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Abstract. Let F be a non-Archimedean local �eld. For any irreducible smooth repre-
sentation π of GLn(F ) and a multisegment m, we have an operation Dm(π) to construct
a simple quotient τ of a Bernstein-Zelevinsky derivative of π. This article continues the
previous one to study the following poset

S(π, τ) := {n : Dn(π) ∼= τ} ,
where n runs for all the multisegments. Here the partial ordering on S(π, τ) comes
from the Zelevinsky ordering. We show that the poset has a unique minimal multiseg-
ment. Along the way, we introduce two new ingredients: �ne chain orderings and local
minimizability.

1. Introduction

We refer the reader to [Ch22+d] for some background of Bernstein-Zelevinsky deriva-
tives. A main goal of this article together with [Ch22+d, Ch22+b] is to give a comprehensive
study on the simple quotients of Bernstein-Zelevinsky derivatives. It is also related to a
branching law problem of a sign representation for a�ne Hecke algebras of type A (see
[CS19] and [Ch22+d, Appendix]). The results for those simple quotients may be regarded
as generalizing the case of ladder representations in [LM14] and generic representations
[Ch21].

In the previous article [Ch22+d], we transfer some problems of studying simple quotients
into combinatorial problems. This article studies the combinatorial structure of the set
S(π, τ) and a key result is the uniqueness of the minimal element in S(π, τ). We shall
explore further properties of such element in the sequel.

1.1. Notations. Let Gn = GLn(F ), the general linear group over a non-Archimedean �eld
F . Fix a cuspidal representation ρ. We introduce basic notations:

• Let ν : Gn → C× be the character ν(g) = |det(g)|F , where |.|F is the norm for F .
• For a, b ∈ Z with b− a ∈ Z≥0, we call

[a, b]ρ :=
{
νaρ, . . . , νbρ

}
(1.1)

be a segment. We also set [a, a− 1]ρ = ∅ for a ∈ Z. For a segment ∆ = [a, b]ρ, we
write a(∆) = νaρ and b(∆) = νbρ. We also write:

[a]ρ := [a, a]ρ,

which is called a singleton segment. We may also write [νaρ, νbρ] for [a, b]ρ and
write [νaρ] for [a]ρ. The relative length of a segment [a, b]ρ is de�ned as b− a+ 1,
and we shall denote by lr([a, b]ρ). The absolute length of a segment [a, b]ρ is de�ned
as (b− a+ 1)n(ρ), and we shall denote by la([a, b]ρ) as before.

• Let Seg be the set of all segments including the empty set. Let Segρ be the subset
of Seg containing all segments of the form [a, b]ρ for some a, b ∈ Z.
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• A multisegment is a multiset of segments. Let Mult be the set of all multisegments
and let Multρ be the subset of Mult containing all multisegments whose segments
are in Segρ. We also consider the empty set ∅ to be also in Mult.

• Two segments ∆ and ∆′ are said to be linked if ∆ ∪ ∆′ is still a segment, and
∆ ̸⊂ ∆′ and ∆′ ̸⊂ ∆. Otherwise, it is called to be not linked or unlinked.

• For ρ1, ρ2 ∈ Irrc, we write ρ2 < ρ1 if ρ1 ∼= νaρ2 for some integer a > 0. For two
segments ∆1,∆2, we write ∆1 < ∆2 if ∆1 and ∆2 are linked and b(∆1) < b(∆2).

• For two multisegmentsm and n, we writem+n to be the union of two multisegments,
counting multiplicities. For a multisegment m and a segment ∆, m+∆ = m+ {∆}
if ∆ is non-empty; and m + ∆ = m if ∆ is empty. The notions m − n and m −∆
are de�ned in a similar way.

• For two multisegments m1 and m2, write m2 ≤Z m1 if m2 can be obtained by
a sequence of elementary intersection-union operations from m1 (in the sense of
[Ze80], see [Ch22+d]) or m1 = m2. In particular, if any pair of segments in m is
unlinked, then m is a minimal element under ≤Z . We shall equip Multρ with the
poset structure by ≤Z .

• Let Alg(Gn) be the category of smooth representations of Gn. For π ∈ Alg(Gn),
denote by π∨ the smooth dual of π.

• For a segment ∆ = [a, b]ρ, de�ne
−∆ = [a+ 1, b]ρ. For a multisegment m, de�ne

−m =
{−∆ : ∆ ∈ m,∆ is not singleton

}
(counting multiplicities).

• Let Irr(Gn) be the set of (isomorphism classes of) irreducible smooth complex
representations of Gn. Let Irr = ⊔nIrr(Gn). Let Irrρ (resp. Irrρ(Gn)) be the
subset of Irr (resp. Irrρ(Gn)) containing irreducible representations which are an
irreducible quotient of νa1ρ× . . .× νakρ, for some integers a1, . . . , ak ∈ Z.

• For each segment ∆, we shall denote respectively by St(∆) and ⟨∆⟩ the corre-
sponding essentially square-integrable representation and segment representation
[Ze80].

• Let Ni ⊂ Gn (depending on n) be the unipotent radical containing matrices of the

form

(
In−i ∗

Ii

)
. For a smooth representation π of Gn, we write πNi

to be its

Jacquet module.
• For π ∈ Irr, n(π) is de�ned to be the number that π ∈ Irr(Gn(π)).
• For any smooth representation π1 of Gn1

and smooth representation π2 of Gn2
,

de�ne π1 × π2 to be the normalized parabolic induction.
• For any multisegment m = {∆1, . . . ,∆k} with the labellings satisfying that, for

i < j, ∆i ̸< ∆j . Following [Ze80, Theorem 6.1], de�ne ⟨m⟩ to be the unique simple
submodule of ζ(m) := ⟨∆1⟩ × . . .× ⟨∆k⟩. De�ne the St(m) to be the unique simple
quotient of λ(m) := St(∆1)× . . .× St(∆k).

1.2. Main results. For π ∈ Irrρ(Gn), there is at most one irreducible module τ ∈ Irrρ(Gn−i)
such that

τ ⊠ St(∆) ↪→ πNi .

If such τ exists, we denote such τ by D∆(π). Otherwise, we set D∆(π) = 0. We shall refer
D∆ to be a St-derivative. Let ϵ∆(π) be the largest integer such that (D∆)

k(π) ̸= 0.
A sequence of segments [a1, b1]ρ, . . . , [ak, bk]ρ (all aj , bj ∈ Z) is said to be in an ascending

order if for any i ≤ j, either [ai, bi]ρ and [aj , bj ]ρ are unlinked; or ai < aj . For a multi-
segment n ∈ Multρ, which we write the segments in n in an ascending order ∆1, . . . ,∆k.
De�ne

Dn(π) := D∆k
◦ . . . ◦D∆1

(π).
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The derivative is independent of the ordering of an ascending sequence [Ch22+d]. In
particular, one may choose the ordering such that a1 ≤ . . . ≤ ak. We say that n is
admissible to π if Dn(π) ̸= 0. We refer the reader to [LM16, Ch22+b, Ch22+c] (and
references therein) for more theory on derivatives.

