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Abstract. Let F be a non-Archimedean local �eld. For any irreducible smooth repre-
sentation π of GLn(F ) and a multisegment m, we have an operation Dm(π) to construct
a simple quotient τ of a Bernstein-Zelevinsky derivative of π. This article continues the
previous one to study the following poset

S(π, τ) := {n : Dn(π) ∼= τ} ,
where n runs for all the multisegments. Here the partial ordering on S(π, τ) comes
from the Zelevinsky ordering. We show that the poset has a unique minimal multiseg-
ment. Along the way, we introduce two new ingredients: �ne chain orderings and local
minimizability.

1. Introduction

We refer the reader to [Ch22+d] for some background of Bernstein-Zelevinsky deriva-
tives. A main goal of this article together with [Ch22+d, Ch22+e, Ch24+, Ch22+b] is to
give a comprehensive study on the simple quotients of Bernstein-Zelevinsky derivatives. It
is also related to a branching law problem of a sign representation for a�ne Hecke algebras
of type A (see [CS19] and [Ch22+d, Appendix]). The results for those simple quotients
may be regarded as generalizing the case of ladder representations in [LM14] and generic
representations [Ch21].

In the previous article [Ch22+d], we transfer some problems of studying those simple
quotients into combinatorial problems. This article studies the combinatorial structure of
the set S(π, τ) and a key result is the uniqueness of the minimal element in S(π, τ). We
shall explore further properties of such element in the sequels [Ch22+e, Ch24+].

1.1. Notations. Let Gn = GLn(F ), the general linear group over a non-Archimedean local
�eld F . Fix a cuspidal representation ρ. We introduce basic notations:

• Let ν : Gn → C× be the character ν(g) = |det(g)|F , where |.|F is the norm for F .
• For a, b ∈ Z with b− a ∈ Z≥0, we call

[a, b]ρ :=
{
νaρ, . . . , νbρ

}
(1.1)

to be a segment. For two segments ∆ and ∆′, we write ∆∪∆′ and ∆∩∆′ for their
set-theoretic union and intersection respectively.

We also set [a, a − 1]ρ = ∅ for a ∈ Z. For a segment ∆ = [a, b]ρ, we write
a(∆) = νaρ and b(∆) = νbρ. We also write:

[a]ρ := [a, a]ρ,

which is called a singleton segment. We may also write [νaρ, νbρ] for [a, b]ρ and
write [νaρ] for [a]ρ. When we talk about long or short segments, we usually refer
to the quantity b− a+ 1 for a segment [a, b]ρ.

• Let Segρ be the set of all segments. We also consider the empty set ∅ to be in Segρ.
1



2 KEI YUEN CHAN

• A multisegment is a multiset of non-empty segments. Let Multρ be the set of all
multisegments. We also consider the empty set ∅ to be also in Multρ.

• Two segments ∆ and ∆′ are said to be linked if ∆ ∪ ∆′ is still a segment, and
∆ ̸⊂ ∆′ and ∆′ ̸⊂ ∆. Otherwise, it is called to be not linked or unlinked.

• For ρ1, ρ2 ∈ Irrc, we write ρ2 < ρ1 if ρ1 ∼= νaρ2 for some integer a > 0. For two
segments ∆1,∆2, we write ∆1 < ∆2 if ∆1 and ∆2 are linked and b(∆1) < b(∆2).

• For two multisegmentsm and n, we writem+n to be the union of two multisegments,
counting multiplicities. For a multisegment m and a segment ∆, m+∆ = m+ {∆}
if ∆ is non-empty; and m + ∆ = m if ∆ is empty. The notions m − n and m −∆
are de�ned in a similar way.

• We say that a multisegment n is obtained from m by an elementary intersection-
union process if

n = m−∆−∆′ +∆ ∪∆′ +∆ ∩∆′

for a pair of linked segments ∆ and ∆′ in m.
• For two multisegments m1 and m2, write m2 ≤Z m1 if m2 can be obtained by
a sequence of elementary intersection-union operations from m1 (in the sense of
[Ze80], see [Ch22+d]) or m1 = m2. In particular, if any pair of segments in m is
unlinked, then m is a minimal element under ≤Z . We shall equip Multρ with the
poset structure by ≤Z .

• For a segment ∆ = [a, b]ρ, de�ne
−∆ = [a+ 1, b]ρ. For a multisegment m, de�ne

−m =
{−∆ : ∆ ∈ m,∆ is not a singleton

}
(counting multiplicities).

• For each segment ∆, we shall denote by St(∆) the corresponding essentially square-
integrable representation [Ze80].

• For any smooth representation π1 of Gn1
and smooth representation π2 of Gn2

,
de�ne π1 × π2 to be the normalized parabolic induction.

• Let Irrρ(Gn) be the set of all irreducible representations of Gn which are irre-
ducible quotients of νa1ρ × . . . × νakρ, for some integers a1, . . . , ak ∈ Z. Let
Irrρ = ⊔nIrrρ(Gn).

1.2. Main results. Let Ni ⊂ Gn (depending on n) be the unipotent radical containing

matrices of the form

(
In−i ∗

Ii

)
. For a smooth representation π of Gn, we write πNi

to

be its Jacquet module.
For π ∈ Irrρ(Gn) and a segment ∆ = [a, b], there is at most one irreducible module

τ ∈ Irrρ(Gn−i) such that

τ ⊠ St(∆) ↪→ πNb−a+1
.

If such τ exists, we denote such τ by D∆(π). Otherwise, we set D∆(π) = 0. We shall refer
D∆ to be a derivative. Let ε∆(π) be the largest integer k such that (D∆)

k(π) ̸= 0.
A sequence of segments [a1, b1]ρ, . . . , [ak, bk]ρ (all aj , bj ∈ Z) is said to be in an ascending

order if for any i ≤ j, either [ai, bi]ρ and [aj , bj ]ρ are unlinked; or ai < aj . For a multi-
segment n ∈ Multρ, which we write the segments in n in an ascending order ∆1, . . . ,∆k.
De�ne

Dn(π) := D∆k
◦ . . . ◦D∆1

(π).

The derivative is independent of the ordering of an ascending sequence [Ch22+d]. In
particular, one may choose the ordering such that a1 ≤ . . . ≤ ak. We say that n is
admissible to π if Dn(π) ̸= 0. We refer the reader to [LM16, Ch22+b, Ch22+c] (and
references therein) for more theory on derivatives.
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For π ∈ Irrρ, denote its i-th Bernstein-Zelevinsky derivative by π(i) (see [Ze80, Ch22+d]
for precise de�nitions and we shall not need this in this sequel). For a simple quotient τ of
π(i), de�ne

S(π, τ) := {n ∈ Multρ : Dn(π) ∼= τ} .
The ordering ≤Z induces a partial ordering on S(π, τ), and we shall regard S(π, τ) as a
poset.

In [Ch22+d], we showed a combinatorial process, called removal process, in studying the
e�ect of D∆. Two applications of removal process are given below:

Theorem 1.1. (=Theorem 4.4) Let π ∈ Irrρ. Let τ be a simple quotient of π(i) for some
i. If n1, n2 ∈ S(π, τ) and n1 ≤Z n2, then any n3 ∈ Multρ satisfying n1 ≤Z n3 ≤Z n2 is also
in S(π, τ).

