . × νakρ, for
some integers a1, . . . , ak ∈ Z. Representations in Irrρ are the most interesting case, and the
general case can be deduced from that (see Section 3.9).

Let Seg be the set of all segments including the empty set. A multisegment is a multiset
of non-empty segments (see (2.2)). Let Segρ be the subset of Seg of all segments of the
form [a, b]ρ for some a, b ∈ Z. Let Mult be the set of all multisegments and let Multρ be
the subset of Mult of all multisegments whose segments are in Segρ. The empty set ∅ is
also considered in Mult.

For m1,m2 ∈ Mult, we write m2 ≤Z m1 if m2 can be obtained by a sequence of elementary
intersection-union operations from m1 (see Section 2.4) or m1 = m2. In particular, if any
pair of segments in m is unlinked, then m is a minimal element under ≤Z . We shall equip
Mult with the poset structure by ≤Z .

A sequence of segments [a1, b1]ρ, . . . , [ak, bk]ρ (all aj , bj ∈ Z) is said to be in an ascending
order if for any i ≤ j, either [ai, bi]ρ and [aj , bj ]ρ are unlinked; or ai < aj . For a multi-
segment n ∈ Multρ, which we write the segments in n in an ascending order ∆1, . . . ,∆k.
De�ne

Dn(π) := D∆k
◦ . . . ◦D∆1

(π).

We will show in Lemma 4.10 that the derivative Dn is independent of the ordering of an
ascending sequence for n. In particular, one may choose the ordering such that a1 ≤ . . . ≤
ak.

In general, we have the following connection between two notions of derivatives:

Proposition 1.2. Let π ∈ Irrρ. Let n ∈ Multρ such that

Dn(π) ̸= 0.

Then Dn(π) is a simple quotient of π(i), where i = la(∆1) + . . .+ la(∆k).

We remark that when π is generic, those simple quotients have been described in [CS21,
Corollary 2.6] by using a suitable �ltration on the derivatives from the geometric lemma.

In general, two di�erent sequences can give isomorphic simple quotients. Hence it is
natural to study the combinatorial structure of the following set: for π ∈ Irrρ and for a

simple quotient τ of π(i) for some i, de�ne

S(π, τ) := {n ∈ Multρ : Dn(π) ∼= τ} .
The ordering ≤Z induces a partial ordering on S(π, τ). We now introduce two ingredients
in studying the set: highest derivative multisegments and removal process.

We now explain the �rst ingredient. A multisegment m is said to be at the point νcρ if
any segment ∆ in m takes the form [c, b]ρ for some b ≥ c. For π ∈ Irrρ, de�ne hc to be the
maximal multisegment at the left point νcρ such that Dhc

(π) ̸= 0. (We refer to Section 4.2
for the meaning of maximality.) De�ne the highest derivative multisegment of π ∈ Irrρ to
be

hd(π) :=
∑
c∈Z

hc.

The highest derivative multisegments of some special cases are given in Section 8.
One main property of hd is to give a new construction of the highest derivative:
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Theorem 1.3. (Theorem 5.2) Let π ∈ Irrρ. Then

Dhd(π)(π) = π−.

In [Ch22+b], we shall show that S(π, τ) ̸= ∅, giving a converse of Proposition 1.2.
Following our development, the exhaustion part (i.e. S(π, τ) ̸= ∅) seems to be a deeper
fact.

We now explain the second ingredient. In Section 6, we de�ne a combinatorial algorithm,
called removal process, on a pair (∆, h) for a segment ∆ and a multisegment h. The
algorithm results a multisegment, denoted r(∆, h). The case that we are interested in is
when h = hd(π). We also develop some rules and properties for computing r(∆, h) in
Section 6, and the relation to D∆(π) is given in Theorem 6.20.

For a multisegment n ∈ Multρ, which we write the segments in n in an ascending order
∆1, . . . ,∆k, we de�ne

r(n, π) := r(∆k, r(∆k−1, . . . r(∆1, hd(π)) . . .)).

One remarkable property of the multisegment r(n, π) is to measure the di�erence between
the derivative Dn(π) and the highest derivative π−:

Theorem 1.4. (=Theorem 7.1) Let π ∈ Irrρ. Let n ∈ Multρ such that Dn(π) ̸= 0. Then

Dr(n,π) ◦Dn(π) ∼= π−.

Theorem 1.4 has applications in [Ch22+b]. On the other hand, by shifting the 'right'
branching law in Lemma 1.1 to the 'left' branching law, it gives an interpretation to Theo-
rem 1.4 (more details given in [Ch22+b]), which is also a starting point of this article and
[Ch22+d].

The second main property of r(n, π) is to determine when two derivatives gives isomorphic
quotients:

Theorem 1.5. (=Corollary 6.22+Theorem 7.2) Let π ∈ Irrρ. Let n1, n2 be multisegments.

(1) Then Dni
(π) ̸= 0 if and only if ni is admissible to hd(π). (Refer the de�nition of

admissibility to De�nition 6.14)
(2) Suppose Dn1(π) ̸= 0 and Dn2(π) ̸= 0. Then

Dn1
(π) ∼= Dn2

(π) ⇐⇒ r(n1, π) = r(n2, π).

Combining Theorem 1.5 with [Ch22+b], r(n, π) provides a combinatorial invariant for
describing the socle and cosocle of the Bernstein-Zelevinsky derivative of an irreducible
representation. Theorem 1.5 reduces problems about derivatives of essentially square-
integrable representations into combinatorics problems. Applications will appear in the
sequel [Ch22+d].

We �nally comment on the proof of Theorems 1.4 and 1.5. The multisegment associated
to the derivativeDn(π) can be in general computed via explicit algorithms (see e.g. [LM16]),
but our proof does not directly use that. Our proof is more combinatorially soft in the sense
that we use some commutation relations between derivatives studied in Section 4. Our proof
also uses certain inductions via taking the ρ-derivatives.

1.4. Remarks. Apart from branching laws, there are many other applications for both
derivatives. For example, it is important for unitarity by Tadi¢ [Ta86], theta correspondence
by Mínguez [Mi08, Mi09], L-functions (e.g. work of Matringe, Cogdell�Pietaski-Shapiro,
Jo-Krishnamurthy [Ma13, CPS17, JK22]), other distinction problems (e.g. O�en [Of18]),
and Aubert-Zelevinsky duals by M÷glin-Waldspurger and Atobe-Mínguez [MW86, AM20],
and Arthur packets by Xu [Xu17] and many others.
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We �nally give some background of our study. In [CS19] joint with Savin, we formulated
the analogous Bernstein-Zelevinsky derivative functor for a�ne Hecke algebras of type A
and so one could also formulate the analogous results in such setting, which will be explained
in more detail in Section 9. Some parts in this article are originally inspired by the work
of Grojnowski-Vazirani [GV01] in Hecke algebra setting few years ago, in which they used
ρ-derivatives to study branching problems.

Using ρ-derivatives to study Bernstein-Zelevinsky derivatives also explicitly appears be-
fore, for example Deng [De16] studying with orbital varieties and a more recent work of
Gurevich [Gu21] studying with RSK model. However, we emphasis that St-derivatives are
important in the study of simple quotients of classical Bernstein-Zelevinsky derivatives,
while ρ-derivatives seem to be not enough for such purpose. In particular, using machinery
in Sections 6 and 7, one can �nd some simple quotients of Bernstein-Zelevinsky derivatives
which cannot be constructed from a sequence of ρ-derivatives (see Example 7.3).

1.5. Organization of this article. Section 3 discusses some relations of two notions of
derivatives, and the multiplicity freeness of Lemma 3.11. Section 4 studies some preliminary
results for commutativity of derivatives (mainly by the geometric lemma). Section 5 de�nes
the highest derivative multisegment and shows that its corresponding derivative gives the
highest derivative (Theorem 5.2). Section 6 introduces the removal process, which is used
in Section 7 to prove that the e�ect of ascending sequences of derivatives is determined by
the removal process (Theorem 7.1). Explicit descriptions of the highest derivatives of some
representations are given in Section 8. In the Appendix, we discuss how to transfer results
to a�ne Hecke algebras of type A.

2. Preliminaries

2.1. Notations. All the representations are smooth and over C. We shall usually drop
those descriptions. We sometimes do not distinguish representations in the same isomor-
phism class. We also use the notations in Section 1.1. Let Alg(Gn) be the category of
smooth representations of Gn. For π ∈ Alg(Gn), denote by π

∨ the smooth dual of π.
For π ∈ Irr, n(π) is de�ned to be the number that π ∈ Irr(Gn(π)). Let Irr

c(Gn) be the
set of (irreducible) cuspidal representations of Gn. Similarly, let Irrc = ⊔nIrr

c(Gn).
For any π1 ∈ Alg(Gn1

) and π2 ∈ Alg(Gn2
), de�ne

π1 × π2 = Ind
Gn1+n2

Pn1,n2
π1 ⊠ π2,

where we in�ate π1 ⊠ π2 to a Pn1,n2
-representation. Here Ind is the normalized parabolic

induction.
For a, b ∈ Z with b− a ∈ Z≥0 and a cuspidal representation ρ, we call

[a, b]ρ :=
{
νaρ, . . . , νbρ

}
(2.2)

be a segment. We also set [a, a − 1]ρ = ∅ for a ∈ Z. For a segment ∆ = [a, b]ρ, we write
a(∆) = νaρ and b(∆) = νbρ. We also write:

[a]ρ := [a, a]ρ.

We may also write [νaρ, νbρ] for [a, b]ρ and write [νaρ] for [a]ρ. The relative length of a
segment [a, b]ρ is de�ned as b−a+1, and we shall denote by lr([a, b]ρ). The absolute length
of a segment [a, b]ρ is de�ned as (b−a+1)n(ρ), and we shall denote by la([a, b]ρ) as before.

Two segments [a, b]ρ and [a′, b′]ρ′ are said to be equal if νa
′
ρ′ ∼= νaρ and b−a+1 = b′−a′+1.

When ρ is the trivial representation of G1, we simply write a segment [a, b] for [a, b]1.
Two segments ∆ and ∆′ are said to be linked if ∆ ∪∆′ is still a segment, and ∆ ̸⊂ ∆′

and ∆′ ̸⊂ ∆. Otherwise, it is called to be not linked or unlinked.
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For any π ∈ Irr, there exist ρ1, . . . , ρr ∈ Irrc such that π is a simple composition factor
for ρ1 × . . . × ρr, and we shall denote such multiset to be csupp(π), which is called the
cuspidal support of π.

2.2. More notations for multisegments. For two multisegments m and n, we write
m+ n to be the union of two multisegments, counting multiplicities. For a multisegment m
and a segment ∆, we write

m+∆ =

{
m+ {∆} if ∆ ̸= ∅

m if ∆ = ∅
The notions m− n and m−∆ are de�ned in a similar way.

For ρ1, ρ2 ∈ Irrc, we write ρ2 < ρ1 if ρ1 ∼= νaρ2 for some integer a > 0. For two segments
∆1,∆2, we write ∆1 < ∆2 if ∆1 and ∆2 are linked and b(∆1) < b(∆2).

For an integer c, let Multaρ,c be the subset of Multρ containing all multisegments m such

that any segment ∆ in m satis�es a(∆) ∼= νcρ. Similarly, de�ne Multbρ,c to be the subset of
Multρ containing all multisegments m such that any segment ∆ in m satis�es b(∆) ∼= νcρ.

The empty sets are also considered in Multaρ,c and Multbρ,c.
For a multisegment m in Multρ and an integer c, let m[c] be the submultisegment of m

containing all the segments ∆ satisfying a(∆) ∼= νcρ; and let m⟨c⟩ be the submultisegment
of m containing all the segments ∆ satisfying b(∆) ∼= νcρ.

For a multisegment m = {∆1, . . . ,∆k}, we also set:

la(m) = la(∆1) + . . .+ la(∆k), lr(m) = lr(∆1) + . . .+ lr(∆k).

2.3. Ordering on segments. For two non-empty segments [a′, b′]ρ and [a′′, b′′]ρ, we write

[a′, b′]ρ ≺L [a′′, b′′]ρ

if either a′ < a′′; or a′ = a′′ and b′ < b′′. We also write [a′, b′]ρ ⪯L [a′′, b′′]ρ if [a′, b′]ρ ≺L

[a′′, b′′]ρ or [a′, b′]ρ = [a′′, b′′]ρ. The ordering ≺R can be de�ned in a similar manner by
using b-values.

2.4. Intersection-union operation. We say that a multisegment m2 is obtained from m1

by an elementary intersection-union operation if for two segments ∆1,∆2 in m1,

m2 = m1 − {∆1,∆2}+∆1 ∪∆2 +∆1 ∩∆2.

The ordering ≤Z is de�ned in Section 1.3.

2.5. Ordering on Multaρ,c and Multbρ,c. Fix an integer c. Let ∆1 = [c, b1]ρ,∆2 = [c, b2]ρ
be two non-empty segments. We write ∆1 ≤a

c ∆2 if b1 ≤ b2, and write ∆1 <
a
c ∆2 if b1 < b2.

For non-empty m1,m2 in Multaρ,c, label the segments in m1 as: ∆1,k ≤a
c . . . ≤a

c ∆1,2 ≤a
c

∆1,1 and label the segments in m2 as: ∆2,r ≤a
c . . . ≤a

c ∆2,2 ≤a
c ∆2,1. We de�ne the

lexicographical ordering: m1 ≤a
c m2 if k ≤ r and, for any i ≤ k, ∆1,i ≤a

c ∆2,i. We write
m1 <

a
c m2 if m1 ≤a

c m2 and m1 ̸= m2.
We also need a 'right' ordering. One can de�ne [a1, c]ρ ≤b

c [a2, c]ρ if a1 < a2, and

similarly de�ne [a1, c]ρ <
b
c [a2, c]ρ. One similarly de�ne ≤b

c on Multbρ,c.