For π ∈ Irrρ, denote its i-th Bernstein-Zelevinsky derivatives by π(i) (see [Ze80, Ch22+d]
for precise de�nitions and we shall not need this in this sequel). For a simple quotient τ of
π(i), de�ne

S(π, τ) := {n ∈ Multρ : Dn(π) ∼= τ} .
The ordering ≤Z induces a partial ordering on S(π, τ), and we shall regard it as a poset.

In [Ch22+d], we showed a combinatorial process, called removal process, in studying the
e�ect of D∆. Two applications of removal process are given below:

Theorem 1.1. (=Theorem 4.4) Let π ∈ Irrρ. Let τ be a simple quotient of π(i) for some
i. If n1, n2 ∈ S(π, τ) and n1 ≤Z n2, then any n3 ∈ Multρ satisfying n1 ≤Z n3 ≤Z n2 is also
in S(π, τ).

In other words, S(π, τ) is convex in the sense of [St12, Section 3.1].

Theorem 1.2. (=Theorem 6.4) Let π ∈ Irrρ. Let τ be a simple quotient of π(i) for some
i. If S(π, τ) ̸= ∅, then S(π, τ) has a unique minimal element with respect to ≤Z .

The condition S(π, τ) ̸= ∅ will be removed in [Ch22+b]. There are some other criteria
for a minimal sequence such as the nonoverlapping property and in terms of η∆ in Section
9. We remark that there is no uniqueness for maximal elements in general. We give an
example in Section 8.

1.3. Organization of this article. Section 2 recalls results on highest derivative mul-
tisegments and removal processes established in [Ch22+d]. Section 3 de�nes a notion of
�ne chains and �ne chain orderings to facilitate comparisons with the Zelevinsky order-
ing. Section 4 shows the closedness property for S(π, τ). In Section 5, we shall introduce
a notion of minimizable functions, used to show the uniqueness of a minimal element in
Section 6. Section 7 gives two examples of the unique minimal elements. Section 8 gives an
example which uniqueness of ≤-maximality fails. Section 9 studies equivalent conditions
for minimality in two segment cases.

2. Highest derivative multisegments and removal process

In this section, we recall some results in [Ch22+d].

2.1. More notations on multisegments. For an integer c, let Multaρ,c be the subset of
Multρ containing all multisegments m such that any segment ∆ in m satis�es a(∆) ∼= νcρ.

Similarly, de�ne Multbρ,c to be the subset of Multρ containing all multisegments m such that
any segment ∆ in m satis�es b(∆) ∼= νcρ. The empty sets are also considered in Multaρ,c
and Multbρ,c.

For a multisegment m in Multρ and an integer c, let m[c] be the submultisegment of m
containing all the segments ∆ satisfying a(∆) ∼= νcρ; and let m⟨c⟩ be the submultisegment
of m containing all the segments ∆ satisfying b(∆) ∼= νcρ.

For a multisegment m = {∆1, . . . ,∆k}, we also set:

la(m) = la(∆1) + . . .+ la(∆k), lr(m) = lr(∆1) + . . .+ lr(∆k).

Here a refers to the absolute length while r refers to the relative length.
Fix an integer c. Let ∆1 = [c, b1]ρ,∆2 = [c, b2]ρ be two non-empty segments. We write

∆1 ≤a
c ∆2 if b1 ≤ b2, and write ∆1 <a

c ∆2 if b1 < b2.
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For non-empty m1,m2 in Multaρ,c, label the segments in m1 as: ∆1,k ≤a
c . . . ≤a

c ∆1,2 ≤a
c

∆1,1 and label the segments in m2 as: ∆2,r ≤a
c . . . ≤a

c ∆2,2 ≤c ∆2,1. We de�ne the
lexicographical ordering: m1 ≤a

c m2 if k ≤ r and, for any i ≤ k, ∆1,i ≤a
c ∆2,i. We write

m1 <a
c m2 if m1 ≤a

c m2 and m1 ̸= m2.
We also need a 'right' ordering. One can de�ne [a1, c]ρ ≤b

c [a2, c]ρ if a1 < a2, and

similarly de�ne [a1, c]ρ <b
c [a2, c]ρ. One similarly de�ne ≤b

c on Multbρ,c.

2.2. Highest derivative multisegments. A multisegment m is said to be at the point
νcρ if any segment ∆ in m takes the form [c, b]ρ for some b ≥ c. For π ∈ Irrρ, de�ne
mxpta(π, c) to be the maximal multisegment in Multaρ,c such that Dmxpta(π,c)(π) ̸= 0. (see
[Ch22+d] for the meaning of maximality.) De�ne the highest derivative multisegment of
π ∈ Irrρ to be

hd(π) :=
∑
c∈Z

mxpta(π, c).

It is shown in [Ch22+d] that Dhd(π)(π) is the highest derivative of π in the sense of [Ze80].

2.3. Removal process. We write [a, b]ρ ≺L [a′, b′]ρ if either a < a′; or a = a′ and b < b′.
Here L means to compare on the left value a and we avoid to further use a for confusing
with previous notations. A segment ∆ = [a, b]ρ is said to be admissible to a multisegment h
if there exists a segment of the form [a, c]ρ in h for some c ≥ b. We now recall the removal
process.

De�nition 2.1. [Ch22+d] Let h ∈ Multρ and let ∆ = [a, b]ρ be admissible to h. The
removal process on h by ∆ is an algorithm to carry out the following steps:

(1) Pick a shortest segment [a, c]ρ in h[a] satisfying b ≤ c. Set ∆1 = [a, b]ρ. Set a1 = a
and b1 = c.

(2) One recursively �nds the≺L-minimal segment∆i = [ai, bi]ρ in h such that ai−1 < ai
and bi < bi−1. The process stops if one can no longer �nd those segments.

(3) Let ∆1, . . . ,∆r be all those segments. For 1 ≤ i < r, de�ne ∆tr
i = [ai+1, bi]ρ and

∆tr
r = [b+ 1, br]ρ (possibly empty).

(4) De�ne

r(∆, h) := h−
r∑

i=1

∆i +

r∑
i=1

∆tr
i .

We call ∆1, . . . ,∆r to be the removal sequence for (∆, h). We also de�ne Υ(∆, h) = ∆1. If
∆ is not admissible to h, we set r(∆, h) = ∞, called the in�nity multisegment. We also set
r(∆,∞) = ∞.

Remark 2.2. A multisegment h is called generic if any two segments in h are mutually
unlinked. The special feature in this case is that St(h) is generic and hd(St(h)) = h. In such
case, for ∆ ∈ Segρ, it is shown in [Ch21] that D∆(π) is generic. On the other hand, r(∆, h)
coincides with the generic multisegment which has the same cuspidal support as D∆(π).