In other words, S(π, τ) is convex in the sense of [St12, Section 3.1].

Theorem 1.2. (=Theorem 6.4) Let π ∈ Irrρ. Let τ be a simple quotient of π(i) for some
i. If S(π, τ) ̸= ∅, then S(π, τ) has a unique minimal element with respect to ≤Z .

The condition S(π, τ) ̸= ∅ will be removed in [Ch22+b]. The non-emptyness condition
will allow one to use Theorem 2.4 to transfer to combinatorial problems.

There are some other criteria for a minimal sequence such as the nonoverlapping property
and in terms of η∆ in Section 9. We remark that there is no uniqueness for maximal elements
in general. We give an example in Section 8.

1.3. Organization of this article. Section 2 recalls results on highest derivative mul-
tisegments and removal processes established in [Ch22+d]. Section 3 de�nes a notion of
�ne chains and �ne chain orderings to facilitate comparisons with the Zelevinsky ordering.
Section 4 shows the closedness property for S(π, τ). In Section 5, we shall introduce a
notion of local minimizability, used to show the uniqueness of a minimal element in Sec-
tion 6. Section 7 gives two examples of the unique minimal elements. Section 8 gives an
example which uniqueness of ≤Z-maximality fails. Section 9 studies equivalent conditions
for minimality in two segment cases.

1.4. Acknowledgements. This project is supported by the Research Grants Council of
the Hong Kong Special Administrative Region, China (Project No: 17305223) and NSFC
grant for Excellent Young Scholar (Hong Kong and Macau) (Project No.: 12322120).

2. Highest derivative multisegments and removal process

In this section, we recall some results in [Ch22+d].

2.1. More notations on multisegments. For an integer c, let Multaρ,c be the subset of
Multρ containing all multisegments m such that any segment ∆ in m satis�es a(∆) ∼= νcρ.
The upperscript a in Multaρ,c is for a(∆).

For a multisegment m in Multρ and an integer c, let m[c] be the submultisegment of m
containing all the segments ∆ satisfying a(∆) ∼= νcρ.

Fix an integer c. Let ∆1 = [c, b1]ρ,∆2 = [c, b2]ρ be two non-empty segments. We write
∆1 ≤a

c ∆2 if b1 ≤ b2, and write ∆1 <a
c ∆2 if b1 < b2.

For non-empty m1,m2 in Multaρ,c, label the segments in m1 as: ∆1,k ≤a
c . . . ≤a

c ∆1,2 ≤a
c

∆1,1 and label the segments in m2 as: ∆2,r ≤a
c . . . ≤a

c ∆2,2 ≤c ∆2,1. We de�ne the
lexicographical ordering: m1 ≤a

c m2 if k ≤ r and, for any i ≤ k, ∆1,i ≤a
c ∆2,i. We write

m1 <a
c m2 if m1 ≤a

c m2 and m1 ̸= m2.
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2.2. Highest derivative multisegments. A multisegment m is said to be at the point
νcρ if any segment ∆ in m takes the form [c, b]ρ for some b ≥ c. For π ∈ Irrρ, de�ne
mxpta(π, c) to be the maximal multisegment in Multaρ,c such that Dmxpta(π,c)(π) ̸= 0. The
maximality is determined by the ordering ≤a

c de�ned above. De�ne the highest derivative
multisegment of π ∈ Irrρ to be

hd(π) :=
∑
c∈Z

mxpta(π, c).

It is shown in [Ch22+d] that Dhd(π)(π) is the highest derivative of π in the sense of [Ze80].

2.3. Removal process. We write [a, b]ρ ≺L [a′, b′]ρ if either a < a′; or a = a′ and b < b′.
Here L means to compare on the 'left' value a and we avoid to further use a for confusing
with previous notations. A non-empty segment ∆ = [a, b]ρ is said to be admissible to a
multisegment h if there exists a segment of the form [a, c]ρ in h for some c ≥ b. We now
recall the removal process.

An in�nity multisegment, denoted by ∞, is just a symbol which will be used to indicate
the situation of non-admissibility.

De�nition 2.1. [Ch22+d] Let h ∈ Multρ and let ∆ = [a, b]ρ be admissible to h. The
removal process on h by ∆ is an algorithm to carry out the following steps:

(1) Pick a shortest segment [a, c]ρ in h[a] satisfying b ≤ c. Set ∆1 = [a, c]ρ. Set a1 = a
and b1 = c.

(2) One recursively �nds the≺L-minimal segment∆i = [ai, bi]ρ in h such that ai−1 < ai
and bi < bi−1. The process stops if one can no longer �nd those segments.

(3) Let ∆1, . . . ,∆r be all those segments. For 1 ≤ i < r, de�ne ∆tr
i = [ai+1, bi]ρ and

∆tr
r = [b+ 1, br]ρ (possibly empty).

(4) De�ne

r(∆, h) := h−
r∑

i=1

∆i +

r∑
i=1

∆tr
i .

We call ∆1, . . . ,∆r to be the removal sequence for (∆, h). We also de�ne Υ(∆, h) = ∆1,
the �rst segment in the removal sequence. If ∆ is not admissible to h, we set r(∆, h) = ∞,
the in�nity multisegment. We also set r(∆,∞) = ∞.

Remark 2.2. A multisegment h is called generic if any two segments in h are unlinked.
The special feature in this case is that St(h) is generic and hd(St(h)) = h. In such case, for
∆ ∈ Segρ, it is shown in [Ch21] that D∆(π) is generic. On the other hand, r(∆, h) coincides
with the generic multisegment which has the same cuspidal support as D∆(π).

2.4. Computations on removal process. We recall the following properties for compu-
tations:

Lemma 2.3. [Ch22+d] Let h ∈ Multρ and let ∆,∆′ ∈ Segρ be admissible to h. Then the
followings hold:

(1) Let h∗ = h−Υ(∆, h) + −Υ(∆, h). Then r(∆, h) = r(−∆, h∗).
(2) Write ∆ = [a, b]ρ. For any a′ < a, r(∆, h)[a′] = h[a′].
(3) If ∆ ∈ h, then r(∆, h) = h−∆.
(4) Suppose a(∆) = a(∆′). Then

Υ(∆, h) + Υ(∆′, r(∆, h)) = Υ(∆′, h) + Υ(∆, r(∆′, h)).

(5) If ∆,∆′ are unlinked, then r(∆′, r(∆, h)) = r(∆, r(∆′, h)).
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2.5. Removal process for multisegments. For h ∈ Multρ, and a multisegment m =
{∆1, . . . ,∆r} ∈ Multρ written in an ascending order (de�ned in Section 1.2), de�ne:

r(m, h) = r(∆r, . . . , r(∆1, h) . . .).

We say that m is admissible to h if r(m, h) ̸= ∞.
The relation to derivatives is the following:

Theorem 2.4. [Ch22+d] Let π ∈ Irrρ. Let m,m′ ∈ Multρ be admissible to π. Then m,m′

are admissible to hd(π), and furthermore, Dm(π) ∼= Dm′(π) if and only if r(m, π) = r(m′, π).

2.6. More relations to derivatives. For h ∈ Multρ and ∆ = [a, b]ρ ∈ Segρ, set

ε∆(h) = |
{
∆̃ ∈ h[a] : ∆ ⊂ ∆̃

}
|.