2.6. Zelevinsky and Langlands classi�cation. For a segment∆ = [a, b]ρ ∈ Mult, de�ne
⟨∆⟩ to be the the unique simple submodule of

νaρ× . . .× νbρ

and de�ne St(∆) to be the unique simple quotient of

νaρ× . . .× νbρ.
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For any multisegment m = {∆1, . . . ,∆k} with the labellings satisfying that, for i < j,
∆i ̸< ∆j . De�ne, as in [Ze80, Theorem 6.1], ⟨m⟩ to be the unique simple submodule of

ζ(m) := ⟨∆1⟩ × . . .× ⟨∆k⟩.
De�ne St(m) to be the unique simple quotient of

λ(m) := St(∆1)× . . .× St(∆k).

We frequently use the following standard fact (see [Ze80, Theorems 4.2, 6.1]): for two
unlinked segments ∆1 and ∆2,

⟨∆1⟩ × ⟨∆2⟩ ∼= ⟨∆2⟩ × ⟨∆1⟩,(2.3)

St(∆1)× St(∆2) ∼= St(∆2)× St(∆1).(2.4)

2.7. Geometric lemma. The geometric lemma is a key tool in our study. We shall
describe a special case that we frequently use.

For n1 + . . . + nk = n, we write Pn1,...,nk
to be the parabolic subgroup generated by

the matrices diag(g1, . . . , gk), where gj ∈ Gnj
, and upper triangular matrices. We shall say

that Pn1,...,nk
is the standard parabolic subgroup associated to the partition (n1, . . . , nk).

For i ≤ n, Ni de�ned in Section 1.1 is the unipotent radical of the parabolic subgroup
Pn−i,i.

Let π1 ∈ Alg(Gn1
) and let π2 ∈ Alg(Gn2

). Let n = n1 + n2. Then the geometric lemma
on (π1 × π2)Ni

asserts that (π1 × π2)Ni
admits a �ltration whose successive subquotients

take the form:
indGn

Pn−i,i
((π1)Ni1

⊠ (π2)Ni2
)ϕ,

where i1+ i2 = i. Here ((π1)Ni1
⊠(π2)Ni2

)ϕ is a Gn1−i1 ×Gn2−i2 ×Gi1 ×Gi2-representation

with underlying space (π1)Ni1
⊠ (π2)Ni2

determined by the action:

(g1, g2, g3, g4).v1 ⊠ v2 = (g1, g3).v1 ⊠ (g2, g4).v2,

where v1 ∈ (π1)Ni1
and v2 ∈ (π2)Ni2

.

2.8. Quotients and submodules of Jacquet functors. Let θ = θn : Gn → Gn be given
by θ(g) = g−t, the inverse transpose of g. This induces a self-equivalence exact functor on
Alg(Gn), still denoted by θ. We shall call it the Gelfand-Kazhdan involution.

Proposition 2.1. Let π ∈ Irr(Gn). Let n1+ . . .+nr = n. Let N be the unipotent radical of
the parabolic subgroup Pn1,...,nr . Let θ

′ be the involution on Alg(Gn1×. . .×Gnr ) arisen from
θ′(g1, . . . , gr) = (θ(g1), . . . , θ(gr)). Then θ′(πN )∨ ∼= πN . In particular, for an irreducible
representation ω of Gn1

× . . . × Gnr
, ω is a simple submodule of πN if and only if ω is a

simple quotient of πN .

Proof. Recall that θ(π) and π have the same underlying space, which we refer to V . Note
that

W :=
{
θ(n).v − v : n ∈ N−, v ∈ V

}
= {n.v − v : n ∈ N, v ∈ V } ⊂ V.

Then it induces a natural identi�cation as vector space:

θn(π)N− = θ′(π′
N ) = V/W.

Now one checks the isomorphism lifting to a Gn1 × . . .×Gnr -morphism. This proves that:

(∗) θ(π)N− ∼= θ′(πN ).

On the other hand, by a result of Bernstein-Casselman [Be92, Page 66] and [Ca95,
Corollary 4.2.5],

(∗∗) (θ(π)N−)∨ ∼= (θ(π)∨)N ∼= πN ,
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where the last isomorphism follows from [BZ76, Theorem 7.3]. The proposition follows by
combining (*) and (**). □

2.9. Jacquet functors on Steinberg representations. We shall frequently use the fol-
lowing formulas [Ze80]:

⟨[a, b]ρ⟩Nin(ρ)
= ⟨[a, b− i]ρ⟩⊠ ⟨[b− i+ 1, b]ρ⟩(2.5)

and

St([a, b]ρ)Nin(ρ)
= St([a+ i, b]ρ)⊠ St([a, a+ i− 1]ρ).(2.6)

Later on, we sometimes say to use geometric lemma and compare cuspidal supports,
which we mean to use the geometric lemma in Section 2.7 and then use the Jacquet functor
computation above. Since those computations are quite routine, we shall not spell out
explicitly every time. For instance, some samples of such computations can also be found
in [Ch22+].

3. Two notions of derivatives

3.1. ρ-derivatives.

Lemma 3.1. [GV01, Ja07, Mi09] Let ρ ∈ Irrc(Gr) and let π ∈ Irr. For any non-negative
integer k,

π ×
k times︷ ︸︸ ︷
ρ× . . .× ρ

has unique irreducible submodule and unique irreducible quotient.

In the Jacquet functor version, which follows from Frobenius reciprocity, one has:

Lemma 3.2. Let ρ ∈ Irrc(Gr) and let π ∈ Irr(Gn). There is at most one irreducible
representation τ ∈ Irr(Gn−r) such that

τ ⊠ ρ ↪→ πNr .

We introduce the following notations [Ja07, Mi09]:

Notation 3.3. (1) We shall also write π × ρ×k for π ×
k times︷ ︸︸ ︷
ρ× . . .× ρ for representations

π and ρ.
(2) For c ∈ Z and π ∈ Irrρ, if such τ in Lemma 3.2, we shall denote Dc(π) (depending

on ρ) to be such τ . Otherwise, set Dc(π) = 0. For k ≥ 0, we shall write Dk
c (π) for

k times︷ ︸︸ ︷
Dc ◦ . . . ◦Dc(π).

(One may also replace the submodule condition by the corresponding quotient
condition, see Proposition 2.1.) When k = 0, D0

c (π) = π. We shall call Dc(π) to
be a ρ-derivative of π (depending on c).

(3) We shall denote the largest non-negative integer k such that Dk
c (π) ̸= 0 by εc(π).

(We remark that our notation εc is motivated from the corresponding notation in
the Kashiwara crystal operator theory, see e.g. [GV01] and [Kl10, Section 11].)
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3.2. Some more results on socle and cosocle. For a representation π of �nite length,
we denote by soc(π) and cosoc(π) the socle and cosocle of π respectively. We need the
following result later (see e.g. [LM16], c.f. Lemma 3.1) and we refer to [LM16] for a
de�nition of a ladder representation. The particular example of ladder representations,
which we shall use, is that St({∆1,∆2}) for two linked segments ∆1,∆2.

Lemma 3.4. [LM16] Let π ∈ Irrρ(Gn) be a ladder representation or a generic representa-
tion. Let τ1 ∈ Irrρ(Gk) and let τ2 ∈ Irrρ(Gk). Then

• soc(π × τi) and cosoc(π × τi) are irreducible (i = 1, 2);
• soc(π × τ1) ∼= soc(π × τ2) if and only if τ1 ∼= τ2;
• cosoc(π × τ1) ∼= cosoc(π × τ2) if and only if τ1 ∼= τ2.

Remark 3.5. We remark that, by Frobenius reciprocity, the second (resp. third) bullet
implies that for any ladder or generic representation τ of Gr and any π ∈ Irr(Gn), there
exists at most one ω ∈ Irr(Gn−r) such that there exists a surjection πNr

↠ ω ⊠ τ (resp.
πNn−r → τ⊠ω). By Proposition 2.1, if such ω exists, one also has an injection ω⊠τ ↪→ πNr .

3.3. Properties of ρ-derivatives. For the following lemma, see [GV01, Lemma 3.5],
[Ja07, Corollary 2.3.2], [Mi09, Corollaire 6.5.]:

Lemma 3.6. [GV01, Ja07, Mi09] Let π ∈ Irrρ. Let c be an integer. Let π̃ be the unique

submodule of π × (νcρ)×k. Then

(1) εc(π̃) = εc(π) + k;
(2) π̃ appears with multiplicity one in π × (νcρ)×k;
(3) for any irreducible composition factor τ of (π × (νcρ)×k) which is not isomorphic

to π̃, εc(τ) < εc(π) + k.

The following result follows from an application on geometric lemma:

Lemma 3.7. [GV01, Ja07, Mi09] Let π ∈ Irrρ. Let c be an integer such that Dc(π) ̸= 0.
Let k = εc(π). Then there is only one simple composition factor in πNkn(ρ)

of the form

τ ⊠ (νcρ)×k

for some τ ∈ Irr. Moreover, such τ ∼= Dk
c (π).

As a consequence, we have the following:

Corollary 3.8. Let π ∈ Irrρ(Gn). Let k = εc(π). Suppose k > 0. Let ω be an admissible
Gn−kn(ρ)-representation such that

π ↪→ ω × (νcρ)×k

Then Dk
c (π) ↪→ ω.

Proof. By Frobenius reciprocity, we have a non-zero map:

πNkn(ρ)
→ ω ⊠ (νcρ)×k.

By Lemma 3.7, the only composition factor of the form τ ⊠ (νcρ)×k is Dk
c (π) ⊠ (νcρ)×k

and hence is mapped to the submodule of ω ⊠ (νcρ)×k. It follows from Künneth formula
(see [Ra07]) that Dk

c (π) is a submodule of ω. □
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3.4. Highest derivatives using ρ-derivatives. Recall that the highest derivative is de-
�ned in Section 1.1.

Proposition 3.9. Let m ∈ Multρ. Let c (resp. d) be the smallest (resp. largest) integer
such that νcρ ∼= b(∆) (resp. νcρ ∼= b(∆) for some ∆ ∈ m. For each e = c, . . . , d, let

ke = | {∆ ∈ m : b(∆) ∼= νeρ} |.

Then Dkd

d ◦ . . . ◦Dkc+1

c+1 ◦Dkc
c (π) ∼= π−.

The above proposition can be computed directly by using e.g. [Mi09, Théorème 7.5].
An earlier form of ρ-derivatives is used by M÷glin-Waldspurger [MW86, Lemme II.11]
in computing Zelevinsky duals. We refer the reader to [Mi09] for those explicit rules in
computing ρ-derivatives and we shall not reproduce here. Indeed it is based on the following
lemma:

Lemma 3.10. Let m ∈ Multρ. Let π = ⟨m⟩. Let multb(π, c) be the number of segments ∆
in m such that b(∆) ∼= νcρ. Suppose, for some e ∈ Z such that multb(π, e − 1) = 0. Then
εe(π) = multb(π, e).

Proof. This, for example, follows from a simple computation using [Mi09, Théorème 7.5].
□

Proof of Proposition 3.9. Inductively, using Lemmas 3.10 and 3.6, we have that multb(D
ke
e ◦

. . . ◦Dkc
c (π), e) = 0 and Dke

e ◦ . . . ◦Dkc
c (π) ̸= 0. Then, Dkd

d ◦ . . . ◦Dkc+1

c+1 ◦Dkc
c (π) has the

multisegment obtained by removing all the endpoints of the segments in m. Comparing
with the description in [Ze80], we have the desired isomorphism. □

3.5. Left-right Bernstein-Zelevinsky derivatives. Recall that the Bernstein-Zelevinsky
derivative is de�ned in Section 1.1. We also de�ne a left version (c.f. [CS21, Ch21, Ch23]).
Note that one can use the transpose Rt

i of Ri to de�ne the left derivative as in (1.1). One
may then apply a conjugation on an antidiagonal element to obtain the following formula-
tion:

(i)π = δ
−1/2

R̄i
· π

⟨x.v − ψ(x)v : x ∈ R̄i, v ∈ π⟩
,

where R̄i = aRt
ia

−1. Here a is the matrix with 1 in the antidiagonal entries and 0 elsewhere.
Most results will only be stated and proved for the 'right' version, and the 'left' version

can be formulated and proved similarly.

3.6. Properties of Bernstein-Zelevinsky derivatives. From the multiplicity-one the-
orem [AGRS10] (see [Ch21, Proposition 2.5], [CS21, Lemma 2.3]) and a self-dual property
(see [CS21, Lemma 2.4]), we deduce that:

Lemma 3.11. [Ch21, Proposition 2.5] Let π ∈ Irr(Gn). Then soc(π(i)) is multiplicity-free.

The same holds for soc((i)π), cosoc(π(i)) and cosoc((i)π).

Using the stronger multiplicity-one theorem in [Ch23], we have the following statement:

Lemma 3.12. Let π be a standard representation of Gn. Then cosoc(π(i)) is multiplicity-

free. The same holds for cosoc((i)π).

The proof is similar to [Ch21, Proposition 2.5] and so we only omit the details.

Lemma 3.13. [CS21, Lemma 2.4] Let π ∈ Irr(Gn). Then, for any i with π(i) ̸= 0,
soc(π(i)) ∼= cosoc(π(i)).



DERIVATIVES 11

For a �xed ρ ∈ Irrc, write k = n(ρ). For a segment ∆ = [a, b]ρ, de�ne

∆(ik) = [a, b− i]ρ,
(ik)∆ = [a+ i, b]ρ

for 0 ≤ i ≤ lr(∆). We also de�ne ∆(j) = (j)∆ = ∅ if k does not divide j.
Let m ∈ Multρ. For any i,

m(i) =
{
∆

(i1)
1 + . . .+∆(ir)

r : ik = 0 or n(ρ), i1 + . . .+ ir = i
}
.

The notion (i)m is de�ned similarly by using (ik)∆.

Lemma 3.14. Let π ∈ Irr(Gn). For any simple quotient or submodule τ of π(i) (resp.
(i)π), τ ∼= ⟨n⟩ for some n ∈ m(i) (resp. n ∈ (i)m).