2.4. Computations on removal process. We recall the following properties for compu-
tations:

Lemma 2.3. [Ch22+d] Let h ∈ Multρ and let ∆,∆′ ∈ Segρ be admissible to h. Then

(1) Let h∗ = h−Υ(∆, h) + −Υ(∆, h). Then r(∆, h) = r(−∆, h∗).
(2) Write ∆ = [a, b]ρ. For any a′ < a, r(∆, h)[a′] = h[a′].
(3) If ∆ ∈ h, then r(∆, h) = h−∆.
(4) Suppose a(∆) = a(∆′). Then

Υ(∆, h) + Υ(∆′, r(∆, h)) = Υ(∆′, h) + Υ(∆, r(∆′, h)).
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(5) If ∆,∆′ are unlinked, then r(∆′, r(∆, h)) = r(∆, r(∆′, h)).

2.5. Removal process for multisegments. For h ∈ Multρ, and a multisegment m =
{∆1, . . . ,∆r} ∈ Multρ written in an ascending order, de�ne:

r(m, h) = r(∆r, . . . , r(∆1, h) . . .).

We say that m is admissible to h if r(m, h) ̸= ∞.
The relation to derivatives is the following:

Theorem 2.4. [Ch22+d] Let π ∈ Irrρ. Let m,m′ ∈ Multρ be admissible to π. Then m,m′

are admissible to hd(π), and furthermore, Dm(π) ∼= Dm′(π) if and only if r(m, π) = r(m′, π).

2.6. More relations to derivatives. For h ∈ Multρ and ∆ = [a, b]ρ ∈ Segρ, set

ε∆(h) = |
{
∆̃ ∈ h[a] : ∆ ⊂ ∆̃

}
|.

Theorem 2.5. [Ch22+d, Theorem 6.20] Let ∆ = [a, b]ρ ∈ Segρ be admissible to π. Let
∆′ = [a′, b′]ρ ∈ Segρ. If either a′ > a; or ∆′ and ∆ are unlinked, then ϵ∆′(D∆(π) =
ϵ∆′(r(∆, π)).

3. Fine Chains

Recall that S(π, τ) is de�ned in Section 1.2. We introduce a notion of �ne chains in
De�nition 3.5 in order to give an e�ective comparison of the e�ect of two removal processes
(Lemma 3.9).

3.1. Basic idea on the proof for Theorem 4.4. Let h ∈ Multρ. We consider two
segments in the form ∆ = [a, b]ρ and ∆′ = [a + 1, b′]ρ for b < b′. In such case, let

∆̃ = ∆∪∆′ = [a, b′]ρ and ∆̃′ = ∆∩∆′ = [a+1, b]ρ. Let Ω = Υ(∆, h) and let Ω̃ = Υ(∆̃, h).
Let

h∗ = h− Ω+ −Ω, h̃ = h− Ω̃ + −Ω̃.

Applying Lemma 2.3, we have

r({∆′,∆} , h) = r(
{
∆′,−∆

}
, h∗)

and

r(
{
∆̃′, ∆̃

}
, h) = r(

{
∆̃′,−∆̃

}
, h̃).

Note that {∆′,−∆} =
{
∆̃′,−∆̃

}
. Then the following statements are equivalent:

(1) r({∆,∆′} , h) = r({∆̃, ∆̃′}, h);
(2) h∗ = h̃;

(3) Ω = Ω̃.

The general case for the e�ect of intersection-union process needs some modi�cations for
consideration and we shall focus on the condition (3). In particular, Sections 3.2 and 3.3
will improve Lemma 2.3(1) to do some multiple 'cutting-o�' on starting points.

3.2. Multiple removal of starting points. Let h ∈ Multρ. Let n ∈ Multρ. Let a be the

smallest integer such that n[a] ̸= 0. Write n[a] =
{
∆1, . . . ,∆k

}
.

(1) Suppose n[a] is admissible to h. Let ri = r(
{
∆i, . . . ,∆1

}
, h) and r0 = h. De�ne

s(n, h) =
{
Υ(∆1, r0), . . . ,Υ(∆k, rk−1)

}
.

(2) Suppose n[a] is not admissible to h. De�ne s(n, h) = ∅.
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Lemma 3.1. The above de�nition s(n, h) is well-de�ned i.e. independent of the ordering
for the segments in n[a].

Proof. One switches a consecutive pair of segments each time, and then applies Lemmas
2.3(4) and 2.3(5). □

Following from de�nitions,

Lemma 3.2. With the notations as above,

s(n, h) = s(n[a], h) = s(n[a], h[a]).

We de�ne a truncation of h:

trr(n, h) = h− s(n, h) + −(s(n, h)),(3.2)

and a truncation of n:

trd(n, h) = n− n[a] + −(n[a])

Here we use r in trr for the derivative 'resultant' multisegment and d for trd for 'taking the
derivative for multisegment n'.

Example 3.3. Let h = {[0, 3], [1, 2], [1, 4], [1, 5], [2, 3]}. Let n = {[1, 3], [1, 5], [2]}.

2• 3•

1• 2•

1• 2• 3• 4•

1• 2• 3• 4• 5•

0• 1• 2• 3•

The two red bullets in h are 'truncated' to obtain trr(n, h) = {[0, 3], [1, 2], [2, 4], [2, 5], [2, 3]}.
We also have s(n, h) = {[1, 4], [1, 5]} and trd(n, h) = {[2, 3], [2, 5], [2]}.

Lemma 3.4. (multiple removal of starting points, c.f. Lemma 2.3(1)) Let n, h, a be as
above. Then

r(n, h) = r(trd(n, h), trr(n, h)).

Proof. Write n[a] =
{
∆1, . . . ,∆k

}
. Relabeling if necessary, ∆1 is the shortest segment in

n[a]. Let

h∗1 = h−
{
∆1

}
+

{−∆1

}
.
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We observe that:

r(n[a], h) = r(
{
∆2, . . . ,∆k

}
, r(∆1, h))

= r(
{
∆2, . . . ,∆k

}
, r(−∆1, h

∗
1))

= r(−∆1, r(
{
∆2, . . . ,∆k

}
, h∗1))

= r(−∆1, r(
{−∆2, . . . ,

−∆k

}
, trr(n, h)))

= r(−(n[a]), trr(n, h)),

where the second equation follows from Lemma 2.3(1), the �rst, third and last equations
follow from Lemma 2.3(5), and the forth equation follows from the induction hypothesis
(where the basic case is again Lemma 2.3(1)). (It is straightforward to check from de�nitions
that trr(n, h) = trr({∆2, . . . ,∆k} , h∗1).)

The lemma then follows by applying r(n− n[a], .) on the �rst and last terms. □

3.3. Fine chians.

De�nition 3.5. An in�nity multisegment, denoted by ∞, is just a symbol which will be
used to indicate the situation of non-admissbility. For c ∈ Z, we modify the ordering <a

c

on Multaρ,c ∪ {∞} as follows. For p1, p2 in Multaρ,c ∪ {∞}, if p1 ̸= ∞ and p2 = ∞, we also
write p1 <a

c p2. If p1 = p2 = ∞, we write p1 ≤a
c p2.