Theorem 2.5. [Ch22+d, Theorem 6.20] Let π ∈ Irrρ. Let ∆ ∈ Segρ be admissible to
π. Let ∆′ ∈ Segρ. Suppose either a(∆′) > a(∆); or ∆′ and ∆ are unlinked. Then
ε∆′(D∆(π)) = ε∆′(r(∆, π)).

3. Fine Chains

Recall that S(π, τ) is de�ned in Section 1.2. We introduce a notion of �ne chains in
De�nition 3.5 in order to give an e�ective comparison of the e�ect of two removal processes
(Lemma 3.9).

3.1. Basic idea on the proof for Theorem 4.4. Let h ∈ Multρ. We consider two
segments in the form ∆ = [a, b]ρ and ∆′ = [a + 1, b′]ρ for b < b′. In such case, let

∆̃ = ∆∪∆′ = [a, b′]ρ and ∆̃′ = ∆∩∆′ = [a+1, b]ρ. Let Ω = Υ(∆, h) and let Ω̃ = Υ(∆̃, h).
Let

h∗ = h− Ω+ −Ω, h̃ = h− Ω̃ + −Ω̃.

Applying Lemma 2.3, we have

r({∆′,∆} , h) = r(
{
∆′,−∆

}
, h∗)

and

r(
{
∆̃′, ∆̃

}
, h) = r(

{
∆̃′,−∆̃

}
, h̃).

Note that {∆′,−∆} =
{
∆̃′,−∆̃

}
. Then the following statements are equivalent:

(1) r({∆,∆′} , h) = r({∆̃, ∆̃′}, h);
(2) h∗ = h̃;

(3) Ω = Ω̃.

The general case for the e�ect of intersection-union processes needs some modi�cations
for the above consideration and we shall focus on the condition (3). In particular, Sections
3.2 and 3.3 will improve Lemma 2.3(1) to do some multiple 'cutting-o�' on starting points.

3.2. Multiple removal of starting points. Let h ∈ Multρ. Let n ∈ Multρ. Let a be the
smallest integer such that n[a] ̸= ∅. Write n[a] = {∆1, . . . ,∆k}.

(1) Suppose n[a] is admissible to h. Let ri = r({∆i, . . . ,∆1} , h) and r0 = h. De�ne

fs(n, h) = {Υ(∆1, r0), . . . ,Υ(∆k, rk−1)} .
(fs refers to �rst segments.)

(2) Suppose n[a] is not admissible to h. De�ne fs(n, h) = ∅.

Lemma 3.1. The above de�nition s(n, h) is well-de�ned i.e. independent of an ordering
for the segments in n[a].
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Proof. One switches a consecutive pair of segments each time, and then applies Lemmas
2.3(4) and 2.3(5). □

Following from de�nitions, we also have:

Lemma 3.2. With the notations as above,

s(n, h) = s(n[a], h) = s(n[a], h[a]).

We de�ne a truncation of h:

trr(n, h) = h− fs(n, h) + −(fs(n, h)),(3.2)

and a truncation of n:
trd(n, h) = n− n[a] + −(n[a])

Here we use r in trr for the derivative 'resultant' multisegment and d for trd for 'taking the
derivative for the multisegment n'.

Example 3.3. Let h = {[0, 3]ρ, [1, 2]ρ, [1, 4]ρ, [1, 5]ρ, [2, 3]ρ}. Let n = {[1, 3]ρ, [1, 5]ρ, [2]ρ}.

2• 3•

1• 2•

1• 2• 3• 4•

1• 2• 3• 4• 5•

0• 1• 2• 3•
The two red bullets in h are 'truncated' to obtain trr(n, h) = {[0, 3]ρ, [1, 2]ρ, [2, 4]ρ, [2, 5]ρ, [2, 3]ρ}.
We also have fs(n, h) = {[1, 4]ρ, [1, 5]ρ} and trd(n, h) = {[2, 3]ρ, [2, 5]ρ, [2]ρ}.

Lemma 3.4. (multiple removal of starting points, c.f. Lemma 2.3(1)) Let n, h, a be as
above. Then

r(n, h) = r(trd(n, h), trr(n, h)).

Proof. Write n[a] =
{
∆1, . . . ,∆k

}
. Relabeling if necessary, ∆1 is the shortest segment in

n[a]. Let

h∗1 = h−
{
∆1

}
+

{−∆1

}
.

We observe that:

r(n[a], h) = r(
{
∆2, . . . ,∆k

}
, r(∆1, h))

= r(
{
∆2, . . . ,∆k

}
, r(−∆1, h

∗
1))

= r(−∆1, r(
{
∆2, . . . ,∆k

}
, h∗1))

= r(−∆1, r(
{−∆2, . . . ,

−∆k

}
, trr(n, h)))

= r(−(n[a]), trr(n, h)),
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where the second equation follows from Lemma 2.3(1), the �rst, third and last equations
follow from Lemma 2.3(5), and the forth equation follows from the induction hypothesis
(where the basic case is again Lemma 2.3(1)).

The lemma then follows by applying r(n− n[a], .) on the �rst and last terms. □

3.3. Fine chains.

De�nition 3.5. For c ∈ Z, we modify the ordering <a
c on Multaρ,c ∪ {∞} as follows. For

p1, p2 in Multaρ,c ∪ {∞}, if p1 ̸= ∞ and p2 = ∞, we also write p1 <a
c p2. If p1 = p2 = ∞,

we write p1 ≤a
c p2.

De�nition 3.6. (Collections of �rst segments in the removal sequence) Let h ∈ Multρ.
Let n ∈ Multρ. Set n0 = n and h0 = h. We recursively de�ne:

hi = trr(hi−1, ni−1), ni = trd(hi−1, ni−1).

The sequence of multisegments

fs(n0, h0), fs(n1, h1), . . .

is called the �ne chain for (n, h). Since we usually �x h and vary n in our use of �ne chains,
we shall denote the �ne chain by fch(n). It follows from the de�nition that fs(ni, hi), fs(ni+1, hi+1), . . .
is also the �ne chain for (ni, hi).

Example 3.7. Let h = {[0, 4]ρ, [1, 5]ρ}.
• Let n = {[0, 1]ρ, [1, 2]ρ}. Then the �ne chain for (n, h) takes the form:

{[0, 4]ρ} , {[1, 4]ρ, [1, 5]ρ} , {[2, 4]ρ} .

• Let n = {[0, 2]ρ, [1]ρ}. Then the �ne chain for (n, h) is the same as the previous
one.

De�nition 3.8. Let h ∈ Multρ. We say that two �ne chains fch(n) and fch(n
′) coincide if

(1) r(n, h), r(n′, h) ̸= ∞; and
(2) the two sequences fch(n) and fch(n

′) are equal.

Lemma 3.9. Let h ∈ Multρ. Let n, n′ ∈ Multρ. Then r(n, h) = r(n′, h) ̸= ∞ if and only if
the �ne chains fch(n) and fch(n

′) coincide.