Lemma 3.14 can be proved by embedding π to ζ(m) and then applying geometric lemma
[BZ77]. See, for example, [Ch21, Lemma 7.3] and [Ch22, Proposition 2.3].

3.7. Notations for derivatives. For a segment ∆ = [a, b]ρ, write

−∆ = [a+ 1, b]ρ, ∆− = [a, b− 1]ρ.

For a multisegment m = {∆1, . . . ,∆k} in Mult, write

m− = ∆−
1 + . . .+∆−

k ,
−m = −∆1 + . . .+ −∆k.

3.8. Submodule of derivatives from Jacquet functor. The author would like to thank
G. Savin for a discussion on the following proposition.

Proposition 3.15. Let π be a representation of Gn of �nite length. Let τ be an irreducible
submodule of π(i). Then there exists ρk of Irrc(Gnk

) (k = 1, . . . , r) such that ρi ̸> ρj for
any i < j and

τ ⊠ ρr ⊠ ρr−1 ⊠ . . .⊠ ρ1 ↪→ πN ′ ,

where N ′ is the unipotent radical of the standard parabolic subgroup associated to (n−n1−
. . .− nr, n1, . . . , nr).

Proof. Again we only consider π to be in Irrρ. The module τ determines a set of cuspidal
representations ρ1, . . . , ρr such that

csupp(τ) + ρ1 + . . .+ ρr = csupp(π).

We shall relabel ρ1, . . . , ρr such that ρi ̸> ρj for i < j.
Using the Hecke algebra realization [CS19] of Bernstein-Zelevinsky derivatives (see Sec-

tion 9), there is a submodule of πN ′ of the form

τ ⊠ ω,

where ω contains a generic representation. Hence we have an embedding

τ ⊠ ω ↪→ πNi

as Gn−i×Gi-modules. Since ω contains a generic representation, it is standard (see [Ch21,
Proposition 2.3]) to obtain a non-zero map

ρ1 × . . .× ρr → ω.

Hence, ωN ′′ has as submodule ρr ⊠ . . . ⊠ ρ1, where N
′′ is the unipotent radical of the

parabolic subgroup associated to the partition (n1, . . . , nr). Thus, by Jacquet functors in
stages,

τ ⊠ ρr ⊠ . . .⊠ ρ1 ↪→ πN ′

as desired. □
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We also prove a kind of converse of the above statement.

De�nition 3.16. (c.f. [Ze80, Theorem 6.1]) A sequence of segments ∆1, . . . ,∆k is said to
be ascending or in an ascending order if for any i < j, ∆j ̸< ∆i. This is opposite to the
ordering which usually de�nes a standard representation, that means St(∆1)× . . .×St(∆k)
is isomorphic to λ({∆∨

1 , . . . ,∆
∨
k })∨. This also coincides with the one de�ned in Section

1.3 when all ∆i are in Segρ for a �xed ρ. Here, for writing ∆i = [ai, bi]ρ, de�ne ∆∨
i :=

[−bi,−ai]ρ∨ .

Proposition 3.17. Let π ∈ Irr. Let ∆1, . . . ,∆k be an ascending sequence of segments. Let
n1, . . . , nk be the absolute lengths of ∆1, . . . ,∆k. Let N be the unipotent radical associated
to the partition (n − n1 − . . . − nk, n1, . . . , nk). Let n′ = n1 + . . . + nk and let N ′ = Nn′ .
Then,

(1) For any τ ∈ Irr(Gn−n′),

dim HomG(τ ⊠ St(∆k)⊠ . . .⊠ St(∆1), πN ) ≤ 1,

where G = Gn−n′ ×Gn1
× . . .×Gnk

.
(2) For any τ ∈ Irr(Gn−n′),

dim HomG′(τ ⊠ (St(∆1)× . . .× St(∆k)), πN ′) ≤ 1,

where G′ = Gn−n′ ×Gn′ .

(3) If the dimensions above are non-zero, then τ is a submodule of π(n′).

Proof. Note that (1) and (2) are equivalent by Frobenius reciprocity. (We remark that the
ordering of segments in (1) and (2) is switched since we switch from the opposite unipotent
subgroup to the usual one de�ned for ×.) We consider (2). Suppose

dim HomG′(τ ⊠ (St(∆1)× . . .× St(∆k)), πN ′) ≥ 2.

Claim: Let f, f ′ ∈ HomG′(τ ⊠ (St(∆1) × . . . × St(∆k)), πN ′) with f ̸= cf ′ for some scalar
c. Then im f ̸= im f ′.

Proof of claim: For a non-zero f ∈ HomG′(τ ⊠ (St(∆1)× . . .× St(∆k)), πN ′), it su�ces
to show EndG′(im f) ∼= C.

To this end, we observe that im f ∼= τ ⊠ κ for some quotient of St(∆1)× . . .× St(∆k).
Then

EndG′(im f) = EndG′(τ ⊠ κ) = EndGn−n′ (τ)⊗ EndGn′ (κ) ∼= C,
where the last equality follows from EndGn−n′ (τ) ∼= C by Schur's lemma and EndGn′ (κ) ∼= C
by that κ has unique simple quotient and other simple composition factors are not isomor-
phic to that.

By the claim, there exist quotients κ1, κ2 of St(∆1)× . . .× St(∆k) such that

τ ⊠ κ1 ⊕ τ ⊠ κ2 ↪→ πN ′ .

Note that κ1 and κ2 have a generic representation as the unique quotient by [JS83] (also
see [Ch21, Proposition 2.3]) and no other composition factor of κ1 and κ2 is generic. Hence,
now taking the (exact) (Un′ , ψn′)-twisted Jacquet functor, we obtain an embedding

τ ⊕ τ ↪→ π(n′).

This contradicts Lemma 3.11. Hence, we have (2). Similar argument above will also give
(3). □
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3.9. A reduction to Irrρ case. Let π ∈ Irr. By [Ze80, Proposition 8.5], there exists
ρ1, . . . , ρr ∈ Irrc such that

• for j ̸= k, ρj ̸∼= νcρk for any c ∈ Z;
• π ∼= π1 × . . .× πr for some πi ∈ Irrρi .

For any integer i, the geometric lemma gives that

π(i) ∼=
⊕

i1+...+ir=i

π
(i1)
1 × . . .× π(ir)

r ,(3.7)

where the direct sum is guaranteed by Ext-vanishing from a comparison of cuspidal sup-
ports.

Proposition 3.18. We use the above notations. Suppose τ is a simple quotient of π(i).
Then there exist integers i1, . . . , ir with i1+ . . .+ ir = i such that τ ∼= τ1× . . .× τr for some
simple quotients τj of π(ij).

Proof. By (3.7), τ is a simple quotient of π
(i1)
1 × . . .×π(ir)

r for some integers i1+ . . .+ ir = i.

Now, applying Frobenius reciprocity, we have a non-zero map from π
(i1)
1 ⊠ . . . ⊠ π

(ir)
r to

τN−
i1,...,ir

. Thus we have representations τj ∈ Irrρj
(j = 1, . . . , r) such that there is a non-

zero map from τ1 × . . .× τr onto τ . Since τ1 × . . .× τr is irreducible (by [Ze80, Proposition
8.5]), we have τ ∼= τ1 × . . .× τr.

Now, we have:

π
(i1)
1 × . . .× π(ir)

r ↠ τ1 × . . .× τr.

Then, Frobenius reciprocity with some slight cuspidal support arguments gives that:

π
(i1)
1 ⊠ . . .⊠ π(ir)

r ↠ τ1 ⊠ . . .⊠ τr.

This implies that τj is a simple quotient of π
(ij)
j as desired. □

3.10. Counting cuspidal representations from derivatives of an admissible as-
cending sequence of segments.

Lemma 3.19. Let m ∈ Multρ and let π = ⟨m⟩ ∈ Irrρ. Let ∆1, . . . ,∆r in Segρ be an
ascending sequence of segments such that D∆r ◦ . . . ◦ D∆1(π) ̸= 0. For an integer c, let
multb(π, c) be the number of segments ∆ in m such that b(∆) ∼= νcρ; and let xc be the total
number of segments ∆ in {∆1, . . . ,∆r} such that νcρ ∈ ∆. Then, for any c,

xc ≤ multb(π, c).

Proof. Let τ = D∆r ◦ . . . ◦D∆1(π). By Proposition 3.17, τ is a simple submodule of π(i),
where i =

∑r
k=1 la(∆k). Now the lemma follows from Lemma 3.14 and a cuspidal support

condition. □

4. On commutativity of derivatives

4.1. ε∆-invariant. Let ∆ be a segment of absolute length m. Let π ∈ Irr(Gn) with n ≥ m.
Let τ be the maximal semisimple representation of Gn−m such that

τ ⊠ St(∆) ↪→ πNm ,

or equivalently, by Proposition 2.1, τ is the maximal semisimple representation of Gn−m

such that

πNm
↠ τ ⊠ St(∆).
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It is known that τ is either irreducible or zero (see e.g. Lemma 3.4 or Lemma 3.5, also see
[Ch22+]). We shall denote such τ by D∆(π) if it is non-zero. If such τ does not exist, we
set D∆(π) = 0. Let

ε∆(π)

be the maximal integer k such that

Dk
∆(π) :=

k times︷ ︸︸ ︷
D∆ ◦ . . . ◦D∆(π) ̸= 0.

When ∆ = [a]ρ, ε∆ coincides with εa de�ned in Section 3.2.
We have the following reformulation by using Frobenius reciprocity:

Lemma 4.1. Let π ∈ Irr and let ∆ ∈ Seg. Suppose D∆(π) ̸= 0. Then

π ↪→ D∆(π)× St(∆).

Proof. By de�nition,

D∆(π)⊠ St(∆) ↪→ πNi
,

where i = l(∆), and so, by Proposition 2.1,

πNi
→ D∆(π)⊠ St(∆).

Now the statement follows from Frobenius reciprocity. □

Indeed, it is known that ε∆(π) coincides with the maximal integer k′ such that π is a
submodule of

τ ′ ×
k′ times︷ ︸︸ ︷

St(∆)× . . .× St(∆),

for some irreducible representation τ ′ of Gn−k′la(∆). To see this, we need the fact that
τ ′×St(∆)× . . .×St(∆) has a unique simple submodule (Lemma 3.4), where St(∆) appears
for arbitrary times. The uniqueness implies that π is a submodule of

ωr ×
r times︷ ︸︸ ︷

St(∆)× . . .× St(∆),

where ωr is the unique submodule of τ ′×
k′−r times︷ ︸︸ ︷

St(∆)× . . .× St(∆). Then, inductively, we obtain
that ωr

∼= Dr
∆(π) and so k′ = k.

4.2. Maximal multisegments at a (left) point. Recall that Multaρ,c for some integer c
is de�ned in Section 2.5, whose elements will be referred as multisegments at the point νcρ
(see Section 1.3). An ordering ≤a

c on Multaρ,c is also de�ned in Section 2.5.
For a multisegment m = {∆1, . . . ,∆r} in Multaρ,c, we de�ne: for any π ∈ Irrρ(Gn),

Dm(π) := D∆r ◦ . . . ◦D∆1(π).

Whenm is the empty set, Dm is just the identity map. Since τ×St(m) has unique submodule
for any irreducible τ , the same argument as in Section 4.1 shows that Dm is independent
of the choice of ordering of segments.

We also adapt the convention that: D∅(π) = π.

Lemma 4.2. Let π ∈ Irrρ. Fix c ∈ Z. There exists a unique ≤a
c -maximal multisegment m

in Multaρ,c such that Dm(π) ̸= 0.
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Proof. Let m1 and m2 be maximal multisegments at a left point νcρ. Let

m1 = {[c, b1]ρ, . . . , [c, br]ρ} , m2 = {[c, b′1]ρ, . . . , [c, b′s]}
with b1 ≥ . . . ≥ br and b′1 ≥ . . . ≥ b′s. Write ∆i = [c, bi]ρ and ∆′

i = [c, b′i].
If b1 = b′1, then one can proceed inductively since m1 − [c, b1]ρ and m2 − [c, b2]ρ are still

maximal for D[c,b1]ρ(π). If b1 > b′1, then one considers, by Lemma 4.1,

π ↪→ Dm2
(π)× St(m2).

Now one applies the functor N(b1−c+1)n(ρ) and uses geometric lemma and Section 2.9 to see
that the only possible layers of the form ω⊠ St([c, b1]ρ) as a submodule gives the following
possible embedding:

D[c,b1]ρ(π) ↪→ ω′ × St(m2 − {∆}),
for some ω2 ∈ Irr, where ∆ is one of the segments in m2. However, then m′ := m2 −{∆}+
{[c, b1]ρ} also satis�es Dm′(π) ̸= 0. This gives a contradiction to the maximality of m2.
The case for b′1 > b1 is similar. □

De�nition 4.3. Let π ∈ Irrρ. Let c ∈ Z. De�ne mxpta(π, c) to be the unique ≤a
c -maximal

multisegment at the point νcρ such that Dmxpta(π,c)(π) ̸= 0.

Proposition 4.4. Let π ∈ Irrρ and let n ∈ Multaρ,c. Let c ∈ Z. Suppose n ≤a
c mxpta(π, c).

Then

Dn(π) ̸= 0.

Proof. We have the embedding:

π ↪→ Dmxpta(π,c)(π)× St(mxpta(π, c)).

For n ≤a
c mx(π, c), we have that:

τ ⊠ St(n) ↪→ St(mxpta(π, c))Ni
,

for some τ ∈ Irr. Here i = la(n). One may prove the last statement by discussions in
Section 6 (or see [Ch21, Corollary 2.6]) and we omit the details. Thus we have a non-zero
map:

Dmxpta(π,c)(π)⊠ τ ⊠ St(n) ↪→ πN ,

where N = Nn(π)−la(mxpta(π,c)),la(mxpta(π,c))−i,i. By Frobenius reciprocity, we have

τ ′ ⊠ St(n) ↪→ πNi

for some τ ′ ∈ Irr, as desired. □

4.3. Maximal multisegment at a point and ε∆. We introduced the notions of ε∆ and
mxpta(π, c). The relation of the two notions is given as follows:

Proposition 4.5. Let π ∈ Irrρ. Fix c ∈ Z. For b ≥ c, let mult([c, b]ρ, π) be the multiplicity
of [c, b]ρ in mxpta(π, c). Then

(1) mult([c, b]ρ, π) = (ε[c,b]ρ(π)− ε[c,b+1]ρ(π));
(2) ε[c,b]ρ(π) =

∑
[c,b′]ρ:b′≥b mult([c, b′]ρ), where [c, b′]ρ runs for all the segments in

mxpta(π, c).