De�nition 3.6. (Collections of �rst segments in the removal sequence) Let h ∈ Multρ.
Let n ∈ Multρ. Set n0 = n and h0 = h. We recursively de�ne:

hi = trr(hi−1, ni−1), ni = trd(hi−1, ni−1).

The sequence of multisegments

s(n0, h0), s(n1, h1), . . .

to be the �ne chain of removal segments (or simply the �ne chain) for (n, h). Since we
usually �x h and vary n in our use of �ne chains, we shall denote the �ne chain by fchh(n).
It follows from the de�nition that s(ni, hi), s(ni+1, hi+1), . . . is also the �ne chain for (ni, hi).

Example 3.7. Let h = {[0, 4], [1, 5]}.
• Let n = {[0, 1], [1, 2]}. Then the �ne chain takes the form:

{[0, 4]} , {[1, 4], [1, 5]} , {[2, 4]} .

• Let n = {[0, 2], [1]}. Then the �ne chain is the same as the previous one.

De�nition 3.8. Let h ∈ Multρ. We say that two �ne chains fch(n) and fch(n
′) coincide if

(1) r(n, h), r(n′, h) ̸= ∞; and
(2) the two sequences fch(n) and fch(n

′) are equal.

Lemma 3.9. Let h ∈ Multρ. Let n, n′ ∈ Multρ. Then r(n, h) = r(n′, h) ̸= ∞ if and only if
the �ne chains fc(n, h) and fc(n′, h) coincide.

Proof. We sketch the main idea of the proof. We write �ne chains fch(n) and fch(n
′) with

notations in De�nition 3.6 as:

s(n0, h0), s(n1, h1), . . .

and

s(n′0, h
′
0), s(n

′
1, h

′
1), . . .

with n0 = n, n′0 = n′, h0 = h′0 = h.
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For the only if direction, Lemma 2.3(2) implies that hi = h′i for all i. Then, from the
construction of hi and h′i, we have that s(ni−1, hi−1) = s(n′i−1, h

′
i−1). In other words, the

�ne chains for (n, h) and (n′, h) coincide.
For the if direction, since the �ne chains coincide, we must have hi = h′i by (3.2). In

particular, r(n, h) = r(n′, h) as desired. □

3.4. Fine chain ordering. Multisegments n and n′ are said to be of the same cuspidal
support if ∪∆∈n∆ = ∪∆∈n′∆ (counting multiplicities).

De�nition 3.10. Let n, n′ ∈ Multρ be of the same cuspidal support. Let h ∈ Multρ.
Suppse r(n, h) ̸= ∞ and r(n′, h) ̸= ∞. Write fch(n) as s1, s2, . . . and write fch(n

′) as
s′1, s

′
2, . . .. Similar to the notations in De�nition 3.6, set inductively ni = ni−1 − si +

−si
and n′i = n′i−1−si+

−si, where n0 = n and n′0 = n′. Let ci (resp. c
′
i) be the smallest integer

such that ni[ci] ̸= ∅ (resp. ni[c
′
i] ̸= ∅).

We de�ne n <fc n′, called the �ne chain ordering, if there exists some i such that for
any j < i, sj = s′j and

si <
a
ci−1

s′i.

We write n ≤fc n′ if either n <fc n′ or fch(n) = fch(n
′). Note that ≤fc is transitive.

4. Closure under intersection-union process

The main result in this section is Theorem 4.4, which gives a combinatorial structure
of S(π, τ). Theorem 2.4 transfers the problem to study the combinatorics on the removal
process.

4.1. E�ect from intersection-union process.

Lemma 4.1. Let h ∈ Multρ. Let m1 be in Multaρ,c. Let m2 ∈ Multaρ,c be obtained from m1

by replacing one segment in m1 with a longer segment of the form [c, b]ρ for some b. Then

s(m1, h) ≤a
c s(m2, h).

Proof. The only di�erence between m1 and m2 is on one segment. We can arrange the
segments to be the last ones in the process of obtaining s(m1, h) and s(m2, h) respectively.
Thus the only di�erence between s(m1, h) and s(m2, h) is only one segment. The remaining
follows from the de�nition of Υ (for picking the last segments in s(m1, h) and s(m2, h)) and
the de�nition of ≤a

c . □

Lemma 4.2. Let h ∈ Multρ. Fix n ∈ Multρ. Let N be the set of all multisegments of the
same cuspidal support as n. Then, for n′, n′′ ∈ N ,

n′ ≤Z n′′ =⇒ n′′ ≤fc n′.

Proof. By the transitivity of ≤Z , we reduce to the case that n′ is obtained from n′′ by
an elementary intersection-union operation. Let ∆1 and ∆2 be the two linked segments
involved in the elementary intersection-union operation. Relabeling if necessary, we write:

∆1 = [a1, b1]ρ, ∆2 = [a2, b2]ρ,

with a1 < a2 and b1 < b2.
We again write fch(n

′) as s′1, s
′
2, . . . and write fch(n

′′) as s′′1 , s
′′
2 , . . .. Similar to notations

in De�nition 3.6, set n′i = n′i−1 − s′i +
−s′i and n′′i = n′′i−1 − s′′i + −s′′i . Again let ci be the

smallest integer such tht n′i[ci] ̸= 0. It is straighforward to see from the intersection-union
operation that n′′i [ci] is obtained from n′i[ci] by replacing a segment with a longer one (of
the form [ci, b]ρ). Thus now Lemma 4.1 implies that n′′ ≤fc n′. □
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Theorem 4.3. Let n, n′ ∈ Multρ. Suppose n′ ≤Z n. Let n′′ ∈ Multρ such that

n′ ≤Z n′′ ≤Z n.

Then, if r(n, h) = r(n′, h), then r(n, h) = r(n′′, h).

Proof. If r(n, h) ̸= r(n′′, h), Lemmas 3.9 and 4.2 imply that n′′ <fc n. By Lemma 4.2 again
and the transitivity of <fc, n′ <fc n. However, Lemma 3.9 then implies r(n′, h) ̸= r(n, h),
giving a contradiction. □

We translate the combinatorial statement in Theorem 4.3 to its representation-theoretic
counterpart:

Theorem 4.4. Let π ∈ Irrρ and let τ be a simple quotient of π(i). Recall that S(π, τ) is
de�ned in Section 1.2. Let n, n′ ∈ S(π, τ) with n′ ≤Z n. For any n′′ ∈ Multρ such that
n′ ≤Z n′′ ≤Z n, we have n′′ ∈ S(π, τ).

Proof. This follows from Theorem 2.4 and Theorem 4.3. □

We also have the following combinatorial consequence:

Corollary 4.5. We use the notations in Lemma 4.2. Let

Ñ := {n ∈ N : r(n, h) ̸= ∞} .

We de�ne an equivalence relation ∼ on Ñ by: n ∼ n′ if and only if r(n, h) = r(n′, h). De�ne

⪯Z on Ñ/ ∼ by: for N,N ′ ∈ Ñ/ ∼, write N ⪯Z N ′ if there exists n ∈ N and n′ ∈ N ′ such

that n ≤Z n′. We similarly de�ne the notion ⪯fc on Ñ by replacing ≤Z with ≤fc. Then,
the following holds:

• Both ⪯Z and ⪯fc de�ne a well-de�ned poset structure on Ñ/ ∼.