Proof. We write �ne chains fch(n) and fch(n
′) with notations in De�nition 3.6 as:

fs(n0, h0), fs(n1, h1), . . .

and

fs(n′0, h
′
0), fs(n

′
1, h

′
1), . . .

with n0 = n, n′0 = n′, h0 = h′0 = h.
For the only if direction, Lemma 2.3(2) implies that hi = h′i for all i. Then, from the

construction of hi and h′i, we have that fs(ni−1, hi−1) = fs(n′i−1, h
′
i−1). In other words, the

�ne chains for (n, h) and (n′, h) coincide.
For the if direction, since the �ne chains coincide, we must have hi = h′i by (3.2). In

particular, r(n, h) = r(n′, h) as desired. □
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3.4. Fine chain ordering. Multisegments n and n′ are said to be of the same cuspidal
support if ∪∆∈n∆ = ∪∆∈n′∆ (counting multiplicities).

De�nition 3.10. Let n, n′ ∈ Multρ be of the same cuspidal support. Let h ∈ Multρ.
Suppse r(n, h) ̸= ∞ and r(n′, h) ̸= ∞. Write fch(n) as s1, s2, . . . and write fch(n

′) as
s′1, s

′
2, . . .. Similar to the notations in De�nition 3.6, set inductively ni = ni−1 − si +

−si
and n′i = n′i−1−s′i+

−s′i, where n0 = n and n′0 = n′. Let ci (resp. c
′
i) be the smallest integer

such that ni[ci] ̸= ∅ (resp. n′i[c
′
i] ̸= ∅).

We de�ne n <fc n′, called the �ne chain ordering, if there exists some i such that for
any j < i, sj = s′j and

si <
a
ci−1

s′i.

We write n ≤fc n′ if either n <fc n′ or fch(n) = fch(n
′). Note that ≤fc is transitive.

4. Closure under intersection-union process

The main result in this section is Theorem 4.4, which gives a combinatorial structure
of S(π, τ). Theorem 2.4 transfers the problem on the convex structure of S(π, τ) to study
explicit combinatorics on the removal process.

4.1. E�ect from intersection-union process.

Lemma 4.1. Let h ∈ Multρ. Let m1 be in Multaρ,c. Let m2 ∈ Multaρ,c be obtained from m1

by replacing one segment in m1 with a longer segment of the form [c, b]ρ for some b ∈ Z.
Then

fs(m1, h) ≤a
c fs(m2, h).

Proof. The only di�erence between m1 and m2 is on one segment. We can arrange those
segments to be the last ones in the process of obtaining fs(m1, h) and fs(m2, h) respectively
by Lemma 3.1. Thus the only di�erence between fs(m1, h) and fs(m2, h) is only one segment.
The remaining one follows from the de�nition of Υ (for picking the last segments in fs(m1, h)
and fs(m2, h)) and the de�nition of ≤a

c . □

Lemma 4.2. Let h ∈ Multρ. Fix n ∈ Multρ. Let N = N (n) be the set of all multisegments
of the same cuspidal support as n. Then, for n′, n′′ ∈ N ,

n′ ≤Z n′′ =⇒ n′′ ≤fc n′.

Proof. By the transitivity of ≤Z , we reduce to the case that n′ is obtained from n′′ by
an elementary intersection-union operation. Let ∆1 and ∆2 be the two linked segments
involved in the elementary intersection-union operation. Relabeling if necessary, we write:

∆1 = [a1, b1]ρ, ∆2 = [a2, b2]ρ,

with a1 < a2 and b1 < b2.
We again write fch(n

′) as s′1, s
′
2, . . . and write fch(n

′′) as s′′1 , s
′′
2 , . . .. Similar to notations

in De�nition 3.6, set n′i = n′i−1 − s′i +
−s′i and n′′i = n′′i−1 − s′′i + −s′′i . Again let ci be the

smallest integer such tht n′i[ci] ̸= ∅. It is straighforward to see from the intersection-union
operation that n′′i [ci] is obtained from n′i[ci] by replacing a segment with a longer one (of
the form [ci, b]ρ). Thus now Lemma 4.1 implies that n′′ ≤fc n′. □

Theorem 4.3. Let n, n′ ∈ Multρ. Suppose n′ ≤Z n. Let n′′ ∈ Multρ such that

n′ ≤Z n′′ ≤Z n.

Then, if r(n, h) = r(n′, h), then r(n, h) = r(n′′, h).
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Proof. If r(n, h) ̸= r(n′′, h), Lemmas 3.9 and 4.2 imply that n′′ <fc n. By Lemma 4.2 again,
n′ <Z n. Now the transitivity of <fc implies that n′ <fc n. However, Lemma 3.9 then
implies r(n′, h) ̸= r(n, h), giving a contradiction. □

We translate the combinatorial statement in Theorem 4.3 to its representation-theoretic
counterpart:

Theorem 4.4. Let π ∈ Irrρ and let τ be a simple quotient of π(i). Recall that S(π, τ) is
de�ned in Section 1.2. Let n, n′ ∈ S(π, τ) with n′ ≤Z n. For any n′′ ∈ Multρ such that
n′ ≤Z n′′ ≤Z n, we have n′′ ∈ S(π, τ).

Proof. This follows from Theorem 2.4 and Theorem 4.3. □

We also have the following combinatorial consequence:

Corollary 4.5. We use the notations in Lemma 4.2. Let

Ñ := {n ∈ N : r(n, h) ̸= ∞} .

We de�ne an equivalence relation ∼ on Ñ by: n ∼ n′ if and only if r(n, h) = r(n′, h). De�ne

⪯Z on Ñ/ ∼ by: for N,N ′ ∈ Ñ/ ∼, write N ⪯Z N ′ if there exists n ∈ N and n′ ∈ N ′ such

that n ≤Z n′. We similarly de�ne the notion ⪯fc on Ñ by replacing ≤Z with ≤fc. Then,
the following holds:

• Both ⪯Z and ⪯fc de�ne a well-de�ned poset structure on Ñ/ ∼.

• The identity map on Ñ/ ∼ induces an order-reversing map between (Ñ/ ∼,⪯Z)

and (Ñ/ ∼,⪯fc).

Proof. For the �rst bullet, the only non-evident part is the antisymmetry, which indeed
follows from Lemmas 3.9 and 4.2. The second bullet is a direct consequence on Lemma
4.2. □

5. Minimizability

5.1. Basic example on minimality.

Example 5.1. Let h = {[0, 5]ρ, [3, 8]ρ}. Let n = {[0, 3]ρ, [3, 4]ρ}. Then r([0, 3]ρ, h) =
{[4, 5]ρ, [3, 8]ρ} and so r([3, 4]ρ, r([0, 3]ρ, h)) = {[4, 8]ρ, [5]ρ}. Note that the segmet [5]ρ
coming from truncating the segment [4, 5]ρ in r([0, 3]ρ, h) and the segment [4, 5]ρ indeed
comes from truncating the segment [0, 5]ρ. One wonders if one can 'combine' these two
e�ects. Indeed, if one could consider n′ = {[0, 4]ρ, [3]ρ}, then r([3]ρ, h) = {[0, 5]ρ, [4, 8]ρ}
and r([0, 4]ρ, r([3]ρ, h)) = {[5]ρ, [4, 8]ρ}. In the last removal process, [5]ρ is obtained directly
from truncating [0, 5]ρ once.