Proof. By the de�nition of mxpta(π, c), we have the inequality:

ε[c,b]ρ(π) ≤
∑
b′≥b

mult([c, b′]ρ, π).

The opposite inequality follows from Proposition 4.4. The remaining assertion of the propo-
sition then follows by solving mult([c, b′]ρ, π). □
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4.4. Maximal multisegment at a right point.

De�nition 4.6. Recall Multbρ,c is de�ned in Section 2.2. We shall call the multisegments

in Multbρ,c are the multisegments at the right point νcρ.
Similar to the argument in Lemma 4.2, one can deduce that there is a unique maxi-

mal multisegment n at the right point νcρ such that Dn(π) ̸= 0. We shall denote such
multisegment by mxptb(π, c).

Remark 4.7. • We remark here that the analogous version of Proposition 4.4 for a
multisegment at a right point and using ≤b

c instead of ≤a
c is not true in general.

(c.f. Corollary 6.24 below)
• As we shall see later that, the two notions of multisegments at a point in De�nitions
4.3 and 4.6 have quite di�erent uses. The maximal multisegment at a left point
is mainly used to de�ne the highest derivative multisegment while the maximal
multisegment at a right point is mainly used in some inductions for some proofs.
(See one property in Proposition 4.9 below)

For convenience, we de�ne the following notion. Let c ∈ Z. An irreducible representation
π ∈ Irrρ is said to be with the maximal point νcρ if νcρ ∈ csupp(π) and for any integer
d > c, νdρ ̸∈ csupp(π).

Example 4.8. ⟨[1, 2]ρ⟩ and St([1, 2]ρ) have the maximal point ν2ρ.

Proposition 4.9. (c.f. [LM22, Proposition 7.3]) Let π ∈ Irrρ(Gn). Let c ∈ Z. Suppose

mxptb(π, c) = ∅. For any 1 ≤ i, πNi does not have a simple composition factor of the form
τ ⊠ ω for some ω ∈ Irrρ with maximal point νcρ and for some τ ∈ Irrρ.

Proof. Suppose not. Then πNi also has a simple composition factor of the form τ ⊠ ω for
some ω ∈ Irrρ(Gi) having the maximal point νcρ and for some τ ∈ Irrρ(Gn−i). Since ω
has the maximal point νcρ, there exists j > 0 such that ωNj

have an irreducible quotient
isomorphic to τ ′⊠St(n) for some multisegment n at the right point νcρ and τ ′ ∈ Irr(Gi−j).

Hence, by taking Jacquet functors in stage, we have a surjection:

πN ′ → τ ⊠ τ ′ ⊠ St(n),

where N ′ is the unipotent radical of the parabolic subgroup Pn−i,i−j,j . Now applying
Frobenius reciprocity, we have a non-zero map:

πNj → (τ ′ × τ)⊠ St(n).

Thus Dn(π) ̸= 0, giving a contradiction. □

4.5. First commutativity result.

Lemma 4.10. Let π ∈ Irr. Let ∆1 and ∆2 be unlinked segments. Then

D∆1
◦D∆2

(π) ∼= D∆2
◦D∆1

(π).

Proof. One can apply geometric lemma to get the lemma. Alternatively, St(∆1)× St(∆2)
is a generic representation and so St(∆1) × St(∆2) ∼= St(∆2) × St(∆1) [Ze80]. Moreover,
one has

D∆1
◦D∆2

(π)

is the unique submodule of HomGi
(St(∆1)×St(∆2), πNl

), where l = la(∆1)+ la(∆2), which
is regarded as a Gn(π)−l-module. (See [Ch22+] for more discussions on big derivatives.)
Then the lemma follows from Lemma 3.4 (also see Remark 3.5). □
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Lemma 4.11. Let π ∈ Irrρ. Let ∆1 = [a1, b1]ρ and ∆2 = [a2, b2]ρ be linked with ∆1 < ∆2.
Suppose D∆1

(π) ̸= 0 and D∆2
(π) ̸= 0. Then

D∆1 ◦D∆2(π) ̸= 0, D∆2 ◦D∆1(π) ̸= 0.

Proof. Let ω1 = D∆1(π) and let ω2 = D∆2(π). Let l = n(ρ) and let k = b1 − a1 + 1. Then

π ↪→ ω1 × St(∆1), π ↪→ ω2 × St(∆2).

Checking the �rst one is easier by geometric lemma and cuspidal support. Some similar
computation appears for the second one and so we omit the details for the �rst one.

Now we prove the second one. One applies geometric lemma on

(ω2 × St(∆2))Nkl
,

to reduce the possibility contributing to a factor of the form τ ⊠ St(∆1) to those of the
form

(∗) τ ′ × St([b1 + 1, b2]ρ)⊠ St([a1, a2 − 1]ρ)× St([c+ 1, b1]ρ)× St([a2, c]ρ),

for some c, or simply
(∗∗) τ ′′ × St([a2, b2]ρ)⊠ St([a1, b1]ρ).

Here one of the irreducible factor in (*) has to take the form St([a1, a2−1]ρ)×St([c+1, b1]ρ)
by picking the unique generic representation with given cuspidal support, and another
irreducible factor St([a2, c]ρ) comes from the Jacquet module of St(∆2)N(c−a2+1)l

by Section
2.9.

Here τ ′ is an irreducible representation such that τ ′ ⊠ St([a1, a2 − 1]ρ) is a composition
factor of (ω2)N(a2−a1+1)l

; and τ ′′ is an irreducible representation such that τ ′′⊠St([a1, b1]ρ).

However, for Case (*), by Frobenius reciprocity, the St([a1, b1]ρ) does not appear in the
submodule of St([a1, a2−1]ρ)×St([a2, b1]ρ). Thus only (**) can contribute to a submodule
of the form κ⊠St(∆1) in πN(b1−a1+1)l

(which we know such submodule exists by D∆1
(π) ̸=

0). Thus the socle of (ω2)N(b1−a1+l)l
has a factor of the form τ ′′ ⊠ St(∆1). This shows

D∆2 ◦D∆1(π) ̸= 0. □

Proposition 4.12. Let π ∈ Irrρ. Let ∆1 = [a1, b1]ρ and ∆2 = [a2, b2]ρ be linked with
∆1 < ∆2. Suppose D∆1

(π) ̸= 0 and D∆2
(π) ̸= 0. Suppose

D∆2 ◦D∆1(π) ̸∼= D∆1∩∆2 ◦D∆1∪∆2(π),

and

D∆1
◦D∆2

(π) ̸∼= D∆1∩∆2
◦D∆1∪∆2

(π).

Then D∆2
◦D∆1

(π) ∼= D∆1
◦D∆2

(π).

Proof. By Frobenius reciprocity,

π ↪→ D∆2
◦D∆1

(π)× St(∆2)× St(∆1).

There are two composition factors in St(∆2) × St(∆1) [Ze80]: St(∆1 + ∆2) and St(∆1 ∪
∆2 +∆1 ∩∆2). Thus we have either:

π ↪→ D∆2 ◦D∆1(π)× St(∆1 ∩∆2 +∆1 ∪∆2),

or
π ↪→ D∆2

◦D∆1
(π)× St(∆1 +∆2).

In the former case, Lemma 3.4 gives that D∆1∩∆2 ◦D∆1∪∆2(π)
∼= D∆2 ◦D∆1(π), giving a

contradiction. Thus we must be in the latter case.
We similarly have that

π ↪→ D∆1
◦D∆2

(π)× St(∆1)× St(∆2).
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With a similar argument as above, we have that

π ↪→ D∆1
◦D∆2

(π)× St(∆1 +∆2).

Now the ladder representation case of Lemma 3.4 gives that

D∆2
◦D∆1

(π) ∼= D∆1
◦D∆2

(π).

□

Remark 4.13. As shown in the proof of Proposition 4.12, D∆1 ◦D∆2(π) is the irreducible
submodule of π × St(∆1 +∆2) or irreducible submodule of

π × St(∆1 ∪∆2 +∆1 ∩∆2).

We shall need the following in Section 7.2. We also remark that dropping the condi-
tion that D∆1(π) ̸= 0 or D∆2(π) ̸= 0 below will make the statement fail in general (e.g.
considering some derivatives on a Speh representation).

Lemma 4.14. Let π ∈ Irrρ. Let ∆1 = [a1, b1]ρ and ∆2 = [a2, b2]ρ be linked with ∆1 < ∆2.
Suppose D∆1

(π) ̸= 0 and D∆2
(π) ̸= 0. Let ∆ = ∆1 ∪∆2. If D∆(π) = 0, then

D∆1 ◦D∆2(π)
∼= D∆2 ◦D∆1(π).

Proof. This is a special case of Proposition 4.12. □

4.6. Commutations in another form. As mentioned before, Lemma 4.14 requires the
assumption that D∆1

(π) ̸= 0 and D∆2
(π) ̸= 0. It is not convenient for the purpose of some

applications. We now prove another version of commutativity, and one may compare with
the proof of Lemma 4.14.

Lemma 4.15. Let π ∈ Irrρ. Let c ∈ Z. Let τ = Dmxpta(π,c)(π). Let d > c be an integer.
Let n ∈ Multaρ,d. If Dn(τ) ̸= 0, then Dn(π) ̸= 0.

Proof. Let τ ′ = Dn(τ). By Lemma 4.1, we have embeddings:

π ↪→ τ × St(mxpta(π, c)), τ ↪→ τ ′ × St(n).

Hence,
π ↪→ τ ′ × St(n)× St(mxpta(π, c)).

The lemma will follow from the following claim. The main idea in proving the lemma is to
switch a pair of segments respectively in n and mxpta(π, c) each time by using the maxi-
mality of mxpta(π, c).

Claim: π ↪→ τ ′ × St(mxpta(π, c))× St(n).
Proof of Claim: We shall write the segments in mxpta(π, c) as:

∆k ≤a
c . . . ≤a

c ∆1,(4.8)

and write the segments in n as:
∆1 ≤a

d . . . ≤a
d ∆l.

(Note that the order is opposite to (4.8).)
We shall inductively show that:

π ↪→ τ ′ ×Aij × St(∆j)×Bij ,

where
Aij = (St(∆l)× . . .× St(∆j+1))× (St(∆k)× . . .× St(∆i))

and
Bij = St(∆i−1)× . . .× St(∆1)× St(∆j−1)× . . .× St(∆1).
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The basic case has been given before the claim. Suppose the case is proved for i = i∗ and
j = j∗. To prove the case that i = i∗ − 1 and j = j∗ (if i∗ = 1, then we proceed i = k + 1
and j = j∗ + 1 and the argument is similar), we consider two cases:

(1) ∆j∗ ⊂ ∆i∗−1. Then it follows from (i∗, j∗) case and the fact that St(∆j∗) ×
St(∆i∗−1) ∼= St(∆i∗−1)× St(∆j∗).

(2) ∆j∗ ̸⊂ ∆i∗−1. Then there are two composition factors in St(∆j∗) × St(∆i∗−1),
which are

R = St(∆j∗ ∪∆i∗−1)× St(∆j∗ ∩∆i∗−1),

and a non-generic factor denoted by S.
Now, by induction hypothesis,

π ↪→ τ ′ ×Ai∗,j∗ × St(∆j∗)× St(∆i∗−1)×Bi∗−1,j∗

and so the above discussion implies that

(•) π ↪→ τ ′ ×Ai∗,j∗ ×R×Bi∗−1,j∗ ,

or

(∗) π ↪→ τ ′ ×Ai∗,j∗ × S ×Bi∗−1,j∗ .

We �rst prove the former case is impossible. Suppose the former case happens.
We write ∆ = ∆j∗ ∪∆i∗−1. We choose all the segments ∆1, . . . ,∆p in mxpta(π, c)
such that those ∆ ⊂ ∆x (x = 1, . . . , p). Then, by the ordering above, we also have

∆j∗−1 ⊂ . . . ⊂ ∆1 ⊂ ∆ ⊂ ∆p ⊂ . . . ⊂ ∆1.

We also further have that ∆ is unlinked to ∆y for any y. Thus, using (2.4) several
times, we have that:

Ai∗,j∗ ×R×Bi∗−1,j∗
∼= Ai∗,j∗ × R̃× St(∆)× St(∆p)× . . .× St(∆1),

where R̃ is the product of those St(∆′)s for the remaining segments.
This implies that, by Frobenius reciprocity,

{∆,∆1, . . . ,∆p} ≤a
c mxpta(π, c),

but this gives a contradiction to the uniqueness of the maximality in Lemma 4.2.
Thus we must lie in the (*) case. Now combining

S ↪→ St(∆i∗−1)× St(∆j∗)

with (*), we obtain the case that i = i∗ − 1 and j = j∗, as desired.

□

5. Highest derivative multisegments

In this section, we construct the highest derivative of an irreducible representation by
a sequence of St-derivatives. One may compare with the construction using ρ-derivatives
in Proposition 3.9, and the two situations give two extreme cases: the minimal (shown in
[Ch22+d]) and maximal one (Proposition 3.9) under ≤Z .



20 KEI YUEN CHAN

5.1. A computation on maximal multisegments at a point.

Lemma 5.1. Let m ∈ Multρ and let π = ⟨m⟩. Let c ∈ Z with εc(π) ̸= 0. Then, for any
d > c,

mxpta(Dmxpta(π,c)(π), d) = mxpta(π, d).