• The identity map on Ñ/ ∼ induces an order-reversing map between (Ñ/ ∼,⪯Z)

and (Ñ/ ∼,⪯fc).

Proof. For the �rst bullet, the only non-evident part is the antisymmetry, which indeed
follows from Lemmas lem coincide lemma and 4.2. The second bullet is a direct consequence
on Lemma 4.2. □

5. Minimizability

5.1. Basic example on minimality.

Example 5.1. Let h = {[0, 5], [3, 8]}. Let n = {[0, 3], [3, 4]}. Then r([0, 3], h) = {[4, 5], [3, 8]}
and so r([3, 4], r([0, 3], h)) = {[4, 8], [5]}. Note that the segmet [5] coming from truncating
the segment [4, 5] in r([0, 3], h) and the segment [4, 5] indeed comes from tuncating the seg-
ment [0, 5]. One wonders if one can 'combine' thes two e�ects. Indeed, if one could consider
n′ = {[0, 4], [3]}, then r([3], h) = {[0, 5], [4, 8]} and r([0, 4], r([3], h)) = {[5], [4, 8]}. In the last
removal process, [5] is obtained directly from truncating [0, 5] once.

For convenience, we de�ne a multisegment analogue of S(π, τ). For h, p ∈ Multρ,

S ′(h, p) = {m ∈ Multρ : r(m, h) = p} .

The above example shows that n is not ≤Z-minimal in S ′(h, r(n, h)). The intuition in
Example 5.1 will be formulated properly in Section 9.1, but we shall �rst deal with more
general multisegments (rather than only two segments).
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5.2. Local minimizability. We now de�ne minimizability in De�nition 5.2 to show the
uniqueness for the ≤Z-minimal element in S(π, τ) in Theorem 6.4.

De�nition 5.2. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let a be smallest
integer such that n[a] ̸= ∅. We say that (n, h) is locally minimizable if there exists a segment
∆ in n[a+ 1] such that the following holds:

|
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| < |

{
∆ ∈ s(n, h) : ∆ ⊂ ∆

}
|.

We emphasis that the non-strict inequality ≤ always hold.

Remark 5.3. We give more explanations on De�nition 5.2. As suggested from the termi-
nology, those locally minimizable (n, h) is to �nd some n′ <Z n such that r(n′, h) = r(n, h).
For instance, if all segments ∆ in n[a] satisfy ∆ ⊂ ∆, the removal process guarantees
that any ∆ in s(n, h) also satis�es ∆ ⊂ ∆. Hence, the inequality in De�nition 5.2 is not
satisifed. On the other hand, all segments in n[a] is not linked to ∆ and so there is no
intersection-union operation for segments in n[a] and ∆.

Example 5.4. Let h = {[0, 1], [1, 4], [1, 5], [1, 6], [2, 5], [3, 4]}, let n = {[1, 3], [1, 6], [2, 4]} and
let n′ = {[1, 3], [1, 6], [2, 5]}.

3• 4•

2• 3• 4• 5•

1• 2• 3• 4•

1• 2• 3• 4• 5•

1• 2• 3• 4• 5• 6•

0• 1•
The blue points represent s(n, h) and s(n′, h). Note that

| {∆ ∈ n[1] : [2, 4] ⊂ ∆} | = 1, | {∆ ∈ s(n, h) : [2, 4] ⊂ ∆} | = 2

and so (n, h) is locally minimizable. On the other hand,

| {∆ ∈ n′[1] : [2, 4] ⊂ ∆} | = 1, | {∆ ∈ s(n′, h) : [2, 4] ⊂ ∆} | = 1.

Hence (n′, h) is not locally minimizable.

Lemma 5.5. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let n′ = trd(n, h) and
h′ = trr(n, h). Let a be the smallest integer such that n′[a] ̸= ∅. Fix some c > a+ 1. Fix a
segment ∆′ ∈ Sega,cρ . Suppose

(∗) |
{
∆ ∈ n′ : ∆ ⊂ ∆

}
| < |

{
∆ ∈ s(n′, h′) : ∆ ⊂ ∆

}
|.
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• There exists a segment ∆̃ in n[a] + n[a+ 1] such that

s(n, h) = s(ñ, h), s(n′, h′) = s(ñ′, h′),

where ñ is obtained from n by an elementary intersection-union process between ∆̃
and ∆, and ñ′ = trd(n, h).

• Furthermore, if |
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| = |

{
∆ ∈ s(n, h) : ∆ ⊂ ∆

}
|, then the seg-

ment ∆̃ can be chosen in n[a+ 1].

Proof. Let
−(n[a]) =

{−∆ : ∆ ∈ n[a],∆ ̸= [a]
}
.

Let r = |−(n[a])| and let s = |n[a + 1]|. We arrange the segments in n′ as follows: the
�rst r segments are those in −(n[a]), and the remaining segments are those in n[a+ 1]. To
facilitate discussions, the �rst r segments are labelled as

∆1, . . . ,∆r

and the remaining segments are:

∆̃1, . . . , ∆̃s

We also set

Λi = Υ(∆i, r({∆1, . . . ,∆i−1} , h′),

Λ̃i = Υ(∆̃i, r(
{
∆̃1, . . . , ∆̃i−1,∆1, . . . ,∆r

}
, h′).

Case 1:

|
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| = |

{
∆ ∈ s(n, h) : ∆ ⊂ ∆

}
|.

This condition and the nesting property implies that for the �rst r segments ∆i, if ∆ ̸⊂ ∆i,
then

∆ ̸⊂ Λi.

Thus condition (*) implies that there exists a segment ∆̃i such that ∆ ̸⊂ ∆̃i and ∆ ⊂ Λi.

Now we do the intersection-union operation on ∆ and ∆̃i to obtain ñ from n. Then n[a] =

ñ[a] and so s(n, h) = s(ñ, h). And, n′ and ñ′ := trd(ñ, h′) are only di�ered by ∆̃i and ∆̃i∪∆.
However, if we impose the same ordering in computing s(ñ′, h′), it is straightforward to use
∆ ⊂ Λi to see that

s(n′, h′) = s(ñ′, h′).

Case 2:

|
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| < |

{
∆ ∈ s(n, h) : ∆ ⊂ ∆

}
|.

Now, by (*), there exists a segment ∆̃ = ∆i or ∆̃i in n′ such that ∆ ̸⊂ ∆̃ and ∆ ⊂ Λ,

where Λ = Λi or Λ̃i according to ∆̃.

If ∆̃ = ∆̃i for some i, then the intersection-union operation is done between ∆̃ and ∆.
The argument is similar to Case 1 and we omit the details.