For convenience, we de�ne a multisegment analogue of S(π, τ). For h, p ∈ Multρ,

S ′(h, p) = {m ∈ Multρ : r(m, h) = p} .

The above example shows that n is not ≤Z-minimal in S ′(h, r(n, h)). The intuition in
Example 5.1 will be formulated properly in Section 9.1, but we shall �rst deal with more
general multisegments (rather than only two segments) below.
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5.2. Local minimizability. We now de�ne minimizability in De�nition 5.2 to show the
uniqueness for the ≤Z-minimal element in S(π, τ) in Theorem 6.4.

De�nition 5.2. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let a be the smallest
integer such that n[a] ̸= ∅. We say that (n, h) is locally minimizable if there exists a segment
∆ in n[a+ 1] such that the following holds:

|
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| < |

{
∆ ∈ fs(nh) : ∆ ⊂ ∆

}
|.

We emphasis that the non-strict inequality ≤ always holds.

Remark 5.3. We give more explanations on De�nition 5.2. As suggested from the termi-
nology, those locally minimizable (n, h) is to �nd some n′ <Z n such that r(n′, h) = r(n, h).
For instance, if all segments ∆ in n[a] satisfy ∆ ⊂ ∆, the removal process guarantees
that any ∆ in fs(n, h) also satis�es ∆ ⊂ ∆. Hence, the inequality in De�nition 5.2 is not
satis�ed. On the other hand, all segments in n[a] are not linked to ∆ and so there is no
intersection-union operation for segments in n[a] and ∆.

We have one simple way to check local minimizable by just working on one segment.
The proof is straightforward from de�nitions:

Lemma 5.4. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let a be the smallest

integer such that n[a] ̸= ∅. Let ∆ be a segment in n[a]. If there exists a segment ∆ in
n[a+ 1] such that ∆ ̸⊂ ∆ and ∆ ⊂ Υ(∆, h), then (n, h) is not locally minimizable.

Example 5.5. Let h = {[0, 1]ρ, [1, 4]ρ, [1, 5]ρ, [1, 6]ρ, [2, 5]ρ, [3, 4]ρ}, let n = {[1, 3]ρ, [1, 6]ρ, [2, 4]ρ}
and let n′ = {[1, 3]ρ, [1, 6]ρ, [2, 5]ρ}.

3• 4•

2• 3• 4• 5•

1• 2• 3• 4•

1• 2• 3• 4• 5•

1• 2• 3• 4• 5• 6•

0• 1•
The blue points represent fs(n, h) and fs(n′, h). Note that

| {∆ ∈ n[1] : [2, 4]ρ ⊂ ∆} | = 1, | {∆ ∈ fs(n, h) : [2, 4]ρ ⊂ ∆} | = 2

and so (n, h) is locally minimizable. On the other hand,

| {∆ ∈ n′[1] : [2, 5]ρ ⊂ ∆} | = 1, | {∆ ∈ fs(n′, h) : [2, 5]ρ ⊂ ∆} | = 1.

Hence (n′, h) is not locally minimizable.
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Lemma 5.6. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let n′ = trd(n, h) and
h′ = trr(n, h). Let a be the smallest integer such that n′[a] ̸= ∅. Fix some c > a+ 1. Fix a
segment ∆ of the form [c, d]ρ for some d. Suppose

(∗) |
{
∆ ∈ n′ : ∆ ⊂ ∆

}
| < |

{
∆ ∈ fs(n′, h′) : ∆ ⊂ ∆

}
|.

• There exists a segment ∆̃ in n[a] + n[a+ 1] such that

fs(n, h) = fs(ñ, h), fs(n′, h′) = fs(ñ′, h′),

where ñ is obtained from n by an elementary intersection-union process between ∆̃
and ∆, and ñ′ = trd(n, h).

• Furthermore, if the segment ∆̃ cannot be chosen in n[a+1], then |
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| <

|
{
∆ ∈ fs(n, h) : ∆ ⊂ ∆

}
|.

Proof. Recall that
−(n[a]) =

{−∆ : ∆ ∈ n[a],∆ ̸= [a]
}
.

Let r = |−(n[a])| and let s = |n[a + 1]|. We arrange the segments in n′ as follows: the
�rst r segments are those in −(n[a]), and the remaining segments are those in n[a+ 1]. To
facilitate discussions, the �rst r segments are labelled as

∆1, . . . ,∆r

and the remaining segments are:

∆̃1, . . . , ∆̃s

We also set
Λi = Υ(∆i, r({∆1, . . . ,∆i−1} , h′),

Λ̃i = Υ(∆̃i, r(
{
∆̃1, . . . , ∆̃i−1,∆1, . . . ,∆r

}
, h′).

Case 1:

|
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| = |

{
∆ ∈ fs(n, h) : ∆ ⊂ ∆

}
|.

This condition and the nesting property implies that for the �rst r segments ∆i, if ∆ ̸⊂ ∆i,
then

∆ ̸⊂ Λi.

Thus condition (*) implies that there exists a segment ∆̃i such that ∆ ̸⊂ ∆̃i and ∆ ⊂
Λi. Now we do the intersection-union operation on ∆ and ∆̃i to obtain ñ from n. Then
n[a] = ñ[a] and so fs(n, h) = fs(ñ, h). And, n′ and ñ′ := trd(ñ, h′) are only di�ered by

∆̃i and ∆̃i ∪ ∆. However, if we impose the same ordering in computing fs(ñ′, h′), it is
straightforward to use ∆ ⊂ Λi to see that

fs(n′, h′) = fs(ñ′, h′).

Case 2:

|
{
∆ ∈ n[a] : ∆ ⊂ ∆

}
| < |

{
∆ ∈ fs(n, h) : ∆ ⊂ ∆

}
|.

Now, by (*), there exists a segment ∆̃ = ∆i or ∆̃i in n′ such that ∆ ̸⊂ ∆̃ and ∆ ⊂ Λ,

where Λ = Λi or Λ̃i according to ∆̃.

If ∆̃ = ∆̃i for some i, then the intersection-union operation is done between ∆̃ and ∆.
The argument is similar to Case 1 and we omit the details.

We now consider the case that ∆̃ = ∆i for some i. For convenience, set +[a + 1, c]ρ =
[a, c]ρ for any c. Note that all +∆k (k = 1, . . . , r) constitute all the non-singleton segments
in n[a]. We can use the ordering +∆1, . . . ,

+∆r (with other singleton segments at the end) to
compute fs(n, h); and similarly use that ordering with +∆i replaced by +∆i∪∆ to compute
fs(ñ, h). The only di�erence is to compute the �rst segments for +∆i and

+∆i ∪∆, but we
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can still guarantee that choices for �rst segments (for computing fs(n, h) and fs(n′, h′)) still
coincide by using the nesting property of the removal process and the condition ∆ ⊂ Λ.
Hence, fs(n, h) = fs(ñ, h). Computing fs(n′, h′) = fs(ñ′, h′) is again similar since the only
di�erence between n′ and ñ′ is ∆i and ∆i ∪∆. □

6. Uniqueness of minimality in S(π, τ)

The terminology of minimizability is suggested by the following lemma:

Lemma 6.1. Let h ∈ Multρ and let n ∈ Multρ be admissible to h. Let the �ne chain fch(n)
take the form

fs(n0, h0), fs(n1, h1), . . .

as in De�nition 3.6. If (nj , hj) is not locally minimizable for any j, then there is no
multisegment n′ such that n′ ⪇Z n and r(n, h) = r(n′, h).