Proof. We abbreviate hc for mxpta(π, c) and hd for mxpta(π, d). We have that:

π ↪→ Dhc(π)× St(hc).

This implies that
Dhd

(π)⊠ St(hd) ↪→ (Dhc
(π)× St(hc))Nn2

,

where n2 = la(hd).
By the geometric lemma and comparing cuspidal support at νcρ (and using (2.6)),

Dhd
(π)⊠ St(hd) can only come from the layer

IndGn

P (Dhc(π)Nn2
⊠ St(hc))

ϕ,

where P = Pn−n1−n2,n1,n2 for n1 = la(mc). This implies that Dhd
◦ Dhc(π) ̸= 0. Hence,

hd ≤a
d n.

Now the opposite inequality follows from Lemmas 4.15 and 4.2, and hence we are done.
□

5.2. Highest derivatives by St-derivatives. Recall that in Proposition 3.17, we have
shown that an ascending sequence of segments can be used to construct a simple quotient of
BZ derivatives. On the other hand, the highest derivative of an irreducible representation
is known to be irreducible. Thus, the strategy of a proof of the following result is to show
an ascending sequence of segments has sum of absolute length of segments equal to the
level of the representation.

Theorem 5.2. Let m ∈ Multρ. Let π = ⟨m⟩ in Irrρ. We choose the smallest integer c such
that νcρ ∼= b(∆) for some ∆ in m and choose the largest integer d such that νdρ ∼= b(∆) for
some ∆ in m. Then

Dmxpta(π,d) ◦ . . . ◦Dmxpta(π,c)(π) ∼= π−.

Remark 5.3. In the statement of Theorem 5.2 above, mxpta(π, d) can be an empty set
and we only pick a certain range to guarantee the sequence of derivatives gives the highest
derivative of π.

Proof. For simplicity, let he = mxpta(π, e).

Step 1: Claim: The following two conditions:

• Dhd
◦ . . . ◦Dhc(π) ̸= 0; and

• hd + . . . + hc is a multisegment whose sum of absolute lengths of all segments is
equal to the level of π;

imply the theorem.

Proof of the claim: Let
τ = Dhd

◦ . . . ◦Dhc(π).

The �rst bullet and Lemma 4.1 give that

π ↪→ τ × St(hd)× . . .× St(hc),

and so, by Frobenius reciprocity again,

πNk
↪→ τ ⊠ St(hd)× . . .× St(hc),
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where k is the sum of the absolute lengths of all multisegments hd, . . . , hc. By Proposition
3.17, τ is a submodule of π(k). By the second bullet, π(k) is the highest derivative and so
it is irreducible. Thus τ ∼= π(k).

Note that the �rst bullet follows from repeatedly using Lemma 5.1. It remains to prove
the second bullet in the claim.

Step 2: We now prove the second bullet. Let xe be the total number of segments in
hc + . . .+ he−1 containing νeρ. Let multb(π, e) be the number of segments in m such that
b(∆) ∼= νeρ i.e. multb(π, e) = |m⟨e⟩|. We shall show by induction on e that

(∗) xe + number of segments in mxpta(π, e) = multb(π, e) .

The second bullet will then follow from (*).
When e = c, one can compute quite directly by Lemma 3.10 (also see [MW86, Ja07,

Mi09]). Now again let

τ := Dhe−1
◦ . . . ◦Dhc

(π).

As argued in Step 1, we have that τ ↪→ π(j), where j is the sum of the lengths of all
segments in hc + . . . + he−1. We also have, by the induction hypothesis (and a cuspidal
support calculation using Lemma 3.14), that multb(π, e − 1) (i.e. all) segments in m with
b(∆) ∼= νe−1ρ are truncated to produce the segments in m(τ) ∈ m(j) (see Section 3.6). In
other words, multb(τ, e − 1) = 0. By Lemma 3.10 (and Lemma 4.2), this implies that he

contains at least multb(τ, e) number of segments since {
multb(τ,e) times︷ ︸︸ ︷
νeρ, . . . , νeρ } ≤a

e he by Lemma
5.1, but indeed contains exactly multb(τ, e)-number by Lemma 3.19.

By Lemma 3.14 and a cuspidal support consideration again, the multisegment associated
to Dhe

(τ) does not have any segment ∆ satisfying b(∆) ∼= νeρ. Again 3.14 and a cuspidal
support consideration on

Dhe
◦ . . . ◦Dhc

(π) = Dhe
(τ),

we have:

xe + number of segments in he = multb(π, e).

This gives (*). □

6. Operations of St-derivatives on hd

6.1. Highest derivative multisegment hd. For π ∈ Irrρ, recall that for c ∈ Z, mxpta(π, c)
is the maximal multisegment m at νcρ such that Dm(π) ̸= 0 (De�nition 4.3). De�ne hd(π)
to be the multisegment

hd(π) =
∑
c∈Z

mxpta(π, c),

which is called the highest derivative multisegment for π. Note that there are �nitely many
c such that mxpta(π, c) ̸= ∅.

By de�nitions, we have that

hd(π)[c] = mxpta(π, c).

However, hd(π)⟨c⟩ is not necessarily equal to mxptb(π, c) (see Corollary 6.23 for a precise
description).
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6.2. A combinatorial removal process.

De�nition 6.1. Given a multisegment h ∈ Multρ, a segment ∆ = [a, b]ρ is said to be
admissible to h if there exists a segment in h of the form [a, c]ρ for some c ≥ b.

Remark 6.2. Suppose h = hd(π) for some π ∈ Irr. Then ∆ is admissible to h if and only
if D∆(π) ̸= 0. This explains the above terminology.

De�nition 6.3. Let h ∈ Multρ. Let ∆ = [a, b]ρ be a segment admissible to h. The removal
process on h by ∆ is to obtain a new multisegment r(∆, h) given by the following steps:

(1) Choose a segment ∆1 in h which has shortest relative length among all segments
of the form [a, b′]ρ for some b′ ≥ b. (In particular, νbρ ∈ ∆1.)

(2) (Minimality condition and nesting condition) For i ≥ 2, choose recursively segments
∆i = [ai, bi]ρ such that [ai, bi]ρ is the ≺L-minimal segment (see Section 2.3) in h
satisfying ai−1 < ai and bi−1 > bi. This step terminates when no further such
segment can be found. Let ∆r be the last segment in the process.

(3) Obtain new segments ∆tr
1 , . . . ,∆

tr
r de�ned as:

• for 1 ≤ i ≤ r − 1, ∆tr
i = [ai+1, bi]ρ;

• ∆tr
r = [b+ 1, br]ρ (possibly an empty set).

(4) The new multisegment r(∆, h) is de�ned as:

r(∆, h) = h−
r∑

i=1

∆i +

r∑
i=1

∆tr
i .

Remark 6.4. (a) ∆1 in Step (1) above is guaranteed to exist by the assumption that
∆1 is admissible to h.

(b) In (2), the condition that b(∆i) ∼= b(∆i+1) indeed can be dropped, and the resulting
multisegment de�ned in such way is the same as the way de�ned in De�nition 6.3.
Imposing such condition is more convenient for the proofs.

(c) If a segment ∆ is not admissible to a multisegment h, we simply set r(∆, h) = ∞.
Moreover, we also set r(∆,∞) = ∞.

De�nition 6.5. (1) In the above notation, we shall call that ∆1, . . . ,∆r form a re-
moval sequence for (∆, h). The nesting condition refers to the condition that
∆i+1 ⊊ ∆i for any i. The minimality condition refers to the minimal choice of
∆i in Step (2). We shall call ∆tr

1 , . . . ,∆
tr
r to be the truncations of the removal

sequence for (∆, h).
(2) De�ne Υ(∆, h) = ∆1, the �rst segment in the removal sequence above.

Example 6.6. Let h = {[0, 4], [2, 5], [2, 3], [2]}. (The blue points in the graph represent
those 'removed' to give r(∆, h).)
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(1) r([0, 2], h) = {[2, 4], [2, 5], [2, 3]};

2•

2• 3•

2• 3• 4• 5•

0• 1• 2• 3• 4•

(2) r([0, 3]ρ, h) = {[2, 4]ρ, [2, 5]ρ, [2]ρ};

2•

2• 3•

2• 3• 4• 5•

0• 1• 2• 3• 4•

(3) r([0, 5]ρ, h) is not de�ned since [0, 5]ρ is not admissible to h.

Example 6.7. (1) Let h = {[0, 7], [1, 4], [1, 6]}. Let ∆ = [0, 5] and let ∆′ = [1, 4]. The
removal sequence for (∆, h) is [0, 7], [1, 6]. The removal sequence for (∆′, h) is [1, 4].

1• 2• 3• 4•

1• 2• 3• 4• 5• 6•

0• 1• 2• 3• 4• 5• 6• 7•

The blue points represent the points removed for r(∆, h) and hence give the corre-
sponding removal sequence for (∆, h).

(2) Let h = {[0, 7], [1, 5], [1, 6]}. Let∆ = [0, 5] and let∆′ = [1, 4]. The removal sequence
for (∆, h) is [0, 7], [1, 5]. The removal sequence for (∆′, h) is [1, 5].

(3) Let h = {[0, 7], [1, 5], [1, 8]}. Let∆ = [0, 5] and let∆′ = [1, 4]. The removal sequence
for (∆, h) is [0, 7], [1, 5], and the removal sequence for (∆′, h) is [1, 5].

6.3. Properties of removal process. A simple but useful computation is the following:
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Lemma 6.8. (Removal of a cuspidal point at one time) Let h ∈ Multρ. Let ∆ be a
non-empty segment admissible to h. Let

h∗ = h− {Υ(∆, h)}+
{−Υ(∆, h)

}
.

Then

r(∆, h) = r(−∆, h∗).

(As a convention, r(∅, h∗) = h∗.)

Proof. Let ∆̃1 = Υ(∆, h). Write ∆ = [a, b]ρ. Suppose h[a+1] has no segment ∆ satisfying

b(∆) ≤ b(∆). Then Υ(−∆, h∗) = −∆̃1. Since the only di�erence between h and h∗ is on
that one segment, one checks that the remaining segments in the sequences are picked in
the same way by the minimality and nesting condition. This gives r(−∆, h∗) = r(∆, h).

Suppose h[a + 1] has some segments ∆ satisfying b(∆) ≤ b(∆). Let ∆
∗
be the shortest

such segment. We further have two cases:

(1) Suppose ∆
∗ ⊊ −∆̃1.

(2) Suppose ∆
∗ ̸⊂ −∆̃1 or ∆

∗
= −∆̃1.

In Case (1), we have that Υ(−∆, h∗) is ∆
∗
, coinciding with the second segment in the

removal sequence for (∆, h). By the minimality and nesting conditions, the subsequent
segments in the removal sequence for (−∆, h∗) are the same as those (starting from the
third one) in the removal sequence for (∆, h).

In Case (2), Υ(−∆, h∗) = −∆̃1, and, by the nesting condition, the subsequent segments
in the removal sequence for (−∆, h∗) are those (starting from the second one) in the removal
sequence for (∆, h).

In any such case, we will then obtain r(∆, h) = r(−∆, h∗). □

We prove some further properties in Lemmas 6.9 to 6.13. One may compare with prop-
erties in the derivative side such as Lemmas 4.10 and 4.11.

Lemma 6.9. (No e�ect on previous segments) Let h ∈ Multρ. Let ∆ = [a, b]ρ ∈ Segρ be
admissible to h. Then for any a′ < a, h[a′] = r(∆, h)[a′].

Proof. This follows directly form De�nition 6.3 since those segments do not involve in the
removal process. □

Lemma 6.10. (Removing a whole segment in h) Let h ∈ Multρ. Let ∆ ∈ h. Then

r(∆, h) = h−∆.

Proof. Write ∆ = [a, b]ρ. Note that Υ(∆, h) = ∆. The nesting property guarantees that
there is no other segments in the removal sequence for (∆, h). □

Lemma 6.11. Let h ∈ Multρ. Let ∆,∆
′ ∈ Segρ with a(∆) ∼= a(∆′). Then

{Υ(∆, h) + Υ(∆′, r(∆, h))} = {Υ(∆′, h) + Υ(∆, r(∆′, h))} .

The above lemma is a straightforward exercise from de�nitions and we omit a proof.

Lemma 6.12. (Removal sequence involving the largest end point) Let h ∈ Multρ. Let
∆ ∈ Segρ be non-empty and admissible to h. Let c be the largest integer such that h⟨c⟩ ≠ 0.
If one of the segments in the removal sequence for (n, h) is in h⟨c⟩, then Υ(∆, h) ∈ h⟨c⟩.

Proof. This follows from the nesting property in the removal sequence. □
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Lemma 6.13. (Commutativity for unlinked segments) Let h ∈ Multρ. Let ∆,∆
′ ∈ Segρ be

unlinked segments. Suppose r(∆, h) ̸= 0 and r(∆′, r(∆, h)) ̸= 0. Then

r(∆′, r(∆, h)) = r(∆, r(∆′, h)).

Proof. We shall prove by an induction on the sum of lengths of all segments in h. For
induction purpose, we also allow ∆,∆′ to be an empty set and in such case, it is trivial.
We now assume both are not empty sets. By switching the labellings if necessary, we may

and shall assume that a(∆′) ≥ a(∆). Let ∆̃1 = Υ(∆, h).
Case 1: a(∆) ̸∼= a(∆′), ν−1a(∆′). Hence a(∆′) > a(∆). Now we consider

h∗ = h−
{
∆̃1

}
+

{
−∆̃1

}
.

and so, by Lemma 6.8, r(∆, h) = r(−∆, h∗). Thus,

(∗) r(∆′, r(∆, h)) = r(∆′, r(−∆, h∗)).

Now using Lemma 6.9 and the assumption in this speci�c case, we still haveΥ(∆, r(∆′, h)) =

∆̃1. Hence, we have that: by Lemma 6.8 again,

r(∆, r(∆′, h)) = r(−∆, r(∆′, h∗)),(6.9)

where we also use r(∆′, h)−
{
∆̃1

}
+

{
−∆̃1

}
= r(∆′, h∗) by Lemma 6.9.