We now consider the case that ∆̃ = ∆i for some i. For convenience, set +[a + 1, c]ρ =
[a, c]ρ for any c. Note that all +∆k (k = 1, . . . r) constitute all the non-singleton segments in
n[a]. We can use the ordering +∆1, . . . ,

+∆r (with other singleton segments at the end) to
compute s(n, h); and similarly use that ordering with +∆i replaced by +∆i∪∆ to compute
s(ñ, h). The only di�erence is to compute the �rst segments for +∆i and

+∆i ∪∆, but we
can still guarantee that choices for �rst segments (for computing s(n, h) and s(n′, h′)) still
coincide by using the nesting property of the removal process and the condition ∆ ⊂ Λ.
Hence, s(n, h) = s(ñ, h). Computing s(n′, h′) = s(ñ′, h′) is again similar since the only
di�erence between n′ and ñ′ is ∆i and ∆i ∪∆. □
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6. Uniqueness of minimality in S(π, τ)

The terminology of minimizability is suggested by the following lemma:

Lemma 6.1. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let the �ne chain
fc(n, h) take the form

s(n0, h0), s(n1, h1), . . .

as in De�nition 3.6. If (nj , hj) is not locally minimizable for any j, then there is no
multisegment n′ such that n′ ⪇Z n and r(n, h) = r(n′, h).

Proof. Suppose there is a multisegment n′ ⪇Z n and r(n, h) = r(n′, h). Then, by Theorem
4.4, we may take n′ to be obtained from n by an elementary intersection-union process. Let

∆̃ = [ã, b̃]ρ,∆ = [a, b]ρ in n be the segments involved in the intersection-union process, and
switching labeling if necessary, we may assume that ã < a.

We similarly obtain the �ne chain

s(n′0, h
′
0), s(n

′
1, h

′
1), . . . ,

for (n′, h). We consider j such that a−1 is the smallest integer c such that nj [c] ̸= ∅. (Such
j exists by using the condition that ∆̃ and ∆ are linked.)

Then, in nj , we have a segment [a−1, b̃]ρ coming by truncating ∆̃. If we replace [a−1, b̃]ρ
in nj by [a− 1, b]ρ, this gives n

′
j .

Now

|
{
∆ ∈ nj : ∆̃ ⊂ ∆

}
| < |

{
∆ ∈ n′j : ∆̃ ⊂ ∆

}
| ≤ |

{
∆ ∈ s(n′j , hj) : ∆̃ ⊂ ∆

}
|,

where the �rst strict inequality comes from [a− 1, b]ρ. But by Lemma 3.9, two �ne chains
coincide and in particular s(nj , hj) = s(n′j , hj). Hence, we now have that (nj , hj) is locally
minimizable by De�nition 5.2 as desired. □

We now prove the converse of Lemma 6.1:

Lemma 6.2. We keep using the notations in Lemma 6.1. If (nj , hj) is locally minimizable
for some j, then there is a multisegment n′ such that n′ ⪇Z n and r(n, h) = r(n′, h′).

Proof. We pick any j such that (nj , hj) is locally minimizable. Let a be the smallest integer
such that nj [a] ̸= ∅. The below argument is similar if j = 1 and so we assume j > 1 for
convenience of the stated form of Lemma 5.5.

Note that nj [a] = −(nj−1[a − 1]) + n[a]. (Here we have nj−1[a] = n[a].) The local
minimizability condition implies that we can use the �rst bullet of Lemma 5.5 (set c = a+1
in our case) with respect to a certain segment in n[a+1], denoted by ∆. Then, that lemma

implies that we can �nd a segment ∆̃ in −(nj−1[a − 1]) + n[a] satisfying the required
properties in the lemma.

The �rst case is that ∆̃ comes from n[a]. In this case, let ñ be the multisegment obtained

by the intersection-union operation of the segments ∆̃ and ∆. Then it is straightforward
from de�nitions that

s(n0, h0) = s(ñ0, h0), . . . , s(nj−1, hj−1) = s(ñj−1, hj−1),

where h0 = h, s(ñk, hk) are the �rst j − 1 terms of fc(ñ, h). However, s(nj , hj) = s(ñj , hj)
is guaranted by Lemma 5.5. But then nj+1 = ñj+1 and so the reamining terms in two �ne
chains also agree. Hence, two �ne chains coincide and so r(n, h) = r(ñ, h) by Lemma 3.9.

The second case is that ∆̃ cannot come from n[a]. In such case, the second bullet of
Lemma 5.5 implies that we have

|
{
∆ ∈ nj−1[a− 1] : ∆ ⊂ ∆

}
| < |

{
∆ ∈ s(nj−1[a− 1], h) : ∆ ⊂ ∆

}
|.
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But then, we can apply Lemma 5.5 again to �nd another segment
˜̃
∆. If such segment

˜̃
∆

can be found in nj−2[a − 1], then we repeat the similar argument of the �rst case above.
Otherwise, we apply Lemma 5.5 again. In those cases, the coincidence of the �ne chains are
guaranteed by Lemma 5.5. Hence, we also have r(n, h) = r(ñ, h) by Lemma 3.9. (Strictly
speaking in terms of the way in stating Lemma 5.5, one has to trace the proof to see that

the choices for ∆̃ and
˜̃
∆ in each step can be made to agree after truncating the point

[a− 1]ρ. Since there is no new idea on that, we avoid further notation complications.) □

We explain the main idea of the proof for Proposition 6.3 below, which is inductive in
nature. One �rst picks two minimal multisegments n and n′ in S ′(h, p). One then �nds

≺L-minimal segments ∆̃ and ∆̃′ in n and n′ respectively. If ∆̃ = ∆̃′, then one uses induction

to argue n− ∆̃ = n′ − ∆̃. If ∆̃ ̸= ∆̃′, then one �rst reduces to the case that ∆̃ ⊊ ∆̃′. Then

one applies induction hypothesis to show ∆̃′ is also in n. Then one shows that ∆̃ and ∆̃′

in n give rise the local minimizability.

Proposition 6.3. Let h ∈ Multρ. Then there exists a unique minimal element in S ′(h, p)
if S ′(h, p) ̸= ∅.

Proof. Let n, n′ be two minimal multisegments in S(h, p). Let a be the smallest integer such
that n[a] ̸= 0. Then, by a comparison on cuspidal representations, a is also the smallest
integer such that n′[a] ̸= 0.

Suppose n[a]∩ n′[a] ̸= ∅. Let ∆̃ ∈ n[a]∩ n′[a]. Then we consider S(D∆̃(π), τ). The mini-

mality for n and n′ also guarantees that n− ∆̃ and n′− ∆̃ are also minimal in S(r(∆̃, h), p).

Thus, by induction, we have that n− ∆̃ = n′ − ∆̃ and so n = n′.
Now suppose n[a] ∩ n′[a] = ∅ to obtain a contradiction. Let ∆ and ∆′ be the shortest

segment in n[a] and n′[a] respectively. Switching labeling if necessary, we may assume that
∆ ⊊ ∆′. Then, by Lemma 3.4,

r(n, h) = r(trd(n, h), trr(n, h)), r(n′, h) = r(trd(n′, h), trr(n′, h)).