Proof. Suppose there is a multisegment n′ ⪇Z n and r(n, h) = r(n′, h). Then, by Theorem
4.4, we may take n′ to be obtained from n by an elementary intersection-union process. Let

∆̃ = [ã, b̃]ρ,∆ = [a, b]ρ in n be the segments involved in the intersection-union process, and
switching labeling if necessary, we may assume that ã < a.

We similarly obtain the �ne chain

fs(n′0, h
′
0), fs(n

′
1, h

′
1), . . . ,

for (n′, h). We consider j such that a−1 is the smallest integer c such that nj [c] ̸= ∅. (Such
j exists by using the condition that ∆̃ and ∆ are linked.)

Then, in nj , we have a segment [a−1, b̃]ρ coming by truncating ∆̃. If we replace [a−1, b̃]ρ
in nj by [a− 1, b]ρ, this gives n

′
j .

Now

|
{
∆ ∈ nj : ∆̃ ⊂ ∆

}
| < |

{
∆ ∈ n′j : ∆̃ ⊂ ∆

}
| ≤ |

{
∆ ∈ fs(n′j , hj) : ∆̃ ⊂ ∆

}
|,

where the �rst strict inequality comes from [a− 1, b]ρ. But by Lemma 3.9, two �ne chains
coincide and in particular fs(nj , hj) = fs(n′j , hj). Hence, we now have that (nj , hj) is locally
minimizable by De�nition 5.2 as desired. □

We now prove the converse of Lemma 6.1. The main idea is to use Lemma 5.6 to
locate a suitable choice of a segment for the intersection-union process. Since the local
minimizability is for the multisegments in the �ne chain fch(n), one may not be able to
immediately �nd a segment that originally comes from n and so the second bullet of Lemma
5.6 allows one to trace back and inductively use Lemma 5.6 to �nd suitable segments coming
from an original segment in n responsible for the intersection-union process.

Lemma 6.2. We keep using the notations in Lemma 6.1. If (nj , hj) is locally minimizable
for some j, then there is a multisegment n′ such that n′ ⪇Z n and r(n, h) = r(n′, h′).

Proof. We pick any j such that (nj , hj) is locally minimizable. Let a be the smallest integer
such that nj [a] ̸= ∅. The below argument is similar if j = 1 and so we assume j > 1 for
convenience of the stated form of Lemma 5.6.

Note that nj [a] =
−(nj−1[a − 1]) + nj [a]. (Here we have nj−1[a] = n[a].) The local

minimizability condition implies that we can use the �rst bullet of Lemma 5.6 (set c = a+1
in our case) with respect to a certain segment in n[a+1], denoted by ∆. Then, that lemma

implies that we can �nd a segment ∆̃ in −(nj−1[a − 1]) + n[a] satisfying the required
properties in the lemma.
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The �rst case is that ∆̃ comes from n[a]. In this case, let ñ be the multisegment ob-

tained from n by the intersection-union operation of the segments ∆̃ and ∆. Then it is
straightforward from de�nitions that

fs(n0, h0) = fs(ñ0, h0), . . . , fs(nj−1, hj−1) = fs(ñj−1, hj−1),

where h0 = h, fs(ñk, hk) are the �rst j − 1 terms of fc(ñ, h). However, fs(nj , hj) = fs(ñj , hj)
is guaranted by Lemma 5.6. But then nj+1 = ñj+1 and so the reamining terms in two �ne
chains also agree. Hence, two �ne chains coincide and so r(n, h) = r(ñ, h) by Lemma 3.9.

The second case is that ∆̃ cannot come from n[a]. In such case, the second bullet of
Lemma 5.6 implies that we have

|
{
∆ ∈ nj−1[a− 1] : ∆ ⊂ ∆

}
| < |

{
∆ ∈ fs(nj−1[a− 1], h) : ∆ ⊂ ∆

}
|.

But then, we can apply Lemma 5.6 again to �nd another segment
˜̃
∆. If such segment

˜̃
∆

can be found in −(nj−2[a−1]), then we repeat the similar argument of the �rst case above.
Otherwise, we apply Lemma 5.6 again. In those cases, the coincidence of the �ne chains are
guaranteed by Lemma 5.6. Hence, we also have r(n, h) = r(ñ, h) by Lemma 3.9. (Strictly
speaking in terms of the way in stating Lemma 5.6, one has to trace the proof to see that

the choices for ∆̃ and
˜̃
∆ in each step can be made to agree after truncating the point

[a− 1]ρ. Since there is no new idea on that, we avoid further notation complications.) □

We explain the main idea of the proof for Proposition 6.3 below, which is inductive in
nature. One �rst picks two minimal multisegments n and n′ in S ′(h, p). One then �nds

≺L-minimal segments ∆̃ and ∆̃′ in n and n′ respectively. If ∆̃ = ∆̃′, then one uses induction

to argue n− ∆̃ = n′ − ∆̃. If ∆̃ ̸= ∆̃′, then one �rst reduces to the case that ∆̃ ⊊ ∆̃′. Then

one applies induction hypothesis to show ∆̃′ is also in n. Then one shows that ∆̃ and ∆̃′

in n give rise the local minimizability.

Proposition 6.3. Let h ∈ Multρ. Then there exists a unique minimal element in S ′(h, p)
if S ′(h, p) ̸= ∅.

Proof. Let n, n′ be two minimal multisegments in S ′(h, p). Let a be the smallest integer
such that n[a] ̸= 0. Then, by a comparison on cuspidal representations, a is also the smallest
integer such that n′[a] ̸= 0.

Suppose n[a]∩n′[a] ̸= ∅. Let ∆̃ ∈ n[a]∩n′[a]. Then we consider S ′(r(∆̃, h), p). The mini-

mality for n and n′ also guarantees that n− ∆̃ and n′− ∆̃ are also minimal in S ′(r(∆̃, h), p).

Thus, by induction, we have that n− ∆̃ = n′ − ∆̃ and so n = n′.
Now suppose n[a] ∩ n′[a] = ∅ to obtain a contradiction. Let ∆ and ∆′ be the shortest

segment in n[a] and n′[a] respectively. Switching labeling if necessary, we may assume that
∆ ⊊ ∆′. Then, by Lemma 3.4,

r(n, h) = r(trd(n, h), trr(n, h)), r(n′, h) = r(trd(n′, h), trr(n′, h)).

By Lemma 3.9,

trr(n, h) = trr(n′, h).

By Lemma 6.2, (trr(n, h), trd(n, h)) and the terms from the �ne chains are not locally
minimizable. Similarly, this also holds for (trr(n′, h), trd(n, h)). However, Lemma 6.1 implies
that both trd(n, h) and trd(n′, h) are minimal in S ′(trr(n, h), p) = S ′(trr(n′, h), p). Hence,
by induction,

trd(n, h) = trd(n′, h).
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But then, the disjointness assumption implies that −∆′ ∈ n. But −∆′ ̸⊂ ∆ and −∆′ ⊂
Υ(∆, h). By Lemma 5.4, this implies

|
{
∆̃ ∈ n[a] : −∆′ ⊂ ∆̃

}
| < |

{
∆̃ ∈ fs(n, h) : −∆′ ⊂ ∆̃

}
|.