Now,

r(∆′, r(∆, h)) = r(∆′, r(−∆, h∗)) = r(−∆, r(∆′, h∗)) = r(∆, r(∆′, h)),

where the middle equality follows from the inductive case. Hence, we are done.
Case 2: a(∆) ∼= a(∆′). Let

h∗∗ = h−Υ(∆, h)−Υ(∆′, r(∆, h)) + −Υ(∆, h) + −Υ(∆′, r(∆, h)).

We use Lemma 6.8 twice and combine with Lemma 6.11 to obtain:

r(∆′, r(∆, h)) = r(−∆′, r(−∆, h∗∗))

and

r(∆, r(∆′, h)) = r(−∆, r(−∆′, h∗∗)).

Then the equality follows from the induction.
Case 3: a(∆) ∼= ν−1a(∆′). We further divide into two more cases:

(1) There is a segment ∆̂ in h such that a(∆̂) ∼= νa(∆) and ∆′ ⊂ ∆̂ ⊊ −∆̃1. In such
case, one has the equalities (*) and (6.9) as in Case (1).

(2) There is no such segment in the above case. Let ∆1 = Υ(∆′, h). Let h∗ = h −{
∆1

}
+
{−∆1

}
. Then, by Lemma 6.8, we have that

r(∆′, h) = r(−∆′, h∗).

Hence,

(∗) r(∆, r(∆′, h)) = r(∆, r(−∆′, h∗)).

On the other hand, by the nesting property for the removal sequence for (∆, h)
and the assumption in this case, ∆1 cannot be involved in the removal sequence
for (∆, h). Hence,

r(∆, h)−
{
∆1

}
+
{−∆1

}
= r(∆, h∗).

By using the assumption in this case, we still have that

Υ(∆′, r(∆, h∗)) = ∆1.



26 KEI YUEN CHAN

Thus, by Lemma 6.8 again,

(∗∗) r(∆′, r(∆, h)) = r(−∆′, r(∆, h∗)).

Now, using (*) and (**) and induction case, we have that:

r(∆′, r(∆, h)) = r(∆, r(∆′, h)).

□

6.4. Derivative resultant multisegments.

De�nition 6.14. (1) Let h ∈ Multρ. A multisegment n is said to be admissible to h,
if we label the segments ∆1, . . . ,∆k in n in an ascending order, ∆i is admissible to

r(∆i−1, . . . r(∆1, h)

for all i = 1, . . . , k. By Lemma 6.13, it is independent of a choice of an ascending
order.

(2) Using the notations in (1), we also write

r(n, h) = r({∆1, . . . ,∆k} , h)
for r(∆k, r(∆k−1, . . . r(∆1, h) . . .). We also consider ∅ to be admissible to any h ∈
Multρ.

For any multisegment n admissible to h, we say r(n, h) to be a derivative resultant
multisegment for h.

6.5. Shrinking derivatives. The following lemma is more technical, but the original mo-
tivation comes from the representation-theoretic counterpart for the removal process e.g.
Theorem 7.2. One should also compare with some reduction techniques in [LM22, Ch22+,
Ch22+d].

Lemma 6.15. Let h ∈ Multρ. Let n be a multisegment admissible to h. Let c ∈ Z such
that, for any i ≥ 1, νc+iρ is not in any segment of n. Let s = r(n, h). Recall that h⟨c⟩
(resp. s⟨c⟩) is the submultisegment of h (resp. s) containing all the segments ∆ in h (resp.
s) satisfying b(∆) ∼= νcρ. Furthermore, we assume that

s⟨e⟩ = h⟨e⟩
for any e ≥ c+ 1. Then

s− s⟨c⟩+ h⟨c⟩
is also a derivative resultant multisegment for h.

Proof. We shall prove by an induction on la(h). We write the segments in n in the following
ascending order:

(∗) ∆1 ⪯L . . . ⪯L ∆p.

When la(h) = 0, it is clear.

Let ∆̃ = Υ(∆1, h). We �rst consider the case that ∆̃ /∈ h⟨c⟩. Note that, by the de�nition
of r,

r(n−∆1, r(∆1, h)) = r(n, h).

Let h′ = r(∆1, h). The assumptions in the lemma imply that ∆̃ ∈ h⟨e⟩ for some e < c and

then the nesting property with ∆̃ /∈ h⟨c⟩ imply that h⟨c⟩ = h′⟨c⟩. Now induction hypothesis
with (*) gives that

s− s⟨c⟩+ h⟨c⟩ = s− s⟨c⟩+ h′⟨c⟩
is still a derivative resultant multisegment i.e. for some multisegment ñ,

r(ñ, h′) = s− s⟨c⟩+ h⟨c⟩.
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It remains to observe from (*) that we still have

r(ñ+∆1, h) = r(ñ, h′).

We now consider the case that ∆̃ ∈ h⟨c′⟩ for some c′ ≥ c. Let

h∗ = h−
{
∆̃
}
+

{
−∆̃

}
,

n∗ = n− {∆1}+
{−∆1

}
.

By Lemma 6.8,

r(∆1, h) = r(−∆1, h
∗)

and so, by Lemma 6.13,

(∗∗) r(n, h) = r(n∗, h∗).

Now, by induction hypothesis, we have that s − s⟨c⟩ + h∗⟨c⟩ is a derivative resultant
multisegment, say there exists a multisegment ñ such that

r(ñ, h∗) = s− s⟨c⟩+ h∗⟨c⟩.(6.10)

We now claim:
Claim: r(ñ, h∗)[a] = h∗[a], where a satis�es a(∆̃) ∼= νaρ. (This claim means that after
shrinking, no more segments in h∗[a] are involved.)

Proof of claim: In the removal sequences for (ñ, h∗), all the �rst segments involved are ∆̃ by
the minimality in the removal process and the assumption that s⟨e⟩ = h⟨e⟩ for all e ≥ c+1.
Thus, we have that,

s = r(n, h) = r(n− n[a] + −(n[a]), h−
{
∆̃, . . . , ∆̃

}
+

{
−∆̃, . . . ,−∆̃

}
),

where both ∆̃ and −∆̃ appear |n[a]|-times. Thus, by Lemma 6.9,

s[a] = h[a]−

|n[a]|-times︷ ︸︸ ︷
{∆̃, . . . , ∆̃} = h∗[a]−

|n[a]| − 1 times︷ ︸︸ ︷
{∆̃, . . . , ∆̃} .

Hence, s[a]− s[a]⟨c⟩ = h[a]− h[a]⟨c⟩ = h∗[a]− h∗[a]⟨c⟩ and so (s− s⟨c⟩+ h∗⟨c⟩)[a] = h∗[a].
This proves the claim by (6.10).

Now the claim with our minimal choice of ∆1, we must have that

(∗∗) ñ[d] = ∅, for any integer d ≤ a.

Then one observes that r(ñ, h) = r(ñ, h∗) +
{
∆̃
}
−

{
−∆̃

}
by using Lemma 6.9, (**) and

the fact that any segment in the removal sequence for (ñ, h∗) does not involve −∆̃ (using
(6.10)). Hence,

r(ñ, h) = s− s⟨c⟩+ h∗⟨c⟩+
{
∆̃
}
−

{
−∆̃

}
= s− s⟨c⟩+ h⟨c⟩

is still a derivative resultant multisegment as desired. □

Example 6.16. Let h = {[1, 5], [2, 4], [4, 5]}.
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(1) Let ∆ = [1, 3]. Then r(∆, h) = {[2, 5], [4], [4, 5]}. Then {[1, 5], [4], [4, 5]} is also
a derivative resultant multisegment by Lemma 6.15. One can also check that
r([2, 3], h) = {[1, 5], [4], [4, 5]}.

4• 5•

2• 3• 4•

1• 2• 3• 4• 5•
Here those red and blue points are removed to obtain r([1, 3], h), and the red point
is added to obtain a new derivative resultant multisegment.

(2) Let n = {[1, 3], [2]}. Then r(n, h) = {[3, 5], [4], [4, 5]}. Then {[1, 5], [4], [4, 5]} is a
derivative resultant multisegment.

Lemma 6.17. We use notations in the previous lemma. Let n′ ∈ Multρ such that

r(n′, h) = s− s⟨c⟩+ h⟨c⟩.

Then

r(h⟨c⟩+ n′, h) = s− s⟨c⟩.

Proof. Note that

r(h⟨c⟩+ n′, h) = r(h⟨c⟩, r(n′, h)) = r(h⟨c⟩, s− s⟨c⟩+ h⟨c⟩).

Then the lemma follows from Lemma 6.10. □

6.6. E�ect of St-derivatives. We shall now compute the e�ect of St-derivatives on the
invariant ε∆. We need a preparation lemma �rst, which allows one to do the induction.
For a segment ∆ = [a, b]ρ, de�ne

+∆ = [a− 1, b]ρ.

Lemma 6.18. Let m ∈ Multρ and let π = ⟨m⟩. Let c be an integer such that m⟨c⟩ ≠ ∅ and

let k = εc(π). Let π̃ = Dk
c (π). For ∆ = [a, b]ρ with b > 0,

(1) if a > c+ 1, then

ε∆(π̃) = ε∆(π);

(2) if a = c+ 1, then

ε∆(π̃) = ε∆(π) + ε+∆(π)

Proof. We consider (1). Suppose c ̸= b. Otherwise, it is easier (see Section 4.4). Let
l = ε∆(π). Then we have

(νcρ)×k × π̃ ↠ π ↪→ π′ × (St(∆))×l

By geometric lemma and comparing cuspidal support, we have a non-zero composition
factor on π′

Ni
of the form τ ⊠ (St(∆))×l, where i is equal to l times the absolute length of ∆

and τ ∈ Irr, and hence π̃Ni
also has a quotient of such form τ ⊠ (St(∆))×l. Thus l ≤ ε∆(π̃).

Let l′ = ε∆(π̃). We have an embedding:

π ↪→ π′ × (νcρ)×k ↪→ π′′ × St(∆)×l′ × (νcρ)×k ∼= π′′ × (νcρ)×k × St(∆)×l′ ,

where the last isomorphism follows from [Ze80, Theorem 4.2]. Hence, by Frobenius reci-
procity, l = ε∆(π) ≥ l′. Thus l = l′ and this proves (1).
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We now consider (2). We shall write hc = mxpta(π, c) and hc+1 = mxpta(π, c + 1) (see
De�nition 4.3). Note that by the de�nition of a maximal multisegment and εc, hc has
exactly k-segments. By Lemma 5.1, we have an embedding:

π ↪→ ω × St(hc+1)× St(hc)

and so we also have:

π ↪→ ω × St(hc+1 +
−(hc))× (νcρ)×k.

(see Section 3.7 for the notation −(hc)). Thus, by Corollary 3.8,

π̃ ↪→ ω × St(hc+1 +
−(hc)).

Then

(∗) ε∆(π̃) ≥ ε∆(π) + ε+∆(π).

To prove the opposite inequality, suppose it fails for some ∆ = [c+1, b]ρ. Let l = ε∆(π̃).
Then we can write

π ↪→ Dl
∆(π̃)× (St(∆))×l × (νcρ)×k,

which implies that

π ↪→ Dl
∆(π̃)× ω,

for some composition factor ω in St(∆)×l × (νcρ)×k. Since the only possible segments
appearing in the multisegment for ω include [c, b]ρ, [c+ 1, b]ρ or [c]ρ, we must have:

π ↪→ Dl
∆(π̃)× (νcρ)r × St([c, b]ρ)

s × St([c+ 1, b]ρ)
t,

where s+ t = ε∆(π̃) = l. Hence, by our assumption, we have either:

s > ε∆(π) or t > ε+∆(π).

However, one applies Frobenius reciprocity and obtains a contradiction to the de�nition of
ε∆(π) or ε+∆(π), as desired. □

The following is a key property that allows one to deduce that the derivative resultant
multisegments 'matching' the e�ect of St-derivatives by an induction.

Lemma 6.19. Let m ∈ Multρ and let π = ⟨m⟩. Let c be an integer such that εc(π) ̸= 0.
Let ∆ = [c, b]ρ for some b. Let π̃ = Dk

c (π), where k = εc(π). Then

π ↪→ π̃ × (νcρ)k.

Then

D∆(π) ↪→ D−∆(π̃)× (νcρ)k−1.

Proof. A simple application of geometric lemma and comparison of cuspidal support gives
that:

D∆(π)⊠ St(∆) ↪→ Ind
Gn′×Gn′′
Pn′−r,r×Pn′′−s,s

(πNr
× ((νcρ)k)Nn(ρ)

)ϕ,

where n′ = n(π̃)− la(
−∆), n′′ = (k− 1) · n(ρ), r = la(

−∆), s = n(ρ) and ϕ is a twist to get
a Gn′−r ×Gr ×Gn′′−s ×Gs-representation.

Now apply Frobenius reciprocity on the second factor and then apply the adjointness of
the tensor product to get

(∗) D∆(π) ↪→ HomGr
(St(−∆), π̃Nr

)× (νcρ)×(k−1),

where r = la(
−∆). (Note that for the form of the second factor in (*), one may use [Ch22+,

Lemma 9.1 or Theorem 9.4] while one may also simply use the fact that all composition
factors in ((νcρ)×k)Nn(ρ)

are isomorphic to (νcρ)×(k−1) ⊠ (νcρ).)
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By Lemma 4.10 and Proposition 4.4, we have that εc(D∆(π)) = k− 1. Hence, Corollary
3.8 and (*) give

Dk−1
c ◦D∆(π) ↪→ HomGr (St(

−∆), π̃Nr )

and hence Dk−1
c ◦D∆(π) ∼= D−∆(π̃), which gives the lemma. □

We now study the change of mxpta under the derivatives. The proof is based on two
special cases: Lemma 6.18 and Proposition 4.4.

Theorem 6.20. Let m ∈ Multρ and let ∆ = [a, b]ρ be a segment. Let π = ⟨m⟩ and let
h = hd(π).