By Lemma 3.9,

trr(n, h) = trr(n′, h)

By Lemma 6.2, (trr(n, h), trd(n, h)) and the terms from the �ne chains are not locally
minimizable. Similarly, this also holds for (trr(n′, h), trd(n, h)). However, Lemma 6.1 implies
that both trd(n, h) and trd(n′, h) are minimal in S(trr(n, h), p) = S(trr(n′, h), p). Hence, by
induction,

trd(n, h) = trd(n′, h).

But then, the disjointness assumption implies that −∆′ ∈ n. But −∆′ ̸⊂ ∆ and −∆′ ⊂
Υ(∆, h). This implies

|
{
∆̃ ∈ n[a] : −∆′ ⊂ ∆̃

}
| < |

{
∆̃ ∈ s(n, h) : −∆′ ⊂ ∆̃

}
|.

Hence, (n, h) is locally minimizable. This contradicts to Lemma 6.2. □

Theorem 6.4. Let π ∈ Irrρ and let τ be a simple quotient of π(i) for some i. Then S(π, τ)
has a unique minimal element if S(π, τ) ̸= ∅. Here the minimality is with respect to ≤Z .

Proof. This follows from Proposition 6.3 and Theorem 2.4. □
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7. Examples of minimality

7.1. Minimality for the highest derivative multisegment.

Theorem 7.1. Let π ∈ Irrρ. Then hd(π) is minimal in S(π, π−).

Proof. It is shown in [Ch22+d] that Dhd(π)(π) ∼= π−. It remains to prove that hd(π) is

minimal in S(π, π−). Theorem 4.4 reduces to show that if n is a multisegment obtained by
an elementary intersection-union process from hd(π), then Dn(π) = 0.

Let ∆1 = [a1, b1]ρ,∆2 = [a2, b2]ρ be two linked segments in hd(π). Relabeling if neces-
sary, we assume that a1 < a2. De�ne

n = hd(π)− {∆1,∆2}+∆1 ∪∆2 +∆1 ∩∆2.

Then, n[e] = hd(π)[e] for any e < a1 and n[a1] ̸≤a1
hd(π)[a1]. Hence, by Theorems 2.4 and

2.5,

Dn[a1] . . . Dn[c](π) = Dn[a1] ◦Dhd(π)[a1−1] ◦ . . . ◦Dhd(π)[c](π) = 0,

and so n /∈ S(π, π−). Here c is the smallest integer such that hd(π)[c] ̸= 0. □

7.2. Minimal multisegment for the generic case.

Proposition 7.2. Let π ∈ Irrρ be generic. Let τ be a (generic) simple quotient of π(i) for
some i. Then the minimal multisegment in S(π, τ) is generic i.e. any two segments in the
minimal multisegment are unlinked.

One may prove the above proposition by some analysis of derivative resultant multiseg-
ments. We shall give another proof using the following lemma:

Lemma 7.3. Let π ∈ Irrρ(Gn). For any i, and for any irreducible submodule τ1 ⊠ τ2 of
πNi

as Gn−i ×Gi-representations, both τ1 and τ2 are generic.

Proof. Argued as in [Ch21, Corollary 2.6], we have that a simple quotient of πNi
takes the

form τ ⊠ω for some generic τ ∈ Irr(Gn−i). Hence it remains to show ω is also generic. We
consider

πNi ↠ τ ⊠ ω

and taking the twisted Jacquet functor on the Gn−i-parts yields that

(n−i)π ↠ ω.

Now using [Ch21, Corollary 2.6] for left derivatives, we have that ω is also generic as
desired. □

Proof of Proposition 7.2. Let π ∈ Irrρ be generic and let τ be a simple (generic) quotient

of π(i) (see [Ch21, Corollary 2.6]). Then, πNi has a simple quotient of the form τ ⊠ ω for
some ω ∈ Irrρ(Gi). By Lemma 7.3, ω is also generic and hence ω ∼= St(∆1)× . . .× St(∆k)
for some mutually unlinked segments ∆1, . . . ,∆k. Now, π is the unique submodule of
τ × St(∆1)× . . .× St(∆k). By a standard argument, we have that:

D∆1 ◦ . . . ◦D∆k
(π) ∼= τ.

Hence, {∆1, . . . ,∆k} ∈ S(π, τ). The minimality of {∆1, . . . ,∆k} is automatic since any
generic multisegment is minimal in Multρ with respect to ≤Z . Now the statement follows
from the uniqueness in Theorem 6.4.
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8. Non-uniqueness of maximal elements in S(π, τ)

8.1. Highest derivative multisegments. Let π ∈ Irrρ. Then S(π, π−) contains a unique
maximal multisegment, and such multisegment has all segments to be singletons. Combin-
ing with Theorem 4.4, one can describe all multisegments in S(π, π−).

As mentioned in [Ch22+d], in general, derivatives of cuspidal representations are not
enough for constructing all simple quotients of Bernstein-Zelvinsky derivatives, and so
multisegments whose segments are singleton may not be in the set S(π, τ) in general.

8.2. Failure of uniqueness of maximality. We give an example to show that in general,
there is no uniqueness for ≤Z-maximal elements in S(π, τ).

Let

h = {[0, 3], [0, 1], [1, 2], [1, 2], [2], [3]} .
Let n = {[0, 3], [1, 2]}. Then

r := r(n, h) = {[0, 1], [1, 2], [2], [3]} = h− n.

We claim that

S(π, r) = {n, {[0, 3], [1], [2]} , {[0, 2], [1, 3]}} .
It is direct to check that the three elements are in S(π, τ), and the last two elements are
both maximal.

To see that there are no more elements, we �rst observe that any multisegment n′ in

S(π, r) has only one segment ∆̃ with a(∆̃) = ν0. By considering the �rst segment in the

removal sequence r(∆̃, h), we note that [0], [0, 1] /∈ S(π, r). In other words, [0, 2] or [0, 3] in
S(π, r). It remains to check that the following three elements:

{[0, 2], [1], [2], [3]} , {[0, 2], [1, 2], [3]} , {[0, 2], [1], [2, 3]}

are not in S(π, r).

9. Minimality for two segment case

In this section, we study the minimality for two segment case.

9.1. Non-overlapping Property.

De�nition 9.1. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ linked to
∆ with ∆′ > ∆. We say that the triple (∆,∆′, h) satis�es the non-overlapping property if
for the shortest segment ∆ in the removal sequence for (∆, h) that contains ν−1a(∆′), we
have ∆′ ̸⊂ ∆. (For later application, we do not impose the condition that ∆′ is admissible
to h.)

Example 9.2. (1) Let h = {[0, 7], [3, 6], [6, 10]}. Let ∆ = [0, 5] and let ∆′ = [6, 7].
Then (∆,∆′, h) satis�es the non-overlapping property.

6• 7• 8• 9• 10•

3• 4• 5• 6•

0• 1• 2• 3• 4• 5• 6• 7•
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The blue points are those points removed by applying r(∆, .) while the red points
are those points removed by applying r(∆′, .). Note that the shortest segment in
the removal sequence containing [5] is [3, 6], which does not contain [6, 7].