Hence, (n, h) is locally minimizable. This contradicts to Lemma 6.2. □

Theorem 6.4. Let π ∈ Irrρ and let τ be a simple quotient of π(i) for some i. Then S(π, τ)
has a unique minimal element if S(π, τ) ̸= ∅. Here the minimality is with respect to ≤Z .

Proof. This follows from Proposition 6.3 and Theorem 2.4. □

7. Examples of minimality

7.1. Minimality for the highest derivative multisegment.

Theorem 7.1. Let π ∈ Irrρ. Then hd(π) is minimal in S(π, π−).

Proof. It is shown in [Ch22+d] that Dhd(π)(π) ∼= π−. It remains to prove that hd(π) is

minimal in S(π, π−). Theorem 4.4 reduces to show that if n is a multisegment obtained by
an elementary intersection-union process from hd(π), then Dn(π) = 0.

Let ∆1 = [a1, b1]ρ,∆2 = [a2, b2]ρ be two linked segments in hd(π). Relabeling if neces-
sary, we assume that a1 < a2. De�ne

n = hd(π)− {∆1,∆2}+∆1 ∪∆2 +∆1 ∩∆2.

Then, n[e] = hd(π)[e] for any e < a1 and n[a1] ̸≤a1
hd(π)[a1]. Hence, by Theorems 2.4 and

2.5,
Dn[a1] . . . Dn[c](π) = Dn[a1] ◦Dhd(π)[a1−1] ◦ . . . ◦Dhd(π)[c](π) = 0,

and so n /∈ S(π, π−). Here c is the smallest integer such that hd(π)[c] ̸= 0. □

7.2. Minimal multisegment for the generic case.

Proposition 7.2. Let π ∈ Irrρ be generic. Let τ be a (generic) simple quotient of π(i) for
some i. Then the minimal multisegment in S(π, τ) is generic i.e. any two segments in the
minimal multisegment are unlinked.

One may prove the above proposition by some analysis of derivative resultant multiseg-
ments. We shall give another proof using the following lemma:

Lemma 7.3. Let π ∈ Irrρ(Gn) be generic. For any i, and for any irreducible submodule
τ1 ⊠ τ2 of πNi

as Gn−i ×Gi-representations, both τ1 and τ2 are generic.

Proof. Recall that for a generic π,

π ∼= St(∆1)× . . .× St(∆r)

for mutually unlinked segments ∆1, . . . ,∆r.
Now, with a suitable arrangment on the orderings of the segments, one may argue as in

[Ch21, Corollary 2.6] to have that a simple quotient of πNi takes the form τ ⊠ ω for some
generic τ ∈ Irr(Gn−i). Hence it remains to show ω is also generic. We consider

πNi
↠ τ ⊠ ω

and taking the twisted Jacquet functor on the Gn−i-parts yields that

(n−i)π ↠ ω.

Now using [Ch21, Corollary 2.6] for left derivatives, we have that ω is also generic as
desired. □
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Proof of Proposition 7.2. Let π ∈ Irrρ be generic and let τ be a simple (generic) quotient

of π(i) (see [Ch21, Corollary 2.6]). Then, πNi
has a simple quotient of the form τ ⊠ ω for

some ω ∈ Irrρ(Gi). By Lemma 7.3, ω is also generic and hence ω ∼= St(∆1)× . . .× St(∆k)
for some mutually unlinked segments ∆1, . . . ,∆k. Now, π is the unique submodule of
τ × St(∆1)× . . .× St(∆k). By a standard argument, we have that:

D∆1
◦ . . . ◦D∆k

(π) ∼= τ.

Hence, {∆1, . . . ,∆k} ∈ S(π, τ). The minimality of {∆1, . . . ,∆k} is automatic since any
generic multisegment is minimal in Multρ with respect to ≤Z . Now the statement follows
from the uniqueness in Theorem 6.4. □

8. Non-uniqueness of maximal elements in S(π, τ)

8.1. Highest derivative multisegments. Let π ∈ Irrρ. Then S(π, π−) contains a unique
maximal multisegment, and such multisegment has all segments to be singletons. Combin-
ing with Theorem 4.4, one can describe all multisegments in S(π, π−).

8.2. Failure of uniqueness of maximality. As mentioned in [Ch22+d], in general,
derivatives of cuspidal representations are not enough for constructing all simple quotients
of Bernstein-Zelevinsky derivatives, and the set S(π, τ) may contain some multisegments
whose segments are not all singletons. We give an example to show that in general, there
is no uniqueness for ≤Z-maximal elements in S(π, τ).

Let

h = {[0, 3]ρ, [0, 1]ρ, [1, 2]ρ, [1, 2]ρ, [2]ρ, [3]ρ} .

Let n = {[0, 3]ρ, [1, 2]ρ}. Then

r := r(n, h) = {[0, 1]ρ, [1, 2]ρ, [2]ρ, [3]ρ} = h− n.

We claim that

S ′(h, r) = {n, {[0, 3]ρ, [1]ρ, [2]ρ} , {[0, 2]ρ, [1, 3]ρ}} .

It is direct to check that the three elements are in S(h, r), and the last two elements are
both maximal.

To see that there are no more elements, we �rst observe that any multisegment n′ in

S ′(h, r) has only one segment ∆̃ with a(∆̃) = ν0. By considering the �rst segment in the

removal sequence r(∆̃, h), we note that [0]ρ, [0, 1]ρ /∈ S ′(h, r). In other words, [0, 2]ρ or
[0, 3]ρ in S ′(h, r). It remains to check that the following three elements:

{[0, 2]ρ, [1]ρ, [2]ρ, [3]ρ} , {[0, 2]ρ, [1, 2]ρ, [3]ρ} , {[0, 2]ρ, [1]ρ, [2, 3]ρ}

are not in S ′(h, r), which is straightforward.
To show that the maximality for S(π, τ) is not unique in general, one still needs to ask

whether there exists π ∈ Irrρ such that hd(π) = h. This is indeed the case and we shall
postpone proving this in the sequel [Ch22+e], where we shall need such fact in a more
substantial way.

9. Minimality for two segment case

In this section, we study the minimality for two segment cases.
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9.1. Non-overlapping property.

De�nition 9.1. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ linked to
∆ with ∆′ > ∆. We say that the triple (∆,∆′, h) satis�es the non-overlapping property if
for the shortest segment ∆ in the removal sequence for (∆, h) that contains ν−1a(∆′), we
have ∆′ ̸⊂ ∆. (We remark that for later applications, we do not impose the condition that
∆′ is admissible to h.)

Example 9.2. (1) Let h = {[0, 7]ρ, [3, 6]ρ, [6, 10]ρ}. Let∆ = [0, 5]ρ and let∆
′ = [6, 7]ρ.

Then (∆,∆′, h) satis�es the non-overlapping property.

6• 7• 8• 9• 10•

3• 4• 5• 6•

0• 1• 2• 3• 4• 5• 6• 7•

The blue points are those points removed by applying r(∆, .) while the red points
are those points removed by applying r(∆′, .). Note that the shortest segment in
the removal sequence containing [5]ρ is [3, 6]ρ, which does not contain [6, 7]ρ.