(1) Suppose ∆ is not admissible to h. Then D∆(π) = 0.
(2) Suppose ∆ is admissible to h. Let π′ = D∆(π). Then

• For any c ≥ a,

mxpta(π′, c) = r(∆, π)[c].

(See Section 2.2 for the notations.)
• For any c < a, mxpta(π′, c) satis�es

h[c] ≤a
c mxpta(π′, c).

• For any ∆′ unlinked to ∆ and a(∆′) ̸∼= a(∆),

ε∆′(π′) = ε∆′(π).

Proof. (1) follows from de�nitions. The second bullet of (2) can be proved by a similar
manner as the �rst case in the proof of Lemma 4.11 and we omit the details.

We shall prove the �rst bullet of (2) by an induction on n(π). When n(π) = 0, 1, it is
trivial. Let ∆ = [a, b]ρ be an admissible segment for π. Let π̃ = Dk

a(π), where k = εa(π).
Now we have that:

(∗) π ↪→ π̃ × (νaρ)×k

By Lemma 6.19,

D∆(π) ↪→ D−∆(π̃)× (νaρ)×(k−1).

Now we consider two cases:

(i) Suppose c ≥ a + 2. In such case, D∆ ◦ Dk−1
a (π) ∼= Dk−1

a ◦ D∆(π) . Let n be a
multisegment at νcρ. Then

Dn ◦D∆ ◦Dk−1
a (π) ̸= 0 ⇔ Dk−1

a ◦Dn ◦D∆(π) ̸= 0 ⇔ Dn ◦D∆(π) ̸= 0,

where the �rst 'if and only if' condition follows by applying Lemma 4.10 twice, and
the second 'if and only if' condition follows by an analogous statement for Lemma
4.11 in the linked case. Now one deduces the maximal multisegment at νcρ (c ≥ a)
for D∆(π) as follows: First,

mxpta(D∆−(π̃), c) = r(∆−, π̃)[c] = r(∆, π)[c],

where the �rst equality follows from the inductive case and the second equality fol-
lows from using Lemma 6.18 and the de�nition of removal process. Then, by Lemma
6.18 (with Lemma 6.19), we have that mxpta(D∆−(π̃), c) = mxpta(D∆(π), c). Com-
bining all, we have

mxpta(D∆(π), c) = r(∆, π)[c]

as desired.
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(ii) Suppose c = a+ 1. Let

s = mxpta(π, a)−∆0,

where ∆0 is the shortest segment in mxpta(π, a) such that ∆ ⊂ ∆0.
By Lemma 6.18,

n := mxpta(π̃, a+ 1) = −(mxpta(π, a)) +mxpta(π, a+ 1).

By Proposition 4.4,
Ds ◦D∆̃(π) ̸= 0

and now by repeated uses of Lemma 6.19,

Ds ◦D∆(π) ∼= D−s ◦D−∆(π̃).

Hence, by the inductive case,

mxpta(Ds ◦D∆(π), a+ 1) = mxpta(D−s ◦D−∆(π̃), a+ 1)

is precisely
r(−s+ −∆, π̃)[a+ 1] = r(s+∆, π)[a+ 1].

The last equality follows from the rules of removal process and Lemma 6.18.
Indeed we also have

r(s+∆, π)[a+ 1] = r(s, r(∆, π))[a+ 1] = r(∆, π)[a+ 1],

where the second equality follows from that applying D∆′ for each ∆′ ∈ s will
simply remove the segment ∆′ in r(∆, π) by Lemma 6.10.

Since s = mxpta(D∆(π), a), Lemma 5.1 implies that

mxpta(D∆(π), a+ 1) = mxpta(Ds ◦D∆(π), a+ 1).

Now, combining all the equations, we have that:

mxpta(D∆(π), a+ 1) = r(∆, π)[a+ 1].

(iii) Suppose c = a. Then mxpta(π′, a) follows from Proposition 4.4 and Lemma 4.2.

We now prove the third bullet of (2). The inequality

ε∆′(π′) ≤ ε∆′(π)

follows from Lemma 4.10. The opposite inequality follows from an application of geometric
lemma. We omit the details. □

De�nition 6.21. Let π ∈ Irrρ. Let n ∈ Multρ. We say that n is admissible to π if, for
writing segments ∆1, . . . ,∆r in n in an ascending order, D∆r

◦ . . .◦D∆1
(π) ̸= 0. By Lemma

4.10, the admissibility is independent of a choice of an ascending sequence.

Corollary 6.22. Let π ∈ Irrρ. Let n ∈ Multρ. Then n is admissible to π if and only if n
is admissible to hd(π).

Proof. Write ∆k = [ak, bk]ρ. We shall assume that a1 ≤ . . . ≤ ak. We consider the if
direction. Let k be the smallest integer such that ∆k is not admissible to

r({∆1, . . . ,∆k−1} , hd(π)).
We have that

(∗) mxpta(D∆k−1
◦ . . . ◦D∆1(π), ak) = r({∆1, . . . ,∆k−1} , hd(π))[ak]

by Theorem 6.20(2). Thus the admissibility of ∆k to r({∆1, . . . ,∆k−1} , hd(π)) implies that

{∆k} ≤ak
mxpta(D∆k−1

◦ . . . ◦D∆1
(π), ak)

by (*). Hence D∆k
◦D∆k−1

◦ . . . ◦D∆1
(π) ̸= 0.
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The only if direction is similar by using (*) and we omit the details. □

6.7. Multisegment at a right point (revised).

Corollary 6.23. Let π ∈ Irrρ. Fix an integer c. Then

mxptb(π, c) =
∑

[a,b]ρ∈hd(π),a≤c≤b

[a, c]ρ.

Proof. Let k =
∑

[a,b]ρ∈hd(π),a≤c≤b[a, c]ρ. By Theorem 6.20(2) several times, we see that

Dk(π) ̸= 0. On the other hand, r(k, hd(π)) does not have any segment ∆ such that νcρ ∈ ∆.
Hence, by Theorem 6.20(2) again, k is maximal and so mxptb(π, c) = k. □

More generally, by Theorem 6.20(2), we have:

Corollary 6.24. Let π ∈ Irrρ. Let m ∈ Multbρ,c for some c. Then Dm(π) ̸= 0 if and only

if m is a submultisegment of mxptb(π, c).

Example 6.25. Let π ∈ Irrρ with hd(π) taking the form:

1• 2• 3• 4• 5•

4• 5•

3• 4• 5• 6•

3•

0• 1• 2•

The red points contribute to mxptb(π, 3) to give {[1, 3], [3], [3]}.

7. Isomorphic simple quotients of Bernstein-Zelevinsky derivatives

7.1. Complementary sequence of St-derivatives. For π ∈ Irrρ and n ∈ Multρ, we
shall write:

r(n, π) := r(n, hd(π)),

where the latter term is de�ned in De�nition 6.3. We prove a main property of the derivative
resultant multisegment.

Theorem 7.1. Let π ∈ Irrρ. Let n ∈ Multρ be admissible to π. Let m = r(n, π). Then

Dm ◦Dn(π) ∼= π−.

Proof. Write n = {∆1, . . . ,∆k} in an ascending order. Let ω = Dn(π). We shall prove by a
backward induction on the sum of the lengths of all those ∆1, . . . ,∆k. Since the sequence
is admissible, the sum must be not greater than the level of π (by Proposition 3.17). If the
sum is equal to the level of π, then ω ∼= π− by the irreducibility of the highest derivative
of π. In this case, r(n, π) = ∅ and so we have such case.



DERIVATIVES 33

Let c∗ be the smallest integer such that r({∆1, . . . ,∆k} , π)[c∗] ̸= 0. In other words, νc
∗
ρ

is isomorphic to a ≤-minimal element in

{a(∆′) : ∆′ ∈ r({∆1, . . . ,∆k} , π)} .
We shall choose the ascending order of the sequence such that

a(∆1) ≤ . . . ≤ a(∆k).

Let r ≤ k such that ∆1, . . . ,∆r be all the segments such that νc
∗
ρ ≥ a(∆i) for i = 1, . . . , r.

We rearrange the segments ∆δ(r+1), . . . ,∆δ(k) so that

b(∆δ(k)) ≥ . . . ≥ b(∆δ(r+1)),

where δ is a permutation on {r + 1, . . . , k}.
Let τ = D∆r

◦ . . . ◦D∆1
(π). Note that the sequence ∆δ(r+1), . . . ,∆δ(k) can be obtained

from ∆r+1, . . . ,∆k by repeatedly switching two adjacent unlinked segments. Hence, by
Lemma 4.10,

(∗) D∆δ(k)
◦ . . . ◦D∆δ(r+1)

(τ) ∼= D∆k
◦ . . . ◦D∆r+1(τ)

∼= ω.

Now we let ∆̃ be the longest segment in r({∆1, . . . ,∆k} , π)[c∗]. We claim that: for i ≥ 2,

D∆̃ ◦D∆δ(i)
◦ . . . ◦D∆δ(1)

(τ) ∼= D∆δ(i)
◦D∆̃ ◦D∆δ(i−1)

◦ . . . ◦D∆δ(1)
(τ),

and for i = 1,
D∆̃ ◦D∆δ(1)

(τ) ∼= D∆δ(1)
◦D∆̃(τ).

Suppose the claim holds for the meanwhile. We have a new ascending sequence of
segments,

∆1, . . . ,∆r, ∆̃,∆r+1, . . . ,∆k,(7.11)

which is admissible since the composition of their corresponding derivatives is non-zero by
(*) and the claim. Now one applies induction hypothesis to obtain that

Dr(n+∆̃,π) ◦Dn+∆̃(π)
∼= π−.

By Lemma 6.9, r(n, π) = r(n+ ∆̃, π) + ∆̃. Thus, by the claim, we have that

Dr(n,π)(ω) ∼= π−.

It remains to prove the claim. Indeed, it will follow from Lemma 4.10 or Lemma 4.14 if

we could check those conditions in the lemma. Use the notations in the claim. If ∆̃ and
∆δ(i) are unlinked, then we use Lemma 4.10 and we are done. Now suppose ∆̃ and ∆δ(i)

are linked. Note that, by Lemma 6.9,

• r({∆1, . . . ,∆i} , π)[c∗] = r(
{
∆1, . . . ,∆r,∆δ(r+1), . . . ,∆δ(i)

}
, π)[c∗].

This implies that, by Theorem 6.20,

(+) D∆̃(κ) ̸= 0,

where
κ = D∆δ(i−1)

◦ . . . ◦D∆δ(r+1)
◦D∆r

◦ . . . ◦D∆1
(π).

Now let ∆′ = ∆δ(i) ∪ ∆̃ and we have to check that D∆′(κ) = 0. Note that b(∆′) > b(∆̃).
Thus, we have:

(1) by the maximality of our choice on ∆̃ in r({∆1, . . . ,∆k} , π) and the above bullet,

D∆′(τ) = 0

(2) our arrangement on ∆δ(p)s gives that ∆
′ and ∆δ(x) are unlinked for x = 1, . . . , i−1.

(Here we also use that a(∆δ(x)) > νc∗ρ. See the third paragraph of the proof.)



34 KEI YUEN CHAN

Hence,

(++) D∆′(κ) = D∆′ ◦D∆δ(i−1)
◦ . . . ◦D∆δ(1)

(τ) = D∆δ(i−1)
◦ . . . ◦D∆δ(1)

◦D∆′(τ) = 0,

where the second equality follows from (2) above with Lemma 4.10 and the last equality
follows from (1) above.

Since D∆k
◦ . . . ◦D∆1

(π) ̸= 0, we also have

(+ + +) D∆δ(i)
(κ) ̸= 0.

Hence, the conditions (+), (++), (+ + +) guarantee conditions in Lemma 4.14 and this
completes the proof of the claim. □

7.2. Isomorphic simple quotients under St-derivatives. We now prove a main result
using the highest derivative multisegment and the removal process to determine when
two sequences of St-derivatives give rise to isomorphic simple quotients of a Bernstein-
Zelevinsky derivative. The strategy for 'if' direction below of Theorem 7.2 below is that
we use Theorem 7.1 to construct isomorphic modules by taking the same sequence of St-
derivatives. The strategy for 'only if' direction is to �nd some St-derivatives that kill one,
but not another one. However, in order to do so, we need to do it on some other derivatives
via some constructions.

Theorem 7.2. Let ∆1, . . . ,∆k and ∆′
1, . . . ,∆

′
l be two ascending admissible sequences of

segments. Then

D∆k
◦ . . . ◦D∆1

(π) ∼= D∆′
l
◦ . . . ◦D∆′

1
(π)

if and only if

r({∆1, . . . ,∆k} , π) = r({∆′
1, . . . ,∆

′
l} , π).

Proof. Let

ω1 = D∆k
◦ . . . ◦D∆1(π), ω2 = D∆′

l
◦ . . . ◦D∆′

1
(π).

For if direction, we write ∆̃1, . . . , ∆̃r to be all the segments in r({∆1, . . . ,∆k} , π) as an
ascending sequence. It follows from Theorem 7.1 that

D∆̃r
◦ . . . ◦D∆̃1

(ω1) ∼= D∆̃r
◦ . . . ◦D∆̃1

(ω2) ∼= π−.

Hence, both ω1 and ω2 are isomorphic to

I∆̃1
◦ . . . ◦ I∆̃r

(π−),

where I∆̃(τ) (for τ ∈ Irr) denotes the unique irreducible submodule of τ×St(∆̃) (see Lemma
3.4, and for more discussions on 'integrals', see [LM16, Ch22+, Ch22+c]). In particular,
they are isomorphic.

We now consider the only if direction. We denote by

r1 = r({∆1, . . . ,∆k} , π), r2 = r({∆′
1, . . . ,∆

′
l} , π).