(2) Let h = {[0, 8], [3, 6], [6, 10]}. Let∆ = [0, 7] and let∆′ = [6, 8]. Then (∆,∆′, h) does
not satisfy the non-overlapping property. The graph for carrying out the removal
sequence looks like:

6• 7• 8• 9• 10•

3• 4• 5• 6•

0• 1• 2• 3• 4• 5• 6• 7• 8•

In the graph above, the segment [0, 8] contains [5], and [6, 8] ⊂ [0, 8].

Lemma 9.3. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ be admissible
to r(∆, h). Suppose ∆′ is linked to ∆ with ∆′ > ∆. Then (∆,∆′, h) does not satisfy the
non-overlapping property if and only if

r({∆ ∩∆′,∆ ∪∆′} , h) = r({∆,∆′} , h).

Proof. Let n = {∆,∆′}. Suppose r({∆ ∩∆′,∆ ∪∆′} , h) ̸= r({∆,∆′} , h). Lemma 2.3(1)
and the nesting property in the removal process reduces to the case that a(∆) ∼= ν−1a(∆′).
Now, showing not satisfying non-overlapping property is simply a reformulation of locally
minimizability by Lemma 6.2.

Suppose r({∆ ∩∆′,∆ ∪∆′} , h) = r({∆,∆′} , h). By Lemma 2.3(1), it again reduces to
a(∆) ∼= ν−1a(∆′). It then follows from Lemma 6.1 that ({∆,∆′} , h) is locally minimizable
and so this gives the non-overlapping property. □

9.2. Intermediate segment property.

De�nition 9.4. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ linked
to ∆ with ∆′ > ∆. We say that the triple (∆,∆′, h) satis�es the intermediate segment

property if there exists a segment ∆̃ in h such that

(9.3) a(∆) ≤ a(∆̃) < a(∆′), and b(∆) ≤ b(∆̃) < b(∆′).

9.3. Criteria in terms of η-invariants. Let h ∈ Multρ. For a segment ∆ = [a, b]ρ
admissible to h, note that, by Theorem 2.5, ε∆(hd(π)) = ε∆(π).) Let

η∆(h) = (ε[a,b]ρ(h), ε[a+1,b]ρ(h), . . . , ε[b,b]ρ(h)).(9.4)

The η-invariant de�ned above plays an important role in de�ning a notion of generalized
GGP relevant pairs in [Ch22+b].

Proposition 9.5. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ be
linked to ∆ with ∆′ > ∆. Then the following conditions are equivalent:

(1) The triple (∆,∆′, h) satis�es the non-overlapping property.
(2) η∆′(h) = η∆′(r(∆, h)).
(3) The triple (∆,∆′, h) satis�es the intermediate segment property.
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Proof. We �rst prove (3) implies (2). Suppose (3) holds. We denote by

∆1, . . . ,∆r

the removal sequence for (∆, h). Using (3) and (4) of the removal process in De�nition 2.1,
those ∆1, . . . ,∆r in h are replaced by their truncations, denoted by

∆tr
1 , . . . ,∆tr

r .

By using the intermediate segment property and the minimality condition in the removal
process, there exists a segment of the form (9.3) in the removal sequence for (∆, h). Let i∗

be the smallest index such that ∆i∗ satis�es (*). Note that, by considering a(∆j),

∆1, . . . ,∆i∗−1

do not contribute to η∆′(h) by de�nitions. By the de�nition of truncation and (9.3) for
∆i∗ , we have that ∆tr

1 , . . . ,∆tr
i∗−1 also do not contribute to η∆′(r(∆, h)). From the choice

of ∆i∗ and the nesting property, we also have that, by considering b(∆j),

∆i∗ , . . . ,∆r

do not contribute to η∆′(h), and similarly, ∆tr
i∗ , . . . ,∆

tr
r do not contribute to η∆′(r(∆, h)).

Thus, we have that
η∆′(h) = η∆′(r(∆, h)).

We now prove (2) implies (1). Again write ∆′ = [a′, b′]ρ. Suppose (∆,∆′, h) does not
satisfy the nonoverlapping property. Again, denote by

∆1, . . . ,∆r

the removal sequence for (∆, h). Let ∆l be the shortest segment in the removal sequence
containing ν−1a(∆′). Note that

∆1, . . . ,∆l−1,∆l

do not contribute to η∆′(h) (by considering a(∆i)) and similarly,

∆tr
1 , . . . ,∆tr

l−1

do not contribute to η∆′(r(∆, h)). However, ∆tr
l contributes to η∆′(r(∆, h)). This causes a

di�erence of 1 in the coordinate ε∆′ for η∆′(h) and η∆′(r(∆, h)).
It remains to see the following claim:

Claim: For k > l, ∆k contributes to η∆′(h) if and only if ∆tr
k contributes to η∆′(r(∆, h)).

Proof of claim: If ∆k does not contribute to η∆′(h), then b(∆k) < b(∆′) and so b(∆tr
k ) <

b(∆′) (or ∆tr
k is dropped or a empty set). This implies that ∆tr

k does not contribute to
η∆′(r(∆, h)).

On the other hand, if ∆k contributes to η∆′(h), then b(∆k) ≥ b(∆′). Note that ∆tr
k is

non-empty by using ∆ < ∆′. Thus we also have b(∆tr
k ) ≥ b(∆′). We also have that ∆tr

k

contributes to η∆′(r(∆, h)). This completes proving the claim.

Note that (1) ⇒ (3) follows from the segment involved in the de�nition of overlapping
property. Thus, we also have (1) ⇒ (2).

We now consider (3) ⇒ (1). Among those segments in h satisfying (9.3), we pick the ≺L-

minimal one ∆̃∗ (see Section 2.3 for ≺L). Note that such segment also satis�es ν−1a(∆′) ∈
∆̃∗ and ∆′ ̸⊂ ∆̃∗. Now (3) implies that at least one segment in the removal sequence for
(∆, h) contains a segment of the form (9.3), and so one uses the nesting property in the
removal sequence to show the non-overlapping property. □

Example 9.6. Let h = {[0, 5], [3, 8]}.
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• Let ∆ = [0, 3] and let ∆′ = [3, 6]. In such case, η∆′(h) = (1, 0, 0, 0). Similarly,
η∆′(r(∆, h)) = η∆′({[3, 8], [4, 5]}) = (1, 0, 0, 0).

• Let ∆ = [0, 3] and let ∆′ = [3, 4]. In such case, η∆′(h) = (1, 0). And η∆′(r(∆, h)) =
η∆′({[3, 8], [4, 5]}) = (1, 1).

A consequence of Proposition 9.5 is the following:

Corollary 9.7. Suppose the triple (∆,∆′, h) satis�es the non-overlapping property. Then,

for any ∆′-saturated segment ∆̃ linked to ∆, the triple (∆, ∆̃, h) also satis�es the non-
overlapping property.
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