(2) Let h = {[0, 8]ρ, [3, 6]ρ, [6, 10]ρ}. Let∆ = [0, 7]ρ and let∆
′ = [6, 8]ρ. Then (∆,∆′, h)

does not satisfy the non-overlapping property. The graph for carrying out the
removal sequence looks like:

6• 7• 8• 9• 10•

3• 4• 5• 6•

0• 1• 2• 3• 4• 5• 6• 7• 8•

In the graph above, the segment [0, 8]ρ contains [5]ρ, and [6, 8]ρ ⊂ [0, 8]ρ.

Lemma 9.3. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ be admissible
to r(∆, h). Suppose ∆′ is linked to ∆ with ∆′ > ∆. Then (∆,∆′, h) does not satisfy the
non-overlapping property if and only if

r({∆ ∩∆′,∆ ∪∆′} , h) = r({∆,∆′} , h).

Proof. Let n = {∆,∆′}. Suppose r({∆ ∩∆′,∆ ∪∆′} , h) ̸= r({∆,∆′} , h). Lemma 2.3(1)
and the nesting property in the removal process reduces to the case that a(∆) ∼= ν−1a(∆′).
Now, showing not satisfying non-overlapping property is simply a reformulation of locally
minimizability by Lemma 6.2.

Suppose r({∆ ∩∆′,∆ ∪∆′} , h) = r({∆,∆′} , h). By Lemma 2.3(1), it again reduces to
a(∆) ∼= ν−1a(∆′). It then follows from Lemma 6.1 that ({∆,∆′} , h) is locally minimizable
and so this gives the non-overlapping property. □
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9.2. Intermediate segment property.

De�nition 9.4. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ linked
to ∆ with ∆′ > ∆. We say that the triple (∆,∆′, h) satis�es the intermediate segment

property if there exists a segment ∆̃ in h such that

(9.3) a(∆) ≤ a(∆̃) < a(∆′), and b(∆) ≤ b(∆̃) < b(∆′).

9.3. Criteria in terms of η-invariants. Let h ∈ Multρ. For a segment ∆ = [a, b]ρ
admissible to h, note that, by Theorem 2.5, ε∆(hd(π)) = ε∆(π).) Let

η∆(h) = (ε[a,b]ρ(h), ε[a+1,b]ρ(h), . . . , ε[b,b]ρ(h)).(9.4)

The η-invariant de�ned above plays an important role in de�ning a notion of generalized
GGP relevant pairs in [Ch22+b].

Proposition 9.5. Let h ∈ Multρ. Let ∆ ∈ Segρ be admissible to h. Let ∆′ ∈ Segρ be
linked to ∆ with ∆′ > ∆. Then the following conditions are equivalent:

(1) The triple (∆,∆′, h) satis�es the non-overlapping property.
(2) η∆′(h) = η∆′(r(∆, h)).
(3) The triple (∆,∆′, h) satis�es the intermediate segment property.

Proof. We �rst prove (3) implies (2). Suppose (3) holds. We denote by

∆1, . . . ,∆r

the removal sequence for (∆, h). Using (3) and (4) of the removal process in De�nition 2.1,
those ∆1, . . . ,∆r in h are replaced by their respective truncations, denoted by

∆tr
1 , . . . ,∆tr

r .

By using the intermediate segment property and the minimality condition in the removal
process, there exists a segment of the form (9.3) in the removal sequence for (∆, h). Let i∗

be the smallest index such that ∆i∗ satis�es (*). Note that, by considering a(∆j),

∆1, . . . ,∆i∗−1

do not contribute to η∆′(h) by de�nitions. By the de�nition of truncation and (9.3) for
∆i∗ , we have that ∆

tr
1 , . . . ,∆tr

i∗−1 also do not contribute to η∆′(r(∆, h)). From the choice
of ∆i∗ and the nesting property, we also have that, by considering b(∆j),

∆i∗ , . . . ,∆r

do not contribute to η∆′(h), and similarly, ∆tr
i∗ , . . . ,∆

tr
r do not contribute to η∆′(r(∆, h)).

Thus, we have that
η∆′(h) = η∆′(r(∆, h)).

We now prove (2) implies (1). Again write ∆′ = [a′, b′]ρ. Suppose (∆,∆′, h) does not
satisfy the nonoverlapping property. Again, denote by

∆1, . . . ,∆r

the removal sequence for (∆, h). Let ∆l be the shortest segment in the removal sequence
containing ν−1a(∆′). Note that

∆1, . . . ,∆l−1,∆l

do not contribute to η∆′(h) (by considering a(∆i)) and similarly,

∆tr
1 , . . . ,∆tr

l−1

do not contribute to η∆′(r(∆, h)). However, ∆tr
l contributes to η∆′(r(∆, h)). This causes a

di�erence of 1 in the coordinate ε∆′ for η∆′(h) and η∆′(r(∆, h)).
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It remains to see the following claim:
Claim: For k > l, ∆k contributes to η∆′(h) if and only if ∆tr

k contributes to η∆′(r(∆, h)).

Proof of claim: If ∆k does not contribute to η∆′(h), then b(∆k) < b(∆′) and so b(∆tr
k ) <

b(∆′) (or ∆tr
k is dropped or a empty set). This implies that ∆tr

k does not contribute to
η∆′(r(∆, h)).

On the other hand, if ∆k contributes to η∆′(h), then b(∆k) ≥ b(∆′). Note that ∆tr
k is

non-empty by using ∆ < ∆′. Thus we also have b(∆tr
k ) ≥ b(∆′). We also have that ∆tr

k

contributes to η∆′(r(∆, h)). This completes proving the claim.

Note that (1) ⇒ (3) follows from the segment involved in the de�nition of overlapping
property. Thus, we also have (1) ⇒ (2).

We now consider (3) ⇒ (1). Among those segments in h satisfying (9.3), we pick the ≺L-

minimal one ∆̃∗ (see Section 2.3 for ≺L). Note that such segment also satis�es ν−1a(∆′) ∈
∆̃∗ and ∆′ ̸⊂ ∆̃∗. Now (3) implies that at least one segment in the removal sequence for
(∆, h) contains a segment of the form (9.3), and so one uses the nesting property in the
removal sequence to show the non-overlapping property. □

Example 9.6. Let h = {[0, 5]ρ, [3, 8]ρ}.
• Let ∆ = [0, 3]ρ and let ∆′ = [3, 6]ρ. In such case, η∆′(h) = (1, 0, 0, 0). Similarly,
η∆′(r(∆, h)) = η∆′({[3, 8]ρ, [4, 5]ρ}) = (1, 0, 0, 0).

• Let∆ = [0, 3]ρ and let∆
′ = [3, 4]ρ. In such case, η∆′(h) = (1, 0). And η∆′(r(∆, h)) =

η∆′({[3, 8]ρ, [4, 5]ρ}) = (1, 1).

A consequence of Proposition 9.5 is the following:

Corollary 9.7. Suppose the triple (∆,∆′, h) satis�es the non-overlapping property. Write

∆′ = [a′, b′]ρ. Then, for any segment ∆̃ linked to ∆ and of the form [ã, b′]ρ for ã ≥ a′, the

triple (∆, ∆̃, h) also satis�es the non-overlapping property.
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