For p = 1, 2, let rp⟨c⟩ be the sub-multisegment of rp containing all the segments ∆ satisfying
b(∆) ∼= νcρ. Suppose c∗ is the smallest integer such that

r1⟨c∗⟩ ≠ r2⟨c∗⟩.
Let c be the largest integer such that νcρ ∈ csupp(π). Let ci = c− i for i ≥ 0, and let z

be the integer such that cz = c∗. Set

ω1,0 = D∆k
◦ . . . ◦D∆1(π), ω2,0 = D∆′

l
◦ . . . ◦D∆′

1
(π).

For p = 1, 2, we inductively, for each ci (i = 0, . . . , z), de�ne representations:

κ1,i = Dpi−1
(ω1,i−1), κ2,i = Dpi−1

(ω2,i−1),
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where pi−1 = r1⟨ci−1⟩ = r2⟨ci−1⟩ (possibly empty and the equality follows from our choice
of c∗), and

ω1,i, ω2,i

are the representations with the derivative resultant multisegment obtained in Lemma 6.15
(we are in the special case that s⟨c⟩ = 0 in the notation of Lemma 6.15) i.e. by Lemma
6.17 and the (proved) if direction of this theorem, ω1,i and ω2,i are those satisfying that

κ1,i ∼= Dqi−1(ω1,i), κ2,i ∼= Dqi−1(ω2,i),

where qi−1 = h⟨ci−1⟩.
We have either

Dr2⟨c∗⟩(κ1,c∗) = 0, or Dr1⟨c∗⟩(κ2,c∗) = 0.

This implies that κ1,c∗ ̸∼= κ2,c∗ , and so we obtain that, for p = 1, 2,

Iqz−1 ◦Dpz−1 ◦ . . . ◦ Iq0 ◦Dp0(ωp,0) ∼= κp,c∗ .

Here Iqi−1
(κp,c∗) is the unique simple submodule of κp,c∗ × St(qi−1) (see Lemma 3.4).

Hence, we must have ω1,0 ̸∼= ω2,0. □

7.3. Comparing with ρ-derivatives. We give a simple quotient of a Bernstein-Zelevinsky
derivative that cannot be obtained from an ascending sequence of derivatives of cuspidal
representations.

Example 7.3. Let m = {[0, 1]ρ, [1]ρ, [1, 2]ρ} and let π = ⟨m⟩. Then hd(π) = {[1]ρ, [1, 2]ρ}.
Hence, there is a simple quotient of π(2) obtained by applying D[1,2]ρ and its derivative
resultant multisegment is {[1]ρ}. But D[2]ρ ◦D[1]ρ(π) = 0.

8. Examples of highest derivative multisegments

8.1. Generic representations. An irreducible representation π of Gn is said to be generic
if π(n) ̸= 0. According to [Ze80], for m ∈ Multρ, ⟨m⟩ is generic if and only if all the segments
are singletons. Equivalently, ⟨m⟩ ∼= St(n) for a multisegment n whose all segments are
unlinked. One can compute n, for example, by the M÷glin-Waldspurger algorithm [MW86].
In this case, hd(π) = n (e.g. use (2.4)).

8.2. Arthur representations. We write

∆ρ(d) = [−(d− 1)/2, (d− 1)/2]ρ.

Let

uρ(d,m) = ⟨
{
ν(m−1)/2∆ρ(d), . . . , ν

−(m−1)/2∆ρ(d)
}
⟩.

Let Y (uρ(d,m)) = ν(d−m)/2ρ. The representations uρ(d,m) are so-called Speh representa-
tions. For each Speh representation uρ(d,m), it associates with a segment

∆(uρ(d,m)) := [(d−m)/2, (d+m− 2)/2]ρ.

It follows from [LM16] (also see [CS19]) that

hd(uρ(d,m)) = {∆(uρ(d,m))} .

Proposition 8.1. Let π be a Arthur type representation in Irrρ i.e.

π = π1 × . . .× πr,

where each πa is a Speh representation. Then

hd(π) = ∆(π1) + . . .+∆(πr).
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Proof. To compute the lower bound of the multisegment at a point νcρ (see Proposition
4.4), we rearrange [Ta86] the Speh representations such that

π1 × . . .× πk × πk+1 × . . .× πr

satisfying that Y (π1) ∼= . . . ∼= Y (πk) ∼= νcρ and, for i = k + 1, . . . , r, Y (πi) ̸∼= νcρ.
One has that a composition factor of the form (π−

1 × . . . × π−
k ) ⊠ (St(∆(π1)) × . . . ×

St(∆(πk)) is in
(π1 × . . .× πk)Ni .

Now, using geometric lemma,

((π1 × . . .× πk)Ni
× (πk+1 × . . .× πr))

ϕ ↪→ (π1 × . . .× πr)Ni
,

where ϕ is a twist so that the resulting representation is a Gn−i ×Gi-representation. Here
n = n(π). Combining with the previous paragraph, we have that

τ ⊠ (St(∆(π1))× . . .× St(∆(πk)) ↪→ πNi
.

Hence, the maximal multisegment of π at the point ν(d−m)/2ρ is
a
(d−m)/2 ≥ ∆(π1) + . . .+∆(πk).

We obtain the lower bound for each multisegment at each point. We conclude that the
lower bound is also the upper bound by the level of π and using Theorem 5.2. □

8.3. Ladder representations. As we saw above, the highest derivative multisegment for
a Speh representation is simply a segment. Let π ∈ Irrρ be a ladder representation. Then
its associated multisegment m = {∆1, . . . ,∆r} ∈ Multρ satis�es the property:

a(∆1) < . . . < a(∆r), b(∆1) < . . . < b(∆r).

Note that there is a unique multisegment n such that ∪∆∈n∆ = {b(∆1), . . . , b(∆r)} and its
segments are mutually unlinked. We have that hd(π) = n.

8.4. □-irreducible representations. An irreducible representation π of Gn is said to be
□-irreducible if π×π is still irreducible [LM18]. For progress on characterizing such classes
of modules, see, for example [Le03, GLS11, KKKO18, LM18] and references therein.

Proposition 8.2. Let π ∈ Irr. Suppose π is □-irreducible. Then

hd(π × π) = hd(π) + hd(π).

Proof. One can, for example, deduce from Proposition 4.9. We omit the details. □

9. Appendix: Bernstein-Zelevinsky derivatives for affine Hecke algebras

9.1. BZ functor. In this section, we explain how the results in this paper can be formu-
lated in the a�ne Hecke algebra setting and we �rst give some background. We mainly
follow [CS19], but we remark that we only need the Iwahori case to transfer results to the
a�ne Hecke algebras using the Borel-Casselman's equivalence [Bo76], in which earlier work
of Barbasch-Moy and Reeder [BM94, Re02] shows that generic irreducible representations
correspond to modules containing the sign module of the �nite Hecke algebra, and is later
used to study the unitary dual problem by Barbasch-Ciubotaru [BC08]. Using the idea of
�nite Hecke algebra modules in characterizing modules also goes back to earlier work of
Rogawski [Ro85].

A key to formulate the Bernstein-Zelevinsky derivative in [CS19] is using an explicit a�ne
Hecke algebra structure of the Iwahori component of the Gelfand-Graev representation
in [CS18], and such expression is also obtained in Brubaker-Buciumas-Bump- Friedberg
[BBBF18]. Our realization of the Gelfand-Graev representation is obtained via viewing
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the a�ne Hecke algebra as the convolution algebra on Iwahori-biinvariant functions of
Gn, and there is an alternate approach of describing a�ne Hecke algebra in terms of an
endomorphism algebra due to Heiermann [He11]. For Hecke algebras arising from other
Bernstein components, see the work of Waldspurger [Wa86] and Bushnell-Kutzko [BK93],
and also the work of Sécherre-Stevens [SS12] for inner forms of general linear groups.

Let q ∈ C×. Assume that q is not a root of unity. The a�ne Hecke algebra Hn := Hn(q)
is de�ned as an associative algebra over C with the generators T1, . . . , Tn−1 and θ

±1
1 , . . . , θ±1

n

satisfying the following relations:

(1) TkTk+1Tk = Tk+1TkTk+1 for k = 1, . . . , n− 2;
(2) (Tk + 1)(Tk − q) = 0 for all k;
(3) θkθl = θlθk for all k, l;
(4) Tkθk − θk+1Tk = (q − 1)θk for all k;
(5) Tkθl = θlTk if l ̸= k, k + 1.

The subalgebra, denoted HSn , generated by T1, . . . , Tn−1 is isomorphic to the �nite
Hecke algebra attached to the symmetric group Sn. For k = 1, . . . , n − 1, de�ne sk to be
the transposition between k and k−1. For w ∈ Sn with a reduced expression w = sk1

. . . skr
,

de�ne Tw = Tk1
. . . Tkr

. It is well-known that Tw is independent of a choice of a reduced
expression of w.

We now de�ne the analogous Bernstein-Zelevinsky functor for Hn [CS19]. There is a
natural embedding from Hn−i ⊗ Hi to Hn explicitly given by: for k = 1, . . . , n − i − 1,
m(Tk ⊗ 1) = Tk; for k = 1, . . . , i, m(1⊗ Tk) = Tn−i+k; for k = 1, . . . , n− i, m(θk ⊗ 1) = θk;
for k = 1, . . . , i, m(1⊗ θk) = θn−i+k. De�ne the sign projector:

sgni =
1∑

w∈Si
(1/q)l(w)

∑
w∈Sn

(−1/q)l(w)Tw ∈ HSi ,

Let Sn
i = m(1 ⊗ sgni). The i-th Bernstein-Zelevinsky derivative for an Hn-module σ is

de�ned as:

BZi(σ) = Sn
i (σ).

The following result for i = 1 is covered by [GV01] by using ρ-derivatives. We remark
that [GV01] covers other cases such as the works of Kleshchev and Brundan [Kl95] and
[Br98] for some positive characteristic algebras. See a survey of Kleshchev [Kl10] for an
overview of this problem. We remark that the branching law has deep connections with
the theory of crystal bases. For instance, the decomposition matrix for restriction coincides
with the coe�cients of crystal bases in certain way, see the work of Lascoux-Leclerc-Thibon
[LLT96] and Ariki [Ar96] and even the development for other classical types by Enomoto-
Kashiwara, Miemietz, Varagnolo-Vasserot, Shan-Varagnolo-Vasserot [EK08, Mie08, VV11,
SVV11]. The following result generalizes part of [GV01] and opens up some possibilities of
connections with crystal theory:

Theorem 9.1. Let σ be an irreducible Hn-module. Then the socle and cosocle of BZi(σ)
are multiplicity-free.

Proof. We �rst assume that q is a prime power. We choose F to be a p-adic �eld with
|O/ωO| = q, where O is the ring of integers in F and ω is the uniformizer. Then, by
[CS19, Theorem 4.2] and Lemma 3.11, we have the multiplicity-free result in such case.
Note that in the case that σ has a real central character (see [CS19, Section 5.2], also see
[OS10, Section 2]), we can further obtain that for the corresponding graded Hecke algebra
Hn, its analogous Bernstein-Zelevinsky derivative gBZi(σ̃) also has multiplicity-free socle
and cosocle, where σ̃ is the corresponding module under Lusztig's second reduction [Lu89]
(see [CS19, Theorem 6.3]). Here gBZi is de�ned in [CS19, Section 6.3]. Thus this implies
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that gBZi(σ̃
′) has multiplicity-free socle and cosocle for any simple module σ̃′ of Hn of

real central character. (We remark that, by a rescaling argument, Hn can be de�ned as an
associative algebra over C generated by the group algebra C[Sn] and the polynomial ring
S(Cn) subject to some relations independent of q.)

We now consider arbitrary q (which is not of root of unity). In such case, by using
Lusztig's �rst reduction [Lu89] (see [CS19, Section 5.2]) and [CS19, Theorem 5.3], we
can transfer to the problem of some a�ne Hecke algebra modules Hn1

⊗ . . . ⊗ Hnk
with

n1 + . . .+ nk = n, and in which, we can apply Lusztig's second reduction. Now the result
follows from the graded Hecke algebra case in previous paragraph. □

For a given segment ∆ = [a, b] for b− a ∈ Z≥0, the Steinberg module StH(∆) of Hb−a+1

is the 1-dimensional module Cv determined by: for all k,

Tk.v = −v, θk.v = qa+k−1v.

For the St-derivatives, for an Hn-module σ and a given segment ∆, one de�nes D∆(σ)
to be either zero or the unique Hn−i-module τ such that

τ ⊠ StH(∆) ↪→ σ|Hn−i⊗Hi .

Now one can de�ne analogously the terminology of highest derivative segments, derivative
resultant segments to formulate and prove the corresponding statements.

9.2. Left BZ functor. We de�ne an automorphism ζ = ζn on Hn determined by:

ζ(θk) = θ−1
n−k+1, ζ(Tk) = Tn−k

for any k. Note that ζ will send the relation (4) for the a�ne Hecke algebra to

Tn−kθ
−1
n−k+1 − θ−1

n−kTn−k = (q − 1)θ−1
n−k+1,

which is equivalent to θn−kTn−k − Tn−kθn−k+1 = (q − 1)θn−k.
The left Bernstein-Zelevinsky functor iBZ in the spirit of [CS21, Ch21] is de�ned as:

iBZ(σ) = ζn−i(BZi(ζn(σ))).

For any Hn-module σ and s ∈ C, we can de�ne χs ⊗ σ as

Tk ·χs⊗σ v = Tk ·σ v, θk ·χs⊗σ v = qsθk ·σ v.

We de�ne the shifted Bernstein-Zelevinsky functors as:

BZ[i](σ) = χ−1/2 ⊗BZi(σ),

[i]BZ(σ) = χ1/2 ⊗ iBZ(σ).

As shown in [CS21] and the argument in Theorem 9.1, we have the following asymmetry
property:

Theorem 9.2. Let σ be an irreducible Hn-module. Suppose i is not the level of σ i.e. not
the largest integer such that BZi(σ) ̸= 0. If BZ[i](σ) ̸= 0 and [i]BZ(σ) ̸= 0, then any
simple quotient (resp. submodule) of BZ[i](σ) is not isomorphic to that of [i]BZ(σ).